JP7141564B1 - 静電塗装装置 - Google Patents

静電塗装装置 Download PDF

Info

Publication number
JP7141564B1
JP7141564B1 JP2022083981A JP2022083981A JP7141564B1 JP 7141564 B1 JP7141564 B1 JP 7141564B1 JP 2022083981 A JP2022083981 A JP 2022083981A JP 2022083981 A JP2022083981 A JP 2022083981A JP 7141564 B1 JP7141564 B1 JP 7141564B1
Authority
JP
Japan
Prior art keywords
high voltage
coating machine
electrostatic coating
value
electrostatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022083981A
Other languages
English (en)
Other versions
JP2023164226A (ja
Inventor
達也 中石
昇吉 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carlisle Fluid Technologies LLC
Original Assignee
Carlisle Fluid Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carlisle Fluid Technologies LLC filed Critical Carlisle Fluid Technologies LLC
Application granted granted Critical
Publication of JP7141564B1 publication Critical patent/JP7141564B1/ja
Priority to PCT/US2023/013025 priority Critical patent/WO2023154562A1/en
Publication of JP2023164226A publication Critical patent/JP2023164226A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrostatic Spraying Apparatus (AREA)

Abstract

【課題】近接塗装法に従う塗装を実行する際に、従来よりも高速化した線速を設定しても、スパーク発生リスクを低減できる静電塗装法を提供する。【解決手段】カスケードによって生成した高電圧によって静電塗装を実行する静電塗装機において、該静電塗装機の全静電容量C0とブリーダ抵抗器R1との積で定義される時定数τが、0.005乃至0.050となるように全静電容量C0とブリーダ抵抗器R1との積が設定されている。【選択図】図1

Description

本発明は静電塗装装置に関する。より詳しくは、本発明は、近接塗装法の運用に適した静電塗装装置に関する。従来一般的には塗装距離つまり静電塗装機と被塗物との間隔は約150mm~300mmに設定される。静電塗装機を150mmよりも接近させて運用するのが近接塗装法である。被塗物と静電塗装機との間の距離つまり塗装距離を約150mm~300mmに設定して運用する従来の塗装法を「遠位塗装法」と呼び、他方、150mmよりも短い塗装距離で運用する塗装法を「近接塗装法」と呼ぶ。本発明によれば、近接塗装法で問題となる着火性放電(以下、「スパーク」という。)が発生するリスクを低減できる。ここに、スパークとは、溶剤蒸気が着火する放電エネルギー(0.24mJ)以上の火花放電をいう。
静電塗装機は高電圧を用いて塗装を行う。静電塗装機は、印加される高電圧によって塗料を帯電させる。帯電した塗料は被塗物に静電吸着される。このため、静電塗装機は、高電圧発生器が生成した高電圧を塗装機の先端(例えば、回転霧化頭や外部電極)に印加するための高電圧印加経路を備えている。静電塗装機を含む塗装装置は、静電塗装機を制御するための高電圧コントローラを有している。運用時の安全性を確保するために、高電圧コントローラには、静電塗装機に印加する高電圧を制御する高電圧安全制御機能が組み込まれている。高電圧安全制御を実行するために、高電圧コントローラには、高電圧印加経路を流れる高電圧電流が常に入力される。
高電圧を発生する方法はコッククロフト・ウォルトン回路(多段式整流回路)、交流電圧整流式、静電式発電機、インパルス式などがある。コッククロフト・ウォルトン回路(多段式整流回路)は、多数のコンデンサに電荷を充電して高電圧を生成する回路である。コッククロフト・ウォルトン回路の高電圧発生器は小型化が進み、この高電圧発生器は「カスケード」と通称され、昨今の静電塗装機はカスケードを内蔵することが主流となっている。カスケードを内蔵した静電塗装機は「パックイン型静電塗装機」と呼ばれている。外部の高電圧発生器から高電圧ケーブル(HVケーブル)を通じて高電圧の供給を受ける静電塗装機(「パックアウト型静電塗装機」と言われている。)との対比で、パックイン型静電塗装機はHVケーブルが不要であるという特徴がある。
塗装作業を実行している時つまり運用時のスパーク発生の問題に対して3つの解決手段が遠位塗装法において実用化されている。第1に過電流安全制御機能であり、第2に出力高電圧制御機能であり、第3に最小高電圧保護制御機能である。特許文献1は、これら3つの機能を開示している。
前記過電流安全制御機能は、絶対値感度(カレントリミット(CL)制御)に基づいて高電圧電流の異常検知する第1の機能と、微分値感度(スロープ感度(SLP))に基づいて、ある一定時間の高電圧電流の異常増加を検知する第2の機能とを有し、異常を検知したときに、カスケードへの供給電力を遮断して高電圧発生器の出力停止動作を行う。
前記出力高電圧制御機能は、カレントバッファ制御において、高電圧電流が電流制限値(CB)に達したときに、高電圧発生器の出力を停止せずに、高電圧発生器が出力する高電圧の絶対値を降下させる。すなわち、出力高電圧制御機能は、高電圧電流が電流制限値以上にならないように、高電圧発生器の高電圧出力の絶対値を下げる。
前記最小高電圧保護制御機能は、上記出力高電圧制御機能の働きにより高電圧発生器の出力高電圧が低下して、その絶対値が、アンダーボルテージ制御において、高電圧下限感度(UV)以下となったときに、高電圧発生器の出力停止動作を行う。
特開平2-298374号公報
従来の遠位塗装法において、静電塗装機がワークに異常接近し、これに伴って高電圧電流が異常上昇したときに、これを検知すると直ちに前記過電流安全制御機能が働く。過電流安全制御機能の動作に基づいて、カスケードは、その出力が停止される。
塗着効率を高めるのに、静電塗装機をワークに接近させるのが良い。この観点から近接塗装法が検討されている(JP特開2017-13009号公報)。
塗装距離を短く設定するのが近接塗装法である。上述した遠位塗装法で実行されていたスパーク発生防止策をそのまま近位塗装法に適用した場合、塗装距離が近いことに伴ってスパーク発生防止策が追従できなくなる虞がある。その結果、近接塗装法の採用は、スパーク発生のリスク増大を招く。
近年は生産効率を高めるため塗装機の塗装速度(以下、「線速」という。)を高速化する傾向にある。静電塗装が自動車の塗装に採用されて久しい。自動車塗装において、従来の線速は300mm/sec~500mm/secであったが、これを500mm/sec~1200mm/secへと高速化する傾向にある。
塗装ロボットは、自動車塗装だけではなく、一般的な様々な製品の塗装(一般塗装)にも広く導入されている。一般塗装においても高効率化のために近接塗装法や線速の高速化が検討され始めている。
上述した遠位塗装法で実行されていたスパーク発生防止策を近接塗装法に適用するだけでなく、線速を高速化する場合、益々、スパーク発生防止策が追従できなくて、その結果、スパーク発生のリスクが、益々、増大するのは言うまでもない。
本発明は、近接塗装法に従う塗装を実行する際に、従来よりも高速化した線速を設定しても、スパーク発生リスクを低減できる静電塗装法を提供することにある。
本発明者は、塗装機残留電圧によるスパークを低減する為に高電圧安全機能が作動した後に静電塗装機の高電圧供給系統に残留する電荷を素早く安全なレベルまで減衰させることを目的に線速と静電塗装機の時定数τの関係に着目して本発明を案出したものである。本発明によれば、時定数τが0.005乃至0.050となるように、静電塗装機の全静電容量C0と、その残留電圧を減衰させるブリーダ抵抗器R1と、の積を設定したことを特徴とする。
本発明の具体例において、最も好ましい時定数τは0.015乃至0.033である。
ここに時定数τは次の式1で定義される。
(式1) τ=C×R
ここに、後に説明するように、C0:は全静電容量であり、Rはブリーダ抵抗器である。
一般論として、「時定数」とは、電気回路における緩和時間を意味し、平衡状態の63.2%にするまでの時間で定義される。
本発明が適用された静電塗装機の全体構成図である。 静電塗装機がスパークを発生させない理想的な高電圧制御を説明するための図である。 静電塗装機の高電圧安全制御部の全体構成図である。 従来の静電塗装機において、線速300mm/secで被塗物に接近した時にスパーク発生を回避するために残留電圧の減衰を説明するための図である。 従来の静電塗装機において、線速500mm/secで被塗物に接近した時にスパーク発生を回避するために残留電圧の減衰を説明するための図である。 従来の静電塗装機において、被塗物への接近が線速1200mm/secでは、従来の方策でスパーク発生を回避することができないことを説明するための図である。 線速と制動距離と制動時間との関係を説明するための一覧表である。 線速1200mm/secにおいて、本発明に従って時定数により静電塗装機を設計したときの効果を説明するための図である。 各塗装距離における高電圧運転理想線上の高電圧値と被塗物電流との関係を説明するための図である。 -60kVが印加されているときに、塗装距離と被塗物電流の関係を線速との関係で表した図である。 -30kVが印加されているときに、塗装距離と被塗物電流の関係を線速との関係で表した図である。 CB、CLの設定値を変更する制御を実行するときのCB、CLの設定値の変更特性を説明するための図である。
図1は、本発明が適用される静電塗装機の全体構成図である。参照符号2は静電塗装機を示し、参照符号4は高電圧コントローラである。また、図1に示す参照符号は次の要素を示す。
1:ブリーダ抵抗器
2:直列抵抗器
V:塗装機先端の高電圧
1:全電流(高電圧発生器電流)
2:リーク電流
3:ブリーダ抵抗器電流(I3=V/R
4:出力電流(I4=I1-I3
5:被塗物電流(I5=I1-I2-I3
1:カスケード6の静電容量
2:カスケード6を除くカスケード6から静電塗装機2の先端までの静電容量
0:全静電容量
De:放電エネルギー
L:塗装距離(塗装機と被塗物との間の離間距離)
W:被塗物
図1に図示の静電塗装機2は回転霧化頭2aを備えた回転霧化型塗装機であるが、本発明は、回転霧化型塗装機に限定されずエア霧化型静電塗装機、液圧霧化型静電塗装機にも適用可能である。
図1を参照して、高電圧を発生するカスケード6を含む静電塗装機2の全体が保有するエネルギーによってスパークが発生した場合の放電エネルギーDeは次の式2で表すことができる。
(式2) De=(1/2)×C×V
ここに、静電塗装機2の全体の静電容量つまり全静電容量Cは、次の式3で定義することができる。
(式3) C=C1+C
コッククロフト・ウォルトン回路(多段式整流回路)で構成されるカスケード6は、周知のように、内部トランス側から交流高電圧をコンデンサに充電し、ダイオードで整流しつつ積み重ねて負極直流高電圧を発生させる。ここに、昇圧された負極高電圧はダイオードによって内部トランス側に戻ることが阻止される。カスケード内部の出力端から高電圧電流が流れる先は被塗物Wとブリーダ抵抗器R1である。よって、カスケード6のコンデンサの充電容量つまり残留電圧を実質的に除去するのは、ブリーダ抵抗器R1だけである。この考察に基づけば、残留電圧を放電するのに要する時間つまり時定数τは、上記式1(τ=C×R)によって定義することができる。
図1を参照して前述した静電塗装機2において、図2は、実験結果に基づくスパーク発生域SParを図示している。破線SLは、塗装を実行している最中にスパークを発生させないための高電圧安全目安となる安全ラインを示す。安全ラインSLは、塗装距離Lを10mm単位で説明すると、静電塗装機2が被塗物Wに10mm接近するときに、高電圧Vの絶対値を約6kV低下させることでスパークの発生を防止できることを示している。
安全ラインSLを念頭に置いて、図2は、-60kVの高電圧を印加した静電塗装機2が従来の塗装距離L=200mmの遠位塗装法から被塗物に接近し、近接塗装法を実施する場合において実線200は理想的な安全高電圧制御を表している。塗装距離L=100mmから更に被塗物に接近する場合は安全ラインSLに沿って高電圧を制御する。静電塗装機2が被塗物Wに10mm接近するときに、高電圧Vの絶対値を約6kV低下させる制御を実行すればスパークの発生を防止できる。
さて、塗装ロボットによる塗装の運用において、自動車ボディのような大きな被塗物は台車に載置された状態で塗装が実行される。台車に乗せられて被塗物は塗装工程中、台車との関係で位置変位が小さい。このことから、塗装ロボットによる塗装機の制御によって、被塗物に対する塗装機の相対的な位置が所望の設定通りに保たれながら塗装を実行することができる。
ドアミラーのカバーのような比較的小さな被塗物は複数個をハンガーに掛けてオーバーヘッド・トロリー式コンベアに吊り下げられる。すなわち、コンベアは天井に配置され、被塗物を吊り下げたハンガーはコンベアによって搬送される。そして、塗装ロボットを使って静電塗装が行われる。作業者によって、ハンガーに被塗物が組み付けられ、そして、ハンガーがコンベアに吊り下げられる。被塗物を正確にハンガーに設置するのは容易ではない。また、コンベアに吊り下げられたハンガーは、搬送中、揺れる。このことから、被塗物に対する塗装機の相対的な位置は一律ではない。このような環境の下で近接塗装法を採用するには、高度な安全性を確保しつつ、近接塗装法の適正な運用つまりスパーク発生のリスクを低減する方法の開発が必要となる。
高電圧コントローラ4はメモリM(図1)を有し、高電圧コントローラ4には、図3に示すように、過電流安全制御機能、出力高電圧制御機能、最小高電圧保護制御機能を実行する回路が組み込まれている。
高電圧安全制御部30は、現在の高電圧の出力電流I4を常時監視する高電圧電流値監視部310と、現在の高電圧Vを常時監視する高電圧監視部312(A)、(B)とを有している。高電圧電流値監視部310には、コッククロフト・ウォルトン回路による脈動成分ΔVの影響を受けない高電圧電流が取り込まれる。
高電圧電流値監視部310から高電圧の出力電流I4の現在の値が出力高電圧制御部302及び過電流安全制御部304に供給される。出力高電圧制御部302は、従来と同様に、上昇する高電圧の出力電流I4が電流制限値CBに達すると、カスケード6の出力高電圧Vの値を小さくする出力高電圧制御信号を生成する。この出力高電圧制御信号に基づいてカスケード6の出力が制御される(出力高電圧制御機能(CB)の実行)。
過電流安全制御部304は、従来と同様に、高電圧の出力電流I4が異常に上昇して絶対値感度CLよりも高い値になったら出力停止信号を生成する。この出力停止信号に基づいてカスケード6の出力が停止される(過電流安全制御機能(CL)の実行)。
図3において、電流制限値設定(CB)である参照符号320はCB設定変更部を示し、絶対値設定(CL)である参照符号322はCL設定変更部を示す。CB設定変更部320及びCL設定変更部322は必ずしも必須な構成要素ではないが、確実なスパーク発生の防止のために、CB設定変更部320及びCL設定変更部322を設けるのが好ましい。高電圧監視部312(A)、312(B)から高電圧Vの現在値が入力される。CB設定変更部320には、メモリMから読み込んだ電流制限値CBの登録値が入力され、CB設定変更部320において、高電圧Vの現在値に基づいて該現在値に対応する電流制限値CBとなるように電流制限値CBの設定値が変更される。CL設定変更部322には、メモリMから読み込んだ絶対値感度CLの登録値が入力され、CL設定変更部322において、高電圧Vの現在値に基づいて該現在値に対応する絶対値感度CLとなるように絶対値感度CLの設定値が変更される。
出力高電圧制御部302は、CB設定変更部320から受け取った電流制限値CBの設定値に基づいて出力高電圧制御(CB)が実行される。過電流安全制御部304は、CL設定変更部322から受け取った絶対値感度CLの設定値に基づいて過電流安全制御(CL)が実行される。
出力高電圧制御部302が生成した高電圧Vの値は、現在の高電圧の値であるとして、高電圧監視部314を通じて最小高電圧保護制御部306に供給される。最小高電圧保護制御部306には、メモリMから読み込んだ高電圧下限感度UVの登録値が入力され、最小高電圧保護制御部306は高電圧下限感度UVの設定値に基づいて最小高電圧保護制御を実行する。すなわち、カスケード6の高電圧の絶対値が高電圧下限感度UV以下となったときに、カスケード6の出力が停止される。
図示を省いた塗装ロボットを動作させて静電塗装を実行している最中に、静電塗装機2が被塗物Wに異常接近し、これに伴って高電圧の出力電流I4〔出力電流(I4=I1-I3)〕が異常上昇したときに、これを検知すると直ちに過電流安全制御機能が働く。過電流安全制御機能(以下, CL制御及びSLP制御という。)の動作に基づいて、カスケード6は、その出力が停止される。また、出力高電圧制御機能(CB制御)による出力高電圧制御についても、静電塗装機先端の高電圧Vを線速に対応して、その絶対値を急速に低下させる必要がある。
SLP制御は広く周知であり、高電圧電流値を一定時間の間隔で読込み(サンプリング時間)、その値にメモリMから読み込んだ微分感度SLPの登録値を加算し閾値としている。前述と同様に高電圧の出力電流I4が異常上昇したときに安全制御機能として働く。尚、安全制御機能を二重、三重に準備することは静電塗装を安全に運用するために必要である。因みに近接塗装の高線速化における最適なサンプリング時間は10~100msecである。
近接塗装法では、異常接近によりカスケード6の出力を停止したとき、又は、CB制御による高電圧の絶対値を低下させるとき、遠位塗装法とは違った新たな課題が発生する。この新たな課題は、静電塗装機に残留する電荷である。この問題について次に説明する。
CL制御及びSLP制御は高電圧電流の異常上昇の検知に基づく緊急停止信号を受けて動作し、高電圧コントローラ4がカスケード6に電力を供給するのを遮断した後、静電塗装機2には電荷が残留する。ここで、カスケード6を含む高電圧印加経路(例えば回転霧化頭2aなどの高電圧電極やエアモータなど)の全静電容量Cの大小によって残留する電荷量が異なる。全静電容量Cが大きければ、残留する電荷量が多くなり、これに伴う残留電圧が減衰するのに時間を必要とする。
次に、塗装ロボットは、緊急停止信号の生成から塗装ロボットの動作が完全に停止するまで時間が必要である。この時間は「制動時間」と呼ばれている。また、緊急停止信号の生成から塗装ロボットの慣性による動作が完全に停止するまで、塗装ロボットの動作が継続する。この継続した慣性動作による塗装機の移動量を「制動距離」と呼ぶ。
近接塗装法は、被塗物に塗装機を接近した状態で塗装を実行する。このことから、異常を検知して緊急停止信号が生成され、この緊急停止信号に基づいて、塗装ロボットの動作を停止させる制御が実行されても、塗装ロボットの動作は直ぐに止まらず、上述した制動時間、制動距離の問題が常に発生する。すなわち、制動時間の間、塗装ロボットが移動し、これに伴って塗装機が移動する。近接塗装において、制動距離によって、塗装ロボットの一部を構成する静電塗装機2がスパーク発生域SParに侵入してしまう可能性がある。そして、残留電圧によってスパークが発生するリスクがある。
CB制御は、高電圧電流が電流制限値(CB)に達したときに、高電圧発生器の出力を停止せずに、高電圧発生器が出力する高電圧の絶対値を降下させる。このとき高電圧コントローラ4が高電圧の絶対値を降下させる制御を実行しても、静電塗装機2の残留電圧を減衰できる時間よりも早く高電圧を降下させることは出来ない。
図4は従来の静電塗装機に関する図であり、図2の安全ラインSLすなわち高電圧安全理想線200に対応する残留電圧の減衰を示す図である。従来の静電塗装機の時定数τを計算により求めたところ、τ=0.132であった。図4は、線速300mm/secで被塗物に向かって接近する最悪の状況を想定したときの図である。図4の2点鎖線100は、塗装距離L=100mm、静電塗装機の先端電圧V=-60kVを起点にして、カスケード6の出力高電圧が停止、又は、CB制御の降下制御量が最大限のとき、塗装機先端の高電圧Vが0.132sec毎に63.2%へ降下する残留電圧の降下曲線である。
図4の2点鎖線100を参照して、線速300mm/secの場合で100mmを0.33secで移動するのでスパーク発生域SParに侵入する塗装距離L=13mmであるから、300mm/secの制動距離である22mmから逆算して、スパーク発生域SParの手前となる塗装距離L=35mmまでに緊急停止信号を送信すればスパーク発生を回避できる。また、破線100は高電圧運転理想線(実線)に近似しているので、出力高電圧制御機能を使ってCB制御も可能である。
図5は、線速500mm/secで被塗物に向かって接近することを想定したときの図である。図5において、2点鎖線102を参照して、線速500mm/secの場合、100mmを0.20secで移動するのでスパーク発生域SParに侵入する塗装距離L=23mmであるから、500mm/secの制動距離である50mmから逆算して、スパーク発生域SParの手前となる塗装距離L=73mmまでに緊急停止信号を送信すればスパーク発生を回避できる。
図6は、線速1200mm/secで運用したときの図である。図6において、2点鎖線104を参照して、線速1200mm/secの場合、100mmを0.083secで移動するのでスパーク発生域SParに侵入する塗装距離L=44mmであるから、1200mm/secの制動距離である280mmから逆算して、スパーク発生域SParの手前となる塗装距離L=324mmまでに緊急停止信号の送信が必要である。このことは近接塗装法そのものが成立できないことを意味している。仮に、出力高電圧制御機能を使ってCB制御を行っても高電圧運転理想線200すなわち高電圧安全理想線に近似していないのでCB制御も不可能である。
すなわち、高電圧コントローラ4が、高電圧運転理想線200を目指して制御したとしても、静電塗装機2の全体の残留電圧Vが高電圧運転理想線200よりも遙かに高く、CB制御では高電圧運転理想線200を追従できない。
図7は、一般的な塗装ロボットの線速と制動距離及び制動時間との関係(実測値)を示す。
近接塗装法において線速1200mm/secを実現するには、高速で残留電圧を減衰させる必要がある。これを実現できる具体例を図8に示す。図8を参照して、線速1200mm/secにおいて、高電圧運転理想線未満となる時定数τ=0.005の降下曲線を図8の1点鎖線110aと2点鎖線110bで示す。ここに、塗装距離L=100mmで-60kVから最速で減衰させようとしたときを110aで示し、塗装距離L=100mmから50mmまでの塗装機先端の高電圧Vは高電圧運転理想線200より下回るので、高電圧運転理想線200通りのCB制御で運転して塗装距離L=50mmで-30kVまで降下した点でUV検知し出力高電圧を停止する。その塗装距離L=50mmの-30kVからの減衰を110bで示している。前述と同様に線速1200mm/secで被塗物Wに向かって接近しても残留電圧は安全電圧以下に降下するのでSParに侵入しないことが分かる。尚、安全電圧とは放電エネルギー(式2)からDeが着火エネルギー(0.24mJ)に達しない電圧を意味する。そして、安全電圧は静電塗装機先端の高電圧Vと全静電容量Cとの積で決まる。具体的には、安全電圧の目安として-3.5kVを例示している。
尚、時定数τ=0.005より小さくしたときにブリーダ抵抗器Rの電力特性やコッククロフト・ウォルトン回路の昇圧特性からカスケード6のサイズが大型化して静電塗装機2にカスケード6を内装できない場合には、カスケード6を外部に配置しても良い。変形例として、ブリーダ抵抗器Rの機能と同等の機能となる特開平8-187453で知られている半導電膜や抵抗器を静電塗装機2の高電圧体とアース点の間の外周や内部に付設してもよい。
時定数τ=0.050としたときの全静電容量Cとブリーダ抵抗器Rの実施例はC=33pF、R=1500MΩである。時定数τ=0.005の場合、全静電容量Cとブリーダ抵抗器Rの一例はC=10pF、R=500MΩである。ここに、具体例での最適な範囲の時定数τは0.015乃至0.033である。
前述したように、塗装距離Lが150mm以下の近接塗装法に於いては最低でも10mm単位での制御が必要であり、線速1200mm/secの場合に10mmの移動時間は8.3msecであるから、図1の高電圧コントローラ4はそれ以上の速度で、カスケード6からフィードバックされる出力高電圧や高電圧電流などを0.1~2msecのサンプリング時間で読込み、そして高電圧運転理想線200を狙った高電圧運転を行うため高速で処理する必要がある。
上述した塗装距離Lと高電圧の関係に次の関係を追記したのが図9である。すなわち、図9において、各塗装距離L=100mm以下に於ける高電圧運転理想線200上の高電圧値Vでの被塗物電流Iが追記されている。マーク△は板状の被塗物Wの電流値、マーク○は球状の被塗物Wの電流値を記述している。つまり、高電圧電流が流れ難い球状の被塗物Wを基準にして現在の高電圧に応じた被塗物電流Iに対してCB制御を行うことで高い安全性が維持できる。また、近接塗装の安全性で重要な塗装距離L=50mm付近の約-30kVから被塗物形状の違いによる被塗物電流の差異は小さくなる。つまり、-30kV付近以下では出力高電圧値と高圧電流値関係のみで塗装距離Lとして読み取ることが可能となる。同時に塗装距離L=50mmまではエッジ形状の被塗物への過剰な高電圧電流を抑えて運転することができる。
図10は塗装機先端の高電圧Vが-60kV印加時、そして、図11は-30kV印加時の塗装距離Lと被塗物電流Iの関係で線速が300mm/sec(マーク:×)、600mm/sec(マーク:△)、900mm/sec(マーク:◇)、1200mm/sec(マーク:□)の違いを示している。実線は平均値、マーク(○)は各塗装距離Lでの標準偏差を現わしている。これは線速が異なっても標準偏差は5未満であり、塗装距離Lと被塗物電流Iの関係は不変であることを示している。ここでも静電塗装機先端の高電圧Vと被塗物電流Iの関係で塗装距離Lとして読み取るできることを裏付けている。
塗装ロボット手首部の可搬質量や制動距離を考慮すると、最も先端に位置する静電塗装機は軽量が良い。内蔵するカスケード6の容積は180cm3程度(φ36mmx180mm)が限界となる。ここで、ブリーダ抵抗器Rの定格電力と容積に着目する。例えば100MΩに60kV印加すると常時600μAがブリーダ抵抗器へ流れ、このときの消費電力は36Wであるため、発熱を小さくするため高電力用の大型の抵抗器が必要となり、ブリーダ抵抗器Rの容積は780cm3程度(φ46mmx470mm)であり、塗装機内にカスケードを内蔵するパックイン化は非常に困難である。ブリーダ抵抗器Rを500MΩとすると消費電力は7.2Wと低くなる。よって、一般的な抵抗器を用いることができる。その容積は9cm3程度(φ8.5mmx162mm)である。これであれば、パックイン化が可能である。
塗装距離L=100mm以下の超近接塗装法の場合は塗装距離Lに応じて出力高電圧Vを正確且つ高速に急降下させる高度な安全性を確保するため、JP特許第4678858号に開示の高電圧のリークを検知する機構を用いて、カスケード6で発生した全電流Iからカスケード6内部のブリーダ抵抗器電流Iとリーク電流Iを除算した被塗物電流Iに対し、現在の塗装機先端の高電圧Vに応じてCB制御値を可変する制御を行うのが好ましい。
図12は、前述した電流制限値(CB)の設定値を変更する機能を有するCB設定変更部320及び絶対値感度(CL)の設定値を変更する機能を有するCL設定変更部322(図3)に関連してCB設定値の変更を説明するための図である。図12を参照して、近接塗装法の運用において高電圧の変化域(出力高電圧制御(CB)による電圧降下)は、この実施例では、高電圧Vの絶対値が60kV乃至それ以下である。この高電圧Vの変化域よりも上の領域を「相対的高電圧域Har」と呼ぶ。相対的高電圧域Harは、200mm以上の塗装距離Lに相当する。他方、相対的高電圧域Harよりも高電圧Vの絶対値が低い領域を「相対的低電圧域Lar」と呼ぶ。相対的低電圧域Larは、塗装距離Lが20mm~200mmに相当する。また、最小高電圧保護域(MVar)はUVで遮断された領域を示す。
相対的高電圧域Harでは、高電圧Vに対して電流制限値(CB)が一定値である(CBが約50μA)。他方、相対的低電圧域Larでは、電流制限値(CB)の設定値が変更される。具体的に説明すると、相対的低電圧域Larにおいて、高電圧Vの絶対値が大きいときと小さいときとを対比したときに、高電圧Vの絶対値が小さいときの方が電流制限値(CB)の設定値が小さな値に変更される。好ましくは、相対的低電圧域Larにおいて、電流制限値(CB)の設定値は、高電圧Vの絶対値が低くなるに従って小さな値に設定変更される(約30μA以上約50μA以下)。更に好ましくは、相対的低電圧域Larにおいて、電流制限値(CB)の設定値は、図12から分かるように、高電圧Vの絶対値が低くなるに従って徐々に小さな値に設定変更される。この電流制限値(CB)の設定変更はCB設定変更部320(図3)で行われる。好ましくは、高電圧Vの各値と、これに対応する電流制限値(CB)の設定値とをメモリMに登録させておくのがよい。
運用の中、CB設定変更部320は、高電圧Vの現在値に対応する電流制限値(CB)の登録値をメモリMから読み込んで、この読み込んだ電流制限値(CB)の登録値に基づく電流制限値(CB)の設定値を出力高電圧制限制御部302(図3)に供給する。出力高電圧制限制御部302で行われる出力高電圧制御はCB設定変更部320から受け取った電流制限値(CB)の設定値に基づいて実行される。
電流制限値(CB)の設定値を変更することにより、塗装機先端の高電圧Vの絶対値が降下するのに敏感に反応して電流制限値(CB)の設定値が変化する。そして、この変化する電流制限値(CB)に基づいて、先端の高電圧Vの絶対値が下がる(出力高電圧制御機能)。これにより、塗装機2の先端の高電圧Vが急激に降下する。また、高電圧の全電流Iも急激に小さな値になる。
時定数τが0.005乃至0.050となるように静電塗装機2の全静電容量C0とブリーダ抵抗器R1の積を設定すると共に、上述した電流制限値(CB)の設定値を変更する制御を加えることにより、スパーク発生のリスク低減を確実なものにすることができる。
CL設定変更部322も同様であり、絶対値感度(CL)の設定値は、図12から分かるように、好ましくは塗装機先端の高電圧Vの絶対値が低くなるに従って小さな値に設定変更される。
相対的低電圧域Larにおいて、高電圧Vの絶対値が大きいときと小さいときとを対比したときに、高電圧Vの絶対値が小さいときの方が絶対値感度(CL)の設定値が小さな値に設定される。好ましくは、相対的低電圧域Larにおいて、高電圧Vの絶対値が低くなるに従って絶対値感度(CL)の設定値が小さな値に変更される。更に好ましくは、図12から分かるように、相対的低電圧域Larにおいて、高電圧Vの絶対値が低くなるに従って絶対値感度(CL)の設定値が徐々に小さな値に変更される。そして、同じ高電圧で対比したときに、絶対値感度(CL)は電流制限値(CB)よりも大きな値に設定される(CB<CL)。好ましくは、高電圧Vの絶対値が低くなる程、絶対値感度(CL)と電流制限値(CB)との差が大きくなるように設定するのが良い。
例えば故障や事故でスパークが発生するような状況になったときに、つまり、出力高電圧制御(CB)による追従が間に合わないときに、高電圧Vの絶対値の降下に伴って小さな値に設定される絶対値感度(CL)に基づいて過電流安全制御が実行され、カスケード6の出力が遮断される。この過電流安全制御によって、安全性確保をバックアップすることができる。
2 静電塗装機
4 高電圧コントローラ
6 カスケード
1 ブリーダ抵抗器
W 被塗物
L 塗装距離(塗装機と被塗物との間の離間距離)
静電塗装機全体の静電容量(全静電容量)
1 全電流
30 高電圧安全制御部
320 CB設定変更部

Claims (8)

  1. カスケードによって生成した高電圧によって静電塗装を実行する静電塗装機において、
    該静電塗装機の全静電容量C0とブリーダ抵抗器R1との積で定義される時定数τが、0.005乃至0.050となるように全静電容量C0とブリーダ抵抗器R1との積が設定されていることを特徴とする静電塗装機。
  2. 請求項1に記載の静電塗装機において、
    前記時定数τが、0.015乃至0.033となるように全静電容量C0とブリーダ抵抗器R1との積が設定されていることを特徴とする静電塗装機
  3. 請求項1に記載の静電塗装機において、
    静電塗装機に印加する前記高電圧を制御する高電圧安全制御部を有し、
    該出力高電圧制御部は、高電圧電流が電流制限値に達したときに、前記高電圧発生器の出力を停止せずに、前記高電圧発生器が出力する前記高電圧の絶対値を降下させる制御を実行することを特徴とする静電塗装機
  4. 請求項3に記載の静電塗装機において、
    前記高電圧安全制御部は、前記高電圧の現在値に基づいて前記電流制限値の設定値を変更するCB設定変更部を更に含み、
    該CB設定変更部において、前記高電圧の絶対値が所定のしきい値よりも低い相対的低電圧域では、前記高電圧の絶対値が大きいときと小さいときとを対比したときに、前記高電圧の絶対値が小さいときの方が、前記電流制限値が小さな値に設定されることを特徴とする静電塗装機
  5. 請求項2に記載の静電塗装機において、
    静電塗装機に印加する前記高電圧を制御する高電圧安全制御部を有し、
    該出力高電圧制御部は、高電圧電流が電流制限値に達したときに、前記高電圧発生器の出力を停止せずに、前記高電圧発生器が出力する前記高電圧の絶対値を降下させる制御を実行することを特徴とする静電塗装機
  6. 請求項5に記載の静電塗装機において、
    前記高電圧安全制御部は、前記高電圧の現在値に基づいて前記電流制限値の設定値を変更するCB設定変更部を更に含み、
    該CB設定変更部において、前記高電圧の絶対値が所定のしきい値よりも低い相対的低電圧域では、前記高電圧の絶対値が大きいときと小さいときとを対比したときに、前記高電圧の絶対値が小さいときの方が、前記電流制限値が小さな値に設定されることを特徴とする静電塗装機
  7. 請求項1の静電塗装機において、
    該静電塗装機が、前記カスケードを内蔵していることを特徴とする静電塗装機
  8. 請求項1の静電塗装機において、
    該静電塗装機が、回転霧化頭を備えた回転霧化型静電塗装機であることを特徴とする静電塗装機
JP2022083981A 2022-02-14 2022-05-23 静電塗装装置 Active JP7141564B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/US2023/013025 WO2023154562A1 (en) 2022-02-14 2023-02-14 Electrostatic coating machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263335730P 2022-04-28 2022-04-28
US63/335,730 2022-04-28

Publications (2)

Publication Number Publication Date
JP7141564B1 true JP7141564B1 (ja) 2022-09-22
JP2023164226A JP2023164226A (ja) 2023-11-10

Family

ID=83360841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022083981A Active JP7141564B1 (ja) 2022-02-14 2022-05-23 静電塗装装置

Country Status (1)

Country Link
JP (1) JP7141564B1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023212184A1 (en) * 2022-04-28 2023-11-02 Carlisle Fluid Technologies, LLC Electrostatic coating machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004517714A (ja) 2001-01-12 2004-06-17 ザ、プロクター、エンド、ギャンブル、カンパニー 静電噴霧装置
JP2004517716A (ja) 2001-01-12 2004-06-17 ザ、プロクター、エンド、ギャンブル、カンパニー 静電噴霧装置
JP2014144446A (ja) 2013-01-30 2014-08-14 Ransburg Industry Kk 静電塗装機及び静電塗装方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS552720B2 (ja) * 1973-10-22 1980-01-22
JPS58116065U (ja) * 1982-01-29 1983-08-08 オリジン電気株式会社 静電塗装装置
JPS60176263A (ja) * 1984-02-22 1985-09-10 Nec Corp 半導体装置の製造方法
JPS60227852A (ja) * 1984-04-26 1985-11-13 Hitachi Plant Eng & Constr Co Ltd 静電農薬散布装置
US5433387A (en) * 1992-12-03 1995-07-18 Ransburg Corporation Nonincendive rotary atomizer
JP3276796B2 (ja) * 1994-12-29 2002-04-22 エービービー株式会社 回転霧化頭型塗装装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004517714A (ja) 2001-01-12 2004-06-17 ザ、プロクター、エンド、ギャンブル、カンパニー 静電噴霧装置
JP2004517716A (ja) 2001-01-12 2004-06-17 ザ、プロクター、エンド、ギャンブル、カンパニー 静電噴霧装置
JP2014144446A (ja) 2013-01-30 2014-08-14 Ransburg Industry Kk 静電塗装機及び静電塗装方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023212184A1 (en) * 2022-04-28 2023-11-02 Carlisle Fluid Technologies, LLC Electrostatic coating machine

Also Published As

Publication number Publication date
JP2023164226A (ja) 2023-11-10

Similar Documents

Publication Publication Date Title
US11135605B2 (en) Electrostatic coater and electrostatic coating method
US4402030A (en) Electrostatic voltage control circuit
JP7141564B1 (ja) 静電塗装装置
JP2829178B2 (ja) アーク防止用静電塗装機の電源装置
JPH0337205B2 (ja)
US4737887A (en) Electrostatic spray device provided with electric-arc protection means
KR20070020047A (ko) 정전 도장 장치
WO2005009621A1 (ja) 静電塗装装置
JP7108803B1 (ja) 塗装装置及び高電圧安全制御方法
CZ187388A3 (en) Method of operational control of apparatus used for electrostatic application of a coating
CN107925238B (zh) 用于防止火花放电的控制电路
JP5314346B2 (ja) 静電塗装における過電流異常を回避可能にする制御方法
WO2023212184A1 (en) Electrostatic coating machine
WO2013024536A1 (ja) 静電塗装装置
JP6945433B2 (ja) 静電塗装システムの自己診断方法
JP3092049B2 (ja) 静電塗装用高電圧発生装置
JP5731218B2 (ja) 静電塗装装置
JP4339603B2 (ja) 静電塗装機用高電圧出力制御方法
WO2014128477A1 (en) Method and apparatus for controlling a powder coater
JP6442202B2 (ja) 静電塗装装置、及び静電塗装装置用プログラム
JP2005066410A (ja) 静電塗装装置
JP2851034B1 (ja) 静電塗装機の出力状態異常検知装置
JPS5820268A (ja) 静電塗装方法
JP2012161755A (ja) 静電塗装装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220622

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220909

R150 Certificate of patent or registration of utility model

Ref document number: 7141564

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150