JP2006320865A - Fluorine-containing wastewater treatment method and apparatus - Google Patents

Fluorine-containing wastewater treatment method and apparatus Download PDF

Info

Publication number
JP2006320865A
JP2006320865A JP2005148154A JP2005148154A JP2006320865A JP 2006320865 A JP2006320865 A JP 2006320865A JP 2005148154 A JP2005148154 A JP 2005148154A JP 2005148154 A JP2005148154 A JP 2005148154A JP 2006320865 A JP2006320865 A JP 2006320865A
Authority
JP
Japan
Prior art keywords
wastewater
tank
fluorine
reaction tank
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005148154A
Other languages
Japanese (ja)
Inventor
Shigeyuki Arai
重行 荒井
Koichi Yoshihara
恒一 吉原
Takao Ishii
孝夫 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOSOKURA KOGYO KK
Mitsubishi Materials Corp
Original Assignee
HOSOKURA KOGYO KK
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOSOKURA KOGYO KK, Mitsubishi Materials Corp filed Critical HOSOKURA KOGYO KK
Priority to JP2005148154A priority Critical patent/JP2006320865A/en
Publication of JP2006320865A publication Critical patent/JP2006320865A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treatment system which is excellent in fluorine and heavy metals-removing effect in wastewater containing heavy metals together with fluorine. <P>SOLUTION: In a fluorine removal method where an aluminum source is added to fluorine-containing wastewater to coprecipitate fluorine with aluminum hydroxide precipitate, the fluorine-containing wastewater is introduced into a reaction tank to generate the above precipitate, and the precipitate slurry is separated from the wastewater. A part of or the whole of the separated slurry is introduced into a conditioning tank. The aluminum source and an alkali agent are added to the precipitate slurry in the conditioning tank, and then the slurry is returned to the reaction tank to adjust pH. Desirably, the pH of the reaction tank is adjusted to 6.5-7.5. Circulation of the precipitate slurry is repeated to reduce fluorine concentration in the wastewater. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、排水に含まれるフッ素を効率よく除去する処理方法および処理装置に関し、特にフッ素と共に重金属を含有する排水についてフッ素と重金属の除去効果に優れた処理方法および処理装置に関する。本発明の排水処理システムはフッ素濃度の異なる複数の排水系統に対して特に有用である。   The present invention relates to a treatment method and a treatment apparatus for efficiently removing fluorine contained in waste water, and more particularly, to a treatment method and a treatment apparatus excellent in the effect of removing fluorine and heavy metals for waste water containing heavy metal together with fluorine. The wastewater treatment system of the present invention is particularly useful for a plurality of drainage systems having different fluorine concentrations.

従来、排水に含まれる重金属を除去する方法として、排水に消石灰を添加して排水のpHを9.5前後に調整することによって排水中の重金属を水酸化物沈澱として不溶化し、これを固液分離して排水から除去する消石灰中和法が知られている。また、排水中のフッ素を除去する方法として、排水に硫酸アルミニウムを添加し、排水のpHを6.5前後に調整して水酸化アルミニウムを沈澱させると共にこの沈澱に排水中のフッ素を吸着させて共沈させる水酸化アルミニウム法が知られている。   Conventionally, as a method of removing heavy metals contained in wastewater, by adding slaked lime to the wastewater and adjusting the pH of the wastewater to around 9.5, the heavy metals in the wastewater are insolubilized as hydroxide precipitates, and this is solid-liquid. A slaked lime neutralization method that separates and removes from waste water is known. Also, as a method of removing fluorine in the wastewater, aluminum sulfate is added to the wastewater, the pH of the wastewater is adjusted to around 6.5 to precipitate aluminum hydroxide, and fluorine in the wastewater is adsorbed to this precipitate. The coprecipitation aluminum hydroxide method is known.

水酸化アルミニウム法については、発生するスラッジ量と薬剤の使用量を低減するために、固液分離した澱物に水と硫酸を加えてpHを弱酸性に調整し、フッ素を溶出させて液分を分離した後に残渣の沈澱物を凝集剤として再利用する処理方法が知られている(特許文献1)。
特開平09−276875号公報
For the aluminum hydroxide method, in order to reduce the amount of sludge generated and the amount of chemical used, the pH is adjusted to weak acidity by adding water and sulfuric acid to the solid-liquid separated starch, and fluorine is eluted to separate the liquid. There is known a processing method in which a residue precipitate is reused as a flocculant after separation (Patent Document 1).
JP 09-276875 A

フッ素と共に重金属を含有する排水に対して、従来の上記処理方法は沈澱化の最適pH域が異なるため、これらの除去効果が低いと云う問題がある。例えば、排水中の重金属を水酸化物として沈澱させるためには、排水に消石灰を添加してpHを9.5前後のアルカリ性にする必要がある。一方、アルミニウムは両性元素であるために水酸化アルミニウムは酸性でもアルカリ性でも溶解し、排水のpHが中性域から外れると沈澱が溶解し、この沈澱に吸着あるいは沈殿物として取り込まれているフッ素が排水中に溶出するので、排水中のフッ素濃度を十分に低減することができない。   For wastewater containing heavy metals together with fluorine, the conventional treatment method has a problem that the optimum pH range for precipitation differs, so that the effect of removing them is low. For example, in order to precipitate heavy metals in wastewater as hydroxides, it is necessary to add slaked lime to the wastewater to make the pH alkaline around 9.5. On the other hand, since aluminum is an amphoteric element, aluminum hydroxide dissolves both acidic and alkaline. When the pH of the wastewater is out of the neutral range, the precipitate dissolves, and the fluorine adsorbed or taken into the precipitate is removed. Since it elutes in the wastewater, the fluorine concentration in the wastewater cannot be reduced sufficiently.

分離した沈澱スラッジを再利用する特許文献1の処理方法においても上記と同様の問題がある。また、排水を処理する中和反応槽に分離した沈澱スラッジ等を戻して循環処理する方法においても、沈澱スラッジ等をそのまま戻して排水と同一槽内で混合すると、澱物の濃縮性・沈降性が著しく低下すると云う問題がある。   The processing method of Patent Document 1 in which the separated precipitated sludge is reused also has the same problem as described above. Also, in the method of returning the precipitated sludge and the like separated to the neutralization reaction tank for treating the wastewater, if the precipitated sludge etc. is returned as it is and mixed in the same tank as the wastewater, the concentration and settling properties of the starch There is a problem that the remarkably decreases.

本発明は従来の処理方法における上記問題を解決したものであり、フッ素と共に重金属を含有する排水に対しても、これらの除去効果に優れた処理システムを提供する。   This invention solves the said problem in the conventional processing method, and provides the processing system excellent in these removal effects also with respect to the waste_water | drain containing a heavy metal with a fluorine.

本発明によれば、以下に示す排水の処理方法および処理装置が提供される。
(1)フッ素を含有する排水にアルミニウム源を添加して水酸化アルミニウム沈澱と共にフッ素を共沈させるフッ素除去方法において、フッ素含有排水を反応槽に導入して上記沈澱を生成させ、該沈澱のスラリーを排水から分離して、その一部または全部を条件槽に導入し、該条件槽において沈澱スラリーにアルミニウム源とアルカリ剤を添加した後に上記反応槽に戻してpHを調整し、この沈澱スラリーの循環を繰り返して排水中のフッ素濃度を低減することを特徴とする排水の処理方法。
(2)上記(1)の処理方法において、反応槽の排水のpHを6.5〜7.5に調整する排水の処理方法。
(3)上記(1)または(2)に記載する処理方法において、フッ素含有排水を第一反応槽に導入して攪拌下でアルミニウム源とフッ素とを反応させ、この排水をさらに第二反応槽に導入して上記反応を進め、第二反応槽から排水を抜き出して沈降槽に導入し、該沈降槽で沈澱スラリーを排水から分離し、この沈澱スラリーの一部または全部を条件槽に導入し、該条件槽において沈澱スラリーにアルミニウム源とアルカリ剤を添加した後に上記第一反応槽に戻してpHを調整し、この沈澱スラリーの循環を繰り返して排水中のフッ素濃度を低減する排水の処理方法。
(4)フッ素と共に重金属を含有する排水に対して、上記(1)〜(3)の何れかに記載する処理工程によってフッ素を除去した後に、該排水にアルカリ剤を添加してpH9〜10に調整して排水中の重金属を沈澱化し、排水から除去する排水の処理方法。
(5)上記(1)〜(3)の何れかに記載する処理方法において、反応槽から抜き出した排水を凝集槽に導入し、凝集剤を添加して沈澱の生成を促進する排水の処理方法。
(6)排水中のフッ素とアルミニウム源とを反応させるための反応槽、反応槽から抜き出した排水を導入して凝集剤を添加して沈澱化を促進するための凝集槽、凝集槽から抜き出した沈澱を含む排水から沈澱スラリーを分離する沈降槽、分離した沈澱スラリーの一部または全部を導入してアルミニウム源とアルカリ剤を添加するための条件槽、条件槽の沈澱スラリーを反応槽に戻す循環路を有することを特徴とする排水の処理装置。
(7)上記(6)の処理装置において、第一反応槽と第二反応槽、第二反応槽に設けたpH計、第二反応槽から抜き出した排水を導入する凝集槽、凝集槽から抜き出した沈澱を含む排水から沈澱スラリーを分離する沈降槽、分離した沈澱スラリーの一部または全部を導入してアルミニウム源とアルカリ剤を添加するための条件槽、条件槽の沈澱スラリーを第一反応槽に戻す循環路を有することを特徴とする排水の処理装置。
(8)上記(6)または(7)に記載するフッ素除去工程の後に、排水にアルカリ剤を添加してpH9〜10の範囲で排水中の重金属を沈澱化する沈澱槽、澱物を含む排水を固液分離する槽を有する重金属除去工程を含む排水の処理装置。
According to the present invention, the following wastewater treatment method and treatment apparatus are provided.
(1) In a fluorine removing method in which an aluminum source is added to wastewater containing fluorine to coprecipitate fluorine together with aluminum hydroxide precipitation, the precipitate is produced by introducing fluorine-containing wastewater into a reaction vessel, and the precipitate slurry Is separated from the waste water, and a part or all thereof is introduced into a conditioned tank, and after adding an aluminum source and an alkaline agent to the precipitation slurry, the pH is adjusted by returning to the reaction tank. A wastewater treatment method characterized by repeating circulation to reduce the fluorine concentration in the wastewater.
(2) The waste water treatment method according to (1), wherein the pH of the waste water in the reaction tank is adjusted to 6.5 to 7.5.
(3) In the treatment method described in (1) or (2) above, fluorine-containing wastewater is introduced into the first reaction tank, the aluminum source and fluorine are reacted under stirring, and this wastewater is further fed into the second reaction tank. And the reaction is carried out, the waste water is extracted from the second reaction tank and introduced into the sedimentation tank, and the sedimentation slurry is separated from the wastewater in the sedimentation tank, and a part or all of this precipitation slurry is introduced into the condition tank. In this condition tank, after adding an aluminum source and an alkaline agent to the precipitation slurry, the pH is adjusted by returning to the first reaction tank, and the waste slurry is treated by repeating circulation of the precipitation slurry to reduce the fluorine concentration in the waste water. .
(4) For wastewater containing heavy metal together with fluorine, after removing fluorine by the treatment step described in any of (1) to (3) above, an alkaline agent is added to the wastewater to adjust the pH to 9-10. Wastewater treatment method that adjusts to precipitate heavy metals in wastewater and removes it from the wastewater.
(5) In the treatment method described in any one of (1) to (3) above, the wastewater treatment method in which wastewater extracted from the reaction tank is introduced into a coagulation tank and a coagulant is added to promote precipitation. .
(6) A reaction tank for reacting fluorine in the waste water with the aluminum source, draining water extracted from the reaction tank, adding a flocculant and extracting from the agglomeration tank for promoting precipitation. A settling tank for separating the precipitate slurry from the waste water containing the precipitate, a condition tank for introducing a part or all of the separated precipitate slurry and adding the aluminum source and the alkaline agent, and a circulation for returning the set slurry to the reaction tank. A wastewater treatment apparatus characterized by having a path.
(7) In the processing apparatus of (6), the first reaction tank, the second reaction tank, the pH meter provided in the second reaction tank, the coagulation tank for introducing the waste water extracted from the second reaction tank, and the coagulation tank A settling tank for separating the precipitate slurry from the waste water containing the precipitate, a condition tank for introducing a part or all of the separated precipitate slurry and adding the aluminum source and the alkali agent, and the settling slurry in the condition tank for the first reaction tank A wastewater treatment apparatus having a circulation path for returning to the waste water.
(8) Precipitation tank for adding heavy metal in waste water in the pH range of 9 to 10 by adding an alkaline agent to the waste water after the fluorine removing step described in (6) or (7), waste water containing starch Wastewater treatment apparatus including a heavy metal removal step having a tank for solid-liquid separation.

本発明の処理方法は、排水中のフッ素を取り込んだ沈澱スラリーを反応槽に戻して循環処理する際に、処理原排水と同一槽内で混合しないように、沈澱スラリー(返送汚泥)を先ず条件槽に導入してアルカリ剤とアルミニウム源を添加し、汚泥の性状を整えた後に反応槽に導入するので、最終的に抜き出される澱物の濃縮性・沈降性が極めて良く、処理時間を大幅に短縮でき、かつ汚泥量が格段に減少するので処理設備を小型化することができる。   In the treatment method of the present invention, the precipitate slurry (returned sludge) is first conditioned so as not to be mixed in the same tank as the processing raw waste water when circulating the precipitate slurry incorporating fluorine in the waste water into the reaction tank. Since it is introduced into the tank, the alkali agent and aluminum source are added, and the sludge properties are adjusted and then introduced into the reaction tank, the concentration and sedimentation of the starch that is finally extracted is extremely good, greatly increasing the processing time. The amount of sludge can be significantly reduced, and the processing equipment can be downsized.

具体的には、例えば、従来の処理方法よりも汚泥の沈降速度が約9倍〜10倍早く、処理時間が大幅に短縮されると共に汚泥の固液分離に用いるシックナーの容量を約1/9〜1/10に小型化することができる。因みに、従来は直径約21mのシックナーを必要としている場合、本発明の処理方法によれば直径約6.6〜7.0mの大きさのシックナーで足りる。   Specifically, for example, the sedimentation rate of sludge is about 9 to 10 times faster than the conventional treatment method, the treatment time is greatly shortened, and the capacity of the thickener used for solid-liquid separation of sludge is about 1/9. The size can be reduced to 1/10. Incidentally, when a thickener having a diameter of about 21 m is conventionally required, a thickener having a diameter of about 6.6 to 7.0 m is sufficient according to the processing method of the present invention.

本発明の処理方法は、フッ素と共に重金属を含有する排水に対して、第一段のフッ素除去工程と第二段の重金属除去工程を有し、第一段階において中性域で沈澱を生成させてフッ素を取り込ませ、第二段階においてアルカリ域で重金属を沈澱化するので、フッ素と重金属がおのおの最適なpH域で不溶化され、フッ素と重金属の除去効果に優れており、排水中のフッ素濃度と重金属濃度を何れも大幅に低減することができる。   The treatment method of the present invention has a first-stage fluorine removal process and a second-stage heavy metal removal process for wastewater containing heavy metals together with fluorine, and in the first stage, precipitates are generated in the neutral region. Incorporating fluorine and precipitating heavy metals in the alkaline region in the second stage, so fluorine and heavy metals are insolubilized in the optimum pH range, and are excellent in removing fluorine and heavy metals. Fluorine concentration in waste water and heavy metals Any of the concentrations can be greatly reduced.

以下に本発明を具体的に説明する。
本発明の処理方法は、フッ素を含有する排水にアルミニウム源を添加して水酸化アルミニウム沈澱と共にフッ素を共沈させるフッ素除去方法において、フッ素含有排水を反応槽に導入して上記沈澱を生成させ、該沈澱のスラリーを排水から分離して、その一部または全部を条件槽に導入し、該条件槽において沈澱スラリーにアルミニウム源とアルカリ剤を添加した後に上記反応槽に戻してpHを調整し、この澱物スラリーの循環処理を繰り返して排水中のフッ素濃度を低減することを特徴とする排水の処理方法である。
The present invention will be specifically described below.
The treatment method of the present invention is a fluorine removal method in which fluorine is co-precipitated with aluminum hydroxide by adding an aluminum source to fluorine-containing wastewater. The slurry of the precipitate is separated from the waste water, a part or all of the slurry is introduced into a conditioned tank, and after adding an aluminum source and an alkaline agent to the precipitated slurry in the conditioned tank, the pH is adjusted by returning to the reaction tank. The wastewater treatment method is characterized in that the starch slurry is repeatedly circulated to reduce the fluorine concentration in the wastewater.

なお、本発明において、排水とは排水中に含まれるフッ素ないし重金属を除去処理する対象となる水を云い、一般的な生活排水や工場排水、上下水の排水に限らず、鉱工業用水および農業用水、地下水、河川や湖沼の水、海水、坑道水、河川等の堰止域の水などを広く含む。また、排水に含まれる重金属とは、例えば、セレン、カドミウム、六価クロム、鉛、亜鉛、銅、ニッケル、ヒ素、アンチモンなどの重金属を含む金属元素を云う。本発明の処理システムは排水等に含まれるこれらの汚染源となる重金属類の何れか1種および2種以上に対して優れた除去効果を有する。   In the present invention, the drainage refers to water that is subject to removal treatment of fluorine or heavy metals contained in the wastewater, and is not limited to general domestic wastewater, factory wastewater, drainage water, and industrial water and agricultural water. , Including groundwater, river and lake water, seawater, mine water, and water in dams such as rivers. The heavy metal contained in the waste water refers to a metal element containing heavy metals such as selenium, cadmium, hexavalent chromium, lead, zinc, copper, nickel, arsenic, and antimony. The treatment system of the present invention has an excellent removal effect with respect to any one or more of the heavy metals that are the sources of contamination contained in the waste water and the like.

本発明の処理方法に基づく装置構成の一例を図1に示す。図示する本発明の処理システムは第一段のフッ素除去工程と第二段の重金属除去工程を有している。重金属濃度が低い排水に対しては第一段のフッ素除去工程で足りる。   An example of an apparatus configuration based on the processing method of the present invention is shown in FIG. The processing system of the present invention shown in the figure has a first stage fluorine removal step and a second stage heavy metal removal step. For wastewater with a low concentration of heavy metals, the first fluorine removal step is sufficient.

第一段のフッ素除去工程は、排水中のフッ素とアルミニウム源とを反応させるための反応槽を有する。図示する例では、処理原排水を導入する反応槽は、排水のショートパスを防止して反応を確実に進めるように、好ましくは第一反応槽10と第二反応槽11の二段に設けられている。第二反応槽11にはpH計(図示省略)が設けられている。また、これらの反応槽10、11には攪拌手段を設けるのが好ましい。   The first stage fluorine removal step has a reaction tank for reacting fluorine in the waste water with the aluminum source. In the example shown in the figure, the reaction tank into which the treatment raw waste water is introduced is preferably provided in two stages of the first reaction tank 10 and the second reaction tank 11 so as to prevent the short pass of the waste water and advance the reaction reliably. ing. The second reaction tank 11 is provided with a pH meter (not shown). Moreover, it is preferable to provide a stirring means in these reaction tanks 10 and 11.

さらに、本発明の処理システムは第二反応槽11から抜き出した排水を導入して凝集剤を添加して沈澱化を促進するための凝集槽12、凝集槽12から抜き出した沈澱を含む排水から沈澱スラリーを分離する沈降槽13、分離した沈澱スラリーの一部または全部を導入してアルミニウム源とアルカリ剤を添加するための条件槽14、条件槽14の沈澱スラリーを第一反応槽10に戻す循環路15を有している。   Further, the treatment system of the present invention introduces waste water extracted from the second reaction tank 11 and adds a flocculant to promote precipitation, and precipitates from the waste water containing precipitate extracted from the aggregation tank 12. A settling tank 13 for separating the slurry, a condition tank 14 for introducing a part or all of the separated precipitate slurry and adding an aluminum source and an alkaline agent, and circulation for returning the set slurry in the condition tank 14 to the first reaction tank 10 It has a path 15.

上記処理システムにおいて、フッ素含有排水ないしフッ素と共に重金属を含有する排水を第一反応槽10に導入してアルミニウム源とフッ素とを反応させ、この排水をさらに第二反応槽11に導入して上記反応を進める。アルミニウム源はアルカリ剤と共に条件槽14において添加される。このアルミニウム源とアルカリ剤を含む沈澱スラリーが第一反応槽10に導入される。アルミニウム源としては一般に硫酸アルミニウムが用いられるが、これに限らない。また、アルカリ剤としては一般に消石灰が用いられるが、これに限らない。   In the treatment system, fluorine-containing wastewater or wastewater containing heavy metal together with fluorine is introduced into the first reaction tank 10 to react the aluminum source and fluorine, and this wastewater is further introduced into the second reaction tank 11 to react the reaction. To proceed. The aluminum source is added in the condition tank 14 together with the alkaline agent. The precipitation slurry containing the aluminum source and the alkali agent is introduced into the first reaction vessel 10. Although aluminum sulfate is generally used as the aluminum source, it is not limited to this. Moreover, although slaked lime is generally used as an alkaline agent, it is not restricted to this.

処理原排水は、第一反応槽10において、条件槽15から送られた沈澱スラリーと攪拌混合され、沈澱スラリーに含まれているアルミニウム源と反応して水酸化アルミニウム沈澱を生じ、この排水をさらに第二反応槽11に導入して反応を進行させ、水酸化アルミニウム沈澱にフッ素を取り込ませて共沈させる。   The treated raw waste water is stirred and mixed with the precipitation slurry sent from the condition tank 15 in the first reaction tank 10 and reacts with the aluminum source contained in the precipitation slurry to produce aluminum hydroxide precipitate. It introduce | transduces into the 2nd reaction tank 11, a reaction is advanced, a fluorine is taken in into aluminum hydroxide precipitation, and is coprecipitated.

反応槽にはpH計を設け、反応槽内のpHを6.5〜7.5、好ましくは6.8〜7.2に制御する。図示する例では第二反応槽11にpH計が設けられている(図示省略)。このpH調整は、例えば、第一反応槽10に導入される処理原排水の性状や導入量に応じて、条件槽15において添加される消石灰や硫酸アルミニウムの添加量等を調整することによって行うと良い。反応槽内のpHが上記範囲を外れると水酸化アルミニウム沈澱が溶解し始めるので沈澱中のフッ素が溶出し、フッ素の除去効果が低下するので好ましくない。   A pH meter is provided in the reaction tank, and the pH in the reaction tank is controlled to 6.5 to 7.5, preferably 6.8 to 7.2. In the illustrated example, a pH meter is provided in the second reaction tank 11 (not shown). For example, this pH adjustment is performed by adjusting the amount of slaked lime or aluminum sulfate added in the condition tank 15 according to the properties and the amount of the treated raw wastewater introduced into the first reaction tank 10. good. If the pH in the reaction tank is out of the above range, the aluminum hydroxide precipitate starts to dissolve, so the fluorine in the precipitate elutes and the effect of removing the fluorine decreases, which is not preferable.

上記沈澱を含む排水は反応槽(図示する例では第二反応槽11)から抜き出され、凝集槽12に導入される。なお、反応槽や凝集槽や沈降槽から排水を抜き出す態様は制限されない。オーバーフローでも良く、または槽底から排出す態様でも良い。凝集槽12には高分子凝集剤を添加し、排水中の沈澱を凝集させる。凝集剤は一般的なものを使用することができる。凝集剤を添加した排水は沈降槽13に導入され、上記沈澱を含むスラリーが排水から分離される。沈降槽13としてはシックナー等が用いられる。沈澱スラリーはポンプ圧送できる固形分濃度であれば良い。   The waste water containing the precipitate is extracted from the reaction tank (second reaction tank 11 in the illustrated example) and introduced into the aggregation tank 12. In addition, the aspect which extracts drainage from a reaction tank, a coagulation tank, and a sedimentation tank is not restrict | limited. An overflow may be sufficient, and the aspect discharged | emitted from the tank bottom may be sufficient. A polymer flocculant is added to the agglomeration tank 12 to agglomerate the precipitate in the waste water. Common flocculants can be used. The waste water to which the flocculant is added is introduced into the settling tank 13, and the slurry containing the precipitate is separated from the waste water. A thickener or the like is used as the settling tank 13. The precipitation slurry may be a solid content concentration that can be pumped.

排水から分離した沈澱スラリーの全部または一部は循環路15を通じて条件槽14に導入され、ここで硫酸アルミニウム等のアルミニウム源と消石灰等のアルカリ剤が添加される。これらの添加量は先に述べたように反応槽内のpHが6.5〜7.5、好ましくは6.8〜7.2になる量に調整される。アルミニウム源およびアルカリ剤を添加した沈澱スラリーは循環路15を通じて条件槽14から反応槽(図示する例では第一反応槽10)に送られて処理原排水と混合され、反応槽から凝集槽、沈降槽および条件槽を経て再び反応槽に戻る循環処理が繰り返される。なお、沈澱の性状に応じて沈澱の一部は系外に抜泥される。   All or a part of the precipitated slurry separated from the waste water is introduced into the condition tank 14 through the circulation path 15, where an aluminum source such as aluminum sulfate and an alkaline agent such as slaked lime are added. As described above, these addition amounts are adjusted so that the pH in the reaction tank is 6.5 to 7.5, preferably 6.8 to 7.2. The precipitation slurry to which the aluminum source and the alkali agent are added is sent from the condition tank 14 to the reaction tank (first reaction tank 10 in the illustrated example) through the circulation path 15 and mixed with the raw material wastewater. The circulation process of returning to the reaction tank again through the tank and the condition tank is repeated. Depending on the nature of the precipitate, a part of the precipitate is extracted out of the system.

本発明の処理方法では、以上のように条件槽において消石灰等を添加した沈澱スラリーを反応槽に循環させるので沈澱(汚泥)が濃縮され、従って沈降性および分離性が良く、汚泥量の少ない汚泥を得ることができる。一方、条件槽を用いずに分離した汚泥をそのまま反応槽に戻して処理原排水と混合すると、消石灰等によるpH調整が進まないうちにアルミニウム源との反応が起こるので汚泥が濃縮されず、汚泥量を少なくすることができない。   In the treatment method of the present invention, the slurries with sludge added to the reaction tank are circulated in the reaction tank as described above, so that the precipitate (sludge) is concentrated, and therefore the settling and separation properties are good, and the sludge with a small amount of sludge is obtained. Can be obtained. On the other hand, if the sludge separated without using the condition tank is returned to the reaction tank as it is and mixed with the treated raw wastewater, the reaction with the aluminum source occurs before the pH adjustment by slaked lime etc., so the sludge is not concentrated and the sludge The amount cannot be reduced.

本発明の上記フッ素除去工程によれば、例えば数十mg/lのフッ素を含む処理原排水について、処理後の排水のフッ素濃度を5mg/l以下、好ましくは4mg/l以下に低減することができる。因みに、一例として、フッ素濃度20mg/lの処理原排水に対して、処理排水のフッ素濃度を4mg/l以下に低減するには、反応槽内のpHを6.8〜7.0程度に調整し、硫酸アルミニウムの添加量を3〜4mg/L排水とすれば良い。   According to the above-described fluorine removal step of the present invention, for example, with regard to the treated raw wastewater containing several tens mg / l of fluorine, the fluorine concentration of the treated wastewater can be reduced to 5 mg / l or less, preferably 4 mg / l or less. it can. For example, to reduce the fluorine concentration in the treated wastewater to 4 mg / l or less compared to the treated wastewater having a fluorine concentration of 20 mg / l, the pH in the reaction tank is adjusted to about 6.8 to 7.0. The added amount of aluminum sulfate may be 3 to 4 mg / L waste water.

フッ素と共に重金属を含む排水に対しては、上記フッ素除去工程を経た処理排水を引き続き第二段の重金属除去工程に導入して重金属を除去する。なお、この重金属除去工程は上記フッ素除去処理を行った排水と共に、フッ素濃度の低い別系統の重金属含有排水を併せて処理しても良い。   For wastewater containing heavy metal together with fluorine, the treated wastewater that has undergone the fluorine removal step is subsequently introduced into the second-stage heavy metal removal step to remove heavy metals. In addition, this heavy metal removal process may process the waste water which performed the said fluorine removal process together with the heavy metal containing waste water of another system | strain with low fluorine concentration.

重金属除去工程は、図示するように、脱フッ素処理を行った上記排水を導入する集水槽16、排水中の重金属を沈澱化する反応槽17および18、生成した沈澱を凝集する凝集槽19、排水中の沈澱を分離する沈降槽20を有している。集水槽16にはフッ素濃度の低い別系統の重金属含有排水を導入しても良い。   As shown in the figure, the heavy metal removal step includes a water collection tank 16 for introducing the waste water subjected to the defluorination treatment, reaction tanks 17 and 18 for precipitating heavy metals in the waste water, a coagulation tank 19 for aggregating the generated precipitate, waste water It has a sedimentation tank 20 for separating the sediment in it. You may introduce | transduce the drainage containing heavy metal of another system | strain with a low fluorine concentration into the water collection tank 16. FIG.

集水槽16の排水は第三反応槽17に導入し、消石灰等のアルカリ剤を添加して槽内のpHを9〜10、好ましくはpH9.5前後に調整し、排水中の重金属を水酸化物にして沈澱させる。この反応槽は排水のショートパス(排水が薬剤と十分に反応しないで流れる現象)を防止するため図示するように二段に設けると良い。第三反応槽17の排水を第四反応槽18に導入して沈澱化反応を進める。重金属の水酸化物沈澱を含む排水を凝集槽19に導入して高分子凝集剤を添加し、沈澱を凝集させて沈降性を高める。この排水をシックナー等の沈降槽20に導入して固液分離し、汚泥を排水から分離する。   The drainage of the water collection tank 16 is introduced into the third reaction tank 17, and an alkaline agent such as slaked lime is added to adjust the pH in the tank to 9-10, preferably around pH 9.5, and hydroxylate heavy metals in the drainage. And precipitate. This reaction tank is preferably provided in two stages as shown in order to prevent a short path of drainage (a phenomenon in which the drainage flows without sufficiently reacting with the drug). The waste water from the third reaction tank 17 is introduced into the fourth reaction tank 18 to advance the precipitation reaction. Drainage containing a heavy metal hydroxide precipitate is introduced into the coagulation tank 19 and a polymer flocculant is added to coagulate the precipitate to enhance the sedimentation. This waste water is introduced into a settling tank 20 such as a thickener and solid-liquid separation is performed, and sludge is separated from the waste water.

本発明の上記処理工程によれば、第一段のフッ素除去工程において、中性域で沈澱を生成させてフッ素を共沈させ、第二段の重金属除去工程においてアルカリ域で重金属を沈澱化し、フッ素と重金属をおのおの最適なpH域で不溶化するので、フッ素と重金属の除去効果に優れており、排水中のフッ素濃度と重金属濃度を何れも大幅に低減することができる。   According to the above treatment step of the present invention, in the first stage fluorine removal step, a precipitate is generated in the neutral region to coprecipitate fluorine, and in the second step heavy metal removal step, the heavy metal is precipitated in the alkali region, Since fluorine and heavy metal are insolubilized in the optimum pH range, the fluorine and heavy metal removal effect is excellent, and both the fluorine concentration and heavy metal concentration in the waste water can be greatly reduced.

以下に本発明の実施例を比較例と共に示す。なお、これらの例は何れも回分試験によって行った。
〔実施例1〕
図1に示す本発明のフッ素除去工程に従ってフッ素含有排水を処理した。一方、比較例として図1の条件槽を用いずに沈澱スラリーをそのまま第一反応槽に戻す従来の澱物繰り返し法に基づいて脱フッ素処理を進めた。何れも処理原排水としてフッ素濃度15〜20mg/lの排水を用い、反応槽のpHを7.0〜7.5に調整した。この結果を図2に示した。
図2に示すように、本発明の試料においては、沈澱が濃縮するので沈澱の沈降速度が高く、約0.5m/h〜約0.65m/hであり、繰り返し回数に比例して沈澱の沈降速度が高くなる傾向が見られた。一方、比較試料では、試験開始直後の汚泥の沈降速度は高いが、汚泥の繰り返しによって沈降速度は急激に低下し、3回繰り返し後の汚泥沈降速度は約0.05m/h以下であり、本発明の処理方法における汚泥の沈降速度は比較例の約9倍〜10倍である。
Examples of the present invention are shown below together with comparative examples. All of these examples were conducted by batch tests.
[Example 1]
The fluorine-containing wastewater was treated according to the fluorine removal step of the present invention shown in FIG. On the other hand, as a comparative example, the defluorination treatment was advanced based on the conventional starch repetition method in which the precipitated slurry was returned to the first reaction tank as it was without using the condition tank of FIG. In any case, wastewater having a fluorine concentration of 15 to 20 mg / l was used as the raw wastewater for treatment, and the pH of the reaction tank was adjusted to 7.0 to 7.5. The results are shown in FIG.
As shown in FIG. 2, in the sample of the present invention, since the precipitate is concentrated, the sedimentation rate of the precipitate is high, from about 0.5 m / h to about 0.65 m / h. There was a tendency for the sedimentation rate to increase. On the other hand, in the comparative sample, the sedimentation rate of the sludge immediately after the start of the test is high, but the sedimentation rate rapidly decreases due to the repeated sludge, and the sludge sedimentation rate after 3 repetitions is about 0.05 m / h or less. The sludge settling speed in the treatment method of the invention is about 9 to 10 times that of the comparative example.

〔実施例2〕
図1に示す本発明のフッ素除去工程において、硫酸アルミニウムの添加量と反応槽のpHおよび処理排水のフッ素濃度との関係を調べた。なお、処理原排水としてフッ素濃度15〜20mg/lの排水を用いた。この結果を図3に示した。
図示するように、処理排水のフッ素濃度を4mg/l以下に低減するには、反応槽内のpHを6.8〜7.0程度に調整し、硫酸アルミニウムの添加量を3〜4mg/L排水とすれば良い。
[Example 2]
In the fluorine removal step of the present invention shown in FIG. 1, the relationship between the added amount of aluminum sulfate, the pH of the reaction tank, and the fluorine concentration of the treated waste water was examined. In addition, the waste water with a fluorine concentration of 15 to 20 mg / l was used as the treatment raw waste water. The results are shown in FIG.
As shown in the figure, in order to reduce the fluorine concentration in the treated wastewater to 4 mg / l or less, the pH in the reaction vessel is adjusted to about 6.8 to 7.0, and the amount of aluminum sulfate added is 3 to 4 mg / L. It should be drained.

〔実施例3〕
図1に示す本発明のフッ素除去工程に従って排水のフッ素を除去した。試験条件を表1に示し、試験結果を表1および図4に示した。表1の結果に示すように、本発明のフッ素除去処理を行うことによって、原排水のフッ素を約79%〜約92%除去することができた。また、図4の結果に示すように、澱物の濃度が試料Aでは約550g/l、試料Bでは250g/lに高めることができ、良好に濃縮された澱物を得ることができた。
Example 3
The wastewater fluorine was removed according to the fluorine removal step of the present invention shown in FIG. The test conditions are shown in Table 1, and the test results are shown in Table 1 and FIG. As shown in the results of Table 1, by performing the fluorine removal treatment of the present invention, it was possible to remove about 79% to about 92% of fluorine from the raw waste water. Further, as shown in the results of FIG. 4, the starch concentration could be increased to about 550 g / l in the sample A and 250 g / l in the sample B, and a well concentrated starch could be obtained.

Figure 2006320865
Figure 2006320865

本発明の処理方法の一例を示す工程図Process drawing which shows an example of the processing method of this invention 実施例1の結果を示すグラフThe graph which shows the result of Example 1 実施例2の結果を示すグラフThe graph which shows the result of Example 2 実施例3の結果を示すグラフThe graph which shows the result of Example 3

符号の説明Explanation of symbols

10−第一反応槽、11−第二反応槽、12−凝集槽、13−沈降槽、14−条件槽、15−循環路、16−集水槽、17−第三反応槽、18−第四反応槽、19−凝集槽、20−沈降槽。
10-first reaction tank, 11-second reaction tank, 12-flocculation tank, 13-sedimentation tank, 14-condition tank, 15-circulation path, 16-water collecting tank, 17-third reaction tank, 18-fourth Reaction tank, 19-flocculation tank, 20-sedimentation tank.

Claims (8)

フッ素を含有する排水にアルミニウム源を添加して水酸化アルミニウム沈澱と共にフッ素を共沈させるフッ素除去方法において、フッ素含有排水を反応槽に導入して上記沈澱を生成させ、該沈澱のスラリーを排水から分離して、その一部または全部を条件槽に導入し、該条件槽において沈澱スラリーにアルミニウム源とアルカリ剤を添加した後に上記反応槽に戻してpHを調整し、この沈澱スラリーの循環を繰り返して排水中のフッ素濃度を低減することを特徴とする排水の処理方法。
In a fluorine removal method in which an aluminum source is added to wastewater containing fluorine to coprecipitate fluorine together with aluminum hydroxide precipitation, the fluorine-containing wastewater is introduced into a reaction vessel to form the precipitate, and the slurry of the precipitate is removed from the wastewater. Separately, introduce a part or all of it into a conditioned tank, add an aluminum source and an alkaline agent to the precipitated slurry in the conditioned tank, return to the reaction tank to adjust the pH, and repeat the circulation of the precipitated slurry. A method for treating wastewater, characterized in that the fluorine concentration in the wastewater is reduced.
請求項1の処理方法において、反応槽の排水のpHを6.5〜7.5に調整する排水の処理方法。
The method for treating waste water according to claim 1, wherein the pH of the waste water in the reaction tank is adjusted to 6.5 to 7.5.
請求項1または2に記載する処理方法において、フッ素含有排水を第一反応槽に導入して攪拌下でアルミニウム源とフッ素とを反応させ、この排水をさらに第二反応槽に導入して上記反応を進め、第二反応槽から排水を抜き出して沈降槽に導入し、該沈降槽で沈澱スラリーを排水から分離し、この沈澱スラリーの一部または全部を条件槽に導入し、該条件槽において沈澱スラリーにアルミニウム源とアルカリ剤を添加した後に上記第一反応槽に戻してpHを調整し、この沈澱スラリーの循環を繰り返して排水中のフッ素濃度を低減する排水の処理方法。
The treatment method according to claim 1 or 2, wherein the fluorine-containing wastewater is introduced into the first reaction tank, the aluminum source and fluorine are reacted under stirring, and the wastewater is further introduced into the second reaction tank to perform the above reaction. The waste water is extracted from the second reaction tank and introduced into the settling tank. The settling tank separates the precipitated slurry from the wastewater, and a part or all of the precipitated slurry is introduced into the condition tank. A wastewater treatment method in which an aluminum source and an alkali agent are added to the slurry, and then returned to the first reaction tank to adjust the pH, and the circulation of the precipitated slurry is repeated to reduce the fluorine concentration in the wastewater.
フッ素と共に重金属を含有する排水に対して、請求項1〜3の何れかに記載する処理工程によってフッ素を除去した後に、該排水にアルカリ剤を添加してpH9〜10に調整して排水中の重金属を沈澱化し、排水から除去する排水の処理方法。
For wastewater containing heavy metal together with fluorine, after removing fluorine by the treatment step according to any one of claims 1 to 3, an alkaline agent is added to the wastewater to adjust pH to 9 to 10 in the wastewater. Wastewater treatment method that precipitates heavy metals and removes them from the wastewater.
請求項1〜3の何れかに記載する処理方法において、反応槽から抜き出した排水を凝集槽に導入し、凝集剤を添加して沈澱の生成を促進する排水の処理方法。
The treatment method according to any one of claims 1 to 3, wherein the waste water extracted from the reaction tank is introduced into a coagulation tank, and a coagulant is added to promote precipitation.
排水中のフッ素とアルミニウム源とを反応させるための反応槽、反応槽から抜き出した排水を導入して凝集剤を添加して沈澱化を促進するための凝集槽、凝集槽から抜き出した沈澱を含む排水から沈澱スラリーを分離する沈降槽、分離した沈澱スラリーの一部または全部を導入してアルミニウム源とアルカリ剤を添加するための条件槽、条件槽の沈澱スラリーを反応槽に戻す循環路を有することを特徴とする排水の処理装置。
Includes a reaction tank for reacting fluorine in the waste water with an aluminum source, a waste water extracted from the reaction tank, adding a flocculant to promote precipitation, and a precipitate extracted from the aggregation tank A settling tank for separating the precipitated slurry from the waste water, a condition tank for introducing a part or all of the separated precipitate slurry and adding an aluminum source and an alkaline agent, and a circulation path for returning the set slurry to the reaction tank. Wastewater treatment equipment characterized by that.
請求項6の処理装置において、第一反応槽と第二反応槽、第二反応槽に設けたpH計、第二反応槽から抜き出した排水を導入する凝集槽、凝集槽から抜き出した沈澱を含む排水から沈澱スラリーを分離する沈降槽、分離した沈澱スラリーの一部または全部を導入してアルミニウム源とアルカリ剤を添加するための条件槽、条件槽の沈澱スラリーを第一反応槽に戻す循環路を有することを特徴とする排水の処理装置。
In the processing apparatus of Claim 6, the pH meter provided in the 1st reaction tank and the 2nd reaction tank, the 2nd reaction tank, the coagulation tank which introduces the waste_water | drain extracted from the 2nd reaction tank, The precipitation extracted from the coagulation tank is included. A settling tank for separating the precipitate slurry from the waste water, a condition tank for introducing a part or all of the separated precipitate slurry and adding an aluminum source and an alkaline agent, and a circulation path for returning the set slurry to the first reaction tank A wastewater treatment apparatus characterized by comprising:
請求項6または7に記載するフッ素除去工程の後に、排水にアルカリ剤を添加してpH9〜10の範囲で排水中の重金属を沈澱化する沈澱槽、澱物を含む排水を固液分離する槽を有する重金属除去工程を含む排水の処理装置。
A precipitation tank for precipitating heavy metals in the wastewater by adding an alkaline agent to the wastewater after the fluorine removing step according to claim 6 or 7, and a tank for solid-liquid separation of the wastewater containing starch. A wastewater treatment apparatus including a heavy metal removing step.
JP2005148154A 2005-05-20 2005-05-20 Fluorine-containing wastewater treatment method and apparatus Withdrawn JP2006320865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005148154A JP2006320865A (en) 2005-05-20 2005-05-20 Fluorine-containing wastewater treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005148154A JP2006320865A (en) 2005-05-20 2005-05-20 Fluorine-containing wastewater treatment method and apparatus

Publications (1)

Publication Number Publication Date
JP2006320865A true JP2006320865A (en) 2006-11-30

Family

ID=37540917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005148154A Withdrawn JP2006320865A (en) 2005-05-20 2005-05-20 Fluorine-containing wastewater treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP2006320865A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102001762A (en) * 2009-08-31 2011-04-06 三菱综合材料株式会社 Process method of a selenium-containing discharge water
US9868656B2 (en) 2011-12-28 2018-01-16 Mitsubishi Heavy Industries Mechatronics Systems Wastewater treatment device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102001762A (en) * 2009-08-31 2011-04-06 三菱综合材料株式会社 Process method of a selenium-containing discharge water
US9868656B2 (en) 2011-12-28 2018-01-16 Mitsubishi Heavy Industries Mechatronics Systems Wastewater treatment device

Similar Documents

Publication Publication Date Title
CN209797710U (en) Device for strengthening treatment of metallurgical thallium-containing wastewater
JP2009072769A (en) Sewage treatment system
JP4879590B2 (en) Method and apparatus for concentration and volume reduction of sludge
JP2006224023A (en) Method and apparatus for treating heavy metal-containing waste water
JP2006320865A (en) Fluorine-containing wastewater treatment method and apparatus
JP2017159194A (en) Treatment equipment and treatment method for heavy metal-containing water
CN110818123B (en) Treatment method of trivalent chromium plating waste water
JP4723624B2 (en) Disposal of chlorine-containing fine powder waste
JPH0679286A (en) Treatment of selenium-containing waste water
JP2007260556A (en) Phosphoric acid-containing wastewater treatment method and apparatus
JP5073354B2 (en) Waste liquid treatment method and treatment equipment using iron-oxidizing bacteria
JP6187507B2 (en) Waste liquid treatment method and waste liquid treatment system
JP7142600B2 (en) Water treatment method for removing fluoride ions
JP5693992B2 (en) Method for recovering dissolved iron from wastewater containing various metal ions
JP2016137429A (en) Method and equipment for treating heavy metal-containing waste water
JP6723057B2 (en) Water treatment method and water treatment system
JP2003181467A (en) Method for treating selenium-containing waste water
CN105906098B (en) A method of processing industrial wastewater containing nickel complex
JP4827876B2 (en) Method for treating boron-containing water
JP2861371B2 (en) Wastewater treatment method
JP3696943B2 (en) Treatment agent for heavy metal removal from wastewater and wastewater treatment method using the same
JP2008149222A (en) Removal method of fluorine ions in hot spring water
KR102592025B1 (en) An automatic control method for treatment of wastewater with heavy metal
JP7259620B2 (en) Method for treating lead-containing outside water
JP2019063710A (en) Treatment method and treatment apparatus of liquid to be treated

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061117

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20070109

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080805