JP7142600B2 - Water treatment method for removing fluoride ions - Google Patents

Water treatment method for removing fluoride ions Download PDF

Info

Publication number
JP7142600B2
JP7142600B2 JP2019074313A JP2019074313A JP7142600B2 JP 7142600 B2 JP7142600 B2 JP 7142600B2 JP 2019074313 A JP2019074313 A JP 2019074313A JP 2019074313 A JP2019074313 A JP 2019074313A JP 7142600 B2 JP7142600 B2 JP 7142600B2
Authority
JP
Japan
Prior art keywords
sludge
amount
water
concentration
acid addition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019074313A
Other languages
Japanese (ja)
Other versions
JP2020171880A (en
Inventor
浩平 村角
健二 ▲高▼橋
宏拓 竹内
亨 西内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Eco Tech Corp
Original Assignee
Nippon Steel Corp
Nippon Steel Eco Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Eco Tech Corp filed Critical Nippon Steel Corp
Priority to JP2019074313A priority Critical patent/JP7142600B2/en
Publication of JP2020171880A publication Critical patent/JP2020171880A/en
Application granted granted Critical
Publication of JP7142600B2 publication Critical patent/JP7142600B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Removal Of Specific Substances (AREA)

Description

本発明は、フッ化物イオンを除去する水処理方法に関し、詳しくは、従来技術の処理方法と基本構成が同じであるにもかかわらず、運転条件を、処理フロー全体で適宜に設計するだけで、変動がある被処理水(原水)に対しても安定してフッ化物イオンを除去することが可能であり、過剰な汚泥の発生を回避しつつ、設備の小型化や、使用する薬剤の添加量の低減などが実現できる、実用価値に優れる水処理技術に関する。 The present invention relates to a water treatment method for removing fluoride ions. It is possible to stably remove fluoride ions from water to be treated (raw water) that fluctuates, avoiding the generation of excessive sludge while miniaturizing equipment and reducing the amount of chemicals used. It relates to a water treatment technology with excellent practical value that can realize a reduction of

例えば、石炭火力発電所やコークス工場で実施されている排煙脱硫法における排煙脱硫装置からの廃水中にはフッ化物イオンが含まれているため、放流するにあたっては、その処理が問題となる。被処理水中のフッ化物イオン(溶解性のフッ素)を除去する方法としては、pH中性域の廃水中にカルシウムイオンを添加して、フッ化物イオンをフッ化カルシウムとして沈殿除去する方法が一般的である(特許文献1等参照)。 For example, since the waste water from the flue gas desulfurization equipment in the flue gas desulfurization method implemented at coal-fired power plants and coke plants contains fluoride ions, its treatment becomes a problem when it is discharged. . As a method for removing fluoride ions (soluble fluorine) in the water to be treated, a method of adding calcium ions to wastewater in the neutral pH range and precipitating and removing the fluoride ions as calcium fluoride is common. (see Patent Document 1, etc.).

しかし、この方法では、水酸化マグネシウムを使用した排煙脱硫装置からの廃水のように、被処理水中にマグネシウムイオンや硫酸イオンが存在していると、上記カルシウム法でのフッ化物イオン除去率が極端に悪くなるという問題があった。これは、このような廃水の場合、pH中性域では、多量のマグネシウムイオンとフッ化物イオンが錯体として溶解し、このことが原因してフッ化カルシウムが生成しなくなるためと考えられる。 However, in this method, if magnesium ions or sulfate ions are present in the water to be treated, such as wastewater from flue gas desulfurization equipment using magnesium hydroxide, the fluoride ion removal rate in the above calcium method is reduced. I had a problem with it getting really bad. This is probably because in the case of such wastewater, a large amount of magnesium ions and fluoride ions are dissolved as a complex in the neutral pH range, and this is the reason why calcium fluoride is not produced.

上記の問題に対し、カルシウムイオンを添加後に、廃水のpHを8.0~10.0に調整して、沈殿固液分離することにより、フッ化物イオンの除去率を高めることが提案されており(特許文献2)、実施もされている。さらに、この方法では、スラッジの発生量が増加するという実用上の問題があったのに対し、最終的なスラッジ量を低減しつつ、廃水中のフッ化物イオンの除去処理をより効率よく行うことができる処理方法が提案されている(特許文献3~5)。すなわち、これらの方法では、まず、被処理水にアルカリ剤を添加して懸濁物質を生成させる工程(アルカリ添加工程)で、被処理水中のマグネシウムイオンを水酸化マグネシウムとして十分に析出させ、析出した水酸化マグネシウムにフッ化物イオンが取り込まれた懸濁物質を積極的に生成させる。そして、フッ化物イオンが取り込まれた懸濁物質を固液分離する工程を行い、固液分離された懸濁物質由来のスラッジに酸を添加する工程を行う。この酸添加工程によって、スラッジを構成する主成分である水酸化マグネシウムを溶解し、最終的なスラッジの量を低減(減容)させる。スラッジ中に取り込まれていたフッ化物イオンは、フッ化マグネシウム(MgF2)として析出し、そのMgF2が最終的なスラッジ中に高濃度で残存することになる。そのため、最終的なスラッジの量を低減(減容)させることができる。 In response to the above problem, it has been proposed to increase the removal rate of fluoride ions by adjusting the pH of the wastewater to 8.0 to 10.0 after adding calcium ions and performing solid-liquid separation by precipitation. (Patent Document 2) has also been implemented. Furthermore, this method has a practical problem of increasing the amount of sludge generated. There have been proposed treatment methods capable of That is, in these methods, first, in the step of adding an alkaline agent to the water to be treated to generate suspended solids (alkali addition step), magnesium ions in the water to be treated are sufficiently precipitated as magnesium hydroxide, and the precipitation Suspended matter in which fluoride ions are incorporated into magnesium hydroxide is actively generated. Then, a step of solid-liquid separation of the suspended matter into which fluoride ions are taken is performed, and a step of adding an acid to the sludge derived from the solid-liquid separated suspended matter is performed. This acid addition step dissolves magnesium hydroxide, which is the main component of the sludge, and reduces the final amount of sludge (volume reduction). Fluoride ions incorporated in the sludge precipitate as magnesium fluoride (MgF 2 ), and the MgF 2 remains in the final sludge at a high concentration. Therefore, the final amount of sludge can be reduced (volume reduction).

そして、特許文献3では、アルカリ添加工程でアルカリ剤を添加してpHを9.0~10.0に調整し、廃水中のフッ化物イオンが取り込まれた沈殿物を生成させ、酸添加工程で、分離した懸濁スラッジのpHが3.0~8.5となるように酸を添加してスラッジ濃度を低下させ、且つ、該スラッジ中のフッ素含有率を、前記懸濁スラッジ中のフッ素含有率に対して相対的に高めるとしている。また、特許文献4では、上記の酸添加工程で酸を添加後、スラッジを所定時間撹拌する熟成工程を設けることで、最終的なスラッジの量を低減可能であるとともに、より高い処理効率が実現可能になるとしている。また、特許文献5では、アルカリ添加工程における被処理水へのアルカリ剤のOHとしての添加量(mg-OH/L)が、被処理水中のフッ素濃度(mg-F/L)に対する質量比率(OH量/F量)で1.0以上であるように構成することで、被処理水中のフッ化物イオンの除去処理を1段処理で行った場合にも、被処理水中のフッ化物イオンを有効に除去し得るとともに、最終的なスラッジの量を低減(減容)可能であるとしている。 In Patent Document 3, an alkali agent is added in the alkali addition step to adjust the pH to 9.0 to 10.0, to generate a precipitate in which fluoride ions in the waste water are incorporated, and in the acid addition step , an acid is added to reduce the sludge concentration so that the separated suspended sludge has a pH of 3.0 to 8.5, and the fluorine content in the sludge is adjusted to the fluorine content in the suspended sludge. It is said that it will increase relative to the rate. In addition, in Patent Document 4, by providing an aging process in which the sludge is stirred for a predetermined time after adding acid in the acid addition process, the final amount of sludge can be reduced and higher processing efficiency is realized. I think it will be possible. Further, in Patent Document 5, the addition amount (mg-OH/L) of the alkali agent as OH to the water to be treated in the alkali addition step is the mass ratio (mg-F/L) to the fluorine concentration in the water to be treated ( OH amount/F amount) is 1.0 or more, so that the fluoride ions in the water to be treated can be effectively removed even when the treatment for removing fluoride ions in the water to be treated is performed in a single step. It is possible to reduce the final amount of sludge (volume reduction).

特公昭58-013230号公報Japanese Patent Publication No. 58-013230 特許4330693号公報Japanese Patent No. 4330693 特開2016-87562号公報JP 2016-87562 A 特開2017-189724号公報JP 2017-189724 A 特開2017-189725号公報JP 2017-189725 A

しかしながら、上記した従来技術の処理方法は、いずれの場合も被処理水中の最終的なスラッジの発生量を低減させることができるものの、本発明者らの検討によれば、改善の余地があった。すなわち、従来の方法では、被処理水(原水)中のフッ化物イオンが取り込まれた沈殿物を生成させるためのアルカリ添加工程におけるアルカリ剤の添加量の調整、及び、分離した懸濁スラッジを酸添加槽に導入し、酸を添加してスラッジ濃度を低下させ、且つ、該スラッジ中のフッ素含有率を、懸濁スラッジ中のフッ素含有率に対して相対的に高める酸の添加量の調整を、処理槽内のpHを調整することで行っているといえ、被処理水中のフッ化物イオンの変動や、処理する被処理水の量を考慮したものでないため、これらの条件が変動する実際の廃水などの水処理に適用した場合に、安定した処理が難しいという課題があった。すなわち、これまでに、変動する被処理水に対応できる最適な運転条件は見出されておらず、実際の処理では、変動する被処理水に対する処理の安全を担保するため、除去処理しきれずに処理液に残留するフッ素を考慮して2段処理を行うなどをしており、過剰な設備や、過剰な薬剤の使用がされているという現状があった。 However, although the treatment methods of the prior art described above can reduce the final amount of sludge generated in the water to be treated in any case, according to the studies of the present inventors, there is room for improvement. . That is, in the conventional method, adjustment of the addition amount of the alkali agent in the alkali addition step for generating a precipitate in which fluoride ions in the water to be treated (raw water) are taken in, and acidification of the separated suspended sludge Introduced into the addition tank, acid is added to lower the sludge concentration, and the fluorine content in the sludge is adjusted to increase the fluorine content in the sludge relative to the fluorine content in the suspended sludge. However, it does not take into consideration the fluctuation of fluoride ions in the water to be treated and the amount of water to be treated. When applied to water treatment such as wastewater, there was a problem that stable treatment was difficult. In other words, until now, the optimum operating conditions for dealing with fluctuating water to be treated have not been found. Considering the residual fluorine in the treatment liquid, two-stage treatment is performed, and the current situation is that excessive equipment and excessive chemicals are used.

これに対し、前記した特許文献5に記載の技術は、1段で良好な処理を行うことを目的としたものであり、その目的のためには、アルカリ添加工程における被処理水へのアルカリ剤のOHとしての添加量(mg-OH/L)が、被処理水中のフッ素濃度(mg-F/L)に対する質量比率(OH量/F量)で1.0以上であるように構成し、多量の懸濁物質を生成させることが必要であることが開示されている。そして、このアルカリ剤の添加量を、アルカリ添加後の固液分離工程でスラッジと分離された上澄水中のフッ素濃度との関係に基づいて決定することが好ましいとしている。また、固液分離工程で分離されたスラッジの濃度を、1000mg/L以上に調整し、酸添加後のスラッジの濃度を、上記濃度よりも低く、且つ、5000mg/L以上、50000mg/L以下の範囲に調整することが好ましいとしている。 On the other hand, the technique described in Patent Document 5 mentioned above is aimed at performing a good treatment in one step, and for that purpose, an alkali agent is added to the water to be treated in the alkali addition step. The amount of OH added (mg-OH/L) is set so that the mass ratio (OH amount/F amount) to the fluorine concentration (mg-F/L) in the water to be treated is 1.0 or more, It is disclosed that it is necessary to generate large amounts of suspended solids. The amount of the alkaline agent to be added is preferably determined based on the relationship between the sludge and the fluorine concentration in the supernatant water separated from the sludge in the solid-liquid separation step after the addition of the alkali. In addition, the concentration of the sludge separated in the solid-liquid separation step is adjusted to 1000 mg / L or more, and the concentration of the sludge after acid addition is lower than the above concentration and is 5000 mg / L or more and 50000 mg / L or less. It is preferable to adjust the range.

また、前記した特許文献5に記載の技術では、酸が添加された後の最終的なスラッジと固液分離された上澄液にはフッ素が含有されているため、上澄水をアルカリ添加工程に返送し、原水とともに処理する場合には、処理対象となるフッ素濃度が高まるので、原水に必要とされるOH量/F量よりもアルカリ剤の添加量を多くする必要があるとして、上記の処理の場合は、アルカリ剤の添加量を、上澄水の分のフッ素濃度の上昇に応じて高くするとしている。 In addition, in the technique described in Patent Document 5, the final sludge after the addition of acid and the supernatant liquid after solid-liquid separation contain fluorine. If the raw water is returned and treated together with the raw water, the fluorine concentration to be treated increases, so the amount of alkali agent added must be greater than the OH/F amount required for the raw water. In the case of , the amount of alkali agent added is increased in accordance with the increase in the fluorine concentration of the supernatant water.

上記した方法は、1段で、フッ素の除去処理を可能にできる有用なものであるが、返送処理する場合は、より運転条件の決定が難しいものになる。具体的には、アルカリ剤の添加後に固液分離した上澄液中のフッ素濃度(溶解性のフッ素濃度)は、次の酸添加工程、その後の最終的なスラッジの濃縮工程の上澄液でも変わらないので、前記した最終的なスラッジの濃縮工程の上澄液をアルカリ添加工程に返送する処理系では、この上澄液中のフッ素濃度を考慮して、さらに多量のアルカリ剤を添加する必要が生じるため、効率のよい処理を行うための最適な運転条件を決定することは、さらに難しくなる。 The above-described method is useful because it can remove fluorine in one step, but in the case of return treatment, it becomes more difficult to determine operating conditions. Specifically, the concentration of fluorine (concentration of soluble fluorine) in the supernatant obtained by solid-liquid separation after the addition of the alkaline agent is Therefore, in the treatment system in which the supernatant of the final sludge concentration step is returned to the alkali addition step, it is necessary to add a larger amount of alkali agent in consideration of the fluorine concentration in the supernatant. , it becomes more difficult to determine the optimum operating conditions for efficient processing.

このため、上記した返送を行う従来技術を、フッ素の含有量が変動する実際の廃水(原水)に適用する場合は、安定した良好な処理が行えるように、被処理水(原水)中のフッ化物イオンの濃度の変動と、返送する上澄液中のフッ化物イオンによるフッ素負荷の増大を考慮して、アルカリ添加工程におけるアルカリ剤の添加量を決定する必要があるため、処理の安全を目的として、アルカリ剤の添加量をより多くする傾向がある。アルカリ剤の添加量が多くなると、アルカリ添加工程で生成する懸濁物質(スラッジ)の量が増大し、次に、固液分離したスラッジを改質するための酸添加工程で酸化剤の添加量も多くなる。また、その際に、スラッジが十分に改質されるように、酸添加工程における酸の添加量や、改質に要する時間をより十分にとる必要があり、場合によっては、酸の添加後、スラッジを所定時間撹拌するといった熟成工程を設ける必要があるなど、上記した従来技術は、経済的で、効率のよい処理が安定してできるまでの確立した処理方法であるとは言い難かった。 For this reason, when applying the above-described conventional technology for returning fluorine to actual wastewater (raw water) in which the content of fluorine fluctuates, the fluorine content in the water to be treated (raw water) must be It is necessary to determine the amount of alkali agent to be added in the alkali addition process, considering the fluctuation of the concentration of compound ions and the increase in fluorine load due to the fluoride ions in the supernatant liquid to be returned. As a result, there is a tendency to increase the amount of the alkali agent added. When the amount of alkali agent added increases, the amount of suspended matter (sludge) generated in the alkali addition process increases, and then the amount of oxidizing agent added in the acid addition process for reforming the solid-liquid separated sludge increases. will also increase. In addition, at that time, it is necessary to take a sufficient amount of acid to be added in the acid addition step and the time required for reforming so that the sludge is sufficiently reformed. It is difficult to say that the above-described conventional techniques, such as the need to provide an aging process such as stirring the sludge for a predetermined period of time, are established treatment methods that enable stable, economical and efficient treatment.

従って、本発明の目的は、上記した課題がある、例えば、水酸化マグネシウムを用いて排ガスを処理する方式の排煙脱硫装置からの廃水のように、フッ化物イオンの他に、少なくともマグネシウムイオンを含む被処理水から、フッ化物イオンを除去処理する水処理方法において、返送した上澄液によってフッ素負荷の増大が生じる処理系に、フッ化物イオン量が変動する実際の被処理水に適用した場合であっても、より経済的に、安定した良好な処理が行える、実用性に優れる、フッ化物イオン及びマグネシウムイオンを含有する被処理水中のフッ化物イオンを除去する水処理方法の実現を可能にすることにある。具体的には、本発明の目的は、従来技術の処理方法と基本構成が同じであるにもかかわらず、その運転条件を適宜に決定するだけで、従来技術と同様に、過剰な汚泥(スラッジ)の発生を回避できる効果が得られ、しかも、所望に応じて、従来技術に比べて、処理設備の縮小や、薬剤の使用量の低減を達成することができる、より経済性に優れ、より実用性の高い有用な被処理水(原水)中のフッ化物イオンを除去する水処理方法を実現することにある。 Therefore, the object of the present invention is to solve the above-described problems, for example, waste water from a flue gas desulfurization apparatus that treats exhaust gas using magnesium hydroxide, and at least magnesium ions in addition to fluoride ions. In the water treatment method for removing fluoride ions from the water to be treated that contains It is possible to realize a water treatment method that removes fluoride ions from water to be treated that contains fluoride ions and magnesium ions, which is more economical, performs stable and good treatment, and has excellent practicality. to do. Specifically, the object of the present invention is to eliminate excess sludge as in the prior art by merely appropriately determining the operating conditions, although the basic configuration is the same as that of the prior art. ) can be obtained, and if desired, it is possible to reduce the size of processing equipment and reduce the amount of chemicals used compared to the conventional technology, which is more economical and more efficient An object of the present invention is to realize a highly practical and useful water treatment method for removing fluoride ions from water to be treated (raw water).

上記の目的は、下記の本発明によって達成される。すなわち、本発明は、下記の水処理方法を提供する。
[1] 少なくともフッ化物イオン及びマグネシウムイオンを含有する被処理水(原水)中のフッ化物イオンを除去する水処理方法であって、
前記被処理水に、アルカリ金属の水酸化物及びアルカリ土類金属の水酸化物からなる群から選ばれる少なくとも1種のアルカリ剤を添加するアルカリ添加工程と、
該アルカリ添加工程で生成される前記フッ化物イオンが取り込まれた懸濁物質を固液分離する固液分離工程と、
前記固液分離工程で固液分離された前記懸濁物質由来のスラッジに、酸添加槽で酸を添加してスラッジを改質する酸添加工程と、を有し、
前記酸添加工程後の改質したスラッジを固液分離してスラッジを除去し、上澄液を前記アルカリ添加工程に戻して前記被処理水とともに再度の処理を行う際に、
前記アルカリ添加工程における、OHとしてのアルカリ剤添加量COH(mg/L)を2000mg/L未満とし、且つ、前記原水中のフッ化物イオン濃度CF1(mg/L)に対する前記アルカリ剤の添加量COH(mg/L)の質量比率M(OH量/F量)を、1を超えて25未満とし、さらに、前記固液分離工程における沈殿槽引抜汚泥濃度CSS3(mg/L)を、10000mg/Lを超えて110000mg/L未満となる条件であって、且つ、
前記原水の流量Q1(m3/h)及び前記原水中のフッ化物イオン濃度CF1(mg/L)と、前記質量比率M(OH量/F量)と、前記引抜汚泥濃度CSS3(mg/L)と、前記酸添加工程後の改質したスラッジの上澄液のフッ化物イオン濃度CF5(mg/L)と、該上澄液の引抜量Q5(m3/h)とから下記式によって求められる、前記酸添加槽におけるスラッジの滞留時間tが30分以上600分以下となる条件で運転することを特徴とする水処理方法。
t=e^((Q1+Q5)×COH÷(Q5×M×A)-(Q1×CF1÷Q5÷A)-(B÷A))
(式中の、A及びBは、試験結果より求められる、固液分離工程における沈殿槽引抜汚泥濃度CSS3(mg/L)と、酸添加槽におけるスラッジの滞留時間tと、酸添加工程後の改質したスラッジの上澄液のフッ化物イオン濃度CF5(mg/L)との相関を示す下記式で求められる係数である。)
F5=A×In(t)+B
The above objects are achieved by the present invention described below. That is, the present invention provides the following water treatment method.
[1] A water treatment method for removing fluoride ions in water to be treated (raw water) containing at least fluoride ions and magnesium ions,
an alkali addition step of adding at least one alkali agent selected from the group consisting of alkali metal hydroxides and alkaline earth metal hydroxides to the water to be treated;
a solid-liquid separation step of solid-liquid separation of the suspended matter containing the fluoride ions generated in the alkali addition step;
an acid addition step of adding an acid in an acid addition tank to the sludge derived from the suspended matter that has been solid-liquid separated in the solid-liquid separation step to modify the sludge;
When the modified sludge after the acid addition step is subjected to solid-liquid separation to remove the sludge, and the supernatant liquid is returned to the alkali addition step and treated again together with the water to be treated,
The alkali agent addition amount C OH (mg/L) as OH in the alkali addition step is less than 2000 mg/L, and the amount of the alkali agent with respect to the fluoride ion concentration C F 1 (mg/L) in the raw water The mass ratio M (OH amount/F amount) of the added amount C OH (mg/L) is more than 1 and less than 25, and the sedimentation tank withdrawal sludge concentration C SS 3 (mg/L ) above 10000 mg/L and below 110000 mg/L, and
The raw water flow rate Q1 (m 3 /h), the fluoride ion concentration C F 1 (mg/L) in the raw water, the mass ratio M (OH amount/F amount), and the drawn sludge concentration C SS 3 (mg/L), the fluoride ion concentration C F 5 (mg/L) of the supernatant of the modified sludge after the acid addition step, and the withdrawal amount Q5 (m 3 /h) of the supernatant. A water treatment method characterized in that the water treatment method is operated under the condition that the residence time t of the sludge in the acid addition tank is 30 minutes or more and 600 minutes or less, which is obtained by the following formula from (1) to (3).
t = e ^ ((Q1 + Q5) x C OH ÷ (Q5 x M x A) - (Q1 x C F 1 ÷ Q5 ÷ A) - (B ÷ A))
(In the formula, A and B are the concentration of sludge drawn from the sedimentation tank C SS 3 (mg/L) in the solid-liquid separation process, the retention time t of the sludge in the acid addition tank, and the acid addition process, which are obtained from the test results. It is a coefficient obtained by the following formula showing the correlation with the fluoride ion concentration C F 5 (mg/L) in the supernatant liquid of the sludge after reforming.)
C F 5=A×In(t)+B

本発明の好ましい形態としては、下記のものが挙げられる。
[2]前記アルカリ剤が、水酸化カルシウムである上記[1]に記載の水処理方法。
[3]前記酸添加工程後に、さらに、前記改質したスラッジを濃縮する濃縮工程を有する上記[1]又は[2]に記載の水処理方法。
[4]前記被処理水が、石炭火力発電所やコークス工場で実施されている排煙脱硫法を実施する排煙脱硫装置から排出されたものである上記[1]~[3]のいずれかに記載の水処理方法。
Preferred embodiments of the present invention include the following.
[2] The water treatment method according to [1] above, wherein the alkaline agent is calcium hydroxide.
[3] The water treatment method according to [1] or [2], further comprising a concentration step of concentrating the reformed sludge after the acid addition step.
[4] Any one of the above [1] to [3], wherein the water to be treated is discharged from a flue gas desulfurization unit that carries out a flue gas desulfurization method implemented in a coal-fired power plant or a coke plant The water treatment method described in .

本発明によれば、例えば、水酸化マグネシウムを用いて排ガスを処理する方式の排煙脱硫装置からの廃水のように、フッ化物イオンの他に、少なくともマグネシウムイオンを含み、被処理水中のフッ化物イオンの濃度や、処理する被処理水の量が変動する被処理水に適用した場合にも、従来技術の処理方法と基本構成が同じであるにもかかわらず、その運転条件を適宜に設計するだけで、より経済性に優れる、工業上、有用な被処理水中のフッ化物イオンを除去する水処理方法の提供が可能になる。具体的には、本発明によれば、運転条件を適宜に設計するだけで、例えば、変動する原水に対しても安定した除去処理ができ、しかも、従来技術の処理方法と比較して、スラッジ(汚泥)の改質をするための酸添加工程の処理槽などの規模を縮小することができ、さらに、その前工程のスラッジを生成するアルカリ添加工程におけるアルカリ剤の添加量の低減も実現でき、所望する効率的な状態で安定した処理をすることができ、従来技術で処理した場合と同様に最終的なスラッジの発生量を低減させることができる、実用価値の高い水処理方法の提供が可能になる。 According to the present invention, for example, in addition to fluoride ions, at least magnesium ions are included, such as waste water from a flue gas desulfurization apparatus that treats exhaust gas using magnesium hydroxide, and fluoride in the water to be treated Even if the concentration of ions and the amount of treated water to be treated fluctuate, the operating conditions are appropriately designed even though the basic configuration is the same as the treatment method of the prior art. It is possible to provide a more economical and industrially useful water treatment method for removing fluoride ions from water to be treated. Specifically, according to the present invention, by appropriately designing the operating conditions, for example, stable removal treatment can be performed even for fluctuating raw water. It is possible to reduce the scale of the treatment tank in the acid addition process for reforming (sludge), and furthermore, it is possible to reduce the amount of alkali agent added in the alkali addition process that generates sludge in the previous process. , it is possible to provide a water treatment method of high practical value that can stably treat in a desired efficient state and can reduce the final amount of sludge generated as in the case of treatment with conventional technology. be possible.

本発明の水処理方法の一例の概略フロー図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic flow diagram of an example of the water-treatment method of this invention. 酸添加工程で、酸添加槽におけるスラッジの滞留時間(t)と、前記酸添加工程後の改質したスラッジの上澄液のフッ化物イオン濃度CF5(mg/L)との相関を示す対数グラフである。In the acid addition step, shows the correlation between the retention time (t) of the sludge in the acid addition tank and the fluoride ion concentration C F 5 (mg/L) in the supernatant of the modified sludge after the acid addition step. It is a logarithmic graph. 酸添加工程後の改質したスラッジの上澄液のフッ化物イオン濃度CF5(mg/L)を、A×In(t)+Bと近似した場合、A及びBは、沈殿槽引抜汚泥濃度CSS3との相関があることを示すグラフである。When the fluoride ion concentration C F 5 (mg/L) of the supernatant of the modified sludge after the acid addition step is approximated by A × In (t) + B, A and B are the sedimentation tank withdrawal sludge concentrations It is a graph which shows that there exists a correlation with CSS3 . アルカリ剤の添加量と、懸濁物質(SS)の生成量との相関を示すグラフである。4 is a graph showing the correlation between the amount of alkaline agent added and the amount of suspended solids (SS) produced. 酸添加工程で、酸添加槽におけるスラッジの滞留時間(t)と、前記酸添加工程後の改質したスラッジの汚泥濃度CSS4(mg/L)との相関を示すグラフである。4 is a graph showing the correlation between the retention time (t) of sludge in an acid addition tank and the sludge concentration C SS 4 (mg/L) of modified sludge after the acid addition step in the acid addition step.

以下、好ましい実施の形態を挙げて本発明をさらに詳細に説明する。本発明者らは、例えば、排煙脱硫装置からの廃水のような、フッ化物イオンの他に少なくともマグネシウムイオンを含有する被処理水を処理する場合に、アルカリ添加工程でアルカリ剤を添加し、被処理水中のフッ化物イオンが取り込まれた懸濁物質を生成させ、その後の酸添加工程で、固液分離した懸濁物質を含むスラッジに酸を添加して、懸濁スラッジ中のフッ素含有率を相対的に高める懸濁スラッジ(汚泥)を改質し、さらに、その上澄液を返送して再度処理する方式の従来技術について、前記した技術課題の解決を実現するため、詳細な検討を行った。具体的には、変動する被処理水に対する処理の安全を考慮し、実際の廃水処理では、除去処理しきれずに処理液に残留するフッ素を考慮して2段処理を行うなどしていた従来技術に対して、1段処理が可能であるものの、酸添加工程を設ける必要があり、効率のよい運転条件の決定が難しい従来技術を、運転条件を適宜に設計するという簡便な手段によって、効果的に利用することが可能になれば、従来技術を、より実用価値のある技術に向上させることが実現できるとした認識の下、検討を行った。その際に、被処理水中のフッ化物イオンの濃度や、処理量が変動する実際の廃水においても安定した処理ができ、さらに、例えば、従来技術で行っていたよりも処理設備を小さくすることができ、さらには、使用する薬剤の量を低減することも可能になる、経済性に優れる処理方法を見出すことができれば、極めて有用であるとして検討を行った。 BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in further detail below with reference to preferred embodiments. The present inventors have found that when treating water to be treated containing at least magnesium ions in addition to fluoride ions, such as wastewater from flue gas desulfurization equipment, an alkali agent is added in the alkali addition step, Suspended matter in which fluoride ions are incorporated in the water to be treated is generated, and in the subsequent acid addition step, an acid is added to the sludge containing the solid-liquid separated suspended matter to determine the fluorine content in the suspended sludge. In order to solve the above-mentioned technical problems, the conventional technology of the method of reforming the suspended sludge (sludge) that relatively increases the gone. Specifically, in consideration of the safety of treatment of fluctuating water to be treated, in actual wastewater treatment, two-stage treatment is performed in consideration of fluorine remaining in the treatment liquid that cannot be completely removed. Although it is possible to perform a one-stage treatment, it is necessary to provide an acid addition step, and it is difficult to determine efficient operating conditions. If it becomes possible to use it for practical purposes, we will consider improving the conventional technology to a technology with more practical value. In this case, the concentration of fluoride ions in the water to be treated and the amount of treated wastewater can be changed in a stable manner, and furthermore, for example, the treatment equipment can be made smaller than in the conventional technology. Furthermore, the inventors considered that it would be extremely useful if an economical treatment method could be found that would enable the amount of chemicals to be used to be reduced.

本発明者らは、従来技術と同様に酸添加工程を設けて汚泥の改質を行う実施形態である、図1に示した基本的な処理フローについて、各処理工程における、フッ化物イオンが取り込まれた懸濁物質を含むスラッジ(汚泥)の性状及びフッ素成分の存在状態がどのようなものになっているかを詳細に検討した。そして、アルカリ添加工程で生成された、被処理水中のフッ化物イオンが取り込まれた懸濁物質を固液分離して次の酸添加工程で処理する場合に、固液分離して引抜いた懸濁物質を含むスラッジの濃度(引抜汚泥濃度)の違いによって、処理にどのような違いが生じるかについて詳細に検討した。 The present inventors have investigated the basic treatment flow shown in FIG. The properties of sludge containing suspended solids and the state of existence of fluorine components were examined in detail. Then, when the suspended matter containing fluoride ions in the water to be treated, which is generated in the alkali addition step, is solid-liquid separated and treated in the next acid addition step, the suspension extracted by solid-liquid separation We investigated in detail what kind of difference occurs in treatment due to the difference in the concentration of sludge containing substances (concentration of drawn sludge).

その結果、驚くべきことに、引抜汚泥濃度を高くするだけで、引抜汚泥濃度が低い場合と比較して、酸添加工程後の改質した汚泥(スラッジ)における、アルカリ添加工程に返送される上澄液中のフッ素量(溶解性のフッ素量)を格段に低減できるという新たな知見を得た。そして、本発明で規定する処理系で、酸添加工程後に改質されたスラッジと分離した上澄液を、アルカリ添加工程に戻し、被処理水(原水)とともに再度の処理を行った場合、引抜汚泥濃度が低い場合に比較して、アルカリ剤の添加量を格段に低減できることを確認した。また、固液分離して、次の酸添加工程で処理する引抜汚泥濃度を高くしたことで、酸添加工程を行うための酸添加槽の大きさを格段に小さくでき、処理設備の小型化の実現できる、という工業上、極めて有用な効果が発現することを見出した。 As a result, surprisingly, just by increasing the drawing sludge concentration, compared with the case where the drawing sludge concentration is low, the modified sludge after the acid addition step is recycled to the alkali addition step. New knowledge was obtained that the amount of fluorine in the clear liquid (the amount of soluble fluorine) can be significantly reduced. Then, in the treatment system defined in the present invention, when the sludge that has been modified after the acid addition step and the supernatant liquid separated is returned to the alkali addition step and treated again together with the water to be treated (raw water), withdrawal It was confirmed that the amount of alkaline agent to be added can be significantly reduced compared to when the sludge concentration is low. In addition, solid-liquid separation is performed to increase the concentration of the drawn sludge to be treated in the next acid addition process. It has been found that industrially extremely useful effects can be realized.

上記の点について、処理対象である被処理水(原水)中のフッ化物イオン濃度CF1(mg/L)が140mg/Lで、最終的な処理水中の溶解性のフッ化物イオン濃度CF2(mg/L)を10mg/Lに低減させる処理を、図1に示した処理フローで行った場合を例にとって以下に説明する。まず、アルカリ添加工程で、アルカリ剤を添加し、原水中のフッ素を生成した懸濁物質(SS)CSS1に取り込む。上記の被処理水の水量Q1は100m3/dであり、発生するSS量のCSS1が2000mg/Lとすると、1日のSS発生量は、CSS1×Q1=2000mg/L×100m3/d=200kg/dとなる。次の固液分離工程で、この200kg/dのSSを分離する。この際に、固液分離後の沈殿槽引抜汚泥濃度CSS3(mg/L)を、例えば、10000mg/Lと低くした場合と、その5倍の50000mg/Lと高くした2通りの処理を考える。なお、引抜汚泥濃度の調整は、ポンプなどで容易に実施することができる。 Regarding the above points, the fluoride ion concentration C F 1 (mg/L) in the water to be treated (raw water) to be treated is 140 mg/L, and the soluble fluoride ion concentration C F in the final treated water 2 (mg/L) to 10 mg/L will be described below by taking as an example a case where the processing flow shown in FIG. First, in the alkali addition step, an alkali agent is added and the fluorine in the raw water is incorporated into the generated suspended matter (SS) C SS 1 . If the amount Q1 of the water to be treated is 100 m 3 /d and the amount of SS generated C SS 1 is 2000 mg/L, the amount of SS generated per day is C SS 1×Q1=2000 mg/L×100 m 3 /d=200 kg/d. In the next solid-liquid separation step, this 200 kg/d SS is separated. At this time, the sedimentation tank drawing sludge concentration C SS 3 (mg / L) after solid-liquid separation is, for example, 10,000 mg / L, and 5 times higher, 50000 mg / L. think. Incidentally, the adjustment of the drawn sludge concentration can be easily carried out with a pump or the like.

ここで、1日の引抜き汚泥中のフッ素の形態(固体/溶解)は、下記のようになる。
・汚泥中の固体フッ素量は、上記いずれの引抜汚泥濃度の場合も、最終的な処理水のフッ化物イオン濃度CF2(mg/L)が10mg/dであるので、下記の通りとなる。
≒(CF1-CF2)×Q1=(140mg/L-10mg/L)×100m3/d=13kg/d
・固液分離後の引抜汚泥濃度CSS3(mg/L)が10000mg/Lの場合の、引抜汚泥中の溶解性のフッ素量は、CF2≒CF3であるので下記の通りとなる。
≒CF3×Q3=10mg/L×20m3/d=0.2kg/d
そして、その後の処理でもこの量は変わらないので、アルカリ添加工程に返送される溶解性のフッ素量は0.2kg/dとなるので、固液分離後の引抜汚泥濃度CSS3(mg/L)が10000mg/Lの場合における、1日に処理する合計のフッ素量は13.2kg/dとなる。
Here, the form (solid/dissolved) of fluorine in the sludge withdrawn for one day is as follows.
・The amount of solid fluorine in the sludge is as follows, since the final treated water has a fluoride ion concentration C F 2 (mg/L) of 10 mg/d for any of the above-mentioned extraction sludge concentrations. .
≈(C F 1−C F 2)×Q1=(140 mg/L−10 mg/L)×100 m 3 /d=13 kg/d
・When the drawing sludge concentration C SS 3 (mg/L) after solid-liquid separation is 10000 mg/L, the soluble fluorine content in the drawing sludge is C F 2 ≒ C F 3, so it is as follows. Become.
≈C F 3×Q3=10 mg/L×20 m 3 /d=0.2 kg/d
Since this amount does not change in the subsequent treatment, the amount of soluble fluorine returned to the alkali addition step is 0.2 kg/d, so the drawn sludge concentration C SS after solid-liquid separation is 3 (mg/L ) is 10000 mg/L, the total amount of fluorine treated per day is 13.2 kg/d.

・固液分離後の引抜汚泥濃度が50000mg/Lの場合の、汚泥中の溶解性のフッ素量は、上記引抜汚泥濃度が10000mg/Lの場合の1/5になる。
≒CF2×Q3=10mg/L×4m3/d=0.04kg/d
したがって、固液分離後の引抜汚泥濃度CSS3(mg/L)が50000mg/Lの場合における、1日に処理する合計のフッ素量は13.04kg/dとなる。すなわち、上記のことは、固液分離後の引抜汚泥濃度CSS3(mg/L)を高くして処理した方が、低い場合よりも、アルカリ添加工程で1日に処理する合計のフッ素量が低減できることを示している。
- When the concentration of drawn sludge after solid-liquid separation is 50,000 mg/L, the amount of soluble fluorine in the sludge is 1/5 of that when the concentration of drawn sludge is 10,000 mg/L.
C F 2×Q3=10 mg/L×4 m 3 /d=0.04 kg/d
Therefore, when the drawn sludge concentration C SS 3 (mg/L) after solid-liquid separation is 50000 mg/L, the total amount of fluorine treated per day is 13.04 kg/d. That is, the above shows that the treatment with a higher drawing sludge concentration C SS 3 (mg/L) after solid-liquid separation is more effective than the treatment with a lower total fluorine amount per day in the alkali addition step. can be reduced.

上記において、固液分離後の引抜汚泥濃度が10000mg/L場合に、アルカリ添加工程に返送される溶解性のフッ素量が0.2kg/dになる点について説明する。被処理水(原水)に対して発生する懸濁物質(SS)量は2000mg/Lであるので、汚泥濃度10000mg/Lに濃縮する場合、10000÷2000=5倍濃縮となる。このため、汚泥の流量は1/5で済むので、100m3/d×(1/5)=20m3/dとなり、返送される溶解性のフッ素量は0.2kg/dとなる。固液分離後の引抜汚泥濃度を50000mg/Lに濃縮する場合、50000÷2000=25倍濃縮となり、上記と同様に計算されて、汚泥としての流量は1/25で済むので4m3/dとなり、上記のように計算される。すなわち、同様の条件下において、固液分離後の引抜汚泥濃度CSS3を高くすることで、この引抜汚泥を改質してスラッジ量を低減するために行う酸添加工程で処理する汚泥の流量が格段に低減する。 In the above description, the reason why the amount of soluble fluorine returned to the alkali addition step is 0.2 kg/d when the concentration of drawn sludge after solid-liquid separation is 10000 mg/L will be explained. Since the amount of suspended solids (SS) generated in the water to be treated (raw water) is 2000 mg/L, when the sludge is concentrated to a concentration of 10000 mg/L, the concentration is 10000/2000=5 times. Therefore, the flow rate of sludge is 1/5, so 100 m 3 /d×(1/5)=20 m 3 /d, and the amount of soluble fluorine to be returned is 0.2 kg/d. When the drawn sludge concentration after solid-liquid separation is concentrated to 50,000 mg/L , the concentration is 50,000÷2,000=25 times. , calculated as above. That is, under the same conditions, by increasing the drawing sludge concentration C SS 3 after solid-liquid separation, the flow rate of the sludge to be treated in the acid addition process performed to reform the drawing sludge and reduce the amount of sludge is markedly reduced.

本発明者らは、上記した新たな知見を得たことで、下記の効果が得られることを認識した。まず、固液分離後の引抜汚泥濃度CSS3を高くすることは、酸添加工程で処理する汚泥の流量を低減できることを意味し、結果として、次の酸添加工程を実施するための酸添加槽を小型にできる、という工業上の極めて有用な効果が得られる。さらに、上記したように、固液分離後の引抜汚泥濃度CSS3を高くすることで、アルカリ添加工程に返送される上澄液中の溶解性のフッ素量が低減されるので、処理対象となるフッ素量が、従来の処理方法に比べて低減されてアルカリ剤の添加量を低減できるという効果が得られる。したがって、本発明では、上記の構成を基本とし、上記した効果を確実に得ることができる、より安定した運転条件を見出すべく、さらなる詳細な検討を行い、本発明に至った。 The present inventors have recognized that the following effects can be obtained by obtaining the new knowledge described above. First, increasing the drawn sludge concentration C SS 3 after solid-liquid separation means that the flow rate of sludge treated in the acid addition step can be reduced. An extremely useful industrial effect can be obtained in that the tank can be made smaller. Furthermore, as described above, by increasing the drawing sludge concentration C SS 3 after solid-liquid separation, the amount of soluble fluorine in the supernatant liquid returned to the alkali addition step is reduced. Fluorine content is reduced as compared with the conventional treatment method, and the effect that the amount of alkali agent to be added can be reduced can be obtained. Therefore, in the present invention, based on the above-described configuration, further detailed studies were conducted to find out more stable operating conditions under which the above-described effects can be reliably obtained, resulting in the present invention.

本発明は、フッ化物イオンの他に、少なくともマグネシウムイオンを含み、被処理水中のフッ化物イオンの濃度や、処理する被処理水の量が変動する被処理水(原水)から、フッ素を相対的に高い濃度で取り込んだスラッジを固液分離して除去することで、フッ化物イオンを除去する水処理方法に関し、基本的には、先述した従来技術の水処理方法と同様の構成を有する。本発明の処理方法では、アルカリ添加工程で、フッ素を取り込んだ懸濁物質(SS)を生成させ、次の酸添加工程で、固液分離した引抜汚泥に、それぞれ酸を添加し、酸添加槽内に所望する時間滞留させて汚泥を改質させ、汚泥を減容する。その際、いずれの引抜汚泥濃度CSS3で処理した場合も、酸を添加すると汚泥が溶解してSSの量は大幅に減量する。具体的には、例えば、アルカリ剤に水酸化カルシウムを用いた場合であれば、酸処理槽内の汚泥量は3/5程度になって、上記の例では、アルカリ添加工程で生成するSS量200kg/dが、120kg/d程度になる。また、先述したように、酸を添加することで、汚泥中の水酸化マグネシウムが溶解して汚泥に取り込まれていた固体のフッ素はフッ化マグネシウム(MgF2)として析出し、汚泥が改質される。 The present invention contains at least magnesium ions in addition to fluoride ions, and relatively removes fluorine from water to be treated (raw water) in which the concentration of fluoride ions in the water to be treated and the amount of water to be treated vary. The water treatment method for removing fluoride ions by solid-liquid separation of the sludge taken in at a high concentration in the water treatment method basically has the same configuration as the conventional water treatment method described above. In the treatment method of the present invention, in the alkali addition step, suspended solids (SS) incorporating fluorine are generated, and in the next acid addition step, acid is added to each of the solid-liquid separated drawn sludge, and the acid addition tank The sludge is allowed to stay inside for a desired period of time to reform the sludge and reduce the volume of the sludge. At that time, in the case of treatment with any drawing sludge concentration C SS 3, the addition of acid dissolves the sludge and the amount of SS is greatly reduced. Specifically, for example, when calcium hydroxide is used as the alkali agent, the amount of sludge in the acid treatment tank is about 3/5, and in the above example, the amount of SS generated in the alkali addition step is 200 kg/d becomes about 120 kg/d. In addition, as described above, by adding an acid, the magnesium hydroxide in the sludge is dissolved, and the solid fluorine that has been taken into the sludge is precipitated as magnesium fluoride (MgF 2 ), and the sludge is reformed. be.

本発明者らの検討によれば、酸添加工程後の被処理水中における溶解性のフッ素量は、先に述べたように、沈殿槽引抜汚泥濃度CSS3の違いによって処理する汚泥の流量が大きく異なることになるため、大きく変動する。まず、酸添加工程後の被処理水中における溶解性のフッ素量は、アルカリ添加工程へ返送される上澄液のフッ素量と同じである。したがって、アルカリ添加工程に返送される上澄液中におけるフッ素量は、上澄液の溶解性のフッ化物イオン濃度×流量となる。ここで、詳細については後述するが、上記した例における上澄液のフッ化物イオン濃度CF5は、下記のようにして算出できる。すなわち、本発明によれば、沈殿槽引抜汚泥濃度CSS3が、10000mg/Lの場合と、50000mg/Lの場合について、図3より、それぞれの場合における係数A及びBを算出し、これらの係数と、酸添加槽におけるスラッジの滞留時間tの5時間(300分)を、CF5=A×ln(t)+Bに入力すると、それぞれCF5は、180mg/L及び310mg/Lと算出される。よって、上記した例で、アルカリ添加工程に返送される上澄液中のフッ素量は、沈殿槽引抜汚泥濃度CSS3を10000mg/Lとした系では、180mg/L×20m3/d=3.6kg/dであり、沈殿槽引抜汚泥濃度CSS3を50000mg/Lとした系では、310mg/L×4m3/d=1.2kg/dであり、沈殿槽引抜汚泥濃度CSS3を高くすることで、返送される上澄液中のフッ素量は大きく低減する。 According to the study of the present inventors, the amount of soluble fluorine in the water to be treated after the acid addition process varies depending on the difference in the sludge concentration C SS 3 withdrawn from the sedimentation tank, as described above. Because it will be very different, it will fluctuate greatly. First, the amount of soluble fluorine in the water to be treated after the acid addition step is the same as the fluorine amount in the supernatant liquid returned to the alkali addition step. Therefore, the amount of fluorine in the supernatant to be returned to the alkali addition step is the soluble fluoride ion concentration of the supernatant×flow rate. Although the details will be described later, the fluoride ion concentration C F 5 of the supernatant in the above example can be calculated as follows. That is, according to the present invention, the sedimentation tank drawing sludge concentration C SS 3 is 10000 mg/L and 50000 mg/L, and the coefficients A and B in each case are calculated from FIG. Inputting the coefficient and the residence time t of the sludge in the acid addition tank of 5 hours (300 minutes) into C F 5=A×ln(t)+B, C F 5 is 180 mg/L and 310 mg/L, respectively. Calculated. Therefore, in the above example, the amount of fluorine in the supernatant liquid returned to the alkali addition step is 180 mg/L×20 m 3 /d=3 in a system in which the sedimentation tank drawing sludge concentration C SS 3 is 10000 mg/L. .6 kg/d and the sedimentation tank drawing sludge concentration C SS 3 is 50000 mg/L, 310 mg/L × 4 m 3 /d = 1.2 kg/d, and the sedimentation tank drawing sludge concentration C SS 3 is By increasing the concentration, the amount of fluorine in the returned supernatant is greatly reduced.

上記した上澄液の溶解性のフッ化物イオン濃度は、後述するように、処理対象の原水を用い、固液分離後の引抜汚泥濃度CSS3を段階的に変更してそれぞれ処理試験を行い、酸添加槽におけるスラッジの滞留時間tにおける、個々の時点のスラッジ量(SS量)を測定し、これらの値の相関を求め、得られた相関を利用することで、固液分離後の引抜汚泥濃度CSS3を変数とする近似式から求めることができることがわかった。この結果、予め上記した処理試験を行い、上記相関を求めることで、処理対象の原水に対して、所望の効果が期待できる処理条件(運転条件)を適宜に決定することができることを見出した。そして、決定した処理条件で処理することで、変動のある原水に対しても、所望する程度に応じた、設備の縮小や、薬剤の使用量の低減などの効果を得ることができる、実用性の高い安定した処理をすることが可能になることを確認した。上記した、実際の処理における処理条件(運転条件)を決定するために、予め行う試験方法の詳細については、後述する。 As described later, the concentration of soluble fluoride ions in the supernatant was tested using raw water to be treated and stepwise changing the concentration of sludge drawn after solid-liquid separation C SS 3. , the amount of sludge (SS amount) at each point in the residence time t of the sludge in the acid addition tank is measured, the correlation between these values is obtained, and by using the obtained correlation, the withdrawal after solid-liquid separation It was found that it can be obtained from an approximate expression with the sludge concentration C SS 3 as a variable. As a result, it was found that by performing the above-described treatment test in advance and obtaining the above-mentioned correlation, it is possible to appropriately determine the treatment conditions (operating conditions) that can be expected to have the desired effect for the raw water to be treated. Then, by processing under the determined processing conditions, it is possible to obtain effects such as downsizing of equipment and reduction of the amount of chemicals used according to the desired degree even for fluctuating raw water. It was confirmed that it is possible to perform stable processing with a high The details of the test method performed in advance to determine the processing conditions (operating conditions) in the actual processing will be described later.

上記したように、引抜汚泥濃度CSS3の違いにより、返送される上澄液中の溶解性のフッ素量は異なり、引抜汚泥濃度CSS3を高くすると、上澄液中の溶解性のフッ素量は低減する。ここで、酸の添加前と添加後でフッ素の総量は変化しないため、上記の例では、酸添加後のフッ素の形態(固体/溶解)は、それぞれ下記のようになっていると考えられる。固液分離後の引抜汚泥濃度CSS3を10000mg/Lとした系では、溶解性のフッ素量は3.6kg/dであるので、固体のフッ素は、13.2kg/d-3.6kg/d=9.6kg/dとなる。一方、固液分離後の引抜汚泥濃度CSS3を50000mg/Lとした系では、溶解性のフッ素量は、1.2kg/dであるので、固体フッ素は、13.04kg/d-1.2kg/d=11.8kg/dとなる。上記のことは、固液分離後の引抜汚泥濃度CSS3が10000mg/Lの処理系に比較して、固液分離後の引抜汚泥濃度CSS3が50000mg/Lの処理系では、固体のフッ素量が増えて、被処理水中の溶解性のフッ素量を少なくできることを示している。この溶解性のフッ素が、酸添加工程後の改質した汚泥の上澄水としてアルカリ添加工程に返送されるフッ化物イオンの量に当たるため、固液分離後の引抜汚泥濃度CSS3が50000mg/Lの系で処理を行うことで、固液分離後の引抜汚泥濃度が10000mg/Lの系で処理した場合と比較して、アルカリ添加工程におけるフッ素負荷を小さくできる。そして、このことは、アルカリ添加工程で使用するアルカリ剤の量を低減できることを意味する。 As described above, the difference in the drawing sludge concentration C SS 3 causes a difference in the amount of soluble fluorine in the supernatant liquid to be returned. quantity is reduced. Here, since the total amount of fluorine does not change before and after acid addition, in the above example, the forms (solid/dissolved) of fluorine after acid addition are considered to be as follows. In a system where the concentration of drawn sludge C SS 3 after solid-liquid separation is 10000 mg/L, the amount of soluble fluorine is 3.6 kg/d. d=9.6 kg/d. On the other hand, in the system in which the drawn sludge concentration C SS 3 after solid-liquid separation was 50000 mg/L, the amount of soluble fluorine was 1.2 kg/d, so the solid fluorine was 13.04 kg/d-1. 2 kg/d=11.8 kg/d. The above shows that, compared with a treatment system with a drawing sludge concentration C SS 3 after solid-liquid separation of 10,000 mg/L, a treatment system with a drawing sludge concentration C SS 3 after solid-liquid separation of 50,000 mg/L has a solid content of It shows that the amount of fluorine increases and the amount of soluble fluorine in the water to be treated can be reduced. Since this soluble fluorine corresponds to the amount of fluoride ions returned to the alkali addition step as the supernatant water of the modified sludge after the acid addition step, the drawn sludge concentration C SS 3 after solid-liquid separation is 50000 mg/L. By performing the treatment in the system of (1), the fluorine load in the alkali addition step can be reduced as compared with the treatment in the system in which the drawn sludge concentration after solid-liquid separation is 10000 mg/L. And this means that the amount of alkali agent used in the alkali addition step can be reduced.

上記した通り、本発明者らの詳細な検討の結果、アルカリ添加工程で処理し、固液分離後の引抜汚泥濃度CSS3を高くするという極めて簡便な方法だけで、酸添加工程後の改質されたスラッジの上澄水中における溶解性のフッ素量を格段に低減できることがわかった。この結果、上澄水をアルカリ添加工程に返送して原水とともに処理するフローを基本構成とした本発明の処理方法において、全体の処理にかかるフッ素負荷を小さくできるので、使用するアルカリ剤の量を低減できるという、実用価値のある有用な効果が得られる。また、アルカリ添加工程後、生成したスラッジを固液分離し、その引抜汚泥濃度CSS3を高くして酸添加工程でスラッジの改質を実行することで、酸添加工程への汚泥の流量Q3を格段に低減できるので、使用する酸添加槽の大きさを小さくでき、この点でも工業上の大きな利点が得られる。 As described above, as a result of detailed studies by the present inventors, it was found that only an extremely simple method of treating in the alkali addition step and increasing the drawing sludge concentration C SS 3 after solid-liquid separation was effective for reforming after the acid addition step. It was found that the amount of soluble fluorine in the supernatant water of the purified sludge can be remarkably reduced. As a result, in the treatment method of the present invention, which has a basic configuration in which the supernatant water is returned to the alkali addition step and treated together with the raw water, the fluorine load applied to the overall treatment can be reduced, so the amount of alkali agent used can be reduced. It is possible to obtain a useful effect of practical value. Further, after the alkali addition step, the generated sludge is solid-liquid separated, the drawn sludge concentration C SS 3 is increased, and the sludge is reformed in the acid addition step, so that the flow rate of the sludge to the acid addition step Q3 can be remarkably reduced, the size of the acid addition tank to be used can be reduced, which is also a great industrial advantage.

具体的には、本発明の処理方法によれば、アルカリ添加工程でのアルカリ剤の添加量を、2000mg/L未満、さらには、1500mg/L以下と少なくできる。さらに、固液分離工程における引抜汚泥濃度CSS3を、10000mg/Lを超えて110000mg/L未満となるようにすることで、上記した安定して効果的な処理が行える。そして、固液分離工程における引抜汚泥濃度CSS3を上記したようにすることで、引抜汚泥の改質を行う酸添加工程で使用する酸添加槽の大きさを格段に小さくできる。例えば、先に例示して説明したように、引抜汚泥濃度を5倍濃縮した場合、汚泥としての流量は1/5になるので、酸添加槽の容量を1/5に低減することができる。また、また、本発明の水処理方法では、より安定して効果的な処理を行うため、処理する原水のフッ化物イオン濃度に対するアルカリ剤の添加量の質量比率(OH量/F量)Mを、1を超えて25未満となるように調整して処理する。 Specifically, according to the treatment method of the present invention, the amount of alkali agent added in the alkali addition step can be reduced to less than 2000 mg/L, and further to 1500 mg/L or less. Furthermore, by setting the drawing sludge concentration C SS 3 in the solid-liquid separation process to be more than 10000 mg/L and less than 110000 mg/L, the above-described stable and effective treatment can be performed. By setting the drawing sludge concentration C SS 3 in the solid-liquid separation process as described above, the size of the acid addition tank used in the acid addition process for reforming the drawing sludge can be remarkably reduced. For example, as described above with reference to an example, when the concentration of drawn sludge is concentrated by a factor of 5, the flow rate of sludge is reduced to 1/5, so the capacity of the acid addition tank can be reduced to 1/5. In addition, in the water treatment method of the present invention, in order to perform more stable and effective treatment, the mass ratio (OH amount/F amount) M of the addition amount of the alkali agent to the fluoride ion concentration of the raw water to be treated is , adjusted to be greater than 1 and less than 25.

本発明者らは、得られた知見から、特に酸添加工程後におけるフッ素の形態(固体/溶解)と、処理フローを全体バランスで考えることが処理において重要であることを認識し、本発明を完成した。本発明で規定する、最終的なスラッジの上澄液をアルカリ添加工程に返送し、再度処理を行う実施形態の一連の処理フローにおいては、前記した全ての運転要件を考慮し、且つ、本発明で規定する全ての要件を全て満足するように設計した処理条件で水処理することで、過剰な汚泥の発生を回避しつつ、被処理水(原水)の流量や被処理水(原水)中のフッ化物イオンの量が変動したとしても、より安定して良好な状態にフッ化物イオンを除去処理ができ、しかも、設備やランニングコストの低減が達成できる、工業的に優れた、実用価値の高い水処理方法の提供が可能になる。 From the knowledge obtained, the present inventors recognized that it is important in processing to consider the form of fluorine (solid/dissolved) after the acid addition step and the processing flow in terms of overall balance, and have developed the present invention. completed. In the series of treatment flows defined in the present invention, in which the final sludge supernatant is returned to the alkali addition step and treated again, all of the above-described operational requirements are taken into consideration and the present invention is applied. By treating water under treatment conditions designed to satisfy all the requirements specified in , while avoiding the generation of excessive sludge, the flow rate of the water to be treated (raw water) and the amount in the water to be treated (raw water) Even if the amount of fluoride ions fluctuates, it is possible to remove fluoride ions in a more stable and favorable state, and furthermore, it is possible to reduce equipment and running costs, which is industrially excellent and has high practical value. It becomes possible to provide a water treatment method.

以下に、上記に挙げた全ての処理条件(運転条件)が、本発明の顕著な効果を得るために必要となることについて説明する。まず、従来技術では、アルカリ添加工程でのアルカリ剤の添加を反応槽におけるpHを特定の範囲内に調整することで行っていた。しかし、処理系全体におけるフッ素の収支は、(流入フッ素負荷)+(返送フッ素負荷)=(全フッ素負荷)であり、先に述べたように、本発明の効果を得るためには、この点を考慮した処理であることを必要とする。具体的には、処理系全体におけるフッ素の収支は、下記式の通りとなるので、処理バランスを最適にして、上澄液を返送して処理することによるアルカリ添加工程へのフッ素負荷の増大をできるだけ少なくする必要がある。そして、そのためには、少なくとも、酸添加工程後の改質した汚泥の上澄液の引抜量Q5(アルカリ添加工程への返送量)と、酸添加工程後の改質した汚泥の上澄液中のフッ化物イオン濃度CF5とを考慮する必要がある。返送フッ素負荷は、例えば、先に説明した例では、10g/min~50g/min程度にすることができる。 In the following, it will be explained that all the processing conditions (operating conditions) listed above are required to obtain the remarkable effects of the present invention. First, in the prior art, the alkali agent is added in the alkali addition step by adjusting the pH in the reaction tank within a specific range. However, the balance of fluorine in the entire treatment system is (inflow fluorine load) + (return fluorine load) = (total fluorine load). It is necessary to consider the Specifically, since the balance of fluorine in the entire treatment system is as shown in the following formula, an increase in the fluorine load in the alkali addition step by optimizing the treatment balance and returning the supernatant for treatment can be avoided. should be as low as possible. For that purpose, at least Q5 (amount returned to the alkali addition step) of the supernatant liquid of the modified sludge after the acid addition step and in the supernatant liquid of the modified sludge after the acid addition step and the fluoride ion concentration C F 5 of . The return fluorine load can be, for example, on the order of 10 g/min to 50 g/min in the examples previously described.

Q1×CF1+Q5×CF5=(Q1+Q5)×CF
Q1:被処理水の流量(m3/h)
F1:被処理水中のフッ化物イオン濃度(mg/L)
Q5:酸添加工程後の改質した汚泥の上澄液の引抜量(m3/h)
F5:酸添加工程後の改質した汚泥の上澄液中のフッ化物イオン濃度(mg/L)
Q1× CF1 +Q5× CF5 =(Q1+Q5)× CF
Q1: Flow rate of treated water (m 3 /h)
C F 1: Fluoride ion concentration in water to be treated (mg/L)
Q5: Withdrawal amount (m 3 /h) of the supernatant liquid of the modified sludge after the acid addition process
C F 5: Fluoride ion concentration (mg/L) in supernatant of modified sludge after acid addition step

図1の処理フローに示した通り、本発明の水処理方法は、本発明で規定するアルカリ添加工程と、酸添加工程とを有し、さらに、酸添加工程後に、改質され減容されたスラッジの上澄液を、アルカリ添加工程に戻して再度処理することを基本構成とする。本発明者らは、図1に示す処理フローについて詳細に検討した結果、下記の近似式が成立することを新たに見出した。下記の近似式の係数A及びBは、後述する試験結果により求められる。
F4=CF5=CF6=A×In(t)+B
As shown in the treatment flow of FIG. 1, the water treatment method of the present invention has an alkali addition step and an acid addition step defined in the present invention, and furthermore, after the acid addition step, the water is reformed and reduced in volume. The basic configuration is to return the supernatant liquid of the sludge to the alkali addition step and treat it again. As a result of a detailed study of the processing flow shown in FIG. 1, the inventors newly discovered that the following approximation formula holds. Coefficients A and B in the following approximation formula are obtained from test results described later.
CF4 = CF5 = CF6 =A*In(t)+B

すなわち、上記A及びBは、試験結果より求められる係数であって、具体的には、固液分離工程における引抜汚泥濃度CSS3(mg/L)と、酸添加槽におけるスラッジの滞留時間tと、酸添加工程後の改質した汚泥の上澄液のフッ化物イオン濃度CF5(mg/L)との相関から求められる。下記にその一例を示して、係数の求め方を説明する。 That is, the above A and B are coefficients obtained from the test results, and specifically, the drawing sludge concentration C SS 3 (mg/L) in the solid-liquid separation process and the sludge retention time t in the acid addition tank and the fluoride ion concentration C F 5 (mg/L) in the supernatant of the modified sludge after the acid addition step. An example is shown below to explain how to obtain the coefficient.

固液分離工程における引抜汚泥濃度CSS3を、53000mg/L、82000mg/L、107000mg/Lとした、濃度が異なる3種類とした以外は同一の条件で、図1の処理フローでそれぞれ処理を行った。アルカリ剤の添加量COHを1500mg/Lとし、次の、酸添加工程で、酸添加槽におけるスラッジの滞留時間(スラッジの滞留時間とも呼ぶ)tを15分~600分とし、各経過時点における上澄液のフッ化物イオン濃度CF5(mg/L)を測定した。その結果を表1に示した。 The extraction sludge concentration C SS 3 in the solid-liquid separation process was set to 53000 mg/L, 82000 mg/L, and 107000 mg/L, and the conditions were the same except that three different concentrations were used, and each treatment was performed according to the treatment flow of FIG. gone. The amount of alkali agent added C OH was 1500 mg / L, and in the next acid addition step, the sludge retention time (also referred to as sludge retention time) t in the acid addition tank was 15 minutes to 600 minutes. The fluoride ion concentration C F 5 (mg/L) of the supernatant was measured. The results are shown in Table 1.

Figure 0007142600000001
Figure 0007142600000001

上記で得た試験結果について検討した結果、スラッジの滞留時間t、各経過時点における上澄液のフッ化物イオン濃度CF5(mg/L)の測定値との間に、図2に示したように、対数近似でよい相関があることがわかった。図2に示されているように、上澄液のフッ化物イオン濃度CF5を低減させるためには、酸添加槽におけるスラッジの滞留時間tを、30分以上600分以下とする、さらには、60分以上600分以下とすることが好ましいことがわかった。 As a result of examining the test results obtained above, the values shown in FIG. , it was found that there is a good correlation with logarithmic approximation. As shown in FIG. 2, in order to reduce the fluoride ion concentration C F 5 of the supernatant, the residence time t of the sludge in the acid addition tank is set to 30 minutes or more and 600 minutes or less. , 60 minutes or more and 600 minutes or less.

さらに検討を進めた結果、図3に示したように、CF5=A×In(t)+Bの係数A、Bは、線形近似が最もよくグラフを再現していたため、このようにして求めたA及びBを採用することで、図1の処理フロー全体における処理バランスが調整可能になることを見出した。図3に示したように、例えば、上記した試験例では、A、Bの値は、CSS3との関係で下記式を満たすものになる。
A=-0.0006×CSS3-36.689
B=0.0066×CSS3+357.9
As a result of further investigation, as shown in FIG. 3, the coefficients A and B of C F 5=A×In(t)+B were best reproduced by linear approximation, so they were obtained in this way. It was found that by adopting A and B, the processing balance in the entire processing flow of FIG. 1 can be adjusted. As shown in FIG. 3, for example, in the test example described above, the values of A and B satisfy the following formula in relation to C SS 3.
A=−0.0006×C SS 3−36.689
B = 0.0066 x CSS3 + 357.9

本発明の処理方法では、上澄液を返送してアルカリ添加工程で被処理水(原水)とともに再度処理する構成が必須であるため、先述したように、アルカリ添加工程でのフッ素負荷は、Q1×CF1+Q5×CF5=(Q1+Q5)×CFとなる。また、CF4=CF5=CF6である。さらに、上記した、CF5=A×In(t)+Bとなる相関を新たに見出したことから、酸添加槽におけるスラッジの滞留時間tと、これらの数値との間には、下記の関係式が成立し、この関係が成立する状態の運転条件で処理することで、過剰な汚泥の発生を回避しつつ、アルカリ添加工程に戻す上澄液によって生じるフッ素負荷の増大が低減できることがわかった。すなわち、スラッジの滞留時間tが30分以上600分以下の範囲となるように、各運転条件を適宜に決定すれば、本発明の顕著な効果を得ることができる。
t=e^((Q1+Q5)×COH÷(Q5×M×A)-(Q1×CF1÷Q5÷A)-(B÷A))
In the treatment method of the present invention, it is essential to return the supernatant liquid and process it again together with the water to be treated (raw water) in the alkali addition step. xC F 1 + Q5 x C F 5 = (Q1 + Q5) x C F. Moreover, C F 4=C F 5=C F 6. Furthermore, since the above-described correlation of C F 5 = A × In (t) + B was newly found, the following relationship between the retention time t of the sludge in the acid addition tank and these numerical values It was found that the formula holds true, and by treating under operating conditions in which this relationship holds, it is possible to avoid the generation of excessive sludge and reduce the increase in the fluorine load caused by the supernatant liquid returned to the alkali addition process. . That is, if each operating condition is appropriately determined so that the sludge retention time t is in the range of 30 minutes or more and 600 minutes or less, the remarkable effect of the present invention can be obtained.
t = e ^ ((Q1 + Q5) x C OH ÷ (Q5 x M x A) - (Q1 x C F 1 ÷ Q5 ÷ A) - (B ÷ A))

上記した式中、Q1(m3/h)は、被処理水の流量であり、CF1(mg/L)は原水中のフッ化物イオン濃度であり、Mは、フッ化物イオン濃度CF1(mg/L)に対するアルカリ剤の添加量COH(mg/L)の質量比率(OH量/F量)であり、CSS3(mg/L)は、固液分離工程における引抜汚泥濃度であり、CF5(mg/L)は、酸添加工程後の改質したスラッジの上澄液のフッ化物イオン濃度であり、Q5(m3/h)は、該上澄液の引抜量である。この引き抜いた上澄液がアルカリ添加工程へと返送されるので、Q5×C5の返送フッ素負荷の分だけ、アルカリ添加工程での処理におけるフッ素負荷が増大する。上記式中のA及びBは、先に説明したように、試験結果より求められる、CF5=A×In(t)+Bの関係を成立させる係数であり、固液分離工程における引抜汚泥濃度CSS3(mg/L)を変数として得られる測定値から求められる値である。 In the above formula, Q1 (m 3 /h) is the flow rate of the water to be treated, C F 1 (mg/L) is the fluoride ion concentration in the raw water, and M is the fluoride ion concentration CF is the mass ratio (OH amount/F amount) of the added amount C OH (mg/L) of the alkaline agent to 1 (mg/L), and C SS 3 (mg/L) is the drawing sludge concentration in the solid-liquid separation process where C F 5 (mg/L) is the fluoride ion concentration of the supernatant of the modified sludge after the acid addition step, and Q5 (m 3 /h) is the withdrawal amount of the supernatant. is. Since this withdrawn supernatant is returned to the alkali addition step, the fluorine load in the treatment in the alkali addition step increases by the return fluorine load of Q5×C F 5 . As described above, A and B in the above formula are coefficients that establish the relationship C F 5 = A × In (t) + B obtained from the test results, and the concentration of the drawn sludge in the solid-liquid separation process It is a value obtained from measurements obtained with C SS 3 (mg/L) as a variable.

したがって、本発明の処理方法によれば、アルカリ添加工程で用いるアルカリ剤のOHとしてのアルカリ剤添加量COH(mg/L)、被処理水(原水)中のフッ化物イオン濃度CF1(mg/L)に対するアルカリ剤の添加量COH(mg/L)の質量比率M(OH量/F量)、固液分離工程における引抜汚泥濃度CSS3(mg/L)、上澄液の引抜量Q5(m3/h)を適宜に設計して運転することで、過剰な汚泥の発生を回避しつつ、アルカリ添加工程に戻す上澄液によって生じるフッ素負荷の増大を低減することができ、さらに、アルカリ剤の添加量の低減、酸化処理工程における酸添加槽の容量を大幅に低減できるといった、実用価値のある優れた効果が発現する。 Therefore, according to the treatment method of the present invention, the alkali agent addition amount C OH (mg/L) as the OH of the alkali agent used in the alkali addition step, the fluoride ion concentration C F 1 ( mass ratio M (OH amount/F amount) of the added amount C OH (mg/L) of the alkaline agent to (mg/L), the extraction sludge concentration C SS 3 (mg/L) in the solid-liquid separation process, the supernatant liquid By appropriately designing the withdrawal amount Q5 (m 3 /h) and operating the system, it is possible to avoid the generation of excessive sludge and reduce the increase in the fluorine load caused by the supernatant liquid returned to the alkali addition step. In addition, excellent effects of practical value such as a reduction in the amount of alkali agent to be added and a large reduction in the capacity of the acid addition tank in the oxidation treatment process are exhibited.

本発明の処理方法では、アルカリ添加工程における、OHとしてのアルカリ剤添加量COH(mg/L)を2000mg/L未満にする。本発明の処理方法における目的の一つは、余分なアルカリ剤の添加を抑制し、添加量をできるだけ少なくすることにある。本発明者らは、アルカリ剤の添加量と懸濁物質(SS)の発生量との関係について検討し、アルカリ剤の添加量の上限を2000mg/L未満にすることが、バランスのよい安定した処理を行うためには必要となることを確認した。具体的には、アルカリ剤として水酸化カルシウムを用い、その添加量と懸濁物質(SS)の発生量を調べた。図4は、硫酸マグネシウムにフッ化物イオンを添加した模擬廃水に対しての、水酸化カルシウムの添加量とSSの発生量との相関を示すグラフである。図4に示した通り、水酸化カルシウムの添加量が2000mg/L以上で、SSの発生量の増大傾向が変化することを確認した。図4に示されているように、アルカリ剤の添加量COHを2000mg/L以上とした場合、SSの発生量が急激に増大するが、本発明が目的としているバランスのよい安定した処理を行うためには、SSの発生量の急増は回避する必要がある。特に、アルカリ添加工程におけるSSの発生量は、本発明の処理方法において重要な処理要件である、次の酸添加工程で酸を添加する対象となる、固液分離工程における引抜汚泥濃度CSS3(mg/L)の決定にも影響するので、SSの発生量の急増は好ましくない。 In the treatment method of the present invention, the amount of alkali agent added as OH C OH (mg/L) in the alkali addition step is set to less than 2000 mg/L. One of the purposes of the treatment method of the present invention is to suppress the addition of excess alkali chemicals and to minimize the amount of alkali chemicals to be added. The present inventors have studied the relationship between the amount of alkali agent added and the amount of suspended solids (SS) generated, and found that setting the upper limit of the amount of alkali agent added to less than 2000 mg / L is a well-balanced and stable I confirmed that it is necessary for processing. Specifically, calcium hydroxide was used as an alkaline agent, and the amount of calcium hydroxide added and the amount of suspended solids (SS) generated were investigated. FIG. 4 is a graph showing the correlation between the amount of calcium hydroxide added and the amount of SS generated in simulated wastewater obtained by adding fluoride ions to magnesium sulfate. As shown in FIG. 4, it was confirmed that when the amount of calcium hydroxide added was 2000 mg/L or more, the increasing tendency of the amount of SS generated changed. As shown in FIG. 4, when the addition amount of the alkaline agent C OH is 2000 mg/L or more, the amount of SS generation increases sharply, but the well-balanced and stable treatment that is the object of the present invention can be achieved. In order to do so, it is necessary to avoid a rapid increase in the amount of SS generated. In particular, the amount of SS generated in the alkali addition step is an important treatment requirement in the treatment method of the present invention. A rapid increase in the amount of SS generated is not preferable because it also affects the determination of (mg/L).

本発明の処理方法では、アルカリ剤の添加量COHを決定する場合、従来技術と同様、原水中のフッ化物イオン濃度CF1(mg/L)に対する、上限を2000mg/L未満とするアルカリ剤の添加量COH(mg/L)の質量比率M(OH量/F量)を、1を超えて25未満の範囲内とする。本発明の処理方法においては、8~12程度とすることが好ましい。 In the treatment method of the present invention, when determining the addition amount C OH of the alkali agent, as in the prior art, the alkali The mass ratio M (OH amount/F amount) of the additive amount C OH (mg/L) of the agent is set within a range of more than 1 and less than 25. In the treatment method of the present invention, it is preferable to set it to about 8 to 12.

先に説明したように、本発明の処理方法は、引抜汚泥濃度CSS3(mg/L)を高くするだけで、引抜汚泥濃度が低い場合と比較して、酸添加工程後の改質した汚泥(スラッジ)における、アルカリ添加工程に返送される上澄液中のフッ素量(溶解性のフッ素量)を格段に低減できるという新たな知見に基づきなされたものであり、さらに、上記の要件に、槽の容積などの処理設備に影響を及ぼすことになる、引抜汚泥濃度CSS3(mg/L)を適宜に決定するだけで、先に述べた本発明の顕著な効果が得られる良好な運転が可能になることを見出したことで、達成したものである。 As described above, the treatment method of the present invention can improve the quality of the sludge after the acid addition step by simply increasing the drawing sludge concentration C SS 3 (mg/L) compared to when the drawing sludge concentration is low. This was made based on the new knowledge that the amount of fluorine (the amount of soluble fluorine) in the supernatant liquid returned to the alkali addition process in sludge can be significantly reduced. , the volume of the tank, etc., which will affect the treatment equipment, just by appropriately determining the extraction sludge concentration C SS 3 (mg / L), the above-mentioned remarkable effect of the present invention can be obtained. This was achieved by discovering that driving becomes possible.

さらに、本発明の処理方法は、過剰な汚泥の発生を回避しつつ、アルカリ添加工程に戻す上澄液によって生じるフッ素負荷の増大を低減することを目的としており、酸添加工程でスラッジ(SS)を改質することで、酸添加後のスラッジ量CSS4を低減することを基本的な構成としている。そこで、本発明者らは、酸添加槽におけるスラッジの滞留時間t(min)と、酸が添加される固液分離された引抜汚泥濃度CSS3(mg/L)との関係について、下記の試験を行った。すなわち、引抜汚泥濃度CSS3を、53000mg/L、82000mg/L、107000mg/Lと、汚泥濃度が異なる3種類とした以外は同一の条件で、図1の処理フローでそれぞれ処理を行った。その際、アルカリ剤の添加量COHを1500mg/Lとし、次の、酸添加工程でのスラッジの滞留時間tを15分~600分とし、各経過時点における酸添加後におけるスラッジ(SS)量CSS4を測定した。その結果を表2及び図5に示した。 Furthermore, the treatment method of the present invention aims to reduce the increase in fluorine loading caused by the supernatant liquid returned to the alkali addition step, while avoiding the generation of excessive sludge. The basic configuration is to reduce the amount of sludge C SS 4 after acid addition by modifying the . Therefore, the present inventors investigated the relationship between the retention time t (min) of the sludge in the acid addition tank and the concentration C SS 3 (mg/L) of solid-liquid separated drawing sludge to which acid is added, as described below. did the test. That is, the treatment was performed according to the treatment flow of FIG. 1 under the same conditions except that the extraction sludge concentration C SS 3 was changed to 53,000 mg/L, 82,000 mg/L, and 107,000 mg/L with three different sludge concentrations. At that time, the amount of alkali agent added C OH was 1500 mg / L, the sludge retention time t in the next acid addition step was 15 minutes to 600 minutes, and the amount of sludge (SS) after acid addition at each elapsed time C SS 4 was measured. The results are shown in Table 2 and FIG.

Figure 0007142600000002
Figure 0007142600000002

アルカリ添加工程に戻す上澄液によって生じるフッ素負荷の増大を低減するためには、先に説明した表1及び図2から、酸添加槽におけるスラッジの滞留時間tを、30分以上600分以下とする。また、過剰な汚泥(SS)の発生を回避する目的からは、上記表2及び図5から、酸添加槽におけるスラッジの滞留時間tを、60分以上600分以下とすることが好ましい。本発明の処理方法では、前記したことを示す下記式を利用して、酸添加槽におけるスラッジの滞留時間tが、30分以上600分以下の範囲となるように、より好適には60分以上600分以下の範囲となるように、実際の処理において所望する効果を勘案して、下記式中の要件をそれぞれ決定して、運転条件を設計し、その条件で運転することで、本発明の顕著な効果を安定して得ることを達成した。
t=e^((Q1+Q5)×COH÷(Q5×M×A)-(Q1×CF1÷Q5÷A)-(B÷A))
In order to reduce the increase in fluorine load caused by the supernatant liquid returned to the alkali addition step, from Table 1 and FIG. do. In order to avoid excessive sludge (SS) generation, from Table 2 and FIG. 5, it is preferable to set the sludge retention time t in the acid addition tank to 60 minutes or more and 600 minutes or less. In the treatment method of the present invention, the following formula showing the above is used so that the residence time t of the sludge in the acid addition tank is in the range of 30 minutes or more and 600 minutes or less, more preferably 60 minutes or more. Considering the effect desired in the actual treatment, each requirement in the following formula is determined so as to be in the range of 600 minutes or less, the operating conditions are designed, and the operation is performed under these conditions. It has been achieved to stably obtain a remarkable effect.
t = e ^ ((Q1 + Q5) x C OH ÷ (Q5 x M x A) - (Q1 x C F 1 ÷ Q5 ÷ A) - (B ÷ A))

上記した通り、本発明の処理方法は、基本的な構成は、先に挙げた従来技術に記載された方法と同様である。本発明の処理方法のアルカリ添加工程で使用するアルカリ剤は、アルカリ金属の水酸化物及びアルカリ土類金属の水酸化物からなる群から選ばれるものを使用できる。例えば、水酸化ナトリウムや水酸化カルシウムなどを用いることができる。 As described above, the basic configuration of the processing method of the present invention is the same as the method described in the prior art mentioned above. The alkali agent used in the alkali addition step of the treatment method of the present invention can be selected from the group consisting of alkali metal hydroxides and alkaline earth metal hydroxides. For example, sodium hydroxide, calcium hydroxide, or the like can be used.

先に述べたように、本発明の処理方法は、アルカリ添加工程で生成されるフッ化物イオンが取り込まれた懸濁物質(SS)を固液分離して、次の酸添加工程で、固液分離した該懸濁物質由来のスラッジに酸を添加して、一定時間、酸添加槽内に滞留させてスラッジを改質する際に、固液分離工程における引抜汚泥濃度CSS3(mg/L)を高くして処理したことを特徴とする。本発明者らの検討によれば、固液分離工程における引抜汚泥濃度CSS3を、10000mg/Lを超えて110000mg/L未満となるようにすることで本発明の効果を得ることができる。所望する効果の程度にもよるが、例えば、本発明によって得られる、酸添加槽の容量を縮小することや、アルカリ添加工程に戻す上澄液によって生じるフッ素負荷の増大を低減する効果を、より著しいものにするためには、固液分離工程における引抜汚泥濃度CSS3を50000mg/L以上、さらには、60000mg/L以上とするとよい。 As described above, in the treatment method of the present invention, the suspended matter (SS) containing fluoride ions generated in the alkali addition step is solid-liquid separated, and in the next acid addition step, solid-liquid Acid is added to the sludge derived from the separated suspended matter, and when the sludge is reformed by staying in the acid addition tank for a certain period of time, the extraction sludge concentration C SS 3 (mg / L ) is processed with a high value. According to studies by the present inventors, the effects of the present invention can be obtained by setting the drawing sludge concentration C SS 3 in the solid-liquid separation process to more than 10000 mg/L and less than 110000 mg/L. Depending on the degree of effect desired, for example, the effect of reducing the capacity of the acid addition bath or reducing the increased fluorine load caused by the supernatant liquid returned to the alkali addition step, which is obtained by the present invention, may be more pronounced. In order to make it remarkable, the drawing sludge concentration C SS 3 in the solid-liquid separation process should be 50000 mg/L or more, preferably 60000 mg/L or more.

本発明の処理方法は、引抜汚泥濃度CSS3を高くしたことで、先に詳述した通り、酸添加工程後の改質したスラッジ(汚泥)の上澄液中におけるフッ素量CF5を低減できる。そして、引抜汚泥濃度CSS3を高くしたことで、酸添加工程で使用する酸添加槽の容量Vを低減することができる。例えば、引抜汚泥濃度CSS3を10000mg/Lとした場合と、CSS3を50000mg/Lとした場合では、酸添加槽の容量Vを1/5に小さくすることができる。具体的には、例えば、1日の汚泥の処理量が200kg/d程度である場合に、CSS3を50000mg/Lとすれば、酸添加槽の容積Vを10m3程度に、小さくすることができる。 In the treatment method of the present invention, by increasing the drawing sludge concentration C SS 3, as described in detail above, the fluorine content C F 5 in the supernatant of the modified sludge (sludge) after the acid addition step is reduced to can be reduced. By increasing the drawing sludge concentration C SS 3, the capacity V of the acid addition tank used in the acid addition step can be reduced. For example, when the extraction sludge concentration C SS 3 is 10000 mg/L and when C SS 3 is 50000 mg/L, the capacity V of the acid addition tank can be reduced to 1/5. Specifically, for example, when the amount of sludge treated per day is about 200 kg/d, if C SS 3 is 50000 mg/L, the volume V of the acid addition tank should be reduced to about 10 m 3 . can be done.

本発明の処理方法を構成する酸添加工程では、先述した通り、水酸化カルシウムを用いた場合は、アルカリ添加工程で生成した懸濁物質の3/5が溶解するので、過剰な汚泥の発生が回避できる。本発明では、酸添加工程で使用する酸添加槽で、溶解せずに残った懸濁物質の分離を行ってもよいが、図1に示したように、濃縮工程を設け、濃縮槽で溶解せずに残った懸濁物質を濃縮し、上澄液をアルカリ添加工程へ返送するように構成することが好ましい。先に述べたように、固液分離工程における引抜汚泥濃度CSS3を高くしたことで、結果として、返送する上澄液の返送フッ素負荷(CF5×Q5)を低減することができる。その結果、被処理水(原水)と上澄水とを併せて処理するアルカリ添加工程におけるアルカリ剤の添加量を低減できるという効果も得られる。 In the acid addition step constituting the treatment method of the present invention, as described above, when calcium hydroxide is used, 3/5 of the suspended matter generated in the alkali addition step is dissolved, so excessive sludge is not generated. can be avoided. In the present invention, the suspended matter remaining undissolved may be separated in the acid addition tank used in the acid addition step, but as shown in FIG. It is preferable to condense the suspended matter remaining without dehydration, and to return the supernatant to the alkali addition step. As described above, by increasing the drawing sludge concentration C SS 3 in the solid-liquid separation step, as a result, the return fluorine load (C F 5×Q5) of the supernatant liquid to be returned can be reduced. As a result, it is also possible to reduce the amount of alkali agent added in the alkali addition step in which the water to be treated (raw water) and the supernatant water are treated together.

次に、実施例及び比較例を挙げて本発明をさらに具体的に説明する。被処理水(原水)として、水酸化マグネシウムを使用した排煙脱硫装置からの廃水をそれぞれ用いた。
[実施例1及び2、比較例1及び2]
実施例1及び2では、フッ素濃度CF1が140mg/Lの原水を、流量Q1=1m3/minで、図1に示したフローに基づいて、表3の処理条件でそれぞれ処理を行った。その結果、本発明で規定した条件の範囲で処理を行った実施例1及び2では、本発明で規定した条件を満たさない状態で処理を行った比較例1及び2での処理と比較して、表3中に示した通り、酸添加槽への流量Q3は減少する一方、スラッジの滞留時間tは減少するため、結果として、流量Q3と滞留時間tの積として求められる酸添加槽の容積Vを格段に小さくでき、さらに、返送フッ素負荷を格段に小さくできることが確認できた。また、実施例1と実施例2との比較から、例えば、酸添加槽の容積Vを10m3と、より小さい容積の設備にできる効果を得るためには、固液分離工程における引抜汚泥濃度CSS3を、実施例2における50000mg/Lよりもさらに高くして、65000mg/Lとすればよいことが確認できた。このことは、本発明の処理方法によれば、引抜汚泥濃度CSS3を単に高くするという運転条件の変更だけで、設備の縮小ができるという工業上、極めて有用な効果を得ることができることを示している。一方、比較例1及び2の結果から、本発明の処理方法で規定する要件を1つでも満たさない場合には、本発明の効果が得られないことが確認された。
EXAMPLES Next, the present invention will be described more specifically with reference to examples and comparative examples. As water to be treated (raw water), waste water from a flue gas desulfurization unit using magnesium hydroxide was used.
[Examples 1 and 2, Comparative Examples 1 and 2]
In Examples 1 and 2, raw water having a fluorine concentration C F 1 of 140 mg/L was treated at a flow rate Q1=1 m 3 /min under the treatment conditions shown in Table 3 based on the flow shown in FIG. . As a result, in Examples 1 and 2 in which the treatment was performed within the range of the conditions specified in the present invention, compared with the treatment in Comparative Examples 1 and 2 in which the treatment was performed without satisfying the conditions specified in the present invention. , as shown in Table 3, while the flow rate Q3 into the acid addition tank decreases, the sludge residence time t decreases, resulting in the acid addition tank volume determined as the product of the flow rate Q3 and the residence time t It was confirmed that V could be remarkably reduced, and furthermore, the returning fluorine load could be remarkably reduced. Also, from a comparison between Example 1 and Example 2, for example, the volume V of the acid addition tank is 10 m 3 . It was confirmed that SS 3 should be increased from 50000 mg/L in Example 2 to 65000 mg/L. This means that, according to the treatment method of the present invention, it is possible to obtain an industrially extremely useful effect that the equipment can be reduced simply by changing the operating conditions by simply increasing the drawing sludge concentration C SS 3. showing. On the other hand, from the results of Comparative Examples 1 and 2, it was confirmed that the effects of the present invention cannot be obtained when even one of the requirements defined by the treatment method of the present invention is not satisfied.

Figure 0007142600000003
Figure 0007142600000003

[実施例3及び4、比較例3]
実施例3及び4では、フッ素濃度CF1が70mg/Lの原水を、流量Q1=1m3/minで、図1に示したフローに基づき、表4の処理条件でそれぞれ処理した。その結果、本発明で規定した条件の範囲で処理をした実施例3及び4では、本発明で規定した条件を満たさない条件で処理を行った比較例3での処理と比較して、表4に示した通り、酸添加槽の容積Vを格段に小さくでき、さらに、返送フッ素負荷を小さくできることを確認した。また、比較例3の結果から、比較例1及び2と同様、本発明の処理方法で規定する要件を1つでも満たさない場合は、本発明の優れた効果を得ることができないことを確認した。
[Examples 3 and 4, Comparative Example 3]
In Examples 3 and 4, raw water having a fluorine concentration C F 1 of 70 mg/L was treated at a flow rate Q1 of 1 m 3 /min under the treatment conditions shown in Table 4 based on the flow shown in FIG. As a result, in Examples 3 and 4 in which the treatment was performed within the range of the conditions specified in the present invention, Table 4 compared with the treatment in Comparative Example 3 in which the treatment was performed under conditions that did not satisfy the conditions specified in the present invention. As shown in , it was confirmed that the volume V of the acid addition tank could be significantly reduced, and the returned fluorine load could be reduced. Further, from the results of Comparative Example 3, it was confirmed that, as with Comparative Examples 1 and 2, the excellent effects of the present invention cannot be obtained if even one of the requirements defined by the treatment method of the present invention is not satisfied. .

Figure 0007142600000004
Figure 0007142600000004

Claims (4)

少なくともフッ化物イオン及びマグネシウムイオンを含有する被処理水(原水)中のフッ化物イオンを除去する水処理方法であって、
前記被処理水に、アルカリ金属の水酸化物及びアルカリ土類金属の水酸化物からなる群から選ばれる少なくとも1種のアルカリ剤を添加するアルカリ添加工程と、
該アルカリ添加工程で生成される前記フッ化物イオンが取り込まれた懸濁物質を固液分離する固液分離工程と、
前記固液分離工程で固液分離された前記懸濁物質由来のスラッジに、酸添加槽で酸を添加してスラッジを改質する酸添加工程と、を有し、
前記酸添加工程後の改質したスラッジを固液分離してスラッジを除去し、上澄液を前記アルカリ添加工程に戻して前記被処理水とともに再度の処理を行う際に、
前記アルカリ添加工程における、OHとしてのアルカリ剤添加量COH(mg/L)を2000mg/L未満とし、且つ、前記原水中のフッ化物イオン濃度CF1(mg/L)に対する前記アルカリ剤の添加量COH(mg/L)の質量比率M(OH量/F量)を、1を超えて25未満とし、さらに、前記固液分離工程における沈殿槽引抜汚泥濃度CSS3(mg/L)を、10000mg/Lを超えて110000mg/L未満となる条件であって、且つ、
前記原水の流量Q1(m3/h)及び前記原水中のフッ化物イオン濃度CF1(mg/L)と、前記質量比率M(OH量/F量)と、前記引抜汚泥濃度CSS3(mg/L)と、前記酸添加工程後の改質したスラッジの上澄液のフッ化物イオン濃度CF5(mg/L)と、該上澄液の引抜量Q5(m3/h)とから下記式によって求められる、前記酸添加槽におけるスラッジの滞留時間tが30分以上600分以下となる条件で運転することを特徴とする水処理方法。
t=e^((Q1+Q5)×COH÷(Q5×M×A)-(Q1×CF1÷Q5÷A)-(B÷A))
(式中の、A及びBは、試験結果より求められる、固液分離工程における沈殿槽引抜汚泥濃度CSS3(mg/L)と、酸添加槽におけるスラッジの滞留時間tと、酸添加工程後の改質したスラッジの上澄液のフッ化物イオン濃度CF5(mg/L)との相関を示す下記式で求められる係数である。)
F5=A×In(t)+B
A water treatment method for removing fluoride ions in water to be treated (raw water) containing at least fluoride ions and magnesium ions,
an alkali addition step of adding at least one alkali agent selected from the group consisting of alkali metal hydroxides and alkaline earth metal hydroxides to the water to be treated;
a solid-liquid separation step of solid-liquid separation of the suspended matter containing the fluoride ions generated in the alkali addition step;
an acid addition step of adding an acid in an acid addition tank to the sludge derived from the suspended matter that has been solid-liquid separated in the solid-liquid separation step to modify the sludge;
When the modified sludge after the acid addition step is subjected to solid-liquid separation to remove the sludge, and the supernatant liquid is returned to the alkali addition step and treated again together with the water to be treated,
The alkali agent addition amount C OH (mg/L) as OH in the alkali addition step is less than 2000 mg/L, and the amount of the alkali agent with respect to the fluoride ion concentration C F 1 (mg/L) in the raw water The mass ratio M (OH amount/F amount) of the added amount C OH (mg/L) is more than 1 and less than 25, and the sedimentation tank withdrawal sludge concentration C SS 3 (mg/L ) above 10000 mg/L and below 110000 mg/L, and
The raw water flow rate Q1 (m 3 /h), the fluoride ion concentration C F 1 (mg/L) in the raw water, the mass ratio M (OH amount/F amount), and the drawn sludge concentration C SS 3 (mg/L), the fluoride ion concentration C F 5 (mg/L) of the supernatant of the modified sludge after the acid addition step, and the withdrawal amount Q5 (m 3 /h) of the supernatant. A water treatment method characterized in that the water treatment method is operated under the condition that the residence time t of the sludge in the acid addition tank is 30 minutes or more and 600 minutes or less, which is obtained by the following formula from (1) to (3).
t = e ^ ((Q1 + Q5) x C OH ÷ (Q5 x M x A) - (Q1 x C F 1 ÷ Q5 ÷ A) - (B ÷ A))
(In the formula, A and B are the concentration of sludge drawn from the sedimentation tank C SS 3 (mg/L) in the solid-liquid separation process, the retention time t of the sludge in the acid addition tank, and the acid addition process, which are obtained from the test results. It is a coefficient obtained by the following formula showing the correlation with the fluoride ion concentration C F 5 (mg/L) in the supernatant liquid of the sludge after reforming.)
C F 5=A×In(t)+B
前記アルカリ剤が、水酸化カルシウムである請求項1に記載の水処理方法。 The water treatment method according to claim 1, wherein the alkaline agent is calcium hydroxide. 前記酸添加工程後に、さらに、前記改質したスラッジを濃縮する濃縮工程を有する請求項1又は2に記載の水処理方法。 3. The water treatment method according to claim 1, further comprising a concentration step of concentrating the reformed sludge after the acid addition step. 前記被処理水が、石炭火力発電所やコークス工場で実施されている排煙脱硫法を実施する排煙脱硫装置から排出されたものである請求項1~3のいずれか1項に記載の水処理方法。

The water according to any one of claims 1 to 3, wherein the water to be treated is discharged from a flue gas desulfurization apparatus that performs a flue gas desulfurization method implemented in a coal-fired power plant or a coke plant. Processing method.

JP2019074313A 2019-04-09 2019-04-09 Water treatment method for removing fluoride ions Active JP7142600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019074313A JP7142600B2 (en) 2019-04-09 2019-04-09 Water treatment method for removing fluoride ions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019074313A JP7142600B2 (en) 2019-04-09 2019-04-09 Water treatment method for removing fluoride ions

Publications (2)

Publication Number Publication Date
JP2020171880A JP2020171880A (en) 2020-10-22
JP7142600B2 true JP7142600B2 (en) 2022-09-27

Family

ID=72830409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019074313A Active JP7142600B2 (en) 2019-04-09 2019-04-09 Water treatment method for removing fluoride ions

Country Status (1)

Country Link
JP (1) JP7142600B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117919646A (en) * 2024-03-20 2024-04-26 崇义章源钨业股份有限公司 Method for treating high-fluorine ammonia-containing slag

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4330693B2 (en) 1999-04-21 2009-09-16 新日本製鐵株式会社 Treatment method for fluorine-containing wastewater
JP2017189725A (en) 2016-04-11 2017-10-19 新日鐵住金株式会社 Water treatment method and water treatment system
JP2017189724A (en) 2016-04-11 2017-10-19 新日鐵住金株式会社 Water treatment method and water treatment system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6483406B2 (en) * 2014-11-06 2019-03-13 日鉄住金環境株式会社 Treatment method for fluorine-containing wastewater
JP6738268B2 (en) * 2016-12-14 2020-08-12 株式会社クボタ Water treatment method and water treatment system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4330693B2 (en) 1999-04-21 2009-09-16 新日本製鐵株式会社 Treatment method for fluorine-containing wastewater
JP2017189725A (en) 2016-04-11 2017-10-19 新日鐵住金株式会社 Water treatment method and water treatment system
JP2017189724A (en) 2016-04-11 2017-10-19 新日鐵住金株式会社 Water treatment method and water treatment system

Also Published As

Publication number Publication date
JP2020171880A (en) 2020-10-22

Similar Documents

Publication Publication Date Title
WO2000003952A1 (en) Method for treating a fluorine-containing waste water and treating apparatus
JP7142600B2 (en) Water treatment method for removing fluoride ions
JP4863694B2 (en) Method and apparatus for fluorinating chelating agent-containing water
JP6483406B2 (en) Treatment method for fluorine-containing wastewater
JP4954131B2 (en) Treatment method of water containing borofluoride
JP4689187B2 (en) Method and apparatus for treating fluorine-containing water
JP4572812B2 (en) Fluorine-containing water treatment method
JP5796703B2 (en) Calcium fluoride recovery method and recovery apparatus
JP2018083172A (en) Wastewater treatment method, wastewater treatment apparatus and coal gasification power generation equipment with the same
JP2010075849A (en) Treatment method for chlorine-containing fine powder waste
JP6723058B2 (en) Water treatment method and water treatment system
JP2006130498A (en) Method for treating fluorine-containing drainage
JP6723057B2 (en) Water treatment method and water treatment system
JP6623288B2 (en) Method and apparatus for treating wastewater containing hydrogen sulfide
JP2007260556A (en) Phosphoric acid-containing wastewater treatment method and apparatus
US10947142B2 (en) Apparatus and methods for treating wastewater
JPH10230282A (en) Treatment of fluorine-containing waste water
JP3918294B2 (en) Method and apparatus for treating fluorine-containing wastewater
JPH0975925A (en) Treatment of flue gas desulfurization waste water
JP2006320865A (en) Fluorine-containing wastewater treatment method and apparatus
JP7429357B2 (en) Mine wastewater treatment method
JP2022134521A (en) Processing method of fluorine-containing waste water
JP5965164B2 (en) Cadmium-containing wastewater treatment method
JPH03275200A (en) Thickening and dehydrating method for organic sludge
JP4752351B2 (en) Method and apparatus for treating fluorine-containing water

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190514

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211115

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220913

R150 Certificate of patent or registration of utility model

Ref document number: 7142600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150