JP7145011B2 - パワーコンディショナ - Google Patents

パワーコンディショナ Download PDF

Info

Publication number
JP7145011B2
JP7145011B2 JP2018163173A JP2018163173A JP7145011B2 JP 7145011 B2 JP7145011 B2 JP 7145011B2 JP 2018163173 A JP2018163173 A JP 2018163173A JP 2018163173 A JP2018163173 A JP 2018163173A JP 7145011 B2 JP7145011 B2 JP 7145011B2
Authority
JP
Japan
Prior art keywords
power
control unit
current
converter
detection signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018163173A
Other languages
English (en)
Other versions
JP2020036511A (ja
Inventor
啓文 小西
Original Assignee
ダイヤゼブラ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイヤゼブラ電機株式会社 filed Critical ダイヤゼブラ電機株式会社
Priority to JP2018163173A priority Critical patent/JP7145011B2/ja
Publication of JP2020036511A publication Critical patent/JP2020036511A/ja
Application granted granted Critical
Publication of JP7145011B2 publication Critical patent/JP7145011B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Protection Of Static Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Description

本発明は、パワーコンディショナに関するものである。
近年、太陽光発電システムの普及にしたがって、パワーコンディショナに搭載されたインバータ回路の直流入力電圧が高くなっている。インバータ回路の直流入力電圧の高電圧化の要因として、(1)太陽電池の直列数増加による直流電圧の高電圧化、(2)太陽電池の過積載による直流電流の増加、(3)パワーコンディショナの大型化及び高出力電力化に伴うAC出力電圧の高電圧化、等が挙げられる。
パワーコンディショナの直流電路において、例えば、太陽電池配線工事上の不具合や、インバータ回路の破損等により、直流電圧回路の一部が破損したり断線したりすると、アーク放電が発生することがある。直流電圧は、ゼロクロス点がないために、一旦アーク放電が発生すると電路や回路を遮断することが難しい。アーク放電は、気体の絶縁を破壊するため、パワーコンディショナの内部の直流電圧回路での破損や断線等に対する安全対策が急務となっている。
特許文献1には、太陽光発電システムにおいて、直流電路を貫通させて検出部を設け、この検出部でアーク放電により発生する高周波を交番磁界として検出し、その結果に基づいてアーク放電発生を判断する技術が開示されている。
特開2015-162946号公報
しかしながら、特許文献1の構成では、アーク放電を判断し、電路を遮断するために、新しく素子や回路等を追加する必要がある。
本発明は、パワーコンディショナにおいて、アーク放電発生時の安全対策を既存の構成を用いて実現することを目的とする。
本発明の第1態様に係るパワーコンディショナは、入力端子から入力された直流電力を交流電力に変換して出力端子から出力するためのものであり、前記入力端子の正極と負極との間に設けられたスイッチング素子と、前記スイッチング素子の動作を制御するコンバータ制御部とを有し、前記直流電力を昇圧または降圧するDC/DCコンバータと、前記DC/DCコンバータから出力された直流電力を交流電力に変換して前記出力端子に出力するDC/ACインバータと、前記入力端子から前記出力端子までの間の電路に流れる電流を検出して検出信号として出力する電流検出回路と、前記電流検出回路から前記検出信号を受け、該検出信号に基づいて前記コンバータ制御部を制御して前記パワーコンディショナの出力電力を制御する制御回路とを備え、前記制御回路は、前記検出信号の周波数スペクトラムの変化に基づいてアーク放電の有無を判定し、アーク放電があると判定した場合に、前記コンバータ制御部を介して、前記スイッチング素子を導通させることを特徴とする。
この構成によると、送電路に繋がる回路の短絡故障等によりアーク放電が発生した場合においても、制御回路がスイッチング素子を導通状態にして、入力端子の正極と負極を短絡させるので、太陽光発電手段からの電力供給を断つことができる。これにより、パワーコンディショナを安全に停止することができ、アーク放電による事故が発生するのを未然に防ぐことができる。
さらに、本態様のパワーコンディショナは、アーク放電の発生時に、既存のDC/DCコンバータに用いられているパワーコンディショナの出力電力を制御するためのスイッチング素子を用いて、入力端子の正極と負極を短絡することにより、太陽光発電手段からの電力供給を断つようにしている。さらに、既存のパワーコンディショナにおいても、電流検出回路や制御回路は搭載されている。すなわち、本態様のパワーコンディショナは、パワーコンディショナを既存の構成を用いてアーク放電発生時の保護機能を実現することができるという特徴を有している。
本発明によると、アーク放電の発生の有無の判定、及びアーク放電発生時の保護機能を有するパワーコンディショナを既存の構成を用いて実現することができる。
実施形態に係るパワーコンディショナの構成例を示すブロック図 DC/DCコンバータ、DC/ACインバータ及びリレー遮断回路の回路構成の一例を示す図 アーク放電発生時の保護制御について説明するための図 アーク放電発生時に発生するノイズスペクトラムの一例を示す図 実施形態に係るパワーコンディショナの他の構成例を示すブロック図 既存のパワーコンディショナの構成例を示すブロック図
以下、本発明の実施形態を図面に基づいて詳細に説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用範囲あるいはその用途を制限することを意図するものではない。
<パワーコンディショナの構成>
図1は実施形態に係るパワーコンディショナ及びその周辺の構成を示した図である。
パワーコンディショナAは、入力端子IN(INP,INN)から入力された直流電力を交流電力に変換して出力端子OUTから出力する機能を有する。
具体的に、例えば、図1に示すように、パワーコンディショナAは、太陽光発電手段PVから供給された直流電力を交流電力に変換し、配線用遮断器80を介して商用電源系統81に連系させることができるようになっている。また、具体的な図示は省略するが、パワーコンディショナAは、出力端子に接続された家庭用機器や産業用機器等の負荷(図示省略)に上記変換後の交流電力を供給することができるようになっている。
パワーコンディショナAは、入力端子INから出力端子OUTまでの間の電路(以下、送電路PLという)に直列接続された、DC/DCコンバータ10と、DC/ACインバータ20と、リレー遮断回路30とを備えている。さらに、パワーコンディショナAは、送電路に流れる電流を検出して出力する検出回路と、パワーコンディショナA全体の動作を制御するシステム制御部40とを備えている。また、DC/DCコンバータ10とDC/ACインバータ20との間には、DC/DCコンバータ10から出力されたDCバス電圧を平滑化する平滑コンデンサCFが接続されている。
図2に示すように、DC/DCコンバータ10は、太陽光発電手段PVからの電力供給を受け、発電電圧に応じて昇圧または降圧するDC/DC変換回路11と、DC/DC変換回路11の変換動作を制御するコンバータ制御部12とを備えている。
DC/DC変換回路11は、並列接続された入力コンデンサC1及びスイッチング素子Q1と、正極入力端子INPに接続された正極側の送電線PL(以下、正極側送電路PLPという)に直列接続されたインダクタL1及びダイオードD1を備えている。インダクタL1は、入力コンデンサC1とスイッチング素子Q1との間に接続されている。また、ダイオードD1は、送電路PLPの送電方向が順方向となるように、スイッチング素子Q1と平滑コンデンサCFとの間に接続されている。そして、スイッチング素子Q1のゲートには、コンバータ制御部12が接続されている。
コンバータ制御部12は、太陽光発電手段PVから取り出す電力量を制御するものであり、スイッチング素子Q1のオンオフ動作を制御することにより、例えば、最大動作点追従制御が可能に構成されている。この最大動作点追従制御を行うことで、各太陽光発電手段21から最大電力を取り出すことができる。
DC/ACインバータ20は、インバータ回路21と、フィルタ回路22とを備えている。
インバータ回路21は、DCバス電圧を入力として受け、システム制御部40からの制御にしたがってDC/AC変換する機能を有する。そして、インバータ回路21の出力は、フィルタ回路22を介してリレー遮断回路30に出力される。図2では、インバータ回路21として、フルブリッジ回路(Q21~Q24)の例を示している。なお、インバータ回路21の構成は、フルブリッジ回路に限定されず、ハーフブリッジ回路や他の方式の回路であってもよい。
リレー遮断回路30は、正極側送電路PLPと、負極側の送電路PL(以下、負極側送電路PLNという)のそれぞれに設けられ、システム制御部40の制御にしたがって、それぞれの送電路の接続/遮断をオンオフ制御するリレー31を備えている。
図1に戻り、パワーコンディショナAは、正極入力端子INPと負極入力端子INNとの間に接続された地絡検出回路7を備えていてもよい。地絡検出回路7は、太陽光発電手段PVに接続されたケーブル等が露出する等してそれが地面等に接触して短絡したこと等を検出する回路である。なお、地絡検出回路7の構成及び地絡検出時の動作については、従来技術と同様のものを採用することができるので、ここではその詳細説明を省略する。
検出回路は、送電路PLに流れる電流を検出する第1電流センサ61及び第2電流センサ62と、アーク検出回路63とを備えている。
第1電流センサ61は、平滑コンデンサCFとDC/ACインバータ20との間の送電路PL1に配置され、DC/ACインバータ20への入力電流を測定する。第2電流センサ62は、DC/ACインバータ20とリレー遮断回路30との間の送電路PL2に配置され、DC/ACインバータ20の出力電流を測定する。なお、第1電流センサ及び第2電流センサは、電流の測定が可能に構成されていればよく、どのようなセンサを用いるかは特に限定されない。例えば、磁気コアを用いた方式を採用してもよいし、電気部品や半導体部品で構成された回路を用いて送電路PLのから直接検出する方式を採用してもよい。
アーク検出回路63は、第1電流センサ61及び第2電流センサ62からの検出信号SD1,SD2を受け、後述するFFT(Fast Fourier transform)演算用の信号(以下、FFT演算信号SD3という)に変換してシステム制御部40に出力する。アーク検出回路63は、例えば、入力された信号から所定の周波数帯域の信号を通過させるバンドパスフィルタ(図示省略)、または、所定の周波数以上の信号を通過させるハイパスフィルタ(図示省略)を備えている。すなわち、アーク検出回路63は、第1電流センサ61及び第2電流センサ62の検出信号から直流成分を取り除いたり、所定の周波数成分の信号を抽出したりして、FFT演算信号SD3としてシステム制御部40に出力する。
システム制御部40は、例えばマイクロコンピュータ(以下、単にマイコンという)で実現され、例えば、マイコンのメモリに記憶されたプログラムにしたがって動作する。システム制御部40では、第2電流センサ62からの検出信号SD2(送電路PL2の測定電流値)に基づいて、太陽光発電手段PVの最大出力点で動作できるように、DC/DCコンバータ10のコンバータ制御部12に制御信号S1を出力する。
具体的に、システム制御部40は、図3の黒丸(電圧:VMP,電力:PMAX)のポイントで動作するように、コンバータ制御部12を介して、スイッチング素子Q1を制御して、最大電力点追従制御(MPPT)を実行する。また、システム制御部40では、力率設定情報、第1及び第2電流センサ61,62からの測定電流値及び/またはDC/DCコンバータ10の放電情報等の各種情報を受信して一元管理しており、それらの情報に基づいて、DC/ACインバータ20に内蔵されたインバータ制御部(図示省略)を介してDC/ACインバータ20の出力電力及び力率を制御する。なお、DC/DCコンバータ10の最大出力点制御、DC/ACインバータ20の出力電力及び力率の制御は、従来から知られている技術を適用することができるので、ここではその詳細説明を省略する。
さらに、システム制御部40は、アーク検出回路63から受けたFFT演算信号SD3のFFT演算を行い、周波数スペクトラムの変化に基づいてアーク放電の有無を判定する。
図4には、FFT演算信号SD3をFFT演算し、周波数スペクトラムの分布を模式的に示している。図4では、アーク放電が発生していない場合(以下、「アーク放電なし」ともいう)の分布を右上がりの斜線で示し、アーク放電が発生している場合(以下、「アーク放電あり」ともいう)の信号強度(以下、ノイズレベルという)の分布を左上がりの斜線で示している。
図4に示すように、アーク放電が発生すると、アーク放電なしの場合と比較して、ある一定以上の周波数でノイズレベルが上昇する傾向がある。例えば、図4では、周波数f0あたりからノイズレベルが上昇し、周波数f1付近において最大値となり、その状態がしばらく維持された後、ノイズレベルが次第に減少するという特性が得られている。
そこで、システム制御部40は、周波数スペクトラムの変化、すなわち、上記ノイズレベルの変化に基づいて、アーク放電の有無を判定する。アーク放電の有無の具体的な判定方法は特に限定されるものではないが、例えば、所定の周波数範囲であるノイズ検出範囲(例えば、図4のf1からf2の間)において、(1)ノイズレベルが所定の閾値THを超えているかどうか、(2)ノイズレベルの面積が所定の基準値よりも大きいか否か、等の方法に基づいてアーク放電の有無を判定することができる。
なお、ノイズ検出範囲の周波数は、特に限定されるのもではないが、例えば、周波数f1は、50kHzであり、周波数f2は、100kHzである。ノイズ検出範囲の周波数の下限周波数(図4ではf1)については、回路のスイッチング周波数に近すぎない値になるように設定するのが好ましい。ノイズ検出範囲の周波数の上限周波数(図4ではf2)については、特に限定されるものではないが、周波数が高くなるのにしたがってノイズレベルは徐々に減少していく傾向があるので、その減少特性に応じて設定するのが好ましい。
そして、システム制御部40は、「アーク放電あり」と判定した場合、コンバータ制御部12に対して、電力制御(例えば、最大電力点追従制御)に代えて、スイッチング素子Q1を導通させるように制御する。このとき、システム制御部40は、第1電流センサ61または第2電流センサ62からの検出信号SD1,SD2のいずれか一方でも条件を満たせば、「アーク放電あり」と判定するようにしている。
これにより、正極入力端子INPと負極入力端子INNとの間を短絡させることができ、太陽光発電手段PVからDC/ACインバータ20への直流入力電圧及び電流を遮断することができる。すなわち、太陽光発電手段PVからの電力供給を断つことができ、パワーコンディショナAを安全に停止することができる。具体的に、図3に破線の矢印で示すように、正極入力端子INPと負極入力端子INNとの短絡により、太陽光発電手段PVの電圧が0[V]になるので、太陽光発電手段PVからパワーコンディショナAへの電力は供給されない。なお、正極入力端子INPと負極入力端子INNとの短絡により、短絡電流ISCが流れるが、それ以上に電流が流れないため、安全性を確保することができる。すなわち、図2において、DC/DCコンバータ10において、コンバータ制御部12及びスイッチング素子Q1は、アーク放電の発生時に、正極入力端子INPと負極入力端子INNとの短絡させるためのPN短絡部としての機能を有する。
さらに、システム制御部40は、「アーク放電あり」と判定した場合、リレー遮断回路30のリレー31を開放させる。これにより、商用電源系統81とパワーコンディショナとの接続が遮断され、商用電源系統81からの電源供給を断つことができ、パワーコンディショナAをより安全に停止することができる。
以上のように、本実施形態に係るパワーコンディショナAは、送電路PLに繋がる回路での短絡故障等によりアーク放電が発生した場合においても、太陽光発電手段からの電力供給を断つことができるので、アーク放電による事故が発生するのを未然に防ぐことができる。また、システム制御部40によるリレー遮断回路30の制御をあわせて実行することにより、商用電源系統81からの電源供給を断つことができ、パワーコンディショナAをより安全に停止することができる。
さらに、本実施形態に係るパワーコンディショナAでは、DC/DCコンバータ10のスイッチング素子Q1を、通常動作において、DC/ACインバータ20から出力される出力電力を制御するために使用し、アーク放電の発生時に、正極入力端子INPと負極入力端子INNとの間を導通させ、短絡させるために使用するようにしている。これにより、新たな構成要素を追加することなく、アーク放電発生時の安全対策(例えば、火災等の事故の防止や回路保護)を実現することができる。さらに、例えば、図6に示すように、既存のパワーコンディショナにおいても、電流センサやシステム制御部は搭載されているので、例えば、システム制御部のプログラムを書き換える等をすることで、これらを有効に活用することにより、既存の構成を用いてアーク放電発生時の保護機能を実現することができるという特徴がある。
図6には、既存のパワーコンディショナBの一例を示している。図6では、既存のパワーコンディショナBと第1実施形態とで共通の構成に、同一の符号を付している。また、既存のパワーコンディショナBにおいて、DC/DCコンバータ10、DCDC/ACインバータ20、及びリレー遮断回路30は、図2の構成と同じである。
図1と図6の構成とを比較すると、図1では、図6と比較して、第1電流センサ61とアーク検出回路63が追加されている。システム制御部40は、回路の構成としては、図1と図6で、共通のものを使用することができ、マイコンを動作させるプログラムに、修正を施すことで、上記実施形態の動作を実現することができる。
なお、図1の構成において、第1電流センサ61は、省いた構成としてもよく、同様の効果が得られる。その場合、システム制御部40では、第2電流センサ62の測定値に基づいてアーク放電の発生の有無を判定する。
また、既存のパワーコンディショナBにおいて、システム制御部40に、アーク検出回路63で実施するフィルタ機能を有するマイコンや回路が搭載されていれば、アーク検出回路63も不要である。その場合、第1電流センサ61や第2電流センサ62から出力された検出信号を、そのままシステム制御部40に入力させるようにすればよい。このように、本実施形態では、既存のパワーコンディショナBの構成を活用して、追加の構成要素なしに、または、追加の構成要素を最小限にとどめて、アーク放電発生時の保護機能を実現することができようになっているという特徴を有する。
なお、図1の構成では、第1電流センサ61が、平滑コンデンサCFとDC/ACインバータ20との間の電流を測定し、第2電流センサ62が、DC/ACインバータ20とリレー遮断回路30との間の電流を測定するものとしたが、これに限定されない。
具体的に、電流センサは、入力端子から出力端子までの間の電路のうちの少なくとも1箇所に流れる電流を検出することにより、システム制御部40でアーク放電の発生の有無を判定することができる。
図5では、図1の構成に加えて、入力端子INとDC/DCコンバータ10との間の送電路PL3に第3電流センサ64を配置した例を示している。なお、第1電流センサ61の位置で電流を測定することにより、DC/ACインバータ20の入力側の回路(例えば、図2のK1近傍)で発生するアーク放電の発生を、より好適に検出することができる。同様に、第2電流センサ62の位置で電流を測定することにより、DC/ACインバータ20の出力側の回路(例えば、図2のK2近傍)で発生するアーク放電の発生を、より好適に検出することができる。同様に、第3電流センサ64の位置で電流を測定することにより、パワーコンディショナAの入力端子INからDC/DCコンバータ10の間の回路(例えば、図1のK3近傍)で発生するアーク放電の発生を、より好適に検出することができる。したがって、アーク放電を検出したい場所に応じて、電流センサを配置するようにすることで、好適なアーク放電の検出を実現することができる。
本発明によると、系統電圧上昇の抑制対策を実現しつつ、電源効率の最適化を実現することができるので、複数の分散型電源を商用電源系統に連系するような分散型電源システムとして極めて有用である。
A パワーコンディショナ
10 DC/DCコンバータ
12 コンバータ制御部
20 DC/ACインバータ
40 システム制御部
61 第1電流センサ(電流検出回路)
62 第2電流センサ(電流検出回路)
63 アーク検出回路(電流検出回路)
64 第3電流センサ(電流検出回路)
IN 入力端子
INP 正極入力端子(入力端子の正極)
INM 負極入力端子(入力端子の負極)
OUT 出力端子
PL 送電路(電路)
Q1 スイッチング素子

Claims (5)

  1. 入力端子から入力された直流電力を交流電力に変換して出力端子から出力するパワーコンディショナであって、
    前記入力端子の正極と負極との間に設けられたスイッチング素子と、前記スイッチング素子の動作を制御するコンバータ制御部とを有し、前記直流電力を昇圧または降圧するDC/DCコンバータと、
    前記DC/DCコンバータから出力された直流電力を交流電力に変換して前記出力端子に出力するDC/ACインバータと、
    第1電流センサを用いて前記DC/ACインバータへの入力電流を検出して検出信号として出力する電流検出回路と、
    前記電流検出回路から前記検出信号を受け、該検出信号に基づいて前記コンバータ制御部を制御して前記パワーコンディショナの出力電力を制御するシステム制御部とを備え、
    前記システム制御部は、前記検出信号の周波数スペクトラムの変化に基づいてアーク放電の有無を判定し、アーク放電があると判定した場合に、前記コンバータ制御部を介して、前記スイッチング素子を導通させる
    ことを特徴とするパワーコンディショナ。
  2. 入力端子から入力された直流電力を交流電力に変換して出力端子から出力するパワーコンディショナであって、
    前記入力端子の正極と負極との間に設けられたスイッチング素子と、前記スイッチング素子の動作を制御するコンバータ制御部とを有し、前記直流電力を昇圧または降圧するDC/DCコンバータと、
    前記DC/DCコンバータから出力された直流電力を交流電力に変換して前記出力端子に出力するDC/ACインバータと、
    前記入力端子から前記出力端子までの間の電路に流れる電流を検出して検出信号として出力する電流検出回路と、
    前記電流検出回路から前記検出信号を受け、該検出信号に基づいて前記コンバータ制御部を制御して前記パワーコンディショナの出力電力を制御するシステム制御部とを備え、
    前記システム制御部は、前記検出信号の周波数スペクトラムの変化に基づいてアーク放電の有無を判定し、アーク放電があると判定した場合に、前記コンバータ制御部を介して、前記スイッチング素子を導通させ、
    前記電流検出回路は、前記DC/ACインバータへの入力電流を測定する第1電流センサと、前記第1電流センサの出力に基づいて前記検出信号を生成するアーク検出回路とを備えている
    ことを特徴とするパワーコンディショナ。
  3. 入力端子から入力された直流電力を交流電力に変換して出力端子から出力するパワーコンディショナであって、
    前記入力端子の正極と負極との間に設けられたスイッチング素子と、前記スイッチング素子の動作を制御するコンバータ制御部とを有し、前記直流電力を昇圧または降圧するDC/DCコンバータと、
    前記DC/DCコンバータから出力された直流電力を交流電力に変換して前記出力端子に出力するDC/ACインバータと、
    前記入力端子から前記出力端子までの間の電路に流れる電流を検出して検出信号として出力する電流検出回路と、
    前記電流検出回路から前記検出信号を受け、該検出信号に基づいて前記コンバータ制御部を制御して前記パワーコンディショナの出力電力を制御するシステム制御部とを備え、
    前記システム制御部は、前記検出信号の周波数スペクトラムの変化に基づいてアーク放電の有無を判定し、アーク放電があると判定した場合に、前記コンバータ制御部を介して、前記スイッチング素子を導通させ、
    前記電流検出回路は、前記DC/ACインバータの出力電流を測定する第2電流センサと、前記第2電流センサの出力に基づいて前記検出信号を生成するアーク検出回路とを備えている
    ことを特徴とするパワーコンディショナ。
  4. 請求項1に記載のパワーコンディショナにおいて、
    前記電流検出回路は、前記DC/DCコンバータへの入力電流を測定する第3電流センサと、前記第1電流センサ及び前記第3電流センサの出力に基づいて前記検出信号を生成するアーク検出回路とを備えている
    ことを特徴とするパワーコンディショナ。
  5. 請求項1から4のうちのいずれか1項に記載のパワーコンディショナにおいて、
    前記DC/ACインバータと前記出力端子との間に設けられ、前記システム制御部からの制御信号に基づいて動作する開閉器を備え、
    前記システム制御部は、前記検出信号の周波数スペクトラムの変化に基づいてアーク放電があると判定した場合に、前記開閉器を遮断させる
    ことを特徴とするパワーコンディショナ。
JP2018163173A 2018-08-31 2018-08-31 パワーコンディショナ Active JP7145011B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018163173A JP7145011B2 (ja) 2018-08-31 2018-08-31 パワーコンディショナ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018163173A JP7145011B2 (ja) 2018-08-31 2018-08-31 パワーコンディショナ

Publications (2)

Publication Number Publication Date
JP2020036511A JP2020036511A (ja) 2020-03-05
JP7145011B2 true JP7145011B2 (ja) 2022-09-30

Family

ID=69668974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018163173A Active JP7145011B2 (ja) 2018-08-31 2018-08-31 パワーコンディショナ

Country Status (1)

Country Link
JP (1) JP7145011B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4119956A4 (en) * 2020-03-11 2023-08-30 Panasonic Intellectual Property Management Co., Ltd. ARC DETECTION DEVICE, ROOM POWER CONDUCTION SYSTEM, SOLAR POWER GENERATION SYSTEM AND STORAGE BATTERY SYSTEM
WO2024048019A1 (ja) * 2022-09-02 2024-03-07 株式会社カネカ 電力供給システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001320835A (ja) 2000-05-09 2001-11-16 Canon Inc 系統連系インバータ装置、系統連系電源システム、太陽光発電システムおよび系統の停電検出方法
JP2002233045A (ja) 2001-02-02 2002-08-16 Canon Inc 太陽光発電システムの地絡検出のための装置及び方法
JP2015145847A (ja) 2014-02-04 2015-08-13 三菱電機株式会社 直流アーク検出装置及び方法
JP2015162963A (ja) 2014-02-27 2015-09-07 京セラ株式会社 パワーコンディショナ
US20160061881A1 (en) 2014-09-02 2016-03-03 Mei Zhang Smart Junction Box for Photovoltaic Systems
WO2017212572A1 (ja) 2016-06-08 2017-12-14 三菱電機株式会社 系統連系インバータ装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001320835A (ja) 2000-05-09 2001-11-16 Canon Inc 系統連系インバータ装置、系統連系電源システム、太陽光発電システムおよび系統の停電検出方法
JP2002233045A (ja) 2001-02-02 2002-08-16 Canon Inc 太陽光発電システムの地絡検出のための装置及び方法
JP2015145847A (ja) 2014-02-04 2015-08-13 三菱電機株式会社 直流アーク検出装置及び方法
JP2015162963A (ja) 2014-02-27 2015-09-07 京セラ株式会社 パワーコンディショナ
US20160061881A1 (en) 2014-09-02 2016-03-03 Mei Zhang Smart Junction Box for Photovoltaic Systems
WO2017212572A1 (ja) 2016-06-08 2017-12-14 三菱電機株式会社 系統連系インバータ装置

Also Published As

Publication number Publication date
JP2020036511A (ja) 2020-03-05

Similar Documents

Publication Publication Date Title
US8837097B2 (en) Protection, monitoring or indication apparatus for a direct current electrical generating apparatus or a plurality of strings
US9257829B2 (en) Grounding apparatus
CN106066450B (zh) 具有电压监控的绝缘监控装置及基于其的方法
US20130222951A1 (en) Fault protection circuit for photovoltaic power system
JP5787781B2 (ja) 太陽光発電システム
US20150092311A1 (en) Methods, systems, and computer readable media for protection of direct current building electrical systems
JP6299507B2 (ja) 太陽光発電システムの保護装置および太陽光発電システムの保護方法
JP5939069B2 (ja) パワーコンディショナ
JP7145011B2 (ja) パワーコンディショナ
US11870238B2 (en) Protection apparatus and protection method for photovoltaic power generation system
JP2013198354A (ja) 地絡検出装置および系統連系インバータシステム
KR101622187B1 (ko) 한류기
CN105140889A (zh) 变频器过流保护电路
KR101863028B1 (ko) 지락전류 차단이 가능한 계통연계형 태양광 발전 장치
CN204835513U (zh) 电压型弧光保护装置
WO2019012588A1 (ja) パワーコンディショナ、電力システムおよび電力システムの無効電力抑制方法
WO2020065857A1 (ja) 電力変換装置
JP6955951B2 (ja) 放電装置
JP2012029435A (ja) 電源装置及びその保護方法
CN110556787A (zh) 一种电机保护电路及保护控制方法
CN209982035U (zh) 一种变频器制动单元保护电路
WO2022222009A1 (zh) 一种直流汇流箱、光伏发电系统以及故障检测方法
JP6155983B2 (ja) パワーコンディショナおよび分散型電源システム
Smith et al. An Investigation into the Limitations of the Combined dv/dt and di/dt Protection Technique for Compact dc Distribution Systems
JP6696706B1 (ja) 電力変換装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220916

R150 Certificate of patent or registration of utility model

Ref document number: 7145011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150