JP2018124161A - Leakage inspection device and leakage inspection method - Google Patents

Leakage inspection device and leakage inspection method Download PDF

Info

Publication number
JP2018124161A
JP2018124161A JP2017016113A JP2017016113A JP2018124161A JP 2018124161 A JP2018124161 A JP 2018124161A JP 2017016113 A JP2017016113 A JP 2017016113A JP 2017016113 A JP2017016113 A JP 2017016113A JP 2018124161 A JP2018124161 A JP 2018124161A
Authority
JP
Japan
Prior art keywords
compensation value
temperature compensation
inspection
temperature
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017016113A
Other languages
Japanese (ja)
Other versions
JP6775434B2 (en
Inventor
順裕 土屋
Nobuhiro Tsuchiya
順裕 土屋
憲三 福吉
Kenzo Fukuyoshi
憲三 福吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AIM TECH KK
AIM Tech Co Ltd Japan
Gastar Co Ltd
Original Assignee
AIM TECH KK
AIM Tech Co Ltd Japan
Gastar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AIM TECH KK, AIM Tech Co Ltd Japan, Gastar Co Ltd filed Critical AIM TECH KK
Priority to JP2017016113A priority Critical patent/JP6775434B2/en
Publication of JP2018124161A publication Critical patent/JP2018124161A/en
Application granted granted Critical
Publication of JP6775434B2 publication Critical patent/JP6775434B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a leakage inspection method and a device with which it is possible to appropriately temperature-compensate an effect of a temperature change included in a measurement result.SOLUTION: Before and after a leakage inspection step of measuring a pressure change in a container to be inspected, which is sealed after being pressurized to an inspection pressure, a pre-correction step and a post-correction step of measuring the pressure change in the container to be inspected, which is sealed after exposure to atmospheric air, are carried out. A first temperature compensation value H1 is obtained from a measurement result of the pre-correction step and a second temperature compensation value H2 is obtained from the measurement result of the post-correction step, the first temperature compensation value H1 and the second temperature compensation value H2 are weighted by weighting factors α, β and then averaged, a result obtained as a temperature compensation value H3 at leakage inspection time, with the measurement result of the leakage inspection step thereby temperature-compensated and determination made as to the presence of leakage from the container to be inspected. The weights of the first temperature compensation value H1 and the second temperature compensation value H2 are changed on the basis of at least one of magnitude of an inspection pressure, magnitude of heat capacity of the container to be inspected, magnitude of a coefficient of heat transfer to the outside, and magnitude of a temperature difference between the container to be inspected and an environment.SELECTED DRAWING: Figure 3

Description

本発明は、検査対象の容器や管路の漏れを検査するリーク検査装置、リーク検査方法に関する。   The present invention relates to a leak inspection apparatus and a leak inspection method for inspecting a leakage of a container or a pipeline to be inspected.

容器の漏れを検査する場合、容器に空気等の気体を高圧に加圧導入した後、これを封止し、その後の圧力変化を観察する方法が一般的である。   When inspecting for leaks in a container, a method is generally employed in which a gas such as air is pressurized and introduced into the container at a high pressure and then sealed, and the subsequent pressure change is observed.

しかし、観察される圧力変化には、漏れによる圧力変化のほかに、温度変動に起因する圧力変化分が含まれる。   However, the observed pressure change includes not only the pressure change due to leakage but also the pressure change due to temperature fluctuation.

そこで、漏洩検査で測定した圧力変化から、温度変動に起因する圧力変化の影響を除去する技術が各種提案されている。   Therefore, various techniques for removing the influence of the pressure change caused by the temperature fluctuation from the pressure change measured by the leak test have been proposed.

たとえば、下記特許文献1には、検査対象の容器を大気開放してから封止した状態で放置したときの圧力変化を測定し、該測定結果から漏洩検査時に生じる温度変動(主として環境温度の変化)に起因する圧力変化を推定して、実際の漏洩検査の測定結果から温度変動の影響を除去する検査方法及び装置が開示されている。該検査方法では、温度変動の影響をより的確に除去するために、温度変動に起因する圧力変化の測定を、実際の漏洩検査の前後で行い、前後の測定で求めた圧力変化率の平均値に基づいて、漏洩検査時の温度変動の影響を除去する。   For example, in Patent Document 1 below, a pressure change when a container to be inspected is left in a sealed state after being opened to the atmosphere is measured, and a temperature variation (mainly a change in environmental temperature) that occurs at the time of leakage inspection is measured from the measurement result. ), And an inspection method and apparatus for removing the influence of temperature fluctuation from the actual measurement result of the leakage inspection are disclosed. In this inspection method, in order to more accurately remove the influence of temperature fluctuation, the pressure change caused by the temperature fluctuation is measured before and after the actual leakage inspection, and the average value of the pressure change rate obtained by the previous and subsequent measurements. Based on the above, the effect of temperature fluctuation at the time of leak inspection is removed.

下記特許文献2には、検査対象の容器であるワークと、漏れの無い容器であるマスタとの差圧を測定することでワークの漏れの有無を検出する漏洩検査方法が開示されている。詳細には、ワークとマスタを同圧の高圧に加圧してから封止した状態で放置したときの差圧の変化を所定時間測定する漏洩検査を行う。この時、ワークとマスタのどちらか一方が環境温度等の温度変動の影響を強く受け、漏洩していないにもかかわらず差圧を生じる場合がある。そこで、この漏洩検査の前後に、ワークとマスタを大気開放してから封止した状態で放置したときの差圧の変化(影響の受け具合の程度)を所定時間測定する温度補償用測定工程を行う。そして、前後の温度補償用測定工程で求めた温度補償値(差圧の変化率)の平均値を用いて、漏洩検査時の温度変動に基づく差圧の変化分を推定して、漏洩検査の測定結果を温度補償する。   Patent Document 2 listed below discloses a leakage inspection method that detects the presence or absence of workpiece leakage by measuring a differential pressure between a workpiece that is a container to be inspected and a master that is a container without leakage. Specifically, a leakage inspection is performed in which a change in differential pressure when the workpiece and the master are pressurized to the same pressure and then left in a sealed state is measured for a predetermined time. At this time, one of the workpiece and the master is strongly affected by temperature fluctuations such as the environmental temperature, and a differential pressure may be generated even though it is not leaking. Therefore, before and after this leakage inspection, a temperature compensation measuring step is performed for measuring a change in the differential pressure (degree of influence) when the workpiece and the master are left in a sealed state after being released to the atmosphere for a predetermined time. Do. Then, using the average value of the temperature compensation value (differential pressure change rate) obtained in the previous and subsequent temperature compensation measurement steps, the amount of change in the differential pressure based on the temperature fluctuation during the leak test is estimated, and the leak test Compensate the temperature of the measurement result.

また、特許文献2では、漏洩検査前の温度補償用測定工程が行われてから漏洩検査が実施されるまでの第1時間と、漏洩検査後の温度補償用測定工程が実施されるまでの第2時間とに差が生じた場合を考慮して、漏洩検査前の温度補償用測定工程で得た温度補償値と漏洩検査後の温度補償用測定工程で得た温度補償値を、第1時間と第2時間の逆比で加重平均した値で、漏洩検査時の測定結果を温度補償することが開示される。   Further, in Patent Document 2, the first time from when the temperature compensation measurement process before the leak test is performed until the leak test is performed, and the first time until the temperature compensation measurement process after the leak test is performed. In consideration of the case where there is a difference between 2 hours, the temperature compensation value obtained in the temperature compensation measurement process before the leak test and the temperature compensation value obtained in the temperature compensation measurement process after the leak test are set to the first time. It is disclosed that the measurement result at the time of leak inspection is temperature-compensated with a weighted average value with the inverse ratio of the second time.

特許第3483253号Japanese Patent No. 348253 特許第4994494号Patent No. 4994494

特許文献1、2はいずれも、基本的には(上記の第1時間と第2時間が同じ場合には)、漏洩検査の前後の測定で得た温度補償値(圧力や差圧の変化率)の平均値を用いて、漏洩検査中の温度変動に基づく温度補償値を推定して漏洩検査の測定結果を温度補償する。平均値を用いるのは、検査対象物(ワーク)が環境温度とほぼ同じ温度であり、測定中の温度変化は環境温度の変化に起因して穏やかに生じることを前提とするものである。すなわち、環境温度の変化は穏やかに生じるので、漏洩検査前の温度補償用測定工程で得た温度補償値と漏洩検査後の温度補償用測定工程で得た温度補償値の差が小さく、その間における温度補償値の変化がほぼ線形に生じると考えられることに基づく。   In both Patent Documents 1 and 2, basically (when the above-mentioned first time and second time are the same), the temperature compensation value obtained by the measurement before and after the leak test (the rate of change in pressure and differential pressure) ) Is used to estimate the temperature compensation value based on the temperature fluctuation during the leak test, and to compensate the temperature of the measurement result of the leak test. The average value is used on the premise that the inspection object (workpiece) is at substantially the same temperature as the environmental temperature, and that the temperature change during measurement occurs gently due to the environmental temperature change. That is, since the environmental temperature changes gently, the difference between the temperature compensation value obtained in the temperature compensation measurement process before the leak inspection and the temperature compensation value obtained in the temperature compensation measurement process after the leak inspection is small. This is based on the fact that the change in temperature compensation value is considered to occur almost linearly.

しかしながら、検査対象のワークが熱い場合(例えば環境温度に対して3〜5度高い場合でマスタが略環境温度の場合)には、当初は、ワークの温度と環境温度との温度差が大きいため、ワークの温度変化は激しく、その後はワークの温度と環境温度との温度差が小さくなるにつれて、ワークの温度変化は緩慢になる。当然、ワークとマスタ間の差圧も、当初は激しく変化し、次第に緩慢となる。その結果、漏洩検査前の温度補償用測定工程で得た温度補償値と漏洩検査後の温度補償用測定工程で得た温度補償値との差が大きく、その間における温度補償値の変化がほぼ線形に生じるという前提は成り立たなくなる。温度補償値の変化は、曲線形状の非線形に生じると考えられる。   However, when the workpiece to be inspected is hot (for example, when it is 3 to 5 degrees higher than the environmental temperature and the master is substantially environmental temperature), the temperature difference between the workpiece temperature and the environmental temperature is initially large. The workpiece temperature changes drastically, and thereafter, as the temperature difference between the workpiece temperature and the environmental temperature becomes smaller, the workpiece temperature change becomes slow. Naturally, the differential pressure between the workpiece and the master also changes drastically at the beginning and gradually becomes slow. As a result, the difference between the temperature compensation value obtained in the temperature compensation measurement process before the leak inspection and the temperature compensation value obtained in the temperature compensation measurement process after the leak inspection is large, and the change in the temperature compensation value during that period is almost linear. The assumption that occurs in The change in the temperature compensation value is considered to occur in a nonlinear curve shape.

たとえば、検査対象のワークが、ロー付け、溶接、鋳造工程等で製造される場合には、製造直後のワークの温度は非常に高いので、環境温度との差が大きく、上記線形とする前提は成り立たない。   For example, when the workpiece to be inspected is manufactured by brazing, welding, casting process, etc., the temperature of the workpiece immediately after manufacturing is very high, so the difference from the environmental temperature is large, It doesn't hold.

さらに、漏洩検査時の検査圧力を500KPa(G)等の高圧にすると、検査圧力に加圧するときの断熱圧縮による温度上昇や、減圧するときの断熱膨張による温度降下が大きく、減圧後のワークの温度は加圧前よりも低下してしまう。そのため、上記線形とする仮定はさらに不正確になる。   Furthermore, if the inspection pressure at the time of leakage inspection is set to a high pressure such as 500 KPa (G), the temperature rise due to adiabatic compression when pressurizing to the inspection pressure and the temperature drop due to adiabatic expansion when decompressing are large. The temperature will be lower than before pressurization. As a result, the linear assumption is further inaccurate.

一方、上記のように製造された熱いワークを環境温度になるまで十分に冷やしてから漏洩検査を開始するには、次々と製造される多数のワークを、冷えるまで保管するための広い保管場所が必要になってしまう。   On the other hand, in order to start leakage inspection after sufficiently cooling the hot workpieces manufactured as described above to the ambient temperature, there is a wide storage place for storing a number of workpieces manufactured one after another until they are cooled. It becomes necessary.

なお、ワークの熱容量や外部への熱伝達率の大小などもワークの温度変化に影響を与える。   It should be noted that the heat capacity of the workpiece and the heat transfer coefficient to the outside also affect the temperature change of the workpiece.

本発明は、上記問題の解決を課題とするものであり、検査圧力が高い場合や環境温度との温度差が大きい状態で検査を行っても、測定結果に含まれる温度変動の影響を適切に温度補償することのできるリーク検査方法およびリーク検査装置を提供することを目的としている。   The present invention has an object to solve the above problem, and even when the inspection pressure is high or the inspection is performed in a state where the temperature difference from the environmental temperature is large, the influence of the temperature fluctuation included in the measurement result is appropriately obtained. An object of the present invention is to provide a leak inspection method and a leak inspection apparatus that can compensate for temperature.

かかる目的を達成するための本発明の要旨とするところは、次の各項の発明に存する。   The gist of the present invention for achieving the object lies in the inventions of the following items.

[1]検査対象容器の漏れの有無を検査するリーク検査方法であって、
大気開放してから封止した前記検査対象容器内の圧力変化を第1期間に測定する第1測定ステップと、
大気開放してから封止した前記検査対象容器内の圧力変化を前記第1期間より後の第2期間に測定する第2測定ステップと、
前記検査対象容器を所定の検査圧力に加圧した後に封止した前記検査対象容器内の圧力変化を前記第1期間と前記第2期間の間もしくは前記第2期間の後の第3期間に測定する第3測定ステップと、
前記第1測定ステップの測定結果に基づいて第1温度補償値を求める第1温度補償値算出ステップと、
前記第2測定ステップの測定結果に基づいて第2温度補償値を求める第2温度補償値算出ステップと、
前記第1温度補償値と前記第2温度補償値に基づいて、前記第3測定ステップの測定結果を温度補償するための第3温度補償値を算出する第3温度補償値算出ステップと、
前記第3測定ステップの測定結果を前記第3温度補償値で温度補償したデータに基づいて前記検査対象容器の漏れの有無を判定する判定ステップと、
を有し、
前記第3温度補償値算出ステップでは、前記検査圧力の大小、前記検査対象容器の熱容量の大小、外部への熱伝達率の大小、前記検査対象容器と環境との温度差の大小のうちの少なくとも1つに基づいて、前記第3温度補償値を算出する際の前記第1温度補償値と前記第2温度補償値の重み付けを変更する
ことを特徴とするリーク検査方法。
[1] A leak inspection method for inspecting whether there is a leak in a container to be inspected,
A first measurement step of measuring a pressure change in the inspection target container sealed after being opened to the atmosphere in a first period;
A second measurement step of measuring a pressure change in the container to be inspected sealed after being opened to the atmosphere in a second period after the first period;
A pressure change in the inspection target container sealed after pressurizing the inspection target container to a predetermined inspection pressure is measured between the first period and the second period or in a third period after the second period. A third measuring step,
A first temperature compensation value calculating step for obtaining a first temperature compensation value based on the measurement result of the first measuring step;
A second temperature compensation value calculating step for obtaining a second temperature compensation value based on the measurement result of the second measuring step;
A third temperature compensation value calculating step for calculating a third temperature compensation value for temperature compensating the measurement result of the third measurement step based on the first temperature compensation value and the second temperature compensation value;
A determination step of determining the presence or absence of leakage of the inspection target container based on data obtained by performing temperature compensation on the measurement result of the third measurement step with the third temperature compensation value;
Have
In the third temperature compensation value calculation step, at least one of the magnitude of the examination pressure, the magnitude of the heat capacity of the examination target container, the magnitude of the heat transfer rate to the outside, and the magnitude of the temperature difference between the examination target container and the environment The leak inspection method according to claim 1, wherein the weighting of the first temperature compensation value and the second temperature compensation value in calculating the third temperature compensation value is changed based on one.

上記発明では、大気開放後に封止した検査対象容器内の圧力変化を第1期間および第2期間に測定し、検査圧力に加圧した後に封止した検査対象容器内の圧力変化を第1期間と第2期間の間もしくは第2期間の後の第3期間に測定し、第1期間の測定結果から第1温度補償値を求め、第2期間の測定結果から第2温度補償値を求め、第1温度補償値と第2温度補償値に基づいて第3期間の第3温度補償値を算出して第3期間の測定結果を温度補償して検査対象容器の漏れの有無を判定する。第3温度補償値の算出に際して第1温度補償値と第2温度補償値の重み付けを、検査圧力の大小、検査対象容器の熱容量の大小、外部への熱伝達率の大小、検査対象容器と環境との温度差の大小のうちの少なくとも1つに基づいて変更する。第1温度補償値と第2温度補償値と第3温度補償値との関係は各種の要因で非線形となるので、その非線形性を重み係数の調整で近似して第3温度補償値を求める。   In the said invention, the pressure change in the test object container sealed after open | release to air | atmosphere is measured in the 1st period and the 2nd period, and the pressure change in the test object container sealed after pressurizing to the test pressure is 1st period. Between the first period and the second period or after the second period, the first temperature compensation value is obtained from the measurement result of the first period, the second temperature compensation value is obtained from the measurement result of the second period, Based on the first temperature compensation value and the second temperature compensation value, a third temperature compensation value for the third period is calculated, and the measurement result of the third period is temperature compensated to determine whether there is a leak in the container to be inspected. When calculating the third temperature compensation value, the first temperature compensation value and the second temperature compensation value are weighted according to the magnitude of the examination pressure, the magnitude of the heat capacity of the examination target container, the magnitude of the heat transfer rate to the outside, the examination target container and the environment. And change based on at least one of the temperature differences. Since the relationship between the first temperature compensation value, the second temperature compensation value, and the third temperature compensation value becomes non-linear due to various factors, the non-linearity is approximated by adjusting the weighting factor to obtain the third temperature compensation value.

[2]前記検査対象容器内の圧力変化として、
前記第1測定ステップおよび前記第2測定ステップでは、大気開放した基準容器もしくは大気開放してから封止した前記基準容器と、大気開放してから封止した前記検査対象容器との差圧を測定し、
前記第3測定ステップでは、前記検査圧力に加圧した後に封止した前記基準容器と、前記検査圧力に加圧した後に封止した前記検査対象容器との差圧を測定する
ことを特徴とする[1]に記載のリーク検査方法。
[2] As a pressure change in the inspection target container,
In the first measurement step and the second measurement step, a differential pressure between the reference container opened to the atmosphere or the reference container sealed after being opened to the atmosphere and the inspection object container sealed after being opened to the atmosphere is measured. And
In the third measuring step, a differential pressure between the reference container sealed after being pressurized to the inspection pressure and the inspection object container sealed after being pressurized to the inspection pressure is measured. The leak inspection method according to [1].

上記発明では、検査対象容器内の圧力と漏れのない基準容器内の圧力との差圧を測定する。   In the said invention, the differential pressure | voltage of the pressure in a test object container and the pressure in a reference | standard container without a leak is measured.

[3]前記第3温度補償値算出ステップでは、前記第3期間が前記第1期間と前記第2期間の間であって前記検査圧力が一定以上の場合は、前記検査対象容器の熱容量が小さいほど、もしくは、外部への熱伝達率が大きいほど、もしくは、前記検査対象容器と環境との温度差が大きいほど、前記第1温度補償値の重みを大きくする
ことを特徴とする[1]または[2]に記載のリーク検査方法。
[3] In the third temperature compensation value calculating step, when the third period is between the first period and the second period and the inspection pressure is a certain level or more, the heat capacity of the inspection object container is small. The weight of the first temperature compensation value is increased as the heat transfer coefficient to the outside increases or as the temperature difference between the container to be inspected and the environment increases [1] or The leak inspection method according to [2].

[4]前記第3温度補償値算出ステップでは、前記第3期間が前記第1期間と前記第2期間の間の場合は、前記検査圧力が高いほど、前記第1温度補償値の重みを大きくする
ことを特徴とする[1]乃至[3]のいずれか1つに記載のリーク検査方法。
[4] In the third temperature compensation value calculating step, when the third period is between the first period and the second period, the weight of the first temperature compensation value is increased as the inspection pressure is higher. The leak inspection method according to any one of [1] to [3], wherein:

上記発明では、第3測定ステップでの加圧時の断熱圧縮によって温度上昇する分の影響、および減圧時の断熱膨張によって温度降下する分の影響を、第1温度補償値の重みを大きくして、第3温度補償値に反映する。   In the above invention, the weight of the first temperature compensation value is increased with respect to the effect of the temperature rise due to the adiabatic compression at the time of pressurization in the third measurement step and the effect of the temperature drop due to the adiabatic expansion at the time of decompression. This is reflected in the third temperature compensation value.

[5]前記第1温度補償値、前記第2温度補償値、前記第3温度補償値は、漏れがない場合の単位時間当たりの圧力変化量である
ことを特徴とする[1]乃至[4]のいずれか1つに記載のリーク検査方法。
[5] The first temperature compensation value, the second temperature compensation value, and the third temperature compensation value are pressure change amounts per unit time when there is no leakage. [1] to [4] ] The leak inspection method according to any one of the above.

上記発明では、たとえば、第1測定ステップで得た圧力変化量を第1期間の長さ(時間)で除した値を第1温度補償値とする。   In the above invention, for example, a value obtained by dividing the pressure change amount obtained in the first measurement step by the length (time) of the first period is set as the first temperature compensation value.

[6][1]乃至[5]のいずれか1つに記載のリーク検査方法を用いて検査対象容器の漏れの有無を検査するリーク検査装置。 [6] A leak inspection apparatus that inspects the presence or absence of leakage of a container to be inspected using the leak inspection method according to any one of [1] to [5].

本発明に係るリーク検査方法およびリーク検査装置によれば、検査圧力が高い場合や環境温度との温度差が大きい状態で検査を行っても、測定結果に含まれる温度変動の影響を適切に温度補償することができる。   According to the leak inspection method and the leak inspection apparatus according to the present invention, even if the inspection pressure is high or the inspection is performed in a state where the temperature difference from the environmental temperature is large, the influence of the temperature fluctuation included in the measurement result is appropriately adjusted to the temperature. Can be compensated.

本発明に係るリーク検査装置の概略構成と検査の流れを示す図である。It is a figure which shows schematic structure and the flow of a test | inspection of the leak test | inspection apparatus based on this invention. リーク検査装置が行う検査処理の流れを示す流れ図である。It is a flowchart which shows the flow of the inspection process which a leak inspection apparatus performs. 前補正工程、漏洩検査工程、後補正工程における測定結果と温度補償値の一例を示す図である。It is a figure which shows an example of the measurement result and temperature compensation value in a pre-correction process, a leakage test process, and a post-correction process. 前補正工程、漏洩検査工程、後補正工程における圧力変化の概要を示す図である。It is a figure which shows the outline | summary of the pressure change in a pre correction process, a leakage test process, and a post correction process. 漏洩検査時の加圧、減圧によるワーク内部の温度変化を示す図である。It is a figure which shows the temperature change inside a workpiece | work by the pressurization at the time of a leak test, and pressure reduction. 前補正工程の圧力変化率と後補正工程の圧力変化率とその平均と漏洩検査工程の測定期間における圧力変化率との関係を各種の検査圧力について示す図である。It is a figure which shows the relationship between the pressure change rate of a pre-correction process, the pressure change rate of a post-correction process, the average, and the pressure change rate in the measurement period of a leak test process about various test pressures. 重み係数の決定基準を示す図である。It is a figure which shows the determination criterion of a weighting coefficient. 本発明の温度補償値による補正の効果を確認するための実験結果を示す図である。It is a figure which shows the experimental result for confirming the effect of the correction | amendment by the temperature compensation value of this invention.

以下、図面に基づき本発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明に係るリーク検査装置10の概略構成と検査の流れを示している。以下、圧力はすべてゲージ圧とする。リーク検査装置10は、検査対象となる管路(例えば、熱交換器)や容器(例えば、貯湯タンク)の漏れを検査する装置である。検査対象の容器(または管路)をワークとする。またワークと同形状、同材料で構成された容器等であって漏れのないことが確認されているものをマスタとする。ワークとマスタは同じ力学的および熱力学的パラメータを持った異なる容器等である。なお、ワークとマスタを同じ力学的および熱力学的パラメータを持った異なる容器とすると、ワークが大きい場合にはマスタも大きくなり、結果、検査装置の所有場所として広い場所を要することとなるので、マスタを小型として、マスタをワークと同じ大型を用いる場合と小型を用いる場合の変換係数をもって対応する場合もあるが、このような場合の対応方法については、後述する。   FIG. 1 shows a schematic configuration and a flow of inspection of a leak inspection apparatus 10 according to the present invention. Hereinafter, all pressures are assumed to be gauge pressures. The leak inspection apparatus 10 is an apparatus that inspects for leaks in pipes (for example, heat exchangers) and containers (for example, hot water storage tanks) to be inspected. The container (or pipe line) to be inspected is the workpiece. Also, a container having the same shape and the same material as that of the workpiece and having been confirmed to have no leakage is taken as a master. The workpiece and master are different containers with the same mechanical and thermodynamic parameters. If the workpiece and the master are different containers having the same mechanical and thermodynamic parameters, the master will be larger if the workpiece is large, and as a result, a large space will be required as the location of the inspection device. There are cases where the master is small and the master is used with the same large size as that of the workpiece, and there is a case where the conversion coefficient is used when the small size is used. A method for dealing with such a case will be described later.

リーク検査装置10は、加圧源接続口11と、ワーク接続口12と、マスタ接続口13を備えている、リーク検査装置10は内部の管路として、加圧源接続口11に一端が接続された第1配管21を有し、該第1配管21は途中で二手に分岐して第2配管22と第3配管23となり、第2配管22の他端はワーク接続口12に、第3配管23の他端はマスタ接続口13にそれぞれ接続されている。   The leak inspection apparatus 10 includes a pressurization source connection port 11, a work connection port 12, and a master connection port 13. The leak inspection apparatus 10 is connected to the pressurization source connection port 11 as an internal conduit. The first pipe 21 is bifurcated on the way into the second pipe 22 and the third pipe 23, and the other end of the second pipe 22 is connected to the work connection port 12. The other end of the pipe 23 is connected to the master connection port 13.

第1配管21には第1開閉弁31が介挿されている。第2配管22には、第1配管21との分岐箇所からワーク接続口12に向かう並び順で、第2開閉弁32、第1圧力計41、第3開閉弁33が設けてある。また第3配管23には、第1配管21との分岐箇所からマスタ接続口13に向かう並び順で、第4開閉弁34、第2圧力計42、第5開閉弁35が設けてある。   A first on-off valve 31 is inserted in the first pipe 21. The second pipe 22 is provided with a second on-off valve 32, a first pressure gauge 41, and a third on-off valve 33 in the order of arrangement from the branch point with the first pipe 21 toward the work connection port 12. The third pipe 23 is provided with a fourth on-off valve 34, a second pressure gauge 42, and a fifth on-off valve 35 in the order of arrangement from the branch point with the first pipe 21 toward the master connection port 13.

第2開閉弁32と第3開閉弁33との間の第2配管22と、第4開閉弁34と第5開閉弁35の間の第3配管23との間には、差圧計43が接続されている。また、第1開閉弁31と第4開閉弁34との間の所定箇所で第3配管23から排気管24が分岐しており、該排気管24の途中に排気弁38が設けてある。排気管24の終端は排気ポートとなっており大気開放されている。   A differential pressure gauge 43 is connected between the second pipe 22 between the second on-off valve 32 and the third on-off valve 33 and the third pipe 23 between the fourth on-off valve 34 and the fifth on-off valve 35. Has been. An exhaust pipe 24 branches from the third pipe 23 at a predetermined position between the first on-off valve 31 and the fourth on-off valve 34, and an exhaust valve 38 is provided in the middle of the exhaust pipe 24. The end of the exhaust pipe 24 is an exhaust port and is open to the atmosphere.

リーク検査装置10は、検査の流れの制御、測定、および測定結果に基づく漏れ判定等を行う検査処理部15を有する。検査処理部15は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等を主要部とする回路であり、ROMに格納されたプログラムに従ってCPUが処理を実行することで、リーク検査装置10における検査動作の制御、測定および判定が行われる。   The leak inspection apparatus 10 includes an inspection processing unit 15 that performs inspection flow control, measurement, and leak determination based on a measurement result. The inspection processing unit 15 is a circuit mainly including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like, and the CPU executes processing according to a program stored in the ROM. Thus, the control, measurement and determination of the inspection operation in the leak inspection apparatus 10 are performed.

加圧源接続口11には、電空レギュレータ2を介して加圧気体の供給源3が接続される。また、電空レギュレータ2と加圧源接続口11との間の配管には圧力計5が接続される。電空レギュレータ2は、下流側が設定圧力を超えないようにする機能を果たす。供給源3は例えば屋外に設置され、供給源3から他の加圧気体を動力とする機械等(例えばエアーツール等)に加圧気体を供給(供給源3から電空レギュレータ2までの管路は複数に分岐)しながら加圧源接続口11に至る。   A pressurized gas supply source 3 is connected to the pressurized source connection port 11 via an electropneumatic regulator 2. A pressure gauge 5 is connected to the pipe between the electropneumatic regulator 2 and the pressure source connection port 11. The electropneumatic regulator 2 functions to prevent the downstream side from exceeding the set pressure. The supply source 3 is installed outdoors, for example, and supplies pressurized gas from the supply source 3 to a machine or the like powered by other pressurized gas (for example, an air tool) (pipe line from the supply source 3 to the electropneumatic regulator 2) Reaches the pressure source connection port 11.

ワーク接続口12には、ワーク51が接続される。この例では、ワーク51は入口と出口を有する貫通型の容器等(たとえば、給湯器の熱交換器)である。ワーク51の入口はワーク接続口12に接続され、出口には第6開閉弁36が接続されている。第6開閉弁36を開くとワーク51の出口は大気に通じて大気開放となる。   A work 51 is connected to the work connection port 12. In this example, the work 51 is a through-type container having an inlet and an outlet (for example, a heat exchanger of a water heater). The inlet of the work 51 is connected to the work connection port 12, and the sixth on-off valve 36 is connected to the outlet. When the sixth on-off valve 36 is opened, the outlet of the work 51 is connected to the atmosphere and released to the atmosphere.

マスタ接続口13には、マスタ52が接続される。この例では、マスタ52は、ワーク51と同様に入口と出口を有する貫通型の容器等である。マスタ52の入口はマスタ接続口13に接続され、出口には第7開閉弁37が接続されている。第7開閉弁37を開くとマスタ52の出口は大気に通じて大気開放となる。   A master 52 is connected to the master connection port 13. In this example, the master 52 is a penetrating container having an inlet and an outlet, like the work 51. The inlet of the master 52 is connected to the master connection port 13, and the seventh on-off valve 37 is connected to the outlet. When the seventh open / close valve 37 is opened, the outlet of the master 52 is opened to the atmosphere through the atmosphere.

ワーク51は、製造から検査終了まで以下のような工程を経る。なお、マスタ52は、マスタ接続口13に接続された状態に維持される。リーク検査装置10は、次々と新たなワーク51を検査する。ワーク51は、ロー付け工程を経て製造(P1)された後、籠台車上に集積されて10分ほど放置され、環境温度+10℃程度に落ち着く(P2)。その後、大気を送風する等温化ファンユニット6に載せて数分間、大気を当てて冷却する(P3)。その後、リーク検査装置10に取り付けられて検査が行われる(P4)。検査が終了するとリーク検査装置10から取り外されて次工程に送られる(P5)。   The work 51 undergoes the following processes from manufacturing to the end of inspection. Note that the master 52 is maintained in a state of being connected to the master connection port 13. The leak inspection apparatus 10 inspects new workpieces 51 one after another. After the work 51 is manufactured through the brazing process (P1), it is accumulated on the trolley and left for about 10 minutes, and settles to an environmental temperature of about + 10 ° C. (P2). After that, it is placed on the isothermal fan unit 6 that blows air and cooled by applying air for several minutes (P3). Then, it is attached to the leak inspection apparatus 10 and inspected (P4). When the inspection is completed, it is removed from the leak inspection apparatus 10 and sent to the next process (P5).

図2は、リーク検査装置10が行う検査処理の流れを示す流れ図である。ワーク51およびマスタ52を図1に示すようにリーク検査装置10に接続した後、第1開閉弁31を除くすべての開閉弁32〜38を開く。これによりワーク51、マスタ52は大気開放の状態になる(ステップS101)。その後、排気弁38を閉じ、この状態で第1開閉弁31を所定時間(20〜30秒)開いてから閉じることで、ワーク51およびマスタ52内を掃気(プレパージ)する(ステップS102)。掃気流量は、例えば大気圧換算で50〜100リットル位である。   FIG. 2 is a flowchart showing a flow of inspection processing performed by the leak inspection apparatus 10. After connecting the work 51 and the master 52 to the leak inspection apparatus 10 as shown in FIG. 1, all the on-off valves 32 to 38 except for the first on-off valve 31 are opened. Thereby, the workpiece | work 51 and the master 52 will be in the air release state (step S101). Thereafter, the exhaust valve 38 is closed, and in this state, the first opening / closing valve 31 is opened for a predetermined time (20 to 30 seconds) and then closed, thereby scavenging (pre-purge) the work 51 and the master 52 (step S102). The scavenging flow rate is, for example, about 50 to 100 liters in terms of atmospheric pressure.

その後、第6開閉弁36、第7開閉弁37を閉じ、さらに第2開閉弁32、第4開閉弁34を閉じて、ワーク51とマスタ52をそれぞれ、大気開放の状態から封止した独立の密閉空間にする(ステップS103)。   Thereafter, the sixth on-off valve 36 and the seventh on-off valve 37 are closed, the second on-off valve 32 and the fourth on-off valve 34 are closed, and the workpiece 51 and the master 52 are respectively sealed from the open state. A sealed space is set (step S103).

その後、所定時間にわたって放置しているときのワーク51側の密閉空間とマスタ52側の密閉空間との差圧を差圧計43で測定する温度補償用測定工程(前補正工程とする)を実施する(ステップS104)。前補正工程で測定された差圧の変化量(前補正工程の測定開始時の差圧と前補正工程の測定終了時の差圧との差分)をΔPt1とし、前補正工程での差圧の変化の測定時間をTaとする。   Thereafter, a temperature compensation measurement step (referred to as a pre-correction step) is performed in which the differential pressure between the sealed space on the work 51 side and the sealed space on the master 52 side when left for a predetermined time is measured by the differential pressure gauge 43. (Step S104). The amount of change in the differential pressure measured in the pre-correction process (the difference between the differential pressure at the start of the measurement in the pre-correction process and the differential pressure at the end of the measurement in the pre-correction process) is ΔPt1, Let Ta be the measurement time of the change.

次に、漏洩検査工程を行う。漏洩検査工程では、まず、加圧気体の供給源3からワーク51とマスタ52に気体を加圧導入して所定の検査圧力まで加圧する(ステップS105:加圧ステップ)。具体的には、第2開閉弁32と第4開閉弁34を開いてワーク51とマスタ52とを連通した後、第1開閉弁31を開いて供給源3から気体をワーク51とマスタ52に加圧導入する。目標の検査圧力となったか否かは圧力計5で確認し、目標の検査圧力になったら第1開閉弁31を閉じる。その後、第2開閉弁32、第4開閉弁34を閉じて、ワーク51とマスタ52をそれぞれ、検査圧力(Pd)に加圧された独立の密閉空間にする(ステップS105)。   Next, a leakage inspection process is performed. In the leakage inspection process, first, gas is pressurized and introduced to the workpiece 51 and the master 52 from the pressurized gas supply source 3 and pressurized to a predetermined inspection pressure (step S105: pressurization step). Specifically, the second on-off valve 32 and the fourth on-off valve 34 are opened to communicate the work 51 and the master 52, and then the first on-off valve 31 is opened to supply gas from the supply source 3 to the work 51 and the master 52. Introduce under pressure. Whether or not the target inspection pressure has been reached is confirmed by the pressure gauge 5, and when the target inspection pressure is reached, the first on-off valve 31 is closed. Thereafter, the second on-off valve 32 and the fourth on-off valve 34 are closed, and the work 51 and the master 52 are each set into independent sealed spaces pressurized to the inspection pressure (Pd) (step S105).

この時の加圧導入量は、ワーク51(マスタ52)の内容量500cc とすると、例えば、20℃、500kPa(G) の空気の体積は[T2]=273.2+20 K [P2]=101.3+500 kPa(abs) [V2]=0.0005m3×2ヶなので、例えば、掃気流量に比して極めて小さい、大気圧換算で6リットル位である([T1]=273.2+0 K [P1]=101.3+0 kPa(abs) [V1]=0.0059m3)。 The amount of pressurization introduced at this time is 500 cc of the work 51 (master 52). For example, the volume of air at 20 ° C. and 500 kPa (G) is [T2] = 273.2 + 20 K [P2] = 101.3 + 500 kPa (abs) [V2] = 0.0005m 3 × 2, so, for example, it is extremely small compared to the scavenging flow rate and is about 6 liters in terms of atmospheric pressure ([T1] = 273.2 + 0 K [P1] = 101.3 + 0 kPa (abs) [V1] = 0.0059 m 3 ).

その後、温度変化(圧力変化)がある程度落ち着くまでの整定期間を待ってから、ワーク51側の密閉空間とマスタ52側の密閉空間との差圧の変化を差圧計43で測定する(ステップS106:測定ステップ)。漏洩検査工程で測定された差圧の変化量(漏洩検査工程での測定開始時の差圧と漏洩検査工程の測定終了時の差圧との差分)をΔPrとし、漏洩検査工程の測定ステップの測定時間をTrとする。   Thereafter, after waiting for a settling period until the temperature change (pressure change) settles to some extent, a change in the differential pressure between the sealed space on the workpiece 51 side and the sealed space on the master 52 side is measured by the differential pressure gauge 43 (step S106: Measurement step). The amount of change in the differential pressure measured in the leak test process (difference between the differential pressure at the start of measurement in the leak test process and the differential pressure at the end of measurement in the leak test process) is ΔPr. The measurement time is Tr.

次に、ワーク51と、マスタ52を減圧して大気開放する(ステップS107:減圧ステップ)。詳細には、第2開閉弁32と第4開閉弁34を開いてワーク51とマスタ52を連通させてから排気弁38を開いて減圧して大気開放する。このとき、第6開閉弁36、第7開閉弁37をさらに開放してもよい。   Next, the work 51 and the master 52 are decompressed and released to the atmosphere (step S107: decompression step). Specifically, the second on-off valve 32 and the fourth on-off valve 34 are opened to allow the work 51 and the master 52 to communicate with each other, and then the exhaust valve 38 is opened to reduce the pressure and release to the atmosphere. At this time, the sixth on-off valve 36 and the seventh on-off valve 37 may be further opened.

その後、排気弁38を閉じ(大気開放時に第6開閉弁36、第7開閉弁37を開いた場合はこれらも閉じる)、さらに、第2開閉弁32、第4開閉弁34を閉じて、ワーク51とマスタ52をそれぞれ、大気開放の状態から封止した独立の密閉空間にする(ステップS108)。   Thereafter, the exhaust valve 38 is closed (if the sixth open / close valve 36 and the seventh open / close valve 37 are opened when the atmosphere is opened, these are also closed), and the second open / close valve 32 and the fourth open / close valve 34 are closed, Each of 51 and the master 52 is set as an independent sealed space sealed from a state of opening to the atmosphere (step S108).

その後、所定時間にわたって放置しているときのワーク51側の密閉空間とマスタ52側の密閉空間との差圧を差圧計43で測定する温度補償用測定工程(後補正工程とする)を実施する(ステップS109)。後補正工程で測定された差圧の変化量(後補正工程の測定開始時の差圧と後補正工程の測定終了時の差圧との差分)をΔPt2とし、後補正工程での差圧の変化の測定時間をTbとする。   Thereafter, a temperature compensation measuring step (referred to as a post-correction step) is performed in which the differential pressure between the sealed space on the workpiece 51 side and the sealed space on the master 52 side when left for a predetermined time is measured by the differential pressure gauge 43. (Step S109). The amount of change in the differential pressure measured in the post-correction process (the difference between the differential pressure at the start of measurement in the post-correction process and the differential pressure at the end of measurement in the post-correction process) is ΔPt2, and the differential pressure in the post-correction process The change measurement time is Tb.

次に、検査処理部15は、前補正工程で得た差圧の変化量ΔPt1と該変化量ΔPt1を測定した計測期間の長さ(Ta)とから、前補正工程における単位時間当たりの差圧の変化量(差圧変化率)を第1温度補償値H1として求める。H1=ΔPt1/Ta   Next, the inspection processing unit 15 calculates the differential pressure per unit time in the pre-correction step from the change amount ΔPt1 of the differential pressure obtained in the pre-correction step and the length (Ta) of the measurement period in which the change amount ΔPt1 is measured. Is obtained as the first temperature compensation value H1. H1 = ΔPt1 / Ta

また、後補正工程で得た差圧の変化量ΔPt2と該変化量ΔPt2を測定した計測期間の長さ(時間Tb)とから、後補正工程における単位時間当たりの差圧の変化量(差圧変化率)を第2温度補償値H2として求める(ステップS110)。H2=ΔPt2/Tb   Further, from the change amount ΔPt2 of the differential pressure obtained in the post-correction step and the length of the measurement period (time Tb) in which the change amount ΔPt2 was measured, the change amount of the differential pressure per unit time (the differential pressure) in the post-correction step Change rate) is obtained as the second temperature compensation value H2 (step S110). H2 = ΔPt2 / Tb

次に検査処理部15は、第1温度補償値H1と第2温度補償値H2に与える重み係数(比率)を、漏洩検査時の検査圧力の大小、前補正工程の測定を開始する時点でのワーク51と環境温度との温度差の大小、ワーク51の熱容量の大小、ワーク51の熱伝達率の大小に基づいて決定する(ステップS111)。第1温度補償値H1に与える重み係数をα、第2温度補償値H2に与える重み係数をβとする。重み係数の決定方法については後述する。   Next, the inspection processing unit 15 sets the weighting coefficient (ratio) to be given to the first temperature compensation value H1 and the second temperature compensation value H2 at the time of starting the measurement of the magnitude of the inspection pressure at the time of leak inspection and the pre-correction process. This is determined based on the temperature difference between the workpiece 51 and the ambient temperature, the heat capacity of the workpiece 51, and the heat transfer coefficient of the workpiece 51 (step S111). The weighting factor given to the first temperature compensation value H1 is α, and the weighting factor given to the second temperature compensation value H2 is β. A method for determining the weighting coefficient will be described later.

ステップS111で決定した重み係数α、βに従って第1温度補償値H1と第2温度補償値H2に重み付けをして、これらの加重平均を算出する。この算出結果を、漏洩検査工程の測定結果を温度補償するための温度補償値H3とする(ステップS112)。すなわち、H3=(αH1+βH2)/(α+β) となる。   The first temperature compensation value H1 and the second temperature compensation value H2 are weighted according to the weighting factors α and β determined in step S111, and a weighted average of these is calculated. This calculation result is set as a temperature compensation value H3 for temperature compensation of the measurement result of the leakage inspection process (step S112). That is, H3 = (αH1 + βH2) / (α + β).

温度補償値H3は、漏洩検査工程の計測期間(Tr)中における温度変動に基づく単位時間当たりの差圧の変化量の推定値である。   The temperature compensation value H3 is an estimated value of the amount of change in the differential pressure per unit time based on the temperature variation during the measurement period (Tr) of the leakage inspection process.

次に、検査処理部15は、漏洩検査の測定結果ΔPrを、温度補償値H3で補正して、ワーク51の漏れに基づく差圧ΔPsを求める(ステップS113)。   Next, the inspection processing unit 15 corrects the measurement result ΔPr of the leakage inspection with the temperature compensation value H3 to obtain a differential pressure ΔPs based on the leakage of the workpiece 51 (step S113).

具体的には、漏洩検査工程でΔPrを測定したときの計測期間の長さをTr、大気開放時の圧力をPa、検査圧力をPdとすると、
漏洩検査の測定結果に含まれる、温度変動分の差圧ΔPfは、
ΔPf=H3×Tr×Pd/Pa
として求まる。よって、漏れに基づく差圧ΔPsは、
ΔPs=ΔPr−ΔPf
として求まる。
Specifically, when the length of the measurement period when ΔPr is measured in the leakage inspection process is Tr, the pressure when the atmosphere is released is Pa, and the inspection pressure is Pd,
The differential pressure ΔPf for the temperature fluctuation included in the measurement result of the leak test is
ΔPf = H3 × Tr × Pd / Pa
It is obtained as Therefore, the differential pressure ΔPs based on leakage is
ΔPs = ΔPr−ΔPf
It is obtained as

漏れによる差圧ΔPsが予め定めた基準値より大きいか否かを判定し(ステップS114)、漏れによる差圧ΔPsが予め定めた基準値より大きい場合は(ステップS114;Yes)、漏れありと判定して本処理を終了する。漏れによる差圧ΔPsが予め定めた基準値以下ならば(ステップS114;No)、漏れなしと判定して本処理を終了する。   It is determined whether or not the differential pressure ΔPs due to leakage is greater than a predetermined reference value (step S114). If the differential pressure ΔPs due to leakage is greater than a predetermined reference value (step S114; Yes), it is determined that there is a leak. Then, this process ends. If the differential pressure ΔPs due to leakage is equal to or less than a predetermined reference value (step S114; No), it is determined that there is no leakage, and this processing is terminated.

たとえば、容量980mlの容器を、500KPaに加圧し、整定期間の経過を待った後、30秒間放置したときの放置前後の差圧の変化量を温度補償した値が±36Pa以上の場合は、漏れありと判定する。   For example, if a container with a capacity of 980 ml is pressurized to 500 KPa, waits for the lapse of a set period, and is left for 30 seconds, the amount of change in the differential pressure before and after being left is temperature compensated and the value is ± 36 Pa or more. Is determined.

図3は、前補正工程で測定された差圧ΔPt1に基づく第1温度補償値H1と、後補正工程で測定された差圧ΔPt2に基づく第2温度補償値H2とから、漏洩検査時の温度補償値H3を推定し、漏洩検査で測定された差圧ΔPrから温度変動に基づく差圧の変化分ΔPfを除去して、漏れ(質量変化)による差圧の変化分ΔPsを導出する様子を示している。   FIG. 3 shows the temperature at the time of leakage inspection from the first temperature compensation value H1 based on the differential pressure ΔPt1 measured in the pre-correction step and the second temperature compensation value H2 based on the differential pressure ΔPt2 measured in the post-correction step. The compensation value H3 is estimated, and the pressure difference ΔPf based on temperature fluctuation is removed from the pressure difference ΔPr measured in the leak test, and the pressure difference ΔPs due to leakage (mass change) is derived. ing.

次に、重み係数の決定方法について説明する。   Next, a method for determining a weighting factor will be described.

図4は、ワーク51とマスタ52間の差圧(ワーク51内の圧力−マスタ52内の圧力=マスタ52を基準としたワーク51内の圧力)の変化(以下圧力変化)の概要を示している。この図では、前補正工程、後補正工程での圧力変化は、第1温度補償値H1、第2温度補償値H2を傾きとする直線で示してある。漏洩検査工程では、検査圧力に加圧した後の整定期間中は急激な圧力変化となり、その後、次第に圧力変化が緩やかになると、圧力変化を測定する測定ステップが行われる(Tr)。   FIG. 4 shows an outline of a change in pressure difference between the workpiece 51 and the master 52 (pressure in the workpiece 51−pressure in the master 52 = pressure in the workpiece 51 with reference to the master 52) (hereinafter, pressure change). Yes. In this figure, the pressure change in the pre-correction step and the post-correction step is indicated by straight lines having the first temperature compensation value H1 and the second temperature compensation value H2 as slopes. In the leak inspection process, a rapid pressure change is made during the settling period after pressurizing to the inspection pressure, and when the pressure change gradually becomes gentle, a measurement step for measuring the pressure change is performed (Tr).

仮に、後補正工程前の整定期間(Ts2=0)が無ければ、漏洩検査工程全体(整定期間Ts1+測定ステップTr)での温度の影響によるワーク51とマスタ52間の差圧の変化の程度(以下圧力変化率)は、第1温度補償値H1と第2温度補償値H2の平均値で表すことができる。しかし、漏洩検査工程における圧力変化は、漏洩検査工程のうちの整定期間(Ts1)に急激に生じ、漏洩検査工程のうちの測定ステップ(Tr)では緩やかなので、測定ステップ(Tr)における圧力変化率は第1温度補償値H1と第2温度補償値H2の平均値よりも小さくなる(要素1)。   If there is no settling period (Ts2 = 0) before the post-correction process, the degree of change in the differential pressure between the work 51 and the master 52 due to the influence of temperature in the entire leakage inspection process (settling period Ts1 + measurement step Tr) ( Hereinafter, the pressure change rate can be expressed by an average value of the first temperature compensation value H1 and the second temperature compensation value H2. However, the pressure change in the leakage inspection process is suddenly generated in the settling period (Ts1) of the leakage inspection process and is gentle in the measurement step (Tr) of the leakage inspection process, so the pressure change rate in the measurement step (Tr). Is smaller than the average value of the first temperature compensation value H1 and the second temperature compensation value H2 (element 1).

この点を詳述すると、マスタは複数回の検査で略所定温度(例えば、周囲環境よりも温度が降下した略所定温度)となる(前記略所定温度が場合によっては常温のワーク51との温度差問題となるために、複数のワーク51をローテーションして上記温度差問題に対応する場合もあった。)。しかし本願のように検査対象のワーク51がマスタ52に比してより熱い場合(例えばアルゴン溶接後に風冷による冷却を行っても、まだ予熱を持っている場合)には、漏洩検査工程のうちの整定期間(Ts1)に、マスタ52よりもワーク51の方が大きく温度降下するので(両方とも大きく温度降下するのではなく、2者の温度降下率が大きく異なる状態で降下する為に)、2者の差圧の変化量は急激となる。   To explain this point in detail, the master reaches a substantially predetermined temperature (for example, a substantially predetermined temperature at which the temperature has dropped from the surrounding environment) after a plurality of inspections (the temperature with the workpiece 51 at room temperature depending on the case). In order to become a difference problem, a plurality of workpieces 51 may be rotated to cope with the temperature difference problem. However, when the workpiece 51 to be inspected is hotter than the master 52 as in the present application (for example, even if cooling by air cooling is performed after argon welding but still has preheating), the leakage inspection process In the settling period (Ts1), the temperature of the work 51 is larger than that of the master 52 (because both of them are not greatly lowered in temperature but fall in a state where the temperature drop rates of the two are greatly different), The amount of change in the differential pressure between the two is abrupt.

ワーク51の方が大きく温度降下した後では、マスタ52とワーク51の温度差が近くなって温度降下するので(両方とも同じに温度降下するのではなく、2者の温度降下率が近い状態で降下する為に)、漏洩検査工程のうちの測定ステップ(Tr)では2者の差圧の変化量は緩やかとなる。このように、漏洩検査工程における2者の差圧の変化は、前半と後半で同一ではないので、圧力変化率を第1温度補償値H1と第2温度補償値H2の平均値で表せない。   Since the temperature difference between the master 52 and the work 51 becomes close after the temperature of the work 51 has dropped greatly, the temperature drops (both of them are not the same temperature drop, but the temperature drop rate between the two is close) In order to descend), in the measurement step (Tr) of the leakage inspection process, the amount of change in the differential pressure between the two is moderate. Thus, since the change in the differential pressure between the two in the leakage inspection process is not the same in the first half and the second half, the pressure change rate cannot be expressed by the average value of the first temperature compensation value H1 and the second temperature compensation value H2.

ところでステップS102で、ワーク51およびマスタ52内を掃気(プレパージ)するが、検査対象のワーク51がマスタ52に比してより熱いので、ワーク51内の気体は掃気中も膨張し(配管抵抗が増大し、ワーク51とマスタ52とに均等に流れず)、ステップS103で封止されたワーク51とマスタ52内の気体密度に差が生じる(ワーク51内でも、第3開閉弁33近傍と第6開閉弁36近傍で気体密度に差が生じる)。ステップS105の加圧ステップでワーク51とマスタ52が同一圧力にまで加圧充填されるが、ワーク51とマスタ52が同一体積であっても、当初に封入されていた体積が異なる為に(同一体積だが密度が異なるために同じ温度に換算すると異なる体積である為に)、当然、所定時間後に差圧を生じ、もって、充填量も異なって来る。この結果、後述の断熱圧縮により、ワーク51とマスタ52の内部温度上昇の程度に差が生じる(ワーク51の方が、充填量が多くなるので、マスタ52に対して温度上昇量が多い=マスタ52に対してワーク51内の気体は気体密度の低い気体で満たされた状態で検査圧力(Pd)に加圧された独立の密閉空間となる。このように、漏洩検査時に生じる温度変動(主として環境温度の変化)にプラスされる形で、ステップS103で封止されたワーク51とマスタ52内の気体密度に差がステップS106の測定ステップの漏れ検査段階にまで影響する)。   In step S102, the work 51 and the master 52 are scavenged (pre-purge). However, since the work 51 to be inspected is hotter than the master 52, the gas in the work 51 expands even during the scavenging (pipe resistance is reduced). And the gas density in the work 51 and the master 52 sealed in step S103 is different (even in the work 51, the third on-off valve 33 and the second There is a difference in gas density in the vicinity of the 6 on-off valve 36). In the pressurizing step of step S105, the work 51 and the master 52 are pressurized and filled to the same pressure. Even if the work 51 and the master 52 have the same volume, the initially sealed volumes are different (the same). Since the volume is different but the volume is different when converted to the same temperature), naturally, a differential pressure is generated after a predetermined time, and the filling amount is also different. As a result, due to adiabatic compression, which will be described later, there is a difference in the degree of internal temperature rise between the work 51 and the master 52 (the work 51 has a larger amount of filling than the master 52 because the filling amount is larger = master. The gas in the work 51 becomes an independent sealed space pressurized to the inspection pressure (Pd) in a state filled with a gas having a low gas density with respect to 52. In this way, temperature fluctuations (mainly in the leak inspection) The difference in the gas density in the work 51 sealed in step S103 and the master 52 affects the leakage inspection stage of the measurement step in step S106).

ステップS103で封止されたワーク51内の気体温度(密度)は測定することが不可能なので、当然物体の温度が低下する際の特性推定(例えば、指数関数的減衰等、単なる温度低下特性を推定)する起点温度を特定することができず、もって、ステップS106の測定ステップの漏れ検査での2者の差圧の変化影響量も推定することができない。また掃気に用いられる空気の質(例えばアルゴン分圧、湿度等の比熱の影響等)でも影響を受ける。起点温度等の影響を受けた結果が測定ステップ(Tr)での2者の差圧の変化量として現れるが、例えばマスタ52とワーク51内の気体温度差が大きめ(ワーク51内の気体温度が高め)で湿度が低い場合やアルゴン分圧が高い場合と、マスタ52とワーク51内の気体温度差が小さめだが湿度が高い場合やアルゴン分圧が低い場合では、第1温度補償値H1が同じ値となる場合があるので、第1温度補償値H1のみで温度補償することはできない。   Since it is impossible to measure the gas temperature (density) in the work 51 sealed in step S103, it is natural to estimate characteristics when the temperature of the object decreases (for example, simple temperature decrease characteristics such as exponential decay). It is impossible to specify the starting temperature to be estimated), and therefore it is also impossible to estimate the amount of change in the differential pressure between the two in the leak test at the measurement step in step S106. It is also affected by the quality of air used for scavenging (for example, the influence of specific heat such as argon partial pressure and humidity). The result affected by the starting temperature or the like appears as the amount of change in the differential pressure between the two at the measurement step (Tr). For example, the gas temperature difference between the master 52 and the work 51 is large (the gas temperature in the work 51 is The first temperature compensation value H1 is the same when the humidity is low and the argon partial pressure is high, and when the gas temperature difference between the master 52 and the work 51 is small but the humidity is high or the argon partial pressure is low. Therefore, the temperature cannot be compensated only by the first temperature compensation value H1.

なぜならば、例えば第1温度補償値H1がゼロでない限り、ステップS105でのワーク51とマスタ52の充填量が異なる(例えばワーク51の方が、充填量が多くなり)、断熱圧縮でのワーク51とマスタ52の内部温度上昇の程度に差が生じる(測定ステップ(Tr)での2者の差圧の変化量に影響が出る)からである(換言すれば複数の未知数を含む場合には、複数の連立方程の組を与えないと未知数を求めることが出来ないが、本願では検査対象のワーク51がマスタ52に比してより熱い場合で温度補償するために、2つ以上の、例えば最低限、第1温度補償値H1、第2温度補償値H2と重み付けを用いている。)。なお、検査対象容器を所定の検査圧力に加圧した後に封止した前記検査対象容器内の圧力変化を前記第2期間の後の第3期間に測定する場合において、少なくとも第1温度補償値H1、第2温度補償値H2から、ステップS103で封止された、ワーク51とマスタ52内の、気体密度の差を演算で求めことが必要となる。   This is because, for example, as long as the first temperature compensation value H1 is not zero, the filling amount of the work 51 and the master 52 in step S105 is different (for example, the filling amount of the work 51 is larger), and the work 51 in adiabatic compression. This is because there is a difference in the degree of internal temperature rise between the master 52 and the master 52 (which affects the amount of change in the differential pressure between the two at the measurement step (Tr)) (in other words, when a plurality of unknowns are included, The unknown cannot be obtained unless a set of a plurality of continuous cubes is given. However, in this application, in order to compensate the temperature when the work 51 to be inspected is hotter than the master 52, two or more, for example, at least The first temperature compensation value H1, the second temperature compensation value H2, and weighting are used.) In the case where a pressure change in the inspection target container sealed after pressurizing the inspection target container to a predetermined inspection pressure is measured in a third period after the second period, at least the first temperature compensation value H1. From the second temperature compensation value H2, it is necessary to calculate the difference in gas density between the work 51 and the master 52 sealed in step S103.

図5は、漏洩検査工程におけるワーク内部の温度変化を示している。検査圧力(この例では420KPa)に加圧する際の断熱圧縮によりワーク51の内部温度は上昇し、その後、急激に低下した後、次第に緩慢に低下するように変化する。加圧後の内部温度がある程度落ち着くまでの期間は整定期間にされ、その後の所定期間に渡って圧力変化が測定される(測定ステップ)。測定終了後は、減圧されて大気開放にされる。この時の断熱膨張によりワーク51の内部温度が急激に下降し、その後は環境温度に次第に近づくように変化する。したがって、検査圧力が高い場合には、図5の破線で示すように、ワーク51の残熱が、減圧による吸熱で相殺される割合が大きくなるので、後補正工程で測定される差圧ΔPt2に影響を及ぼす(要素2)。   FIG. 5 shows the temperature change inside the workpiece in the leakage inspection process. The internal temperature of the work 51 rises due to adiabatic compression when pressurizing to the inspection pressure (420 KPa in this example), and then changes so as to gradually decrease after abruptly decreasing. The period until the internal temperature after pressurization is settled to some extent is set at regular intervals, and the pressure change is measured over a predetermined period thereafter (measurement step). After the measurement is completed, the pressure is reduced to release the atmosphere. Due to the adiabatic expansion at this time, the internal temperature of the work 51 rapidly decreases, and thereafter gradually changes to the environmental temperature. Accordingly, when the inspection pressure is high, as shown by the broken line in FIG. 5, the ratio that the residual heat of the work 51 is offset by the heat absorption due to the reduced pressure increases, so that the differential pressure ΔPt2 measured in the post-correction process is increased. Influencing (element 2).

この点を詳述すると、減圧による吸熱は、減圧速度(ワーク51と排気弁38の大気解放端の端部までの配管距離によって左右される減圧速度=ワーク51からの出側配管抵抗)によって大きく異なり、減圧速度が大きいほど(出側配管距離が短いほど)吸熱量が大きくなる(配管距離・配管抵抗も検査圧力の要因の1つ)。吸熱量が多いと、見掛け上整定時間TS2が長くなってワーク51の内部温度の放熱量が多くなったのと類似の状況となる。   To explain this point in detail, the heat absorption due to the reduced pressure is greatly increased by the reduced pressure speed (the reduced pressure speed depending on the piping distance between the workpiece 51 and the end of the air release end of the exhaust valve 38 = the outlet piping resistance from the workpiece 51). In contrast, the greater the pressure reduction rate (the shorter the outlet piping distance), the greater the amount of heat absorption (the piping distance and piping resistance are also factors of the inspection pressure). When the amount of heat absorption is large, the settling time TS2 apparently becomes longer and the heat dissipation amount at the internal temperature of the work 51 is increased.

ところでワーク51が小さい場合には、リーク検査装置10のすぐ横(例えば検査台の上)に置いて検査できるが、ワーク51が例えば電気温水器等で使用される370リットルのような大型タンクの場合には、リーク検査装置10のすぐ横に置くことができずに、近くの地面において検査することとなる。当然、検査対象毎(ワーク51の大きさで)に出側配管抵抗が異なる場合が多い。ワーク51とマスタ52とが検査前に同じ温度(ステップS103で封止されたワーク51とマスタ52内の気体密度に差が生じない場合で、かつ、出側配管距離も同じ)ならば、差圧ΔPt2に影響はないが、検査前に同じ温度でない場合には、減圧による吸熱により環境温度との温度差が大きく表れる側が逆転する場合もあり(温度差が大きく表れる側の方が、圧力変化率が大きくなるので)、後補正工程で測定される差圧ΔPt2に影響を及ぼす。   By the way, when the work 51 is small, it can be inspected by placing it next to the leak inspection apparatus 10 (for example, on the inspection table), but the work 51 is a large tank such as a 370 liter used in an electric water heater or the like. In such a case, the leak inspection apparatus 10 cannot be placed right next to the leak inspection apparatus 10 and is inspected on the nearby ground. Of course, there are many cases where the outlet side pipe resistance is different for each inspection object (by the size of the work 51). If the workpiece 51 and the master 52 have the same temperature before inspection (if the gas density in the workpiece 51 and the master 52 sealed in step S103 does not differ and the outlet piping distance is the same), the difference Although there is no effect on the pressure ΔPt2, if the temperature is not the same before the inspection, the side where the temperature difference with the environmental temperature appears greatly may be reversed due to the endothermic effect due to the reduced pressure (the side where the temperature difference appears larger is the pressure change). Since the ratio increases, it affects the differential pressure ΔPt2 measured in the post-correction process.

なお、図5において加圧時の断熱圧縮による温度上昇と、減圧時の吸熱量による温度降下の程度(変化温度:X軸、変化の程度:面積)が大きく異なる。例えば屋外に置かれた供給源3から長い配管距離を経て(配管抵抗大)、時間をかけて加圧されるが、減圧時には短い配管距離で(配管抵抗小)、短時間に減圧されるからである(換言すれば、加圧時には電空レギュレータ2(配管抵抗に相当)を通し、減圧時には電空レギュレータ2を通さないからである)。   In FIG. 5, the temperature rise due to adiabatic compression at the time of pressurization and the temperature drop due to the endothermic amount at the time of pressure reduction (change temperature: X axis, change degree: area) are greatly different. For example, it is pressurized over time from a supply source 3 placed outdoors over a long pipe distance (pipe resistance is large), but when the pressure is reduced, the pressure is reduced in a short time (pipe resistance is small) and the pressure is reduced in a short time. (In other words, the electropneumatic regulator 2 (corresponding to the piping resistance) is passed during pressurization, and the electropneumatic regulator 2 is not passed during depressurization).

ステップS103で封止されたワーク51とマスタ52内の気体密度の差がステップS106の測定ステップの漏れ検査段階にまで影響することは先に述べたが、この影響には、電空レギュレータ2からワーク51(又は電空レギュレータ2からマスタ52)までの配管抵抗も関与する。電空レギュレータ2からワーク接続口12まではリーク検査装置10の製造メーカが関わり、ワーク接続口12からワーク51まではワーク51を検査するリーク検査装置10の使用メーカが関わるのであるから、リーク検査装置10の使用メーカ側が、配管やその他の使用状態に応じて、重み付け変更を行えるようにリーク検査装置10の製造メーカがすることが好ましい。   As described above, the difference between the gas density in the workpiece 51 and the master 52 sealed in step S103 affects the leakage inspection stage of the measurement step in step S106. The piping resistance from the work 51 (or the electropneumatic regulator 2 to the master 52) is also involved. From the electropneumatic regulator 2 to the work connection port 12, the manufacturer of the leak inspection apparatus 10 is involved, and from the work connection port 12 to the work 51, the manufacturer of the leak inspection apparatus 10 that inspects the work 51 is involved. It is preferable that the manufacturer of the leak inspection apparatus 10 makes it possible for the manufacturer of the apparatus 10 to change the weighting according to the piping and other usage conditions.

この点を詳述すると、ワーク51が小さい場合には、リーク検査装置10のすぐ横(例えば検査台の上)に置いて検査できるが、ワーク51が例えば電気温水器等で使用される370リットルのような大型タンクの場合には、リーク検査装置10のすぐ横に置くことができずに、近くの地面において検査することとなる。当然、ワーク接続口12からワーク51までの配管はリーク検査装置10の使用メーカーが適宜設定するので、配管距離(以下入側配管抵抗)が異なる。ステップS103で封止されたワーク51の方が、封入気体密度が低い場合において、ワーク51とマスタ52への入側配管が同じであっても、共に短ければ(入側配管抵抗小)長い場合に比して差圧ΔPt2が大きくなるがごとく、強く影響を受ける。従って入側配管距離が短いほど(入側配管抵抗が小さいほど)断熱圧縮でのワーク51とマスタ52の内部温度上昇の程度に差が大きく生じるので、重み付けには入側配管距離も勘案しなければならない(リーク検査装置10が設置される条件に応じて例えば重み付け表を変更したり、例えば標準(中心)の値を変える必要がある)。   In detail, when the workpiece 51 is small, it can be inspected by placing it next to the leak inspection apparatus 10 (for example, on the inspection table). However, the workpiece 51 is 370 liters used in, for example, an electric water heater or the like. In the case of such a large tank, it is not possible to place it next to the leak inspection apparatus 10, and inspection is performed on the nearby ground. Naturally, the piping from the workpiece connection port 12 to the workpiece 51 is appropriately set by the manufacturer of the leak inspection apparatus 10, so that the piping distance (hereinafter referred to as the inlet side piping resistance) is different. In the case where the work 51 sealed in step S103 has a lower sealed gas density, even if the work 51 and the inlet side pipe to the master 52 are the same, if both are short (the inlet side pipe resistance is small), the case is long. As compared with the pressure difference ΔPt2, the pressure difference is greatly affected. Accordingly, the shorter the inlet piping distance (the smaller the inlet piping resistance), the greater the difference in the degree of internal temperature rise between the work 51 and the master 52 in adiabatic compression. Therefore, the inlet piping distance must be taken into account for weighting. (For example, it is necessary to change the weighting table or change the standard (center) value according to the conditions under which the leak inspection apparatus 10 is installed).

さらに詳述すれば、検査圧力が低い場合には、図4での前補正工程での圧力変化率H1(ステップ104)よりも、漏洩検査工程での圧力変化率の方が緩やか(例えば圧力変化率が(H1+H2)/2に近い状態)となり、測定ステップでの圧力変化率は、(H1+H2)/2よりも小さく(後補正工程での圧力変化率H2を重視した勾配と)なりやすいのに対し、検査圧力が高い場合には、図4での圧力変化率H1(ステップ104)よりも、例えば漏洩検査工程での圧力変化率の方が急こう配となる場合があり、このような場合では、測定ステップでの圧力変化率は、(H1+H2)/2よりも大きく(前補正工程での圧力変化率H2を重視した勾配と)なる場合がある(図4の灰色線参照)。   More specifically, when the inspection pressure is low, the pressure change rate in the leakage inspection process is more gradual (for example, the pressure change) than the pressure change rate H1 in the pre-correction process in FIG. 4 (step 104). The rate of pressure change at the measurement step is likely to be smaller than (H1 + H2) / 2 (with a gradient that emphasizes the pressure change rate H2 in the post-correction step). On the other hand, when the inspection pressure is high, the pressure change rate in the leakage inspection process, for example, may be steeper than the pressure change rate H1 in FIG. 4 (step 104). In some cases, the pressure change rate in the measurement step is larger than (H1 + H2) / 2 (a gradient that emphasizes the pressure change rate H2 in the previous correction step) (see the gray line in FIG. 4).

なお、ステップS105において加圧用気体の流速と流量の変化の状況、又はワーク接続口12の供給圧力の変化の状況と入側配管抵抗、又はワーク51とマスタ52の受圧圧力の変化の状況(例えばワーク51とマスタ52はステップS105において内部圧力が上昇しそれにより流速が落ちて行くので単なる圧力を見るのではなく、変化の状況)等から断熱圧縮でのワーク51とマスタ52の内部温度上昇の程度の差を、(リーク検査装置10の使用メーカ側が使用する、配管やその他の状態に応じて)演算で求めることが必要となる。   In step S105, the flow rate and flow rate of the pressurizing gas are changed, or the supply pressure of the work connection port 12 is changed and the inlet side pipe resistance, or the pressure change pressure of the work 51 and the master 52 is changed (for example, Since the internal pressure of the work 51 and the master 52 is increased in step S105 and the flow velocity is decreased, the internal temperature rise of the work 51 and the master 52 in the adiabatic compression is not considered from the mere pressure. It is necessary to obtain the difference in degree by calculation (according to the piping and other conditions used by the manufacturer of the leak inspection apparatus 10).

図6は、検査圧力の大小と、各工程における圧力変化率の関係を観念的に示している。検査圧力が小さい場合は、例えば前述の要素2の影響は少なく、要素1の影響が大きい。一方、検査圧力が高くなると、例えば要素1の影響は変わらないが、要素2の影響が大きくなる。   FIG. 6 conceptually shows the relationship between the magnitude of the inspection pressure and the pressure change rate in each process. When the inspection pressure is small, for example, the influence of the element 2 is small and the influence of the element 1 is large. On the other hand, when the inspection pressure increases, for example, the influence of the element 1 does not change, but the influence of the element 2 increases.

たとえば、図6では、検査圧力が小のとき、前補正工程における圧力変化率H1(−2)と後補正工程における圧力変化率H2(−1.4)との平均値は−1.7になるが、実際の漏洩検査工程の測定期間(測定ステップ)における圧力変化率H3は−1.6なので、後補正工程の圧力変化率H2の影響が大きい。従って、第1温度補償値H1と第2温度補償値H2の加重平均で漏洩検査工程の測定期間における温度補償値H3を求める際には、H2に与える重み係数βをH1に与える重み係数αより大きくする。この例では、α:βの比は、1:2となる。   For example, in FIG. 6, when the inspection pressure is small, the average value of the pressure change rate H1 (−2) in the pre-correction process and the pressure change rate H2 (−1.4) in the post-correction process is −1.7. However, since the pressure change rate H3 in the measurement period (measurement step) of the actual leakage inspection process is −1.6, the influence of the pressure change rate H2 in the post-correction process is large. Therefore, when the temperature compensation value H3 in the measurement period of the leakage inspection process is obtained by the weighted average of the first temperature compensation value H1 and the second temperature compensation value H2, the weighting factor β given to H2 is obtained from the weighting factor α given to H1. Enlarge. In this example, the ratio of α: β is 1: 2.

検査圧力が中の場合は、検査圧力が小のときに比べて高いので、その分、要素2の影響が現れ、ワーク51の残熱が減圧による吸熱で少し相殺される。そのため、後補正工程の開始時におけるワーク51と環境温度との差が小さくなって温度変化が緩やかになり、後補正工程での圧力変化率は−1.2になっている。この場合、前補正工程の圧力変化率H1(−2)と後補正工程の圧力変化率H2(−1.2)との平均値は−1.6になり、実際の漏洩検査工程の測定期間における圧力変化率H3と一致する。したがって、第1温度補償値H1に与える重み係数αと第2温度補償値H2に与える重み係数βは、1:1にすればよい。   When the inspection pressure is medium, the inspection pressure is higher than when the inspection pressure is small. Therefore, the influence of the element 2 appears, and the residual heat of the work 51 is slightly offset by the heat absorption due to the reduced pressure. For this reason, the difference between the workpiece 51 and the environmental temperature at the start of the post-correction process becomes small and the temperature change becomes gradual, and the pressure change rate in the post-correction process is -1.2. In this case, the average value of the pressure change rate H1 (−2) in the pre-correction process and the pressure change rate H2 (−1.2) in the post-correction process is −1.6, and the measurement period of the actual leak inspection process This corresponds to the pressure change rate H3. Therefore, the weighting factor α given to the first temperature compensation value H1 and the weighting factor β given to the second temperature compensation value H2 may be 1: 1.

検査圧力が大1の場合は、検査圧力がさらに高くなるので、その分、要素2の影響が強く現れ、ワーク51の残熱が減圧による吸熱で相殺される割合が高くなる。そのため、後補正工程の圧力変化率が−1.0になっている。この場合、前補正工程の圧力変化率H1(−2)と後補正工程の圧力変化率H2(−1.0)との平均値は−1.5になり、実際の漏洩検査工程の測定期間における圧力変化率H3(−1.6)より小さくなっている。したがって、第1温度補償値H1に与える重み係数αを第2温度補償値H2に与える重み係数βより大きくする。具体的には、この例ではα:βの比は、3:2となる。   When the inspection pressure is large 1, the inspection pressure is further increased, and accordingly, the influence of the element 2 appears strongly, and the rate at which the residual heat of the work 51 is offset by the heat absorption due to the reduced pressure increases. Therefore, the pressure change rate in the post-correction process is −1.0. In this case, the average value of the pressure change rate H1 (−2) in the pre-correction process and the pressure change rate H2 (−1.0) in the post-correction process becomes −1.5, and the measurement period of the actual leak inspection process The pressure change rate at H3 is smaller than (−1.6). Therefore, the weighting factor α given to the first temperature compensation value H1 is made larger than the weighting factor β given to the second temperature compensation value H2. Specifically, in this example, the ratio of α: β is 3: 2.

検査圧力が最も高いケース(大2)では、要素2の影響がさらに強く現れるため、ワーク51の残熱が減圧による吸熱で相殺される割合がさらに高くなる。そのため、後補正工程の圧力変化率が−0.4になっている。この場合、前補正工程の圧力変化率H1(−2)と後補正工程の圧力変化率H2(−0.4)との平均値は−1.2になり、実際の漏洩検査工程の測定期間における圧力変化率H3(−1.6)よりかなり小さくなる。したがって、第1温度補償値H1に与える重み係数αを第2温度補償値H2に与える重み係数βに比べてかなり大きくすることになる。具体的には、この例ではα:βの比は、3:1となる。   In the case where the inspection pressure is the highest (large 2), the influence of the element 2 appears more strongly, so that the rate at which the residual heat of the work 51 is offset by the heat absorption due to the reduced pressure is further increased. Therefore, the pressure change rate in the post-correction process is −0.4. In this case, the average value of the pressure change rate H1 (−2) in the pre-correction process and the pressure change rate H2 (−0.4) in the post-correction process becomes −1.2, and the measurement period of the actual leak inspection process It is considerably smaller than the pressure change rate H3 (−1.6). Therefore, the weighting factor α given to the first temperature compensation value H1 is considerably larger than the weighting factor β given to the second temperature compensation value H2. Specifically, in this example, the ratio of α: β is 3: 1.

このように、第1温度補償値H1と第2温度補償値H2との加重平均で漏洩検査の測定結果を温度補償するための温度補償値H3を求める際に第1温度補償値H1に与える重み係数αと第2温度補償値H2に与える重み係数βの比を、前述の要素1と要素2の影響を考慮して設定することで、漏洩検査工程の測定結果を適正に温度補償することができる。   As described above, the weight given to the first temperature compensation value H1 when obtaining the temperature compensation value H3 for temperature compensation of the measurement result of the leak test by the weighted average of the first temperature compensation value H1 and the second temperature compensation value H2. By setting the ratio of the coefficient α and the weighting factor β given to the second temperature compensation value H2 in consideration of the influence of the element 1 and the element 2, it is possible to appropriately compensate the temperature of the measurement result of the leakage inspection process. it can.

ここで、要素1の影響は、ワーク51と環境温度の温度差が大きいほど、また、ワーク51の熱容量が小さいほど、ワーク51の熱伝達率が大きいほど、顕著に表れる。一方、要素2の影響もワーク51と環境温度の温度差が大きいほど、また、ワーク51の熱容量が小さいほど、ワーク51の熱伝達率が大きいほど、顕著に表れる。そして、要素2の影響は検査圧力が高くなるほど大きくなる。   Here, the influence of the element 1 becomes more prominent as the temperature difference between the work 51 and the environmental temperature is larger, the heat capacity of the work 51 is smaller, and the heat transfer coefficient of the work 51 is larger. On the other hand, the influence of the element 2 becomes more prominent as the temperature difference between the workpiece 51 and the environmental temperature is larger, the heat capacity of the workpiece 51 is smaller, and the heat transfer coefficient of the workpiece 51 is larger. The influence of the element 2 increases as the inspection pressure increases.

そのため、検査圧力が低い場合には、ワーク51と環境温度の温度差が大きいほど、ワーク51の熱容量が小さいほど、ワーク51の熱伝達率が大きいほど、第2温度補償値H2に与える重み係数βを第1温度補償値H1に与える重み係数αより大きくする。一方、検査圧力が高い場合には、ワーク51と環境温度の温度差が大きいほど、ワーク51の熱容量が小さいほど、ワーク51の熱伝達率が大きいほど、第1温度補償値H1に与える重み係数αを第2温度補償値H2に与える重み係数βより大きくする。   Therefore, when the inspection pressure is low, the weight coefficient given to the second temperature compensation value H2 is larger as the temperature difference between the workpiece 51 and the ambient temperature is larger, the heat capacity of the workpiece 51 is smaller, and the heat transfer coefficient of the workpiece 51 is larger. β is set larger than the weighting factor α given to the first temperature compensation value H1. On the other hand, when the inspection pressure is high, the weight coefficient given to the first temperature compensation value H1 is larger as the temperature difference between the workpiece 51 and the environmental temperature is larger, the heat capacity of the workpiece 51 is smaller, and the heat transfer coefficient of the workpiece 51 is larger. α is made larger than the weighting coefficient β given to the second temperature compensation value H2.

以上を踏まえて図7に示すような決定基準で重み係数を与えることになる。同図(a)は、検査圧力の大小と、ワーク51の熱容量の大小と、第1温度補償値H1、第2温度補償値H2に与える重み係数との関係を示している。検査圧力が低い場合には、ワーク51の熱容量が大きいほど、第1温度補償値H1に与える重み係数αを大きくし、第2温度補償値H2に与える重み係数βを小さくする。検査圧力が高い場合には、ワーク51の熱容量が大きいほど、第1温度補償値H1に与える重み係数αを小さくし、第2温度補償値H2に与える重み係数βを大きくする。また検査圧力が高いほど、熱容量が同じであっても重み係数αに対する重み係数βの比を大きくする。   Based on the above, weighting factors are given according to the determination criteria as shown in FIG. FIG. 4A shows the relationship between the magnitude of the inspection pressure, the magnitude of the heat capacity of the work 51, and the weighting factors given to the first temperature compensation value H1 and the second temperature compensation value H2. When the inspection pressure is low, the weight coefficient α given to the first temperature compensation value H1 is increased and the weight coefficient β given to the second temperature compensation value H2 is decreased as the heat capacity of the work 51 is increased. When the inspection pressure is high, the weighting coefficient α given to the first temperature compensation value H1 is reduced and the weighting coefficient β given to the second temperature compensation value H2 is increased as the heat capacity of the work 51 is increased. Further, the higher the inspection pressure, the larger the ratio of the weight coefficient β to the weight coefficient α even if the heat capacity is the same.

同図(b)は、検査圧力の大小と、前工程開始時点におけるワーク51と環境温度との温度の大小と、第1温度補償値H1、第2温度補償値H2に与える重み係数との関係を示している。検査圧力が低い場合には、温度差が大きいほど、第1温度補償値H1に与える重み係数αを小さくし、第2温度補償値H2に与える重み係数βを大きくする。検査圧力が高い場合には、温度差が大きいほど、第1温度補償値H1に与える重み係数αを大きくし、第2温度補償値H2に与える重み係数βを小さくする。また検査圧力が高いほど、温度差が同じであっても重み係数βに対する重み係数αの比を大きくする。   FIG. 7B shows the relationship between the magnitude of the inspection pressure, the magnitude of the temperature of the workpiece 51 and the environmental temperature at the start of the previous process, and the weighting coefficient applied to the first temperature compensation value H1 and the second temperature compensation value H2. Is shown. When the inspection pressure is low, the weighting coefficient α applied to the first temperature compensation value H1 is decreased and the weighting coefficient β applied to the second temperature compensation value H2 is increased as the temperature difference is increased. When the inspection pressure is high, the weighting coefficient α applied to the first temperature compensation value H1 is increased and the weighting coefficient β applied to the second temperature compensation value H2 is decreased as the temperature difference is increased. Further, as the inspection pressure is higher, the ratio of the weighting factor α to the weighting factor β is increased even if the temperature difference is the same.

同図(c)は、検査圧力の大小と、ワーク51の熱伝達率の大小と、第1温度補償値H1、第2温度補償値H2に与える重み係数との関係を示している。検査圧力が低い場合は、熱伝達率が大きいほど、第1温度補償値H1に与える重み係数αを小さくし、第2温度補償値H2に与える重み係数βを大きくする。検査圧力が高い場合は、熱伝達率が大きいほど、第1温度補償値H1に与える重み係数αを大きくし、第2温度補償値H2に与える重み係数βを小さくする。また検査圧力が高いほど、熱伝達率が同じであっても重み係数βに対する重み係数αの比を大きくする。   FIG. 4C shows the relationship between the magnitude of the inspection pressure, the magnitude of the heat transfer coefficient of the work 51, and the weighting coefficients given to the first temperature compensation value H1 and the second temperature compensation value H2. When the inspection pressure is low, the weighting coefficient α given to the first temperature compensation value H1 is reduced and the weighting coefficient β given to the second temperature compensation value H2 is increased as the heat transfer coefficient is increased. When the inspection pressure is high, the weighting coefficient α given to the first temperature compensation value H1 is increased and the weighting coefficient β given to the second temperature compensation value H2 is decreased as the heat transfer coefficient is increased. Further, as the inspection pressure is higher, the ratio of the weighting coefficient α to the weighting coefficient β is increased even if the heat transfer coefficient is the same.

検査圧力、熱容量、環境温度との温度差、熱伝達率のすべてを勘案して第1温度補償値H1と第2温度補償値H2の重み(比)を決定することが望ましいが、これらのうちの少なくとも1つに基づいて第1温度補償値H1と第2温度補償値H2の重みを決定してもよい。なお、検査圧力が常に高圧の場合は、それを前提にして、熱容量、環境温度との温度差、熱伝達率に応じた重み係数を用いればよい。   It is desirable to determine the weight (ratio) of the first temperature compensation value H1 and the second temperature compensation value H2 in consideration of all of the inspection pressure, the heat capacity, the temperature difference from the environmental temperature, and the heat transfer coefficient. The weights of the first temperature compensation value H1 and the second temperature compensation value H2 may be determined based on at least one of the following. If the inspection pressure is always high, a weighting coefficient corresponding to the heat capacity, the temperature difference from the environmental temperature, and the heat transfer coefficient may be used on the assumption.

この点を詳述すると、例えば給湯器にはその能力に応じて16号給湯器、24号給湯器等がある。この給湯器内には25degup16リットル毎分の湯を気液熱交換する顕熱熱交換器(例えば交換効率80%)や25degup24リットル毎分の湯を気液熱交換する顕熱熱交換器(例えば交換効率80%)が内蔵されており、この2つは略同じ熱伝達率を持つ。この2つを混合しながら検査する場合、検査圧力、熱容量、環境温度との温度差、熱伝達率のうち、検査圧力、環境温度との温度差、熱伝達率が略同一であるので、熱容量差に応じた第1温度補償値H1と第2温度補償値H2の重み(比)を変更するのみで混合検査することが可能である。   If this point is explained in full detail, for example, there are a hot water heater No. 16 and a hot water heater No. 24 according to the capability. In this water heater, there is a sensible heat exchanger (for example, 80% exchange efficiency) for exchanging hot water for 25 degup and 16 liters per minute, and a sensible heat exchanger for exchanging gas for liquid heat for 25 degup and 24 liters per minute (for example, The exchange efficiency is 80%), and the two have substantially the same heat transfer coefficient. When inspecting while mixing the two, the inspection pressure, the heat capacity, the temperature difference from the environmental temperature, and the heat transfer coefficient are substantially the same as the inspection pressure, the temperature difference from the environmental temperature, and the heat transfer coefficient. It is possible to perform the mixed inspection only by changing the weight (ratio) of the first temperature compensation value H1 and the second temperature compensation value H2 according to the difference.

図8は、温度補償値による補正の効果を確認するための実験結果を示すグラフである。この実験では、漏れのない980mlの容器549個について漏洩検査を行った。グラフは、結果のばらつきを示す度数分布である。補正前のグラフは、温度補正しない状態での測定結果のばらつきを示し、補正後のグラフは、測定結果を温度補償値H3で補正した結果のばらつきを示す。   FIG. 8 is a graph showing experimental results for confirming the effect of correction by the temperature compensation value. In this experiment, leakage inspection was performed on 549 980 ml containers without leakage. The graph is a frequency distribution showing variation in results. The graph before the correction shows the variation in the measurement result when the temperature is not corrected, and the graph after the correction shows the variation in the result obtained by correcting the measurement result with the temperature compensation value H3.

補正前は、30秒間の測定時間で200Pa近傍までばらつくことがあり、36Paを漏れなしと判定する閾値とした場合、漏れのない容器549個のうちの36%が漏れありと誤判定される。これに対して、漏洩検査の測定結果を温度補償値H3で温度補償した補正後は、90Pa程度までばらつきがでるものの、差圧0の近辺に出現度数は集中している。補正後は、36Paを漏れなしと判定する閾値とした場合に、漏れのない容器549個のうちの約3%のみが漏れありと誤判定され、判定精度が高まっていることがわかる。   Before the correction, the measurement time of 30 seconds may vary to around 200 Pa. When 36 Pa is set as a threshold value for determining that there is no leakage, 36% of 549 containers without leakage are erroneously determined as having leakage. On the other hand, after correcting the measurement result of the leak test with the temperature compensation value H3, the frequency of appearance is concentrated in the vicinity of the differential pressure of 0, although there is variation up to about 90 Pa. After correction, when 36 Pa is set as a threshold value for determining that there is no leakage, only about 3% of the 549 containers without leakage are erroneously determined to be leaking, and it can be seen that the determination accuracy is increased.

この点を詳述すると、漏れのない容器漏洩検査の測定結果から、検査圧力、熱容量、環境温度との温度差、熱伝達率に応じた重み係数を演算で求め、これに基づいて判定精度が高くなる第1温度補償値H1と第2温度補償値H2の重み(比)を求めるよう(補正を行うよう)にしても良いし、検査圧力、熱容量、環境温度との温度差、熱伝達率を固定して、ダイレクトに判定精度が高くなる(最頻値が多くなる)第1温度補償値H1と第2温度補償値H2の重み(比)を例えば演算(例えば離散微分)で求め、これに基づいて、例えば熱容量差に応じた第1温度補償値H1と第2温度補償値H2の重み(比)を変更するよう(補正を行うよう)に演算(例えば回帰演算)しても良い。   To elaborate on this point, from the measurement results of the container leak inspection without leakage, the weighting coefficient corresponding to the inspection pressure, heat capacity, temperature difference from the ambient temperature, and heat transfer coefficient is obtained by calculation, and the determination accuracy is based on this. The weight (ratio) of the first temperature compensation value H1 and the second temperature compensation value H2 to be increased may be obtained (correction is performed), the test pressure, the heat capacity, the temperature difference from the ambient temperature, and the heat transfer coefficient. , And the weight (ratio) of the first temperature compensation value H1 and the second temperature compensation value H2 that directly increases the determination accuracy (the mode value increases) is obtained by, for example, calculation (for example, discrete differentiation). For example, a calculation (for example, a regression calculation) may be performed so as to change (correct) the weight (ratio) between the first temperature compensation value H1 and the second temperature compensation value H2 according to the heat capacity difference.

ところで、前述の顕熱熱交換器は炉内で各パーツがろう付されて炉から取出される場合があるが、ロウ材の解ける温度は一定なので(炉内温度は一定なので)、炉内と周囲温度との温度差は夏場には小さく、冬場には大きくなる。他方、漏洩検査の測定を行う場所の温度(環境温度の要因の1つ)は事務所衛生基準規則等により検査員の負担とならないように検査室温が変更されるので、例えば検査室の室温変更に応じて第1温度補償値H1と第2温度補償値H2の重み(比)を変更するよう(補正を行うよう)にしても良い。これにより判定精度が高い状態を維持したまま、検査圧力、熱容量、環境温度との温度差、熱伝達率を変更することが出来る。   By the way, in the sensible heat exchanger mentioned above, each part may be brazed and taken out from the furnace in the furnace, but the temperature at which the brazing material can be melted is constant (the furnace temperature is constant). The temperature difference from the ambient temperature is small in summer and large in winter. On the other hand, the room temperature (one of the environmental temperature factors) where the leak inspection is measured is changed so that it is not burdened by the inspector according to the office hygiene standard rules. Accordingly, the weight (ratio) between the first temperature compensation value H1 and the second temperature compensation value H2 may be changed (corrected). Thereby, it is possible to change the inspection pressure, the heat capacity, the temperature difference from the environmental temperature, and the heat transfer rate while maintaining a state in which the determination accuracy is high.

なお、漏洩検査工程では、ワーク51とマスタ52が所定の検査圧力まで加圧されるので、このときワーク51とマスタ52内の気体が断熱圧縮されて温度上昇する。すなわち、前補正工程の間に温度低下したワーク51とマスタ52の温度は、漏洩検査工程で差圧の測定を開始する前に、一度、上昇する。そのため、前補正工程の開始時から漏洩検査工程で加圧し始めるまでの間に低下したワーク51とマスタ52の温度が加圧によって再び上昇し、漏洩検査の測定ステップの開示時にはワーク51とマスタ52内の気体の温度が再び高い温度から低下することになる。   In the leakage inspection process, the workpiece 51 and the master 52 are pressurized to a predetermined inspection pressure, and at this time, the gas in the workpiece 51 and the master 52 is adiabatically compressed and the temperature rises. In other words, the temperatures of the workpiece 51 and the master 52 that have fallen during the pre-correction process rise once before starting the measurement of the differential pressure in the leakage inspection process. For this reason, the temperature of the work 51 and the master 52 that has decreased from the start of the pre-correction process to the start of pressurization in the leakage inspection process rises again due to the pressurization, and the work 51 and the master 52 are disclosed when the measurement step of the leakage inspection is disclosed. The temperature of the gas inside falls again from the high temperature.

すなわち、漏洩検査工程の測定ステップの開始時におけるワーク51と環境温度との温度差、マスタ52と環境温度との温度差が共に、前補正工程の終了時より大きくなるが、その大きくなる程度に差が生じる(理由の詳細は[0059]〜[0071]参照)ので、ワーク51とマスタ52との差圧(差圧の変化量)に影響が出る。そこで、この断熱圧縮による温度上昇に基づくワーク51とマスタ52内温度と環境温度との温度差の増大差を考慮して、温度補償値H3を求める際の第1温度補償値H1の重みを大きくする。測定ステップ開始時の温度差は、整定時間が同じならば、検査圧力が高いほど大きくなるので、漏洩検査時の検査圧力が高いほど、第1温度補償値の重みを大きくする。これにより、断熱圧縮による温度上昇を考慮に入れて漏洩検査時の測定結果を適切に温度補償することができる。   That is, the temperature difference between the workpiece 51 and the environmental temperature at the start of the measurement step of the leakage inspection process and the temperature difference between the master 52 and the environmental temperature are both larger than at the end of the pre-correction process, but to the extent that they are larger. Since a difference occurs (refer to [0059] to [0071] for details of the reason), the differential pressure between the workpiece 51 and the master 52 (the amount of change in the differential pressure) is affected. Therefore, the weight of the first temperature compensation value H1 when determining the temperature compensation value H3 is increased in consideration of the increase difference in the temperature difference between the internal temperature of the work 51 and the master 52 and the environmental temperature based on the temperature rise due to the adiabatic compression. To do. If the settling time is the same, the temperature difference at the start of the measurement step increases as the inspection pressure increases. Therefore, the weight of the first temperature compensation value increases as the inspection pressure during the leak inspection increases. As a result, the temperature rise due to adiabatic compression can be taken into account, and the measurement result at the time of leak inspection can be appropriately temperature compensated.

また、漏洩検査工程の減圧ステップでは、測定ステップでは減圧による吸熱が起きる。この点を詳述すると、減圧による吸熱は、減圧速度(ワーク51と排気弁38の大気解放端の端部までの配管距離によって左右される減圧速度)によって大きく異なり、減圧速度が大きいほど(出側配管距離が短いほど)吸熱量が大きくなる。吸熱量が多いと、見掛け上整定時間TS2が長くなってワーク51の内部温度の放熱量が多くなったのと類似の状況となる。ところでワーク51が小さい場合には、リーク検査装置10のすぐ横(例えば検査台の上)に置いて検査できるが、ワーク51が例えば電気温水器等で使用される370リットルのような大型タンクの場合には、リーク検査装置10のすぐ横に置くことができずに、近くの地面において検査することとなる。したがって減圧による吸熱の程度は、検査圧力(減圧時の大気圧との圧力差)以外にもワーク51内の圧力を開放する解放端までの出側配管距離(配管抵抗)等によっても左右される。   Further, in the pressure reduction step of the leakage inspection process, heat absorption due to pressure reduction occurs in the measurement step. To explain this point in detail, the heat absorption due to depressurization varies greatly depending on the depressurization speed (the depressurization speed that depends on the piping distance between the work 51 and the end of the air release end of the exhaust valve 38). The shorter the side piping distance), the greater the amount of heat absorbed. When the amount of heat absorption is large, the settling time TS2 apparently becomes longer and the heat dissipation amount at the internal temperature of the work 51 is increased. By the way, when the work 51 is small, it can be inspected by placing it next to the leak inspection apparatus 10 (for example, on the inspection table), but the work 51 is a large tank such as a 370 liter used in an electric water heater or the like. In such a case, the leak inspection apparatus 10 cannot be placed right next to the leak inspection apparatus 10 and is inspected on the nearby ground. Therefore, the degree of heat absorption due to the reduced pressure depends not only on the inspection pressure (pressure difference from the atmospheric pressure at the time of reduced pressure) but also on the outlet side piping distance (pipe resistance) to the release end that releases the pressure in the work 51. .

<変形例>
前補正工程と後補正工程の間に漏洩検査工程を行ったが、第1温度補償値H1を求める補正工程(図4にグレー色の線で示すように、急激に差圧が変化する箇所を使用した工程)と、第2温度補償値H2を求める補正工程(図4にグレー色の線で示すように、第1温度補償値H1を求めるためにサンプリングした箇所よりは緩やかに差圧が変化する箇所を使用した工程)を行った後に、漏洩検査工程を実施して、温度補償値H3を求めるようにしてもよい。
<Modification>
The leakage inspection process was performed between the pre-correction process and the post-correction process, but the correction process for obtaining the first temperature compensation value H1 (as indicated by the gray line in FIG. Used step) and a correction step for obtaining the second temperature compensation value H2 (as shown by the gray line in FIG. 4), the differential pressure changes more slowly than the location sampled to obtain the first temperature compensation value H1. After performing the process using the location to be performed), the leakage compensation process may be performed to obtain the temperature compensation value H3.

前補正工程と後補正工程の間に漏洩検査工程を行う場合、第1温度補償値H1と第2温度補償値H2を所定の比率(重み付け)で内挿して温度補償値H3を求めていた。これに対して、上記のように第1温度補償値H1を求める補正工程と、第2温度補償値H2を求める補正工程を行った後に、漏洩検査工程を行う場合は、第1温度補償値H1と第2温度補償値H2を所定の比率(重み付け)で外挿して温度補償値H3を求めることになる。   When the leakage inspection process is performed between the pre-correction process and the post-correction process, the temperature compensation value H3 is obtained by interpolating the first temperature compensation value H1 and the second temperature compensation value H2 at a predetermined ratio (weighting). On the other hand, when the leakage inspection process is performed after the correction process for obtaining the first temperature compensation value H1 and the correction process for obtaining the second temperature compensation value H2 as described above, the first temperature compensation value H1. And the second temperature compensation value H2 are extrapolated at a predetermined ratio (weighting) to obtain the temperature compensation value H3.

たとえば、1回目の補正工程と2回目の補正工程との間の時間と、2回目の補正工程と漏洩検査工程の時間とが等しい場合(たとえば、ゼロ)、1回目の補正工程で求める第1温度補償値H1と2回目の補正工程で求める第2温度補償値と漏洩検査時の温度補償値H3との関係は、温度補償値の変化が線形であれば、H3=−H1+2×H2、となる。そこで、これに重み係数を与えて、H3=−αH1+2βH2、とし、非線形性に応じてαとβを定めればよい。この場合は、第2補正工程が漏洩検査工程の前に行われるので、前述した減圧時の断熱膨張による温度降下の影響を受けない。また、外挿する場合には、重みづけの大小関係は、内挿の場合と逆転する。そのため、ワーク51の熱容量が小さいほど、温度差が大きいほど、熱伝達率が大きいほど、αを大きくし、βを小さくする。   For example, when the time between the first correction step and the second correction step is equal to the time of the second correction step and the leakage inspection step (for example, zero), the first time obtained in the first correction step The relationship between the temperature compensation value H1 and the second temperature compensation value obtained in the second correction step and the temperature compensation value H3 at the time of leakage inspection is as follows: if the change of the temperature compensation value is linear, H3 = −H1 + 2 × H2. Become. Therefore, a weighting coefficient is given to this, H3 = −αH1 + 2βH2, and α and β may be determined according to the nonlinearity. In this case, since the second correction process is performed before the leakage inspection process, the second correction process is not affected by the temperature drop due to the adiabatic expansion at the time of decompression. In the case of extrapolation, the magnitude relationship of weighting is reversed from that in the case of interpolation. Therefore, the smaller the heat capacity of the work 51, the greater the temperature difference, and the greater the heat transfer coefficient, the larger α and the smaller β.

ところで、加圧気体の供給源3からは環境温度よりも高めの気体が供給されることが多い。したがって、供給源3から例えば放熱しながらリーク検査装置10に至る。また一方、図8で示した約3%の漏れありと判定されたものは、リトライ工程で再度検査するが、当然のことながら取り外し、取り付け工程が省略され、例えばS115に引き続きS101に至る。従って、供給源3から放熱しながらリーク検査装置10に至る気体の放熱度が少ないまま再度検査が行われるので、再検査か否かによって重み付けを変更するようにしても良い。   By the way, a gas higher than the environmental temperature is often supplied from the pressurized gas supply source 3. Therefore, the leakage inspection apparatus 10 is reached from the supply source 3 while radiating heat, for example. On the other hand, what is determined to have about 3% leakage shown in FIG. 8 is inspected again in the retry process, but naturally the removal and attachment process is omitted, and for example, S115 is followed by S101. Therefore, since the inspection is performed again while the heat radiation of the gas reaching the leak inspection device 10 is small while radiating heat from the supply source 3, the weight may be changed depending on whether or not the reinspection is performed.

さらに、例えば供給源3から他の加圧気体を動力とする機械等に加圧気体の供給が多い時に検査する場合と少ない時に検査する場合とでは供給源3から放熱しながらリーク検査装置10に至る気体の放熱度が少ないまま検査が行われるので、他の加圧気体を動力とする機器の稼働状況に応じて重み付けを変更するようにしても良い。   Further, for example, when inspecting when the supply of pressurized gas is large from a supply source 3 to a machine powered by another pressurized gas or when inspecting when the supply of pressurized gas is small, the leakage inspection apparatus 10 is radiated from the supply source 3 while radiating heat. Since the inspection is performed while the degree of heat radiation of the gas to reach is small, the weighting may be changed according to the operating status of the equipment using other pressurized gas as power.

さらに、検査対象のワーク51が、温度が高いままで検査する場合について述べてきたが、例えばガスメーターのように略温度が環境温度に近いままで検査される場合にも本願は有効である。例えば供給源3から他の加圧気体を動力とする機械等に、加圧気体を供給する量が多い時に検査する場合と少ない時に検査する場合とで、重み付けを変更するようにしても良いし、例えば供給源3から供給される気体の質に応じ重み付けを変更するようにしても良い。   Furthermore, although the case where the workpiece 51 to be inspected is inspected while the temperature is high has been described, the present application is also effective when the inspection is performed while the temperature is substantially close to the environmental temperature, such as a gas meter. For example, the weighting may be changed depending on whether the inspection is performed when the amount of pressurized gas supplied to a machine or the like powered by another pressurized gas from the supply source 3 is large and when the amount is small. For example, the weight may be changed according to the quality of the gas supplied from the supply source 3.

例えば検査室が、ワーク51、マスタ52、リーク検査装置10等しか配置できないような狭小恒温室のような場合で、ワーク51を手でリーク検査装置10にセットして検査室の扉を閉めて検査を行う場合には、検査室の室温がワーク51のセット時に、検査員の体温により変動し、その影響が ΔPt1には強く表れるものの、ΔPrではほとんど影響がなくなり、ΔPt2では全く影響がない等のような場合がある(影響度:ΔPr>・・・・・>ΔPr>ΔPt2)。このような場合でも、環境(検査員の検査室内作業による、体温による環境温度変動)との温度差により、重み付けを変更できれば、例えば、良品が1回目(影響度:ΔPr>・・・・・>ΔPr>ΔPt2)の検査で不良と誤判断さやすく、2回目(影響度:ΔPr≒ΔPr≒ΔPt2)となる再検査で合格と判定される場合には、重み付けを変更して1回目検査で誤判定回数を減らすことで検査時間を短縮することができる。つまり、ワーク51と環境との温度差の大小に基づいて重み付けを変更する場合は、熱いワーク51を検査するがごとくワーク51側に温度差の主な原因が有る場合と、上述のように環境側に温度差の主な原因が有る場合等があり、原因の所在を問う必要はなく、重み付けを変更できるようにすれば検査時間を短縮することができる。   For example, when the inspection room is a narrow temperature-controlled room where only the work 51, the master 52, the leak inspection apparatus 10, etc. can be arranged, the work 51 is set in the leak inspection apparatus 10 by hand and the inspection room door is closed. When performing the inspection, the room temperature of the inspection room fluctuates depending on the body temperature of the inspector when the work 51 is set, and the effect appears strongly in ΔPt1, but there is almost no effect in ΔPr, and no effect in ΔPt2. (Influence degree: ΔPr>...> ΔPr> ΔPt2). Even in such a case, if the weighting can be changed due to the temperature difference from the environment (environmental temperature fluctuation due to body temperature due to inspector work in the inspector), for example, the non-defective product is the first time (influence: ΔPr>... > ΔPr> ΔPt2), it is easy to misdetermine that it is defective. If it is determined that the second inspection (influence: ΔPr≈ΔPr≈ΔPt2) is acceptable, the weighting is changed and the first inspection is performed. The inspection time can be shortened by reducing the number of erroneous determinations. That is, when changing the weighting based on the magnitude of the temperature difference between the workpiece 51 and the environment, there are cases where there is a main cause of the temperature difference on the workpiece 51 side as inspecting the hot workpiece 51, and the environment as described above. There is a case where there is a main cause of the temperature difference on the side, and it is not necessary to ask the location of the cause, and if the weight can be changed, the inspection time can be shortened.

またこの点について、ウォータージェット切断で作られた物や、液体窒素等を用いて勘合(例えばメタルシール)させた物が検査対象の場合については、ワーク51が、温度が環境温度より低い状態で検査することになる。詳述すれば、ワーク51がマスタ52に比してより冷たい場合には、漏洩検査工程のうちの整定期間(Ts1)に、マスタ52よりもワーク51の方が大きく温度上昇するので、2者の差圧の変化量は急激となり、圧力変化を測定する測定ステップ(Tr)が行われる時には圧力変化が緩やかになる。従ってこのような場合であっても本願は有効である。   In this regard, when the object to be inspected is an object made by water jet cutting or an object to be fitted (for example, metal seal) using liquid nitrogen or the like, the work 51 is in a state where the temperature is lower than the environmental temperature. Will be inspected. More specifically, when the work 51 is colder than the master 52, the temperature of the work 51 is larger than that of the master 52 during the settling period (Ts1) in the leakage inspection process. The amount of change in the differential pressure becomes abrupt, and when the measurement step (Tr) for measuring the pressure change is performed, the pressure change becomes gradual. Therefore, the present application is effective even in such a case.

さらに、入口と出口が共通の、例えば壺状のタンク等がアルゴン溶接等で製造されるような物を検査する場合には、掃気時間を長くしても掃気が十分行われない場合があり、溶接時にタンク内に侵入したアルゴンが残ったまま検査されやすい。すなわち、ワーク51とマスタ52とでは、中の気体組成が異なる状態で検査が行われやすいので、この状況(例えばアルゴン溶接等で製造されているか否か、供給源3から供給される気体中にアルゴン溶接で用いたアルゴンが混入していないか、又は混入しているとすればどの程度混入してきているのか=アルゴン分圧等の状況)を勘案して重み付けを変更するようにしても良い。   Furthermore, when inspecting an object having a common inlet and outlet, for example, a tank-like tank manufactured by argon welding or the like, scavenging may not be performed sufficiently even if the scavenging time is extended, It is easy to inspect with argon remaining in the tank during welding. That is, since the workpiece 51 and the master 52 are easily inspected in a state where the gas composition is different, whether or not the workpiece 51 and the master 52 are manufactured by, for example, argon welding or the like in the gas supplied from the supply source 3. The weighting may be changed in consideration of whether the argon used in the argon welding is not mixed, or if it is mixed, how much argon is mixed = situation such as argon partial pressure).

さらに、ワーク51とマスタ52を同じ力学的および熱力学的パラメータを持った異なる容器とすると、ワーク51が大きい場合にはマスタ52も大きくなり、結果、検査装置の所有場所として広い場所を要することとなるので、マスタ52を小型として、マスタ52をワーク51と同じ大型を用いる場合と小型を用いる場合の変換係数をもって対応する場合もある。このような場合でも、ステップS103で封止された、熱いワーク51内と常温の小型マスタ52内とでは、気体密度の異なる気体が封止されることは同じであり、ステップS105において加圧した時に断熱圧縮でワーク51とマスタ52の内部温度上昇についても、気体密度の低い空気が封止されるワーク51の方がマスタ52より、より多く発熱する点も同じなので、重み付けで対応する点も同じである。しかし、さらに、入側配管抵抗に着目すると、例えば370リットルの貯湯タンク(ワーク51)を検査する場合には、小型マスタ52はリーク検査装置10と同じ検査台に置ける(入側配管抵抗小=配管距離は短い)のに対し、大型ワーク51は小型マスタ52に使用した短い配管を使用することが出来なくなるので(ワーク51とマスタ52を同じ大きさのものを使用すれば入側配管抵抗の同じ配管でワーク51とマスタ52をリーク検査装置10に接続できるが、小型マスタ52を使用する目的が検査場所の狭小化である場合が多いので入側配管抵抗の同じ配管を使用しない場合が多く)、このような入側配管抵抗(又は出側配管抵抗)もまた、重み付けで対応するようにしても良い。   Furthermore, if the workpiece 51 and the master 52 are different containers having the same mechanical and thermodynamic parameters, the master 52 is larger when the workpiece 51 is large, and as a result, a large space is required as a place for possessing the inspection apparatus. Therefore, there is a case where the master 52 is made small, and the master 52 uses the same large size as that of the work 51, and the conversion coefficient is used when the small size is used. Even in such a case, it is the same that the gas having different gas density is sealed in the hot work 51 and the small-sized master 52 at room temperature sealed in step S103, and the pressure is increased in step S105. Sometimes the internal temperature rise of the workpiece 51 and the master 52 due to adiabatic compression is the same in that the workpiece 51 sealed with air having a low gas density generates more heat than the master 52. The same. However, paying attention to the inlet side pipe resistance, for example, when inspecting a 370 liter hot water storage tank (work 51), the small master 52 can be placed on the same inspection table as the leak inspection apparatus 10 (small inlet side pipe resistance = On the other hand, the large workpiece 51 cannot use the short piping used for the small master 52 (if the workpiece 51 and the master 52 are of the same size, the input side piping resistance is reduced). Although the workpiece 51 and the master 52 can be connected to the leak inspection apparatus 10 with the same piping, the purpose of using the small master 52 is often to narrow the inspection location, so the piping with the same inlet side piping resistance is often not used. ), Such an input side pipe resistance (or an output side pipe resistance) may also be dealt with by weighting.

さらに、重み付け(重み係数)は両方を正の値のみではなく、一方を負の値としても良いし、両方が負の値であっても良い。   Further, the weighting (weighting coefficient) may be not only a positive value but also a negative value, or both may be negative values.

さらに大気開放時測定の補正工程は2つ以上で行っても良く、補正工程数に応じた重み係数数を持つようにしても良い。さらに前補正工程、後補正工程での測定圧力は漏洩検査工程での圧力以外であれば良く、前補正工程や、後補正工程で微小加圧ステップをいれて、それぞれの圧力変化率を求めるようにしても良い。   Furthermore, two or more correction processes for measurement when the atmosphere is open may be performed, and the number of weighting coefficients corresponding to the number of correction processes may be provided. Furthermore, the measurement pressure in the pre-correction process and the post-correction process may be other than the pressure in the leakage inspection process, and a minute pressurization step is inserted in the pre-correction process or the post-correction process to obtain the respective pressure change rates. Anyway.

ところで、例えばアルゴン溶接を行ったものを検査対象とする場合、検査用空気の導入口(コンプレッサーの給気口)が、アルゴン溶接を行っている場所の近くにある場合があり、風向きによって、検査用空気にアルゴンが混ざる場合がある。また、湿度の低い日であるにもかかわらず、検査用空気の導入口が北側のじめじめした場所にある場合には、無風時と風が吹いた時とでは、検査用空気の湿度が変わる場合がある。
したがって、このように、検査毎(ワーク毎)に、充填される空気の質が異なる場合がある。そこで本願では、充填される空気の質を略同じものとして(連続する前補正工程、漏洩検査工程、後補正工程で封入される空気の質が近似している点を利用して)、加圧条件の異なる複数の工程(例えば前補正工程、後補正工程)での圧力変化率を基に漏洩検査工程での圧力変化率(H1とH2の比)を決めている点に特色がある。
By the way, for example, when an argon welded object is to be inspected, the inspection air introduction port (compressor air supply port) may be near the place where the argon welding is being performed. Argon may be mixed with the working air. In addition, when the test air inlet is in the north, even when the humidity is low, the humidity of the test air changes between when there is no wind and when the wind blows. There is.
Therefore, in this way, the quality of air to be filled may be different for each inspection (each work). Therefore, in this application, the quality of the air to be filled is assumed to be substantially the same (using the fact that the quality of the air enclosed in the successive pre-correction process, leak inspection process, and post-correction process is approximate), and pressurization This is characterized in that the pressure change rate (ratio of H1 and H2) in the leakage inspection process is determined based on the pressure change rates in a plurality of processes (for example, the pre-correction process and the post-correction process) having different conditions.

以上、本発明の実施の形態を図面によって説明してきたが、具体的な構成は実施の形態に示したものに限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。   The embodiment of the present invention has been described with reference to the drawings. However, the specific configuration is not limited to that shown in the embodiment, and there are changes and additions within the scope of the present invention. Are also included in the present invention.

実施の形態では、リーク検査装置10としてワーク51とマスタ52の差圧を測定する例を示したが、ワーク51の圧力を直接測定する構成でも構わない。   In the embodiment, an example in which the differential pressure between the workpiece 51 and the master 52 is measured as the leak inspection apparatus 10 is shown, but a configuration in which the pressure of the workpiece 51 is directly measured may be used.

本発明は、リーク検査装置に限定されず、リーク検査方法も含まれる。   The present invention is not limited to a leak inspection apparatus, and includes a leak inspection method.

2…電空レギュレータ
3…加圧気体の供給源
5…圧力計
6…等温化ファンユニット
10…リーク検査装置
11…加圧源接続口
12…ワーク接続口
13…マスタ接続口
15…検査処理部
21…第1配管
22…第2配管
23…第3配管
24…排気管
31…第1開閉弁
32…第2開閉弁
33…第3開閉弁
34…第4開閉弁
35…第5開閉弁
36…第6開閉弁
37…第7開閉弁
38…排気弁
41…第1圧力計
42…第2圧力計
43…差圧計
51…ワーク
52…マスタ
H1…第1温度補償値
H2…第2温度補償値
H3…第3温度補償値
ΔPt1…前補正工程で測定された差圧
ΔPt2…後補正工程で測定された差圧
ΔPr…漏洩検査工程の測定ステップで測定された差圧
ΔPs…ΔPrのうちの漏れによる差圧
ΔPf…ΔPrのうちの温度変動による差圧
Pd…検査圧力
Pa…大気開放時の圧力
Ta…前補正工程における差圧変化の測定時間
Tb…後補正工程における差圧変化の測定時間
Tr…漏洩検査工程における差圧変化の測定時間
DESCRIPTION OF SYMBOLS 2 ... Electropneumatic regulator 3 ... Supply source of pressurized gas 5 ... Pressure gauge 6 ... Isothermal fan unit 10 ... Leak inspection apparatus 11 ... Pressurization source connection port 12 ... Work connection port 13 ... Master connection port 15 ... Inspection processing part DESCRIPTION OF SYMBOLS 21 ... 1st piping 22 ... 2nd piping 23 ... 3rd piping 24 ... Exhaust pipe 31 ... 1st on-off valve 32 ... 2nd on-off valve 33 ... 3rd on-off valve 34 ... 4th on-off valve 35 ... 5th on-off valve 36 ... 6th open / close valve 37 ... 7th open / close valve 38 ... Exhaust valve 41 ... 1st pressure gauge 42 ... 2nd pressure gauge 43 ... Differential pressure gauge 51 ... Work 52 ... Master H1 ... 1st temperature compensation value H2 ... 2nd temperature compensation Value H3: Third temperature compensation value ΔPt1: Differential pressure measured in the previous correction process ΔPt2: Differential pressure measured in the post-correction process ΔPr: Differential pressure measured in the measurement step of the leakage inspection process ΔPs: ΔPr Differential pressure due to leakage ΔPf ... Pressure difference due to Pd ... Inspection pressure Pa ... Pressure at atmospheric release Ta ... Measurement time of differential pressure change in pre-correction process Tb ... Measurement time of differential pressure change in post-correction process Tr ... Measurement time of differential pressure change in leak inspection process

Claims (6)

検査対象容器の漏れの有無を検査するリーク検査方法であって、
大気開放してから封止した前記検査対象容器内の圧力変化を第1期間に測定する第1測定ステップと、
大気開放してから封止した前記検査対象容器内の圧力変化を前記第1期間より後の第2期間に測定する第2測定ステップと、
前記検査対象容器を所定の検査圧力に加圧した後に封止した前記検査対象容器内の圧力変化を前記第1期間と前記第2期間の間もしくは前記第2期間の後の第3期間に測定する第3測定ステップと、
前記第1測定ステップの測定結果に基づいて第1温度補償値を求める第1温度補償値算出ステップと、
前記第2測定ステップの測定結果に基づいて第2温度補償値を求める第2温度補償値算出ステップと、
前記第1温度補償値と前記第2温度補償値に基づいて、前記第3測定ステップの測定結果を温度補償するための第3温度補償値を算出する第3温度補償値算出ステップと、
前記第3測定ステップの測定結果を前記第3温度補償値で温度補償したデータに基づいて前記検査対象容器の漏れの有無を判定する判定ステップと、
を有し、
前記第3温度補償値算出ステップでは、前記検査圧力の大小、前記検査対象容器の熱容量の大小、外部への熱伝達率の大小、前記検査対象容器と環境との温度差の大小のうちの少なくとも1つに基づいて、前記第3温度補償値を算出する際の前記第1温度補償値と前記第2温度補償値の重み付けを変更する
ことを特徴とするリーク検査方法。
A leak inspection method for inspecting whether there is a leak in a container to be inspected,
A first measurement step of measuring a pressure change in the inspection target container sealed after being opened to the atmosphere in a first period;
A second measurement step of measuring a pressure change in the container to be inspected sealed after being opened to the atmosphere in a second period after the first period;
A pressure change in the inspection target container sealed after pressurizing the inspection target container to a predetermined inspection pressure is measured between the first period and the second period or in a third period after the second period. A third measuring step,
A first temperature compensation value calculating step for obtaining a first temperature compensation value based on the measurement result of the first measuring step;
A second temperature compensation value calculating step for obtaining a second temperature compensation value based on the measurement result of the second measuring step;
A third temperature compensation value calculating step for calculating a third temperature compensation value for temperature compensating the measurement result of the third measurement step based on the first temperature compensation value and the second temperature compensation value;
A determination step of determining the presence or absence of leakage of the inspection target container based on data obtained by performing temperature compensation on the measurement result of the third measurement step with the third temperature compensation value;
Have
In the third temperature compensation value calculation step, at least one of the magnitude of the examination pressure, the magnitude of the heat capacity of the examination target container, the magnitude of the heat transfer rate to the outside, and the magnitude of the temperature difference between the examination target container and the environment The leak inspection method according to claim 1, wherein the weighting of the first temperature compensation value and the second temperature compensation value in calculating the third temperature compensation value is changed based on one.
前記検査対象容器内の圧力変化として、
前記第1測定ステップおよび前記第2測定ステップでは、大気開放した基準容器もしくは大気開放してから封止した前記基準容器と、大気開放してから封止した前記検査対象容器との差圧を測定し、
前記第3測定ステップでは、前記検査圧力に加圧した後に封止した前記基準容器と、前記検査圧力に加圧した後に封止した前記検査対象容器との差圧を測定する
ことを特徴とする請求項1に記載のリーク検査方法。
As a pressure change in the inspection target container,
In the first measurement step and the second measurement step, a differential pressure between the reference container opened to the atmosphere or the reference container sealed after being opened to the atmosphere and the inspection object container sealed after being opened to the atmosphere is measured. And
In the third measuring step, a differential pressure between the reference container sealed after being pressurized to the inspection pressure and the inspection object container sealed after being pressurized to the inspection pressure is measured. The leak inspection method according to claim 1.
前記第3温度補償値算出ステップでは、前記第3期間が前記第1期間と前記第2期間の間であって前記検査圧力が一定以上の場合は、前記検査対象容器の熱容量が小さいほど、もしくは、外部への熱伝達率が大きいほど、もしくは、前記検査対象容器と環境との温度差が大きいほど、前記第1温度補償値の重みを大きくする
ことを特徴とする請求項1または2に記載のリーク検査方法。
In the third temperature compensation value calculating step, when the third period is between the first period and the second period and the inspection pressure is equal to or higher than a certain value, the heat capacity of the inspection target container is smaller, or The weight of the first temperature compensation value is increased as the heat transfer rate to the outside is larger or the temperature difference between the container to be inspected and the environment is larger. Leak inspection method.
前記第3温度補償値算出ステップでは、前記第3期間が前記第1期間と前記第2期間の間の場合は、前記検査圧力が高いほど、前記第1温度補償値の重みを大きくする
ことを特徴とする請求項1乃至3のいずれか1つに記載のリーク検査方法。
In the third temperature compensation value calculating step, when the third period is between the first period and the second period, the weight of the first temperature compensation value is increased as the inspection pressure is higher. The leak inspection method according to any one of claims 1 to 3, wherein
前記第1温度補償値、前記第2温度補償値、前記第3温度補償値は、漏れがない場合の単位時間当たりの圧力変化量である
ことを特徴とする請求項1乃至4のいずれか1つに記載のリーク検査方法。
The first temperature compensation value, the second temperature compensation value, or the third temperature compensation value is a pressure change amount per unit time when there is no leakage. Leak inspection method described in 1.
請求項1乃至5のいずれか1つに記載のリーク検査方法を用いて検査対象容器の漏れの有無を検査するリーク検査装置。   A leak inspection apparatus for inspecting whether or not a container to be inspected leaks using the leak inspection method according to claim 1.
JP2017016113A 2017-01-31 2017-01-31 Leak inspection device Leak inspection method Active JP6775434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017016113A JP6775434B2 (en) 2017-01-31 2017-01-31 Leak inspection device Leak inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017016113A JP6775434B2 (en) 2017-01-31 2017-01-31 Leak inspection device Leak inspection method

Publications (2)

Publication Number Publication Date
JP2018124161A true JP2018124161A (en) 2018-08-09
JP6775434B2 JP6775434B2 (en) 2020-10-28

Family

ID=63110153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017016113A Active JP6775434B2 (en) 2017-01-31 2017-01-31 Leak inspection device Leak inspection method

Country Status (1)

Country Link
JP (1) JP6775434B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020027028A (en) * 2018-08-10 2020-02-20 株式会社ガスター Leak inspection system, and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020027028A (en) * 2018-08-10 2020-02-20 株式会社ガスター Leak inspection system, and program
JP7286282B2 (en) 2018-08-10 2023-06-05 株式会社ガスター Leak inspection system, program

Also Published As

Publication number Publication date
JP6775434B2 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
US10816434B2 (en) Apparatus and method for leak testing
JP2009522519A (en) Pressure gas container filling method and filling device
Benedict Pressure, volume, temperature properties of nitrogen at high density. I. Results obtained with a weight piezometer
CN108730760B (en) Hydrogen storage tank fills hydrogen filling performance detecting system
JP2001295994A (en) Compressed gas transfer filling method
JP4643589B2 (en) Method for filling a compressed gas container with gas
US10948378B2 (en) Device, system, and method for detecting equipment leaks
JP4994494B2 (en) Differential pressure measurement method and apparatus
CN105466633B (en) A kind of low temperature lower pressure sensor calibrating installation
Dhar Stirling space engine program
JP2018124161A (en) Leakage inspection device and leakage inspection method
US20210148783A1 (en) Device, system, and method for detecting leaks from pressurized equipment
CN112484942B (en) Method and system for measuring leakage rate of small-volume container
JP6370113B2 (en) Pressure gauge inspection method
CN108845592B (en) Refrigerant filling measurement system and refrigerant filling method
CN205388506U (en) Circulating high -pressure gas flow rate standard facility
CN110107806B (en) Low-temperature heat-insulation gas cylinder evaporation rate detection method based on different filling rates
JP6373209B2 (en) Leak inspection device Leak inspection method
CN107741452B (en) method for testing volume fraction of martensite in austenitic stainless steel
CN109655370A (en) Automobile-used LNG gas cylinder static evaporation rate pressure-maintaining test device and test method
JP5113894B2 (en) Flow rate measuring method and flow rate measuring apparatus using the same
JP3054508B2 (en) Method and apparatus for measuring gas leakage in a container
CN111609308B (en) Method and device for filling a tank with pressurized gas
CN114659581A (en) Online accurate calibration method for container volume
JP2001066216A (en) Instrument and method for measuring quantity of leakage from gasket

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201006

R150 Certificate of patent or registration of utility model

Ref document number: 6775434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250