JP7141125B2 - 大腸がん幹細胞の維持増幅方法、及び大腸がんオルガノイドの誘導方法 - Google Patents

大腸がん幹細胞の維持増幅方法、及び大腸がんオルガノイドの誘導方法 Download PDF

Info

Publication number
JP7141125B2
JP7141125B2 JP2019523923A JP2019523923A JP7141125B2 JP 7141125 B2 JP7141125 B2 JP 7141125B2 JP 2019523923 A JP2019523923 A JP 2019523923A JP 2019523923 A JP2019523923 A JP 2019523923A JP 7141125 B2 JP7141125 B2 JP 7141125B2
Authority
JP
Japan
Prior art keywords
cells
colorectal cancer
stem cells
cancer stem
organoids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019523923A
Other languages
English (en)
Other versions
JPWO2018225751A1 (ja
Inventor
貴之 青井
諒 石田
三千代 青井
吉弘 掛地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe University NUC
Original Assignee
Kobe University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe University NUC filed Critical Kobe University NUC
Publication of JPWO2018225751A1 publication Critical patent/JPWO2018225751A1/ja
Application granted granted Critical
Publication of JP7141125B2 publication Critical patent/JP7141125B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0693Tumour cells; Cancer cells
    • C12N5/0695Stem cells; Progenitor cells; Precursor cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0062General methods for three-dimensional culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0679Cells of the gastro-intestinal tract
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0697Artificial constructs associating cells of different lineages, e.g. tissue equivalents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/40Regulators of development
    • C12N2501/415Wnt; Frizzeled
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/602Sox-2
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/603Oct-3/4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/604Klf-4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/72Transferases (EC 2.)
    • C12N2501/727Kinases (EC 2.7.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/999Small molecules not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/13Coculture with; Conditioned medium produced by connective tissue cells; generic mesenchyme cells, e.g. so-called "embryonic fibroblasts"
    • C12N2502/1352Mesenchymal stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/28Vascular endothelial cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/30Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from cancer cells, e.g. reversion of tumour cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Oncology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

本発明は、大腸がん幹細胞の維持増幅方法、及び大腸がんオルガノイドの誘導方法に関する。また本発明は、当該大腸がん幹細胞又は大腸がんオルガノイドを用いた抗がん剤のスクリーニング方法に関する。
大腸がんは、肺がん及び乳がんに次いで世界で3番目に多い悪性腫瘍である。世界中で約140万人の患者が大腸がんであると診断され、毎年60万人以上の患者が大腸がんで死亡している。そのような患者の約半数は転移を起こし、これらの症例のほとんどは切除不能な腫瘍を有する。化学療法や分子標的治療などの様々な薬剤が開発されてはいるが、切除不能な腫瘍の症例の大半は治癒することができない。
最近の報告によれば、がん幹細胞(CSC)と呼ばれるがん細胞のサブセットのみががん組織を再構築することができ、再発と転移の両方を引き起こすことが示唆されている(非特許文献1)。また、CSCは、その治療抵抗性のため、様々な種類のがんの予後不良の要因であると考えられている。従って、切除不能ながんの症例を治療するCSC標的療法の開発のため、CSCの分子メカニズムを解明することが非常に重要である。しかしながら、このような考え方に基づく様々な努力にもかかわらず、臨床検体から十分な数のCSCを得ることが困難であるため、CSCの特性の根底にある分子メカニズムの解明が妨げられている(非特許文献2)。
一方、本発明者らは最近、いくつかのがん細胞株にOCT3/4、SOX2、KLF4を導入することにより、大腸がん幹細胞様の細胞を誘導することに成功し、これらの細胞を誘導型がん幹細胞(iCSC)と命名した(特許文献1、非特許文献3)。誘導型大腸がん幹細胞は、元のがん細胞に比べて高い薬剤排除能を有しており、in vivoでヒトの大腸がん組織の構造をよく模倣したことから、本技術はCSCの量的制限の問題を克服すると考えられる。しかしながら、iCSCは維持培養の過程で高い薬剤排除能を喪失した非幹細胞がん細胞へと分化し、iCSCの増殖速度はこの非幹細胞がん細胞と比べて顕著に低いため、培養を通じてiCSCはどんどん希釈されていく。また、大規模な化合物ライブラリーから、がん幹細胞を標的とする抗がん薬の候補化合物を迅速かつ簡便に抽出する初期スクリーニングの段階で利用するためには、in vitroでヒトがん組織に類似した構造体(がんオルガノイド)を構築する必要があるが、iCSCから実用にたえ得るようながんオルガノイドが得られるかについては、不明のままである。
国際公開第2015/199088号
Clevers H. et al., Nat Med (2011) 17:313-9 Zeuner A. et at., Cell Stem Cell (2014) 15:692-705 Oshima N. et al., PLoS One (2014);9:e101735
本発明の目的は、大腸がん幹細胞を維持増幅又は大腸がんオルガノイドを誘導する方法を提供することである。また、本発明のさらなる目的は、当該方法により維持増幅された大腸がん幹細胞又は誘導された大腸がんオルガノイドを用いて、大腸がん幹細胞を標的とする抗がん薬のスクリーニング系を提供することである。
本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、意外なことに、in vitroで大腸がん細胞株の増殖を阻害することが報告されているカルシニューリンの阻害が(Peuker K. et al., Nat Med 2016;22:506-15)、大腸がん幹細胞の特性である組織再構築能を促進することを見出した。本発明は、そのような知見を基にして完成に至ったものである。
すなわち、本発明は、次に記載の事項を提供するものである。
[1] 大腸がん幹細胞をカルシニューリン阻害薬の存在下で培養することを含む、大腸がん幹細胞の維持増幅又は大腸がんオルガノイドの誘導方法。
[2] 出発大腸がん幹細胞が、外来性の初期化因子を導入した大腸がん細胞を、胚性幹(ES)細胞を維持し得ない条件下で培養することにより誘導されたものである、[1]に記載の方法。
[3] 出発大腸がん幹細胞が、外来性の初期化因子を導入していない大腸がん細胞の薬剤排除能を抑制するのに有効な濃度のABCトランスポーター阻害薬の存在下で、薬剤排除能を有するものである、[2]に記載の方法。
[4] 大腸がん幹細胞を接着培養する工程を含む、[1]~[3]のいずれかに記載の方法。
[5] 大腸がん幹細胞を三次元培養する工程を含む、[1]~[4]のいずれかに記載の方法。
[6] 接着培養工程の後に三次元培養工程を行う、[5]に記載の方法であって、前記両工程の一方又は両方がカルシニューリン阻害薬の存在下で行われる、方法。
[7] 少なくとも接着培養工程がカルシニューリン阻害薬の存在下で行われる、[6]に記載の方法。
[8] 三次元培養工程が間葉系幹/前駆細胞及び血管内皮細胞との共培養により行われる、[5]~[7]のいずれかに記載の方法。
[9] カルシニューリン阻害薬の添加期間が5~25日間である、[1]~[8]のいずれかに記載の方法。
[10] カルシニューリン阻害薬がFK506である、[1]~[9]のいずれかに記載の方法。
[11] [1]~[10]のいずれかに記載の方法により維持増幅された大腸がん幹細胞又は誘導された大腸がんオルガノイドと、被検物質とを接触させ、該幹細胞又は該オルガノイドの維持又は増殖に及ぼす該被検物質の効果を検定することを含む、抗がん剤のスクリーニング方法。
[12] [1]~[10]のいずれかに記載の方法において、カルシニューリン阻害薬の存在下での培養を、被検物質の共存下で行い、大腸がん幹細胞の維持増幅又は大腸がんオルガノイドの誘導に及ぼす該被検物質の効果を検定することを含む、抗がん剤のスクリーニング方法。
[13] カルシニューリン阻害薬を含有してなる、大腸がん幹細胞の維持増幅又は大腸がんオルガノイドの誘導剤。
[14] カルシニューリン阻害薬がFK506である、[13]に記載の剤。
[15] [13]又は[14]に記載の剤と、外来性の初期化因子を導入した大腸がん細胞由来であって、外来性の初期化因子を導入していない大腸がん細胞の薬剤排除能を抑制するのに有効な濃度のABCトランスポーター阻害薬の存在下で、薬剤排除能を有する、大腸がん幹細胞とを含んでなる、大腸がん幹細胞の維持増幅又は大腸がんオルガノイドの誘導用キット。
[16] 抗がん剤のスクリーニングのための、[15]に記載のキット。
[17] [1]~[10]のいずれかに記載の方法により誘導された大腸がんオルガノイド。
本発明の方法により、大腸がん幹細胞や大腸がんオルガノイドを大量に作製することが可能となる。また、このように大量に作製した細胞やオルガノイドを用いることで、大腸がん幹細胞を標的とする抗がん剤の効果的かつハイスループットなスクリーニングや、大腸がん幹細胞に特異的なマーカーの探索を行うことが可能となる。
(A)レトロウイルスポリシストロニックベクター及び2Aを連結した融合遺伝子(pMXs-OKS)の略図を示す。3種類の転写因子(TF)(OCT3/4、KLF4及びSOX2)を、2A配列を介してフレームに融合させ、単一のORFとして同時発現させた。(B)モック、O+S+K及びOKSレトロウイルスで形質導入されたSW480細胞、並びにヒトiPS細胞における、OCT3/4、SOX2及びKLF4のタンパク質発現を示すウエスタンブロッティングを示す。感染後4日目に細胞可溶化物を回収した。b-アクチンを内因性のローディングコントロールとして用いた。(C)感染後10日目の形質導入されたSW480細胞におけるOCT3/4、SOX2及びKLF4の総転写物レベルのqRT-PCRを示す。mRNAの発現レベルは、GAPDHの発現レベルに対して正規化した。Mock-SW480の発現レベルと比較した相対発現レベルを示す。(D)感染後10日目の形質導入されたSW480細胞におけるOCT3/4及びSOX2の免疫染色を示す。(E)感染後10日目のO+S+K-SW480及びOKS-SW480の細胞形態を示す。不明瞭な輪郭を有する細胞からなるドーム型コロニー(矢印)は、両方の形質導入されたSW480細胞に現れたが、Mock-SW480では、紡錘形細胞のみが存在した。(F)Mock-SW480細胞、O+S+K-SW480細胞及びOKS-SW480細胞における各実験のV50細胞のパーセンテージを示す。 誘導型大腸がん幹細胞の製造を示す。(A)50μMのベラパミル(VM)を共投与した5 μg/mlのHoechst33342により標識されなかった細胞の集団を、O+S+K-SW480細胞と同じく、OKS-SW480細胞に誘導した。VMなしで、又は50 μMのVMを用いて、Hoechst33342により標識されなかった細胞を、それぞれV0細胞及びV50細胞と命名した。V50細胞をセルソーターで集めた。マウントされたコロニー形状は、V50細胞において増強されたが、長期培養の間に徐々に、紡錘形細胞により占有された。(B)V50細胞は、一次V50-OKS細胞培養において、より高い割合で存在した。この集団を選別し、それを2nd V50-OKS細胞と命名した(以下では、単に「2ndV50細胞」と称する場合がある)。(C)親SW480細胞、非V50-OKS細胞及びV50-OKS細胞における各実験の2nd V50細胞のパーセンテージを示す。(D)2nd V50-OKS細胞は、親SW480細胞と比較して、ABCG2及びLGR5のmRNAの発現レベルが有意に高かった。mRNAの発現レベルは、GAPDHの発現レベルに対して正規化した。親SW480の発現レベルと比較した相対発現レベルを示す(n = 3)。 ** p <0.01 (E)G1/G0期の細胞のパーセンテージは、2nd V50-OKS細胞では、親SW480(n = 3)よりも有意に高かった。 ** p <0.01 (F)5-FUの存在下での2nd V50-OKS-SW480細胞の生存率は、1及び50μg/ mlの両方の濃度の5-FUで、親SW480細胞の生存率よりも有意に高かった。5-FUを用いなかった場合の細胞の数と比較した5-FUの細胞の相対数を示す(n = 3)。 * p <0.05 iCSC由来のスフェアの特徴を示す。(A)親SW480細胞、1stV50-OKS細胞由来の非V50細胞、及び2ndV50-OKS細胞におけるスフェア形成能を示す。相当な数のスフェアが2ndV50-OKS細胞において形成される。各実験のスフェアの数を示す(n = 3)。 * p <0.05、** p <0.01 (B)親SW480細胞及び2nd V50-OKS細胞のスフェアの組織学的及び免疫組織化学的分析を示す。親SW480細胞に由来するスフェアは、CK20、CK7が陰性であり、CDX2が陽性であった。2nd V50-OKS細胞由来のスフェアは、CK20、CDX2が陽性であり、CK7が陰性であった。 (A)親株SW480ではなく、iCSC由来のスフェアは、HUVECとMSCとの共培養において、集合細胞(collective cell)のコロニーとなった。 (B)共培養されたスフェアにおける組織学的及び免疫組織化学的分析を示す。iCSC、HUVEC及びMSCに由来するスフェアは、α-SMA及びCD31が陽性であり、スフェアの外側のみがKi67陽性であった。親SW480、HUVEC及びMSCに由来するスフェアは、α-SMA及びCD31が陰性であり、全体的にKi67陽性であった。 Mock-SW480細胞、非V50-OKS細胞及び2nd V50細胞における遺伝子プロファイルの比較を示す。(A)Mock-SW480と2nd V50-OKS細胞との間の遺伝子発現において、3914個のプローブが、有意差を有するものとして同定された(t検定、偽陽性率(FDR)<0.05及び2倍差、灰色のドットで示す)。(B)1st V50-OKS細胞由来の非V50細胞と2nd V50-OKS細胞との間の遺伝子発現において、56プローブが、有意差を有するものとして同定された(t検定、偽発見率(FDR)<0.05及び2倍差、灰色のドットで示す)。(C)非V50、モックよりも2ndV50においてより高く発現するプローブ、及び非V50、モックよりも2nd V50においてより低く発現するプローブのベン図を示す。ベン図において、各4つのプローブが重複していた。(D)ベン図において、重複する8つのプローブのmRNA発現レベルを示す(n=3)。(E)選別後5日目の、親SW480細胞、1st V50-OKS細胞由来の非V50細胞及び2nd V50-OKS細胞におけるSEMA6A、FAM105A及びRCAN2の総転写物レベルのqRT-PCRを示す(n=3)。 * p <0.05 図6は、FK506添加実験における、初期化因子の導入からFK506の添加開始までの一連の流れを示した模式図を示す。 (A)FK506の添加有り又は無しの場合における、親SW480細胞及び2nd V50-OKS細胞の細胞数を、播種後5日目に計数した(n = 3)。 * P <0.05、** P <0.01 (B)FK506の添加有り又は無しの場合における、親SW480細胞及び2nd V50-OKS細胞の形態の変化を示す。(C)FK506の添加有り又は無しの場合における、2nd V50-OKS細胞のスフェア形成能を示す。 FK506を添加した2nd V50-OKS細胞において、スフェア形成の数が増加した。(D)播種後10日目での、FK506の添加有り又は無しの場合における、親SW480細胞又は2nd V50-OKS細胞のスフェアの数を示す(n = 3)。 * p <0.05、** p <0.01 (E)FK506の添加有り又は無しの場合における、iCSCのスフェアの組織学的及び免疫組織化学的分析を示す。両方のスフェアは、CK20、CDX2が陽性であり、CK7が陰性であった。 FK506が誘導型大腸がん幹細胞の平面接着培養での幹細胞マーカーの発現量を増大させることを示す。接着培養を行った誘導型大腸がん幹細胞(2nd V50細胞)における、FK506投与による幹細胞マーカー(ABCG2,LGR5)の発現量を定量RT-PCRにて比較した。N=3 エラーバーはSD値(継代±FK506添加5日後) FK506添加による誘導型大腸がん幹細胞の拡大培養の結果を示す。 FK506添加し拡大培養した誘導型大腸がん幹細胞から形成したスフェアは、典型的なヒト大腸がん組織と同様の免疫染色パターンを示す。FK506(25μM)存在下の平面接着培養で15日間拡大培養した2nd V50細胞から形成したスフェア(7日目)のHE染色及び免疫染色を示す。CK20陽性、CK7陰性、CDX2陽性と、典型的ヒト大腸がん組織のパターンを示した。 FK506添加による誘導型大腸がん幹細胞への効果は、少なくとも1μM~25μMの濃度域で認められる。上図:スフェア形成実験を、図に示す各濃度のFK506を添加し行った。位相差顕微鏡写真 下図:各条件でのスフェアの数 FK506添加し接着培養した誘導型大腸がん幹細胞は高いスフェア形成能を示す。 図13は、CsAを添加せず(-)、あるいは1 μMのCsAを添加して(+)、2nd V50-OKS細胞を10日間インキュベートした後のスフェア数を示す。 GSK3阻害は誘導型大腸がん幹細胞の能力を抑制することを示す。(A)平面接着培養における、GSK3α及びGSK3βに対するsiRNA添加の効果を示す。(B)平面接着培養における、バルプロ酸(VPA)又はCHIR99021添加の効果を示す。(C)スフェア形成能に及ぼすバルプロ酸(VPA)又はCHIR99021(CHIR)添加の効果を示す。 図15は、コロニー形成アッセイの結果を示す。1 mMのVPA、3 μMのCHIR又は25 mMのFK506で処理した2nd V50-OKS細胞、及び化合物で処理していない2nd V50-OKS細胞(n=3)から形成されたコロニー数を示す。 * p<0.05 ** p <0.01 図16は、2nd V50-OKS細胞におけるNFATc3の局在を示す。化合物で処理していない、あるいはVPA、CHIR又はFK506で処理をした2nd V50-OKS細胞におけるNFATc3-GFPの細胞内の局在を示した。NFATc3-GFPは、VPAおよびCHIRを用いた場合に核内で確認され、FK506を用いた場合、又は化合物を用いない場合に細胞質で確認された。 図17は、NFATの局在に着目した場合の、各化合物(FK506、VPA、CHIR99021)と各タンパク質(NFAT、カルシニューリン、GSK3、RCAN2)の関係を示す参考図である。
1.大腸がん幹細胞の維持増幅又は大腸がんオルガノイドの誘導方法
本発明は、大腸がん幹細胞をカルシニューリン阻害薬の存在下で培養することを含む、大腸がん幹細胞の維持増幅又は大腸がんオルガノイドの誘導方法(以下「本発明の方法」と略記する。)を提供する。
大腸がん幹細胞の由来となる動物は特に制限されないが、本発明のスクリーニング法が目的とする抗がん剤の投与対象と同一種であることが望ましい。例えば、哺乳動物(例、マウス、ラット、ハムスター、モルモット、イヌ、サル、オランウータン、チンパンジー、ヒト等)が挙げられるが、本発明のスクリーニング法の目的に照らせば、好ましくはヒトである。
本発明において「大腸がん幹細胞」とは、大腸がん組織を再構築する能力(以下「組織再構築能」と略記する。)を有する細胞を意味する。本発明に用いる大腸がん幹細胞としては、大腸がん組織を再構築することができる限り制限はない。大腸がんの組織再構築能は、自体公知の方法により、確認することができる。例えば、特許文献1に記載のように、大腸がん幹細胞をマウスに移植し、in vivoでの腫瘍形成能を評価することで、組織再構築能を評価することができる。しかしながら、後述の実施例に示す通り、本発明者らにより、スフェア形成能を大腸がん幹細胞の組織再構築能の指標とすることができることが見出されたため、簡便性の観点から、組織再構築能はスフェア形成能により評価することが好ましい。
また、本発明においては、がん幹細胞マーカーの発現や、細胞増殖速度、抗がん剤に対する耐性、及び/又は薬剤排除能を指標として、がん幹細胞を取得することができる。例えば、大腸がん幹細胞の場合、従来大腸がん幹細胞マーカーとして報告のある1以上のマーカー、具体的には、CD133、CD44、CD26、ABCG2及びLGR5から成る群より選択される少なくとも一つのマーカーが陽性の細胞を、大腸がん幹細胞として用いることができる。ここで「がん幹細胞マーカーが陽性」であることは、細胞でがん幹細胞マーカーのmRNAが発現していること、又はがん幹細胞マーカーのタンパク質が発現していることにより、判断することができる。がん幹細胞マーカーのmRNAは、特に限定されないが、RT-PCR法及びノーザンブロット法等の自体公知の方法によって確認することができる。また、がん幹細胞マーカーのタンパク質は、特に限定されないが、ウエスタンブロット法及び免疫染色法等の自体公知の方法によって確認することができる。がん幹細胞マーカーが細胞表面抗原マーカーである場合、フローサイトメーターで測定することによって、当該がん幹細胞マーカーが陽性であることを確認することができる。
一方、細胞増殖速度、抗がん薬に対する耐性、及び/又は薬剤排除能を指標とする場合、通常の大腸がん細胞と比較して、細胞増殖速度が遅い、抗がん剤に対する耐性が高い、及び/又は薬剤排徐能が高い等の特性を有する細胞を、大腸がん幹細胞として使用することができる。
本発明において、「大腸がん幹細胞の維持増幅」とは、大腸がん幹細胞が上記能力及び/又は特性を維持しながら、細胞分裂により細胞数が増加することを意味する。また、「大腸がんオルガノイド」とは、天然の大腸がん組織において通常観察され得る構造と類似した構造を有する、in vitroで誘導された組織構造体を意味し、典型的な大腸がんの組織学的特性と同様の組織学的特性が認められるスフェアも、大腸がんオルガノイドに包含される。従って、本発明の大腸がんオルガノイドを誘導する方法には、大腸がん幹細胞から該スフェアを形成させる方法が包含される。上記典型的な大腸がんの組織学的特性としては、例えば、ヒト大腸がん組織の組織学的特性として広く知られている、CK20陽性、CK7陰性及びCDX2陽性が挙げられる。
大腸がん幹細胞からスフェアを形成する方法は、公知の方法(例えば、Ricci-Vitiani L. et al., Nature 2007;445:111-51、Sato T. et al., Gastroenterology 2011;141:1762-72)により行うことができ、具体的には、血清を含まない培地に、上皮細胞成長因子(epidermal growth factor:EGF)、塩基性線維芽細胞成長因子(basic fibroblast growth factor:bFGF)、インスリン、トランスフェリン及び/又はBSAを加えて、細胞を浮遊培養することにより行うことができる。この際用いるプレートは、Ultra Low Attachmentプレート(Corning)が好ましい。
後述の実施例3(図5)で示す通り、網羅的遺伝子発現解析の結果から、空のベクターでトランスフェクトした親大腸がん細胞株(Mock)、1回目のソーティング後に分化した非幹細胞がん細胞(Non V50)、2回目のソーティングにより得られた大腸がん幹細胞(2nd V50細胞)の順で、発現レベルが亢進する(即ち、がん幹細胞特性と発現レベルとが正に相関する)遺伝子の1つとして、RCAN2が同定された。RCAN2は当初、ヒト線維芽細胞における甲状腺ホルモン応答遺伝子として同定されたが、その後の研究により、RCAN2はカルシニューリンを負に制御することが報告されている(Cao X., et al., Biochem J 2002;367:459-66)。そこで、本発明者らは、大腸がん幹細胞の培養においてカルシニューリン阻害薬を用いることで、大腸がん幹細胞の特性を亢進する可能性があるとの仮説を立て、これを確かめるべくカルシニューリン阻害薬であるFK506を用いて実験を行ったところ、FK506添加は大腸がん幹細胞の特性を亢進することが実証された。また、別のカルシニューリン阻害薬であるシクロスポリンA(CsA)の添加によっても、同様の結果が実証された。下述の参考例1で示す通り、NFATタンパク質の核移行を促進するというカルシニューリンの機能と反対の機能を有するGSK3を種々の阻害薬を用いて阻害したところ、大腸がん幹細胞の特性が抑制されたことから、FK506又はシクロスポリンAの上記作用はFK506又はシクロスポリンAに特異的ではなく、カルシニューリン阻害薬に共通の作用であると考えられる。
従って、FK506又はシクロスポリンA以外のカルシニューリン阻害薬を用いても、同様に大腸がん幹細胞の特性を亢進し得る。
本発明において「カルシニューリン阻害薬」とは、カルシニューリン(CaN)-NFAT経路のいずれかの段階を阻害するか、あるいは該経路に動員される分子の発現自体を阻害又は亢進することで、結果的にCaN-NFAT経路を阻害する薬剤を意味する。また、「CaN-NFAT経路」とは、カルシウムイオンにより活性化したカルシニューロンにより、転写因子であるNFATファミリーに属するタンパク質(以下「NFAT」と略記する。)を脱リン酸化し、脱リン酸化されたNFATが核内への移行が促進され、核内に移行したNFATが他のタンパク質と複合体を形成し、NFATの標的遺伝子の転写を活性化する、という一連のシグナル伝達経路を意味する。CaN-NFAT経路に関与するNFAT(nuclear factor of activated T cells)としては、NFAT1(NFATP又はNFATC2とも称される、Unigene Hs.356321)、NFAT2(NFATC1又はNFATCとも称される、Unigene Hs.534074)、NFAT3(NFATC4とも称される、Unigene Hs.77810)、NFAT4(NFATC3又はNFATXとも称される、Unigene Hs.341716)が挙げられる。
カルシニューリン阻害薬としては、CaN-NFAT経路を阻害できるものであれば特に制限されないが、FK506(タクロリムス)、シクロスポリンA、FK520、ピメクロリムス、ボクロスポリン、アスコマイシン、L685、L818、L732、L731、ISATX247、FK523、15-0-DeMe-FK-520などが挙げらる。これらの誘導体や類似体を用いてもよく、例えば、WO 2005/087798には、カルシニューリンを阻害するシクロスポリン誘導体について記載されており、WO 2006/078724には、カルシニューリンを阻害するFK506およびFK520の類似体について記載されている。その他のカルシニューリン阻害薬として、例えば、カルシニューリン又はNFATに結合してその機能を阻害する抗体、ペプチドアプタマー、核酸アプタマー、NFATの標的DNA配列への結合を阻害する、該標的DNA配列を含むデコイ核酸などが挙げられる。これらの阻害薬は、公知のカリシニューリニン又はNFATタンパク質やそのフラグメントを用いて、自体公知の方法により適宜調製することができる。デコイ核酸も公知のNFAT結合配列(例えば、WO 2010/146622)に基づいて、DNA/RNA自動合成機を用いて化学的に合成できる。
中でも、本発明に使用されるカルシニューリン阻害薬として、CaN-NFAT経路を特異的に阻害する(望ましくないoff-target効果が十分に低い)ものが好ましい。そのようなCaN-NFAT経路に対する特異性の高い阻害薬として、例えば、FK506及びシクロスポリンAを挙げることができる。
CaN-NFAT経路に動員される分子の発現自体を阻害する物質としては、カルシニューリン又はNFATに対するアンチセンス核酸、siRNA、shRNA、miRNA、リボザイムなどが挙げられる。これらの発現を阻害する物質は、自体公知のカルシニューリン又はNFATファミリーの遺伝子の塩基配列に基づいて、公知の設計ソフトを用いて適宜設計し、DNA/RNA自動合成機を用いて容易に合成することができる。
カルシニューリン阻害薬が核酸又はタンパク質である場合、該核酸又はタンパク質の形態で細胞に導入してもよいし、これらを発現する発現ベクターを用いて、細胞に導入してもよい。
カルシニューリン阻害薬の培地中の濃度は、大腸がん幹細胞が維持増幅でき、又は大腸がんオルガノイドを誘導し得る限り制限されないが、FK506を用いる場合、1~25μMが好ましく、5~25μMがより好ましい。他のカルシニューリン阻害薬を用いる場合にも、当業者であれば、上記FK506の濃度や技術常識を参酌し、好適な濃度を適宜決定することができる。また、カルシニューリン阻害薬を培地に添加する期間としては、大腸がん幹細胞の維持増幅又は大腸がんオルガノイドオルガノイドを誘導できる限り特に制限はなく、2日間以上が好ましく、4日間以上がより好ましく、5日間以上がさらに好ましく、また、5~25日間カルシニューリン阻害薬を培地に添加することが好ましい。
本発明の方法において、大腸がん幹細胞の培養は、接着培養により行ってもよく、三次元培養により行ってもよく、さらには両方の培養工程を組み合わせてもよい。両方の培養工程を組み合わせる場合、大腸がん幹細胞を接着培養し、次いで三次元培養を行うことが好ましい。この場合において、接着培養工程と三次元培養工程のいずれか一方、または両方の培養工程をカルシニューリン阻害薬存在下で行ってもよいが、少なくとも接着培養工程をカルシニューリン阻害薬の存在下で行うことが好ましい。大腸がん幹細胞を維持増幅するためには、接着培養を行うことが好ましく、また大腸がんオルガノイドを誘導するためには、三次元培養を行うことが好ましい。本発明において、接着培養とは、目的の細胞や細胞塊を培養器の底面に接着させて培養することを意味する。また、三次元培養とは、低接着性の培養容器や、多孔質膜・ハイドロゲル等の足場(スキャフォールド)を利用して細胞の凝集塊(スフェア、スフェロイド)を形成させ、細胞をより生体内に近い三次元的な状態で培養することをいう。三次元培養は、足場の有無により、スキャフォールド型とスキャフォールドフリー型とに大別される。前者は足場の種類により、ハイドロゲル型、不活性マトリクス型等に細分される。ハイドロゲルとしては、例えば、動物由来のマトリゲル、コラーゲン、ラミニン等、植物由来のアルギン酸ハイドロゲル等、合成化合物(例、OGelTM MT 3D Matrix(Ogel SA)、3-D Life Biomimetic(Cellendes)、Puramatrix(3D MATRIX)等)を用いることができる。不活性マトリクスとしては、例えば、alvetex(reinnavate)、3D Insert(3D Biotek)、VECELL-3D Insert(iwaki)等を用いることができる。あるいは、96又は384ウェルプレート等に多孔質ポリスチレン製ディスクを装填してスキャフォールド培養を行うこともできる。スキャフォールドフリー型も、使用する培養容器の種類等に応じて、低接着性プレート、マイクロパターン表面プレート、ハンギングドロップ法等に細分される。低接着性プレートとは、親水性ポリマーでコーティングして細胞接着を抑制するように加工された底面を有するプレートであり、例えば、PrimeSurface(住友ベークライト)、Ultra-Low Attachment(コーニング)、Nunclon Sphera(サーモサイエンティフィック)等が挙げられる。マイクロパターン表面プレートとは、増殖に影響を与えるような微小パターンに加工された底面を有するプレートであり、例えば、底面の一部のみが接着性であるため、そこに細胞が集積し凝集塊を形成するものや、底面にナノファイバーやナノ格子を敷き詰めることで細胞の接着を抑制し、平面的拡がりを抑えることで細胞塊を形成させるもの等が挙げられる。ハンギングドロップ法は液滴中に細胞塊を形成させる方法であり、例えば、ディッシュにあいた穴に通したチップ先端に細胞入りの培地ドロップを形成させ、チップを穴から引き抜くことでドロップを穴にとどまらせ、重力によりドロップの底に細胞を凝集させる方法が挙げられる。
本発明において、三次元培養法は、好ましくは浮遊培養により行うことができる。浮遊培養とは、目的の細胞や細胞塊を培養器の底面に接着させずに培養することを意味し、細胞や細胞塊が底面に触れていても、培養液を軽く揺らすと細胞や細胞塊が培養液中に浮かんでくるような状態で培養することも、浮遊培養に包含される。
接着培養の際は、細胞の基質への接着を促進するために、プラスティックディッシュの底表面を化学処理したり、接着を促進する接着用コーティング剤(ゼラチン、ポリリジン、寒天など)でコートしたりすることが好ましい。浮遊培養の際は、プラスティックディッシュの底表面は処理しないか、細胞の基質への接着を阻止するための接着阻止用コーティング剤(ポリ(2-ヒドロキシエチルメタクリレート)等)でコートすることが好ましい。
また、後述の実施例に示す通り、三次元培養を行う場合、間葉系幹/前駆細胞や血管内皮細胞等の間質細胞との共培養を行うことで、大腸がん幹細胞から誘導された大腸がんオルガノイドを、より成熟した段階に誘導し得る。従って、好ましい実施態様において、三次元培養工程は、少なくとも間葉系幹/前駆細胞を含み、好ましくはさらに血管内皮細胞を含む間質細胞との共培養により行われる。間葉系幹/前駆細胞としては、例えば、骨髄、脂肪組織、滑膜組織、筋組織、末梢血、胎盤組織、月経血、臍帯血などに由来する幹/前駆細胞が挙げられる。血管内皮細胞としては、例えば、臍帯静脈血管内皮細胞、新生児包皮・成人皮膚等由来微小血管内皮細胞、肺動脈血管内皮細胞、大動脈血管内皮細胞が挙げられ、好ましくは、臍帯静脈血管内皮細胞(特に、ヒト臍帯静脈血管内皮細胞(HUVEC))である。
間葉系幹/前駆細胞及び血管内皮細胞の由来となる動物としては特に限定されないが、大腸がん幹細胞が由来する動物と同種由来であることが好ましい。例えば、マウス、ラット、ハムスター、モルモット、イヌ、サル、オランウータン、チンパンジー、ヒトなどの哺乳動物が挙げられ、好ましくはヒトである。
大腸がん幹細胞に対する間葉系幹/前駆細胞及び血管内皮細胞の量比としては特に制限はないが、例えば、大腸がん幹細胞:間葉系幹/前駆細胞:血管内皮細胞=10:4:1~5:4:4の割合で混合培養することができる。
本発明に用いる培地は、動物細胞の培養に用いられる培地を基礎培地として調製することができる。基礎培地としては、例えば、IMDM培地、Medium 199培地、Eagle's Minimum Essential Medium (EMEM)培地、αMEM培地、Dulbecco's modified Eagle's Medium (DMEM)培地、Ham's F12培地、RPMI 1640培地、Fischer's培地、StemPro34(invitrogen)、及びこれらの混合培地などが包含される。培地には、血清が含有されていてもよいし、あるいは無血清でもよい。必要に応じて、培地は、例えば、アルブミン、トランスフェリン、Knockout Serum Replacement(KSR)(FBSの血清代替物)、N2サプリメント(Invitrogen)、B27サプリメント(Invitrogen)、脂肪酸、インスリン、コラーゲン前駆体、微量元素、2-メルカプトエタノール(2ME)、チオールグリセロールなどの1つ以上の血清代替物を含んでもよいし、脂質、アミノ酸、L-グルタミン、Glutamax(Invitrogen)、非必須アミノ酸、ビタミン、増殖因子、低分子化合物、抗生物質、抗酸化剤、ピルビン酸、緩衝剤、無機塩類などの1つ以上の物質も含有し得る。
本発明に用いる培地は、好ましくは、FBSを含有するDMEM、DMEM/F12又はDMEM培地であり得る。培地におけるFBSの濃度は、当業者が通常の細胞培養において用いる濃度であれば特に制限はないが、例えば、1~30%、好ましくは、1~20%の範囲内である。培地におけるFBSの濃度は、例えば、1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%であり、好ましくは、10%である。
本発明で用いる培地には、細菌感染を防ぐ目的で、さらにペニシリンを含有してもよく、ペニシリンの濃度は、当業者が通常の細胞培養において用いる濃度であれば特に制限はないが、例えば、1~500 Units/ml、好ましくは、1~200 Units/mlの範囲内である。培地におけるペニシリンの濃度は、例えば、1 Unit/ml、25 Units/ml、50 Units/ml、60 Units/ml、70 Units/ml、80 Units/ml、90 Units/ml、100 Units/ml、110 Units/ml、120 Units/ml、130 Units/ml、140 Units/ml、150 Units/ml、175 Units/ml、200 Units/mlであり、好ましくは、100 Units/mlである。
本発明で用いる培地には、細菌感染を防ぐ目的で、さらにストレプトマイシンを含有してもよく、ストレプトマイシンの濃度は、当業者が通常の細胞培養において用いる濃度であればいくらでもよいが、例えば、1~500 μg/ml、好ましくは、1~200 μg/mlの範囲内であり得る。培地におけるストレプトマイシンの濃度は、例えば、1μg/ml、25μg/ml、50μg/ml、60μg/ml、70μg/ml、80μg/ml、90μg/ml、100μg/ml、110μg/ml、120μg/ml、130μg/ml、140μg/ml、150μg/ml、175μg/ml、200μg/mlであり、好ましくは、100μg/mlである。
培養温度は、例えば35~42℃、好ましくは36~40℃、より好ましくは37~39℃である。培養は2~5% CO2、5~20% O2の雰囲気下で行われ得る。培養法の例としては、大腸がん幹細胞を、37℃、5%CO2存在下にて、10%FBS、ペニシリン及びストレプトマイシンを含有するDMEM培地中で、培養する方法などが挙げられる。
本発明に用いる大腸がん幹細胞の由来は特に制限されず、大腸がん細胞に初期化因子を導入することで誘導した大腸がん幹細胞(即ち、誘導型大腸がん幹細胞;後述の実施例においては、「大腸iCSC」、又は単に「iCSC」と略記する場合がある。)でもよいし、培養細胞株や生体内のがん組織から単離した細胞であってもよいが、好ましくは誘導型大腸がん幹細胞である。また、誘導型大腸がん幹細胞は、もととなるがん大腸がん細胞に特徴的なゲノム変異を保持し得る。大腸がん細胞に特徴的なゲノム変異としては、例えば、APC、p53、DCC、K-rasなどの遺伝子変異、染色体の欠失、転座、重複及び置換などが挙げられるが、これらに限定されない。
本発明に用いる誘導型大腸がん幹細胞は、公知の方法(例えば、特許文献1、WO 2011/049099に記載の方法)により作製することができる。例えば、外来性の初期化因子を導入した大腸がん細胞を、胚性幹(ES)細胞を維持し得ない条件下で培養することにより誘導することができ、このようにして作製した誘導型大腸がん幹細胞は、本発明の方法に好適に使用することができる。
誘導型大腸がん幹細胞の作製に用いる初期化因子としては、例えば、Oct3/4、Sox2及びKlf4の組み合わせが挙げられるが、この場合において、Oct3/4に代えて他のOctファミリーのメンバー、例えば、Oct1A、Oct6などを用いることもできる。また、Sox2に代えて他のSoxファミリーのメンバー、例えば、Sox1、Sox3、Sox15、Sox17、Sox18などを用いることもできる。またKlf4に変えて他のKlfファミリーのメンバー、例えば、Klf1、Klf2、Klf5などを用いることもできる。さらに、Oct3/4、Sox2及びKlf4に加えてさらに任意の物質を含んでいてもよい。追加される任意の物質は、体細胞に導入することにより、その体細胞をより未分化な状態に移行させる物質(群)であり、例えば、ES細胞に特異的に発現している遺伝子又はES細胞の未分化維持に重要な役割を果たす遺伝子もしくはその遺伝子産物などが挙げられるがこれらに限定されない。ES細胞に特異的に発現している遺伝子又はES細胞の未分化維持に重要な役割を果たす遺伝子もしくはその遺伝子産物は、例えば、c-Myc, L-Myc, N-Myc, TERT, SV40 Large T antigen, HPV16 E6, HPV16 E7, Bmi1, Lin28, Lin28b, Nanog, Esrrb又はEsrrgが例示される。あるいは、導入にあたって追加される任意の物質は、体細胞に導入することにより、その体細胞をより未分化な状態に移行させる効率を上昇させる物質(群)であり得、例えば、iPS細胞の樹立効率を促進する物質(群)が挙げられるがこれらに限定されない。iPS細胞の樹立効率を促進する物質(群)としては、例えば、下記の物質(群)が挙げられるが、これらに限定されない:ヒストンデアセチラーゼ(HDAC)阻害剤[例えば、バルプロ酸(VPA)(Nat. Biotechnol., 26(7): 795-797 (2008))、トリコスタチンA、酪酸ナトリウム、MC 1293、M344等の低分子阻害剤、HDACに対するsiRNA及びshRNA(例、HDAC1 siRNA Smartpool(登録商標) (Millipore)、HuSH 29mer shRNA Constructs against HDAC1 (OriGene)等)等の核酸性発現阻害剤など]、DNAメチルトランスフェラーゼ阻害剤(例えば5’-azacytidine)(Nat. Biotechnol., 26(7): 795-797 (2008))、G9aヒストンメチルトランスフェラーゼ阻害剤[例えば、BIX-01294 (Cell Stem Cell, 2: 525-528 (2008))等の低分子阻害剤、G9aに対するsiRNA及びshRNA(例、G9a siRNA(human) (Santa Cruz Biotechnology)等)等の核酸性発現阻害剤など]、L-channel calcium agonist (例えばBayk8644) (Cell Stem Cell, 3, 568-574 (2008))、p53阻害剤(例えばp53に対するsiRNA及びshRNA)(Cell Stem Cell, 3, 475-479 (2008))、Wnt Signaling activator(例えばsoluble Wnt3a)(Cell Stem Cell, 3, 132-135 (2008))、LIF又はbFGFなどの増殖因子、ALK5阻害剤(例えば、SB431542)(Nat. Methods, 6:805-8 (2009))、mitogen-activated protein kinase signaling阻害剤、glycogen synthase kinase-3阻害剤(PloS Biology, 6(10), 2237-2247 (2008))、miR-291-3p、miR-294、miR-295などのmiRNA (R.L. Judson et al., Nat. Biotech., 27:459-461 (2009))。
初期化因子は、DNAの形態で、あるいはタンパク質の形態で導入することができる。DNAの形態で導入する場合、例えば、ウイルス、プラスミド、人工染色体(例:ヒト人工染色体(HAC)、酵母人工染色体(YAC)、細菌人工染色体(BAC、PAC)等)などのベクター、リポフェクション、リポソーム、マイクロインジェクションなどの手法によって体細胞内に導入することができる。ウイルスベクターとしては、レトロウイルスベクター、レンチウイルスベクター(以上、Cell, 126, pp.663-676, 2006; Cell, 131, pp.861-872, 2007; Science, 318, pp.1917-1920, 2007)、アデノウイルスベクター(Science, 322, 945-949, 2008)、アデノ随伴ウイルスベクター、センダイウイルスベクター(Proc Jpn Acad Ser B Phys Biol Sci. 85, 348-62, 2009)などが例示される。ベクターには、初期化因子が発現可能なように、プロモーター、エンハンサー、リボゾーム結合配列、ターミネーター、ポリアデニル化サイトなどの制御配列を含むことができる。使用されるプロモーターとしては、例えばEF1αプロモーター、CAGプロモーター、SRαプロモーター、SV40プロモーター、LTRプロモーター、CMV(サイトメガロウイルス)プロモーター、RSV(ラウス肉腫ウイルス)プロモーター、MoMuLV(モロニーマウス白血病ウイルス)LTR、HSV-TK(単純ヘルペスウイルスチミジンキナーゼ)プロモーターなどが用いられる。さらに、ベクターには、染色体への組み込みがなくとも複製されて、エピソーマルに存在するように、リンパ指向性ヘルペスウイルス(lymphotrophic herpes virus)、BKウイルス及び牛乳頭腫(Bovine papillomavirus)の起点とその複製に係る配列を含んでいてもよい。例えば、EBNA-1及びoriPもしくはLarge T及びSV40ori配列を含むことが挙げられる(WO 2009/115295、WO 2009/157201及びWO 2009/149233)。
また、複数の初期化因子を同時に導入するために、ポリシストロニックに発現させる発現ベクターを用いてもよい。ポリシストロニックに発現させるためには、遺伝子をコードする配列の間は、IRES、口蹄病ウイルス(FMDV)2Aコード領域又はThosea asignaウイルスの2Aコード領域(T2A)により結合されていてもよい(Science, 322:949-953, 2008及びWO 2009/092042、WO 2009/152529、PLoS One. 6(4):e18556, 2011)。初期化因子の均一な発現の観点からは、ポリシストロニックに発現させる発現ベクターが好ましい。
マイクロインジェクションは、先端径1μm程度のガラス針にタンパク質溶液を入れ、細胞に穿刺導入する方法であり、確実に細胞内にタンパク質を導入することができる。その他、エレクトロポレーション法、セミインタクトセル法(Kano, F. et al. Methods in Molecular Biology, Vol. 322, 357-365(2006))、Wr-t ペプチドによる導入法(Kondo, E. et al., Mol. Cancer Ther. 3(12), 1623-1630(2004))などのタンパク質導入法も用いることができる。
誘導型大腸がん幹細胞の作製に用いる大腸がん細胞は、個体から単離された初代培養細胞であってもよく、あるいはインビトロにおいて無限に増殖する能力を獲得(不死化)した株化細胞であってもよい。大腸がん株化細胞としては、例えば、HT29、HCT8、HCT116、W620、SW480、SW837、DLD-1、CACO-2、LoVo等が挙げられるが、好ましくは、SW480細胞である。また、大腸がん細胞はヒト由来であることが好ましい。
本発明においてがん幹細胞を誘導するための基礎培地や培地添加物については、上述したものと同様のものを使用できる。
本発明において、「ES細胞の維持培養条件」とは、例えば、bFGF又はSCFを含有した培地中で培養する条件、維持培養を補助する目的で用いる細胞外マトリックス(例えば、Matrigel、ラミニン511、ラミニン332、又はそのフラグメント)を用いる条件、維持培養を補助する目的で用いるフィーダー細胞(例えば、マウス胎児由来線維芽細胞(MEF)、STO細胞(ATCC, CRL-1503))を用いる条件、又は当該フィーダー細胞を培養した培養上清を用いる条件等が挙げられるが、いかなる培養条件によればES細胞の維持培養が可能であるかは当業者にとって自明である。
本発明において初期化因子を導入した大腸がん細胞を培養するための培地は、好ましくは、FBSを含有するDMEM、DMEM/F12又はDMEM培地である。培地におけるFBSの濃度は、上述と同様である。
培養温度は、30~40℃が好ましく、37℃がより好ましい。CO濃度は、2~5%が好ましい。培養法の例としては、大腸がん細胞へ初期化因子を導入した後、例えば、37℃、5%CO2存在下にて、10%FBS、ペニシリン及びストレプトマイシンを含有するDMEM培地中で、培養する方法が挙げられる。一定期間経過後、培地を新鮮な培地で置換することが好ましく、また、大腸がん細胞と初期化因子の接触の24時間後に、培地の交換が行われることが好ましい。
さらに、本発明で用いる誘導型大腸がん幹細胞は、外来性の初期化因子を導入していない大腸がん細胞の薬剤排除能を抑制するのに有効な濃度のATP結合カセット(ABC)トランスポーター阻害薬の存在下でもなお、薬剤排除能を有することが好ましい。薬剤排除能を有する細胞とは、例えば、SP(Side population)細胞であり、SP細胞とは、フローサイトメトリーでの解析でHoechst33342という蛍光色素を細胞に取り込ませてUVで励起すると405nm及び600nmに蛍光を発する通常の細胞(未分化細胞以外の細胞)からサイトグラム上は異なった位置(蛍光の暗い部分、すなわち、“Hoechst Blue弱陽性かつHoechst Red弱陽性”)に出現する細胞集団のことである。従って、本発明における好ましい排出される薬剤は、Hoechst33342であり、Hoeschst33342を指標として、薬剤排除能を有する大腸がん幹細胞を抽出することができる。従って、本発明で用いる誘導型大腸がん細胞は、外因性の初期化因子を導入していない大腸がん細胞の薬剤排除能を抑制するのに有効な濃度のABCトランスポーター阻害剤を添加した条件において、薬剤排除能を有する細胞を抽出する工程(以下「一次抽出工程」と略記する。)により得られる誘導型大腸がん幹細胞(以下「1st iCSC」と略記する。)であることが好ましく、1stiCSCを一定期間培養した後に、さらに上記と同様の抽出工程(以下「二次抽出工程」と略記する。)を行い、該工程により得られる二次誘導型大腸がん幹細胞(以下「2nd iCSC」と略記する。)であることがより好ましい。初期化因子導入から一次抽出工程までの期間としては、例えば、6日間~12日間が挙げられ、好ましくは10日間である。また、一次抽出工程から二次抽出工程の期間としては、例えば、10日間~20日間が挙げられ、好ましくは17日間である。本発明に1st iCSC又は2nd iCSCを用いる場合、抽出工程を行った直後の細胞を用いてもよいが、一定期間培養をした細胞を用いてもよく、該培養期間としては、6日間~8日間が好ましい。
本発明におけるABCトランスポーターとは、例えば、ATPの加水分解エネルギーを利用して輸送を行うトランスポーターであり、好ましくは、抗がん剤の細胞外輸送に関与する例えば、P-glycoprotein(Pgp/MDR1/ABCB1)、MDR-asscociated protein 1(MPR1)、ABCG2(BCRP/ABCP/MXR)が例示される。
本発明において、ABCトランスポーター阻害薬とは、ABCトランスポーターの機能を阻害する限り特に限定されないが、例えば、VX-710、GF120918、XR9576、fumitremorgin C 、Ko143、pantoprazole、flavonoids、estrogens、antiestrogens、Dofequidar Fumarate (フマル酸ドフェキダル)(MS-209)(Cancer Science Volume 100, Issue 11, pages 2060-2068, November 2009)、ベラパミル、レセルピン、ゾスキダル(LY335973)、シクロスポリA、タモキシフェン、キニジン、d-αトコフェリルポリエチレングリコール1000サクシネート、PSC833、フェノチアジン、SDZ PSC 833、TMBY、MS-073、S-9788、SDZ 280-446、XR9051が挙げらえる。ABCトランスポーター阻害薬は、好ましくは、fumitremorgin C、Ko143、Dofequidar Fumarate、ベラパミル、レセルピンであり、特に好ましくは、ベラパミルである。
本発明において用いられる、ABCトランスポーター阻害薬の濃度は、初期化因子を導入していない大腸がん細胞の薬剤排除能を抑制するのに有効な濃度であり、例えば、ABCトランスポーター阻害薬が、fumitremorgin Cの場合は10 μM以上であり、Ko143の場合は1 μM以上であり、Dofequidar Fumarateの場合は5 μM以上であり、ベラパミルの場合は50 μM以上であり、レセルピンの場合は10 μM以上である。より好ましくは、ベラパミルの場合は50 μM以上、かつ250 μM未満(例えば、240 μM以下、230 μM以下、220 μM以下、210 μM以下、200 μM以下、190 μM以下、180 μM以下、170 μM以下、160 μM以下、150 μM以下)である。
培養細胞株や生体内の大腸がん組織から大腸がん幹細胞を単離する方法としては、例えば、細胞を無血清で浮遊培養することによりスフェアを形成させ、大腸がん幹細胞を濃縮するスフェア形成分離法や、SP分画による分離法、幹細胞の表面マーカーによる分離法が挙げられる。これらの方法は、上述した方法と同様に行うことができる。また、WO2013/035824 A1に記載されるように、大腸がん患者由来のがん組織を免疫不全マウスに移植し、継代を行った後、腫瘍組織からLGR5を指標にがん幹細胞を選別する方法を用いてもよい。
本発明に用いる大腸がん幹細胞は、がん幹細胞以外の分化したがん細胞が混在した不均一な細胞集団の形態であってもよいが、好ましくはがん幹細胞のみからなる均一な細胞集団である。大腸がん幹細胞は単離後、in vitroにおいて自己複製させる維持培養が困難であることから、大腸がん幹細胞のみからなる均一な細胞集団を得るためには、例えば、上記の薬剤排除能を有する細胞を抽出する工程を行うことがより望ましい。
2.スクリーニング方法
本発明は、前述のように維持増幅された大腸がん幹細胞、又は誘導された大腸がんオルガノイド(以下「増幅大腸がん幹細胞等」と略記する場合がある。)を用いて、抗がん剤をスクリーニングする方法(以下「本発明のスクリーニング方法」と略記する。)を提供する。本発明のスクリーニング方法は、例えば、前記増幅大腸がん幹細胞等を試験物質の存在下又は非存在下で培養した後、該増幅大腸がん幹細胞等に及ぼす該被験物質の効果を検定することを含む。そのような被験物質の効果としては、例えば、増幅大腸がん幹細胞等の殺傷効果、大腸がん幹細胞の増殖抑制効果、大腸がん幹細胞の非幹細胞への分化誘導効果などが挙げられる。増幅大腸がん幹細胞等の殺傷効果の検討による抗がん剤の選別は、例えば、被験物質を添加した場合の該細胞等の生存度を測定し、被験物質の非存在下で培養した場合と比較して、試験物質の存在下で培養した場合において、当該細胞の生存度が低下した場合に、当該試験物質は抗がん作用を有すると判定することにより行われ得る。大腸がん幹細胞の増殖抑制効果の検討による抗がん剤の選別は、例えば、被験物質を添加した場合の該細胞の増殖率を測定し、被験物質の非存在下で培養した場合と比較して、試験物質の存在下で培養した場合において、当該細胞の増殖率が低下した場合に、当該試験物質は抗がん作用を有すると判定することにより行われ得る。大腸がん幹細胞の非幹細胞への分化誘導効果の検討による抗がん剤の選別は、例えば、被験物質を添加した場合の細胞集団における、上述した大腸がん幹細胞のマーカーとして報告のある遺伝子/タンパク質の発現レベルを測定し、被験物質の非存在下で培養した場合と比較して、試験物質の存在下で培養した場合において、該細胞集団における該がん幹細胞のマーカーの発現レベルが低下した場合に、当該試験物質は抗がん作用を有すると判定することにより行われ得る。
抗がん剤をスクリーニングする方法の他の態様として、例えば、本発明の方法において、カルシニューリン阻害薬の存在下での培養を被験物質の共存下で行い、大腸がん幹細胞の維持増幅又は大腸がんオルガノイドの誘導に影響を及ぼす被験物質の効果を検定することを含む方法が挙げられる。そのような被験物質の効果としては、例えば、増幅大腸がん幹細胞等の殺傷効果、大腸がん幹細胞の維持又は増殖の抑制効果、大腸がん幹細胞の非幹細胞への分化誘導効果などが挙げられ、これらは前述の本発明のスクリーニング方法で用いる方法と同様にして行うことができる。
本発明のスクリーニング方法において使用される試験物質(被検物質)は、いかなる公知化合物及び新規化合物であってもよく、例えば、細胞抽出物、細胞培養上清、微生物発酵産物、海洋生物由来の抽出物、植物抽出物、精製タンパク質又は粗タンパク質、ペプチド、非ペプチド化合物、合成低分子化合物、天然化合物等が挙げられる。本発明において、試験物質はまた、(1)生物学的ライブラリー法、(2)デコンヴォルーションを用いる合成ライブラリー法、(3)「1ビーズ1化合物(one-bead one-compound)」ライブラリー法、及び(4)アフィニティクロマトグラフィ選別を使用する合成ライブラリー法を含む当技術分野で公知のコンビナトリアルライブラリー法における多くのアプローチのいずれかを使用して得ることができる。アフィニティクロマトグラフィ選別を使用する生物学的ライブラリー法はペプチドライブラリーに限定されるが、その他の4つのアプローチはペプチド、非ペプチドオリゴマー、又は化合物の低分子化合物ライブラリーに適用できる(Lam (1997) Anticancer Drug Des. 12: 145-67)。分子ライブラリーの合成方法の例は、当技術分野において見出され得る(DeWitt et al. (1993) Proc. Natl. Acad. Sci. USA 90: 6909-13; Erb et al. (1994) Proc. Natl. Acad. Sci. USA 91: 11422-6; Zuckermann et al. (1994) J. Med. Chem. 37: 2678-85; Cho et al. (1993) Science 261: 1303-5; Carell et al. (1994) Angew. Chem. Int. Ed. Engl. 33: 2059; Carell et al. (1994) Angew. Chem. Int. Ed. Engl. 33: 2061; Gallop et al. (1994) J. Med. Chem. 37: 1233-51)。化合物ライブラリーは、溶液(Houghten (1992) Bio/Techniques 13: 412-21を参照のこと)又はビーズ(Lam (1991) Nature 354: 82-4)、チップ(Fodor (1993) Nature 364: 555-6)、細菌(米国特許第5,223,409号)、胞子(米国特許第5,571,698号、同第5,403,484号、及び同第5,223,409号)、プラスミド(Cull et al. (1992) Proc. Natl. Acad. Sci. USA 89: 1865-9)若しくはファージ(Scott and Smith (1990) Science 249: 386-90; Devlin (1990) Science 249: 404-6; Cwirla et al. (1990) Proc. Natl. Acad. Sci. USA 87: 6378-82; Felici (1991) J. Mol. Biol. 222: 301-10; 米国特許出願第2002103360号)として作製され得る。
3.大腸がん幹細胞の維持増幅又は大腸がんオルガノイドの誘導剤
本発明は、カルシニューリン阻害薬を含有してなる、大腸がん幹細胞の維持増幅又は大腸がんオルガノイドの誘導剤(以下「本発明の剤」と略記する。)を提供する。
本発明の剤に用いるカルシニューリン阻害薬としては、上記1.で例示したものが挙げられるが、なかでも、FK506又はシクロスポリンAが好ましい。
本発明の剤には、本発明の剤が有する効果を損なわない限り、カルシニューリン阻害薬以外の他の成分を含んでいてもよい。このような他の成分として、公知の担体、例えば、賦形剤、希釈剤、増量剤、結合剤、滑沢剤、流動助剤、崩壊剤、界面活性剤、防腐剤などが挙げられる。賦形剤としては、例えば、スクロース、トレハロース、ラフィノース、マンニトール、デキストラン等の糖、アルギニン、ヒスチジン、グリシン、セリン、プロリン等のアミノ酸などが挙げられる。
また、大腸がん幹細胞の維持増幅又は大腸がんオルガノイドの誘導における使用のための、カルシニューリン阻害薬も提供する。該カルシニューリン阻害薬としては、上記1.で例示したものが挙げられるが、なかでも、FK506又はシクロスポリンAが好ましい。
4.大腸がん幹細胞の維持増幅又は大腸がんオルガノイドの誘導用キット
本発明はまた、本発明の剤と、誘導型大腸がん幹細胞とを含んでなる、大腸がん幹細胞の維持増幅又は大腸がんオルガノイドの誘導用キット(以下「本発明のキット」と略記する。)を提供する。
本発明のキットに用いる誘導型大腸がん幹細胞としては、上述の通りであるが、外来性の初期化因子を導入した大腸がん細胞由来であって、外来性の初期化因子を導入していない大腸がん細胞の薬剤排除能を抑制するのに有効な濃度のABCトランスポーター阻害薬の存在下で、薬剤排除能を有する大腸がん幹細胞が好ましい。本発明のキットには、前記本発明の剤や誘導型大腸がん幹細胞以外に、必要に応じて、その他の試薬類を添付してもよい。試薬類としては、上記1.で例示した物質が同様に挙げられる。例えば、誘導型大腸がん細胞を維持増幅するため、又は大腸がんオルガノイドに誘導するための培地類(例えば、基礎培地、培地添加物など)、ABCトランスポーター、Hoechst33342が挙げられるが、これらに制限されない。本発明のキットは、上記のスクリーニング方法にも用いることができる。
以下に実施例を挙げて本発明をより具体的に説明するが、本発明がこれらに限定されないことは言うまでもない。
後述の実施例では、以下のようにして実験を行った。
<細胞培養>
ATCCコレクション及びCell Biolabs(San Diego、CA、USA)から、ヒト大腸がん細胞株(SW480)及びPlat-A アンホトロピックレトロウイルスパッケージング細胞をそれぞれ入手した。10%ウシ胎仔血清(FBS)(Life Technologies)、ペニシリン(100 Units/ ml)及びストレプトマイシン(100 μg/ml)(Life Technologies)を補充したダルベッコ変法イーグル培地(DMEM)(Nacalai Tesque、Kyoto、Japan)中で、37℃、加湿5%CO2インキュベーター内で両方の細胞を培養した。Plat-A培養において、1 μg/mlのピューロマイシン(Nacalai Tesque)及び10 μg/mlのブラストサイジン(Funakoshi)を添加した。HUVEC(Lonza)及びヒトMSC(Lonza)は、内皮増殖培地(Lonza)中で、37℃、加湿5%CO2インキュベーター内で維持した。細胞をFK506(Sigma、25 μM)、VPA(WAKO、1 mM)又はCHIR99021(Funakoshi、3 mM)で5日間処理した。その後、細胞を酵素処理によって培養皿より剥離、分散し、Countessシステム(Invitrogen)を用いて細胞数を数えた。
コントロールとして用いたヒト人工多能性幹(hiPS)細胞は、実験室でヒト末梢血単核細胞から作製した。
<レトロウイルス感染>
pMXをベースにしたベクターにおいて、OCT3/4、SOX2又はKLF4を別々にコードするレトロウイルスベクター(pMXs-OCT3/4, pMXs-SOX2, pMXs-KLF4)は、Addgeneから入手した。さらに、これらのベクターを用いて、OCT3/4、KLF4及びSOX2をコードするポリシストロニックレトロウイルスベクター(pMXs-OKS)を設計した。即ち、上記の各ベクターを鋳型とし、ヒトOCT3/4、KLF4及びSOX2を、Thosea asignaウイルスの2A配列(T2A)を含むプライマーを用いたポリメラーゼ連鎖反応(PCR)により増幅し、In-fusion HDクローニングシステム(Clontech)を用いてpMXベクターのEcoRI部位にクローニングした。pMXs-NFATc3-GFPコンストラクトを作製するために、HA-NFAT4(3-407)-GFP(Addgeneから購入 #21664)を鋳型として用いて、NFATc3-GFP cDNAをPCRで増幅し、pMXsベクター(Aramburu J, et al., Science 1999, 285:2129-2133)のEcoRI-NotIサイトにクローニングした。
トランスフェクションの1日前に、Plat-Aパッケージング細胞を、60mmディッシュ当たり1×106細胞で播種した。翌日、メーカーの説明書に従い、Fugene HDトランスフェクション試薬(Promega)を用いて3μgのpMXベクターで細胞をトランスフェクトした。トランスフェクションの24時間後、Plat-A培地を交換した。一方、SW480を60mmディッシュ当たり7×105細胞で播種した。24時間後、これらのPlat-A培養物に由来するウイルス含有上清を、0.45mm酢酸セルロースフィルター(Whatman)で濾過し、4μg/mlポリブレン(Nacalai Tesque)を補充し、pMXs-OKSウイルス含有上清又はpMXs-OCT3/4、pMXs-SOX2及びpMXs-KLF4ウイルス含有上清の等量混合物を速やかに標的細胞に添加した。感染24時間~36時間後に、ウイルス含有培地を新しい培地と交換した。
<初期化因子導入後の細胞の培養、大腸がん幹細胞富化細胞集団の単離及び大腸がんオルガノイドの誘導>
初期化因子導入後のSW480細胞の培養及び誘導型大腸がん幹細胞(以下、「大腸iCSC」ともいう。)富化細胞集団の単離及び大腸がんオルガノイドの誘導は、図6に記載のスケジュールで実施した。大腸iCSCの樹立培養及び大腸iCSC富化細胞集団のソーティングは、上記非特許文献3に記載される方法(50μM ベラパミル存在下でのHoechst33342排除能を利用したフローサイトメトリー)に従って行った。以下、1回目のソーティングにより得られた大腸iCSC富化細胞集団(50μM ベラパミル存在下でHoechst33342により標識されない細胞集団;V50細胞)を1st V50細胞(又は1st V50-OKS細胞)、2回目のソーティングにより得られたV50細胞を2nd V50細胞(又は2nd V50-OKS細胞)と、それぞれ略記する場合がある。一方、50μM ベラパミル存在下でHoechst33342により標識される細胞集団を非V50(又はnon V50、non V50-OKS)細胞と略記する場合がある。大腸がんオルガノイドの誘導は、後述のスフェア形成アッセイに記載の方法にて行った。
<RNAの単離及び定量逆転写酵素ポリメラーゼ連鎖反応>
Trizol(Life Technologies)を用いて細胞の全RNAを抽出した。Prime ScriptTM II 1st strand cDNA Synthesis Kit(Takara)を用いて、500ngのRNAをcDNAに逆転写し、SYBR(登録商標)Premix Ex TaqTM II(Takara)を用いたLightCycler(登録商標)480リアルタイムPCRシステム(Roche)で定量PCR分析を行った。PCRプライマーを表1に挙げる。
Figure 0007141125000001
<ウエスタンブロッティング>
細胞をM-PER哺乳動物タンパク質抽出試薬(Thermo Fisher Scientific)で溶解した。細胞可溶化物を用いてSDS-ポリアクリルアミドゲル電気泳動(SDS-PAGE)を行った。タンパク質の電気泳動転写後、マウス抗OCT3/4抗体(BD Transduction LaboratoriesTM)、ウサギ抗KLF4抗体(abcam)、及びヤギ抗SOX2抗体(abcam)、マウス抗β-アクチン抗体(Sigma Aldrich)を、続いて西洋ワサビペルオキシダーゼ(HRP)結合二次抗体を用いて、イムノブロッティングを行った。LAS 3000イメージングシステム(Fuji Film)を使用してシグナルを検出した。
<免疫組織化学>
培養細胞を4%パラホルムアルデヒドで固定した。一次抗体として、マウス抗OCT3/4抗体(611202、1:200で希釈、BD transduction LaboratoriesTM)、ヤギ抗SOX2抗体(sc-17320、1:100で希釈、Santa Cruz)を用いた。免疫蛍光のために、フルオロフォア結合した(Alexa Fluor 488、Alexa Fluor 594)二次抗体を用いてシグナルを視覚化した。
<色素流出活性分析>
色素流出活性分析は、公知の方法(Zhou S. et al., Nat Med 2001;7:1028-34、Patrawala L. et al., Cancer Res 2005;65:6207-19)に従い行った。細胞を、2%FBS及びHoechst33342(Life Technologies)を5μg/ ml含有する1mM HEPESを含むDMEM中で、ベラパミル(Sigma-Aldrich)を50又は250μMで共投与して、又は共投与せずに、37℃で90分間インキュベートし、30分ごとに静かに転倒させた。インキュベーション後、細胞を2%FBS及び1mM HEPESを含むPBSに再懸濁した。細胞を、死細胞を標識するために2μg/ mlのPIで対比染色し、35μmのメッシュフィルターに通し、フローサイトメトリー及び選別のために氷上に保持した。細胞をFACS Aria III装置(BD Bioscience)で分析及び選別した。Hoechst色素を紫色レーザー(405 nm)で励起し、450/40フィルター(Hoechst Blue)と610/20フィルター(Hoechst Red)の両方で蛍光を測定した。
<5-FU化学的抵抗性分析>
0、1、50 μg/ mlの5-フルオロウラシル(5-FU、Kyowa Kirin)をそれぞれ含有するDMEMを含む12ウェルプレートに合計6×104細胞を播種した。72時間のインキュベーション後、5-FU曝露後の細胞の生存能力を、Countess(Invitrogen)システムによって測定した。
<細胞周期解析>
パラホルムアルデヒドで固定し、透過処理した細胞を37℃で5分間Hoechst33342で染色し、次いで細胞をFACS Aria III (Henderson L, et al., Am J
Physiol Cell Physiol 2013, 304:C927-38)で分析した。
<スフェア形成アッセイ>
10 ng/mlのbFGF(WAKO)、10 μg/mlのヒトインスリン(CST)、100 μg/mlのヒトトランスフェリン(Roche)及び100 μg/mlのBSA(Nacalai Tesque)を含有する無血清DMEMを有するUltra Low Attachmentプレート(Corning)に細胞を移し、37℃、5%CO2インキュベーターで10日間インキュベートした。スフェアの数は、100μmより大きいスフェアのサイズに基づいて計算した。培地にFK506(25μM)、VPA(1 mM)又はCHIR99021(3 μM)を添加し、次いでスフェアを10日間処理した。
<HUVEC及びMSCとの共培養>
5×105 親SW480細胞又はiCSCを、5×104HUVEC及び2×105 MSCと共にスフェア形成培地に再懸濁し、低接着24ウェルのフラットプレート(Prime Surface(登録商標) 24F、 Sumitomo Bakelite)に蒔いた。10日後、集合細胞(collective cell)のスフェアを病理学的に解析した。
<スフェアの組織学的及び免疫組織化学的分析>
スフェアをパラフィンブロックに包埋し、厚さ5μmで切片化した。切片を脱パラフィンし、ヘマトキシリン及びエオシン(HE)、抗ヒトサイトケラチン20(CK20)マウスモノクローナル抗体(クローン:Ks20.8、1:50で希釈、Dako)、抗ヒトサイトケラチン7(CK7)マウスモノクローナル抗体(クローン:OV-TL 12/30、1:50で希釈、Dako)、抗CDX2マウスモノクローナル抗体(CM226、1:50で希釈、Biocare Medical)、抗Ki67マウスモノクローナル抗体(クローン:MIB-1、1:50で希釈、Dako)、抗αSMAマウスモノクローナル抗体(クローン:1A4、1:50で希釈、Dako)及び抗CD31マウスモノクローナル抗体(クローン:JC70A、1:50で希釈、Dako)で染色した。免疫組織化学は、XT ultraView Universal DAB検出キット(Ventana Medical Systems, Inc)を用い、Benchmark XT(Roche)autostainerを用いて行った。
<マイクロアレイ分析>
Mock-SW480細胞、1st V50-OKS細胞由来の非50細胞及び2nd V50-OKS細胞のRNAを、ソート後5日目に回収した。遺伝子発現プロファイリングを、メーカーのプロトコールに従い、SurePrint G3 human GE microarray(Agilent Technologies)用いて行った。GeneSpring 13.0ソフトウェアプログラム(Agilent Technologies)を用いてデータを分析した。データ処理は、次のように行った:(i)閾値生シグナルを1.0に設定し、(ii)ログベース2変換を行い、(iii)標準化アルゴリズムとして75パーセンタイル正規化を選択した(http://genespringsupport.com/faq/normalization)。フラグの設定は、次のように行った:特徴は、not positive and significant (not detected)、not uniform (compromised)、 not above background (not detected)、 saturated (compromised)、又はpopulation outlier(compromised)とした。コントロールプローブを除去し、全ての試料中の少なくとも1つの試料中に存在する「検出された」プローブのみをさらなる分析に使用した。分析に使用したプローブの数は50,739であった。
<FK506の添加>
SW480細胞又は2nd V50細胞を、FK506(Sigma)の存在下で5~15日間平面接着培養した後、Countess(Invitrogen)システムを用いて細胞数をカウントした。あるいは、該細胞をFK506の存在下もしくは非存在下で平面接着培養した後、FK506の存在下もしくは非存在下で浮遊培養してスフェアを形成させた。Countess(Invitrogen)システムを用いてスフェア数をカウントした。特に断らない限り、本実施例では、FK506は25μMの濃度で用いた。
<統計解析>
すべてのデータは、jstatソフトウェアプログラムを使用して分析した。データ値は、3回の独立した実験の平均±標準誤差(SEM)として表した。2群間の平均値の差を、両側対応t検定を用いて分析した。その差は、P値<0.05(*)及び<0.01(**)である場合に、統計的に有意であるとみなした。
<siRNAトランスフェクション>
二本鎖ステルスsiRNA(Invitrogen)を参考例に使用し、メーカーの説明書に従って細胞に形質導入した。用いたsiRNAに関する配列情報は以下の通りである:GSK3a-CCAAGGCCAAGUUGACCAUCCCUAU(配列番号23); GSK3b - GCUCCAGAUCAUGAGAAAGCUAGAU(配列番号24); RCAN2-HSS#173486;スクランブル - AAUUCUCCGAACGUGUCACGUGAGA(配列番号25)。
<コロニー形成アッセイ>
3回の独立した実験で作製した2ndVP50細胞を、2 x 103 細胞/ウェルの密度で、6ウェルプレートに播種した。翌日、培地を化合物を添加していない培地、あるいは1 mMのVPA、3μMのCHIR又は25 μMのFK506を添加した培地に交換した。以後、培地を2日又は3日毎に交換した。12日目に、細胞をメタノールで固定し、クリスタルバイオレットで染色し、実体顕微鏡を用いてコロニーをカウントした。
実施例1:3つの転写因子(TF)を有するポリシストロニックレトロウイルス発現ベクターを用いた、大腸がん細胞株からのiCSCの作製
以前の研究(非特許文献3)では、SW480ヒト大腸がん細胞株からiCSCを作製するためにOCT3/4、SOX2又はKLF4を別々に有する3種類のウイルスベクターを使用した。そのため、形質導入された細胞には、3つのウイルスベクターのすべて、2つ、1つ、又は全く含まれない様々な集団が含まれていた。従って、iCSCの分子サインの同定を妨げ得る不均一さを避けるため、OCT3/4、KLF4及びSOX2をコードする3つのcDNAがT2A配列と連結したポリシストロニックレトロウイルスベクター(pMXs-OKS)を構築した(図1A)。
次いで、OKS融合遺伝子産物が効率的に個々のタンパク質にプロセシングされ得ることを確認した。このポリシストロニックベクターをPLAT-Aパッケージング細胞にトランスフェクトすることによりレトロウイルスを作成し、該レトロウイルスをSW480細胞にトランスフェクトした(OKS-SW480)。モック(空)ベクターでトランスフェクトしたSW480細胞(Mock-SW480)をネガティブコントロールとして、pMX-OCT3/4、pMX-SOX2及びpMX-KLF4の混合物でトランスフェクトしたSW480細胞(O+S+K-SW480)をポジティブコントロールとして、それぞれ使用した。ウエスタンブロット分析により、OKS-SW480細胞及びO+S+K-SW480細胞の両方において、OCT3/4、KLF4及びSOX2タンパク質が適切な分子量で検出されたが、KLF4発現レベルは、Mock-SW480細胞と比較して、実質的に変化しなかった(図1B)。定量的逆転写ポリメラーゼ反応(qRT-PCR)により、OKS-SW480細胞において、O(OCT3/4)、K(KLF4)、S(SOX2)転写物の合計のレベルも上昇していることが示された(図1C)。さらに、予想通り、免疫蛍光染色分析により、ほとんど全てのOKS-SW480細胞がOCT3/4及びSOX2についてダブルポジティブ又はダブルネガティブであったが、OCT3/4-又はSOX2-シングルポジティブ細胞はO+S+K-SW480において顕著であった(図1D)。
次に、OKS-SW480がO+S+K-SW480を用いた以前の報告(非特許文献3)と類似の表現型を示すかどうか評価した。以前の報告では、O+S+K-SW480培養において、不明瞭な輪郭を有する細胞からなるドーム型コロニーが出現し、O+S+K-SW480は、マーカー遺伝子発現、高いG1/G0期の細胞の割合及び5-FUに対する耐性を含む、CSCの特性が増強されることを実証した。さらに、O+S+K-SW480は、ATP結合カセット(ABC)トランスポーター阻害剤である、ベラパミル(VM) 50μMの存在下でさえ、Hoechst33432色素によって標識されなかった細胞のサブセット(V50細胞)を含むが、Mock-SW480はV50細胞を含まないこと、及びV50細胞は、CSC特性を示すことを見出した。これらの結果から、iCSCがV50細胞に富んでいると考えられた。
トランスフェクションの10日後、OKS-SW480培養及びO+S+K-SW480培養の両方において、不明瞭な輪郭を有する細胞からなるドーム型コロニーが出現した(図1E)。 Mock-SW480、O+S+K-SW480及びOKS-SW480におけるV50細胞の割合は、それぞれ0%±0.1%、1.2%±0.3及び1.4%±0.1であった(図2A、図1F)。OKS-SW480からソートしたほぼすべてのV50細胞(V50-OKS)がドーム型コロニーを形成したが、ソートした非V50細胞(non V50-OKS)培養物は形態においてMock-SW480と類似していた。形質導入後17日間、非V50-OKSは紡錘形の形態を維持し(図2A)、V50細胞を産生しなかった(図2B)。対照的に、V50-OKSは、紡錘形の細胞及びドーム型のコロニーを生じ、また非V50細胞及び約10%のV50細胞を生じた(図2B 左パネル、2C)。この細胞を二次V50(2ndV50)と命名した。2nd V50細胞は、ドーム型コロニーを形成した(図2B 右パネル)。2nd V50-OKS細胞は、SW480細胞と比較して、以前に報告されたマーカー遺伝子:ABCG2及びLGR5(Ding X.W. et al., Life Sci 2010;86:631-7、Schepers A.G. et al., Science 2012;337:730-5)のmRNA発現レベルが高値であること(図2D)、G1/G0期にある細胞の割合が高値であること(図2E)及び5-FUに対する耐性が向上していること(図2F)等、CSCの特性を示した。
以上のように、OKS-SW480は、O+S+K-SW480を用いた我々の以前の報告(非特許文献3)に記載された表現型と類似した表現型を示した。このことから、ポリシストロニック発現系を用いても、V50及び2nd V50-OKS-SW480細胞として同定されたようにiCSCを作製できること、しかもポリシストロニック発現系を用いることで、3因子がすべて導入された均質なiCSC集団を作製できることが示された。
実施例2:iCSCsのin vitroでの組織再構築能の検証
無血清培地を用いた低接着培養皿で培養した場合、CSCが高いスフェア形成する能力を有することが以前報告されている(Ricci-Vitiani L. et al., Nature 2007;445:111-51、Sato T. et al., Gastroenterology 2011;141:1762-72)。これらの細胞のスフェア形成能を調べるために、スフェア形成アッセイを行った。
O+S+K-SW480を用いた大腸iCSCにおける以前の報告(非特許文献3)と一致して、2ndV50-OKS細胞におけるスフェアの数が明らかに増加したのに対し、親SW480細胞ではスフェアを見つけることが困難であった(図3A)。1st V50-OKS細胞由来の非V50細胞において、スフェアの数は、2nd V50-OKS細胞と親SW480細胞との中間レベルであった(図3A)。
以前の異種移植実験では、免疫組織化学的所見から、親細胞株ではなく大腸iCSCも、実際のヒト大腸がん組織に類似した組織をin vivoで再構成できることが実証された(非特許文献3)。しかし、大腸iCSCがin vitroで同じ現象を示すことができるかどうかは依然として不明であった。そこで、親SW480細胞及び2nd V50-OKS細胞由来のスフェアを免疫組織化学的に評価した。2nd V50-OKS細胞由来のスフェアは、CK20及びCDX2が陽性であり、CK7は陰性であり(図3B)、これは典型的な大腸がん組織における染色パターンと一致する(Bayrak R et al., Diagn Pathol 2012;7:9)。一方、親SW480細胞由来のスフェアはCK20が陰性であった(図3B)。このことは、in vivoのみならずin vitroでも、大腸iCSC由来組織が天然のヒト大腸がん組織様の構造(大腸がんオルガノイド)を再構築できること、並びにこの組織再構築能はがん幹細胞特異的であることを示している。従って、これらのiCSCの組織再構築能の指標として、スフェア形成能を評価することができると考えられる。
ヒト大腸がん組織は、がん細胞だけでなく、血管及び間葉系の細胞のような間質細胞からなることが知られている(Takebe T. et al., Cell Stem Cell 2015;16:556-65、Plaks V. et al., Cell Stem Cell 2015;16:225-38)。そのため、大腸iCSCを、間葉系幹細胞(MSC)及びヒト臍帯静脈内皮細胞(HUVEC)と共に培養した場合に、in vitroで間質細胞と共に、よりリアリティーのある大腸がんオルガノイドを構築することができるかどうかを調べた。
MSC及びHUVECと共培養された2nd V50-OKS細胞は、親SW480細胞とは異なり、大きな凝集した集合細胞を生じた(図4A)。免疫組織化学的分析を行ったところ、2nd V50-OKS由来のスフェアにおいて、α-SMA及びCD31(それぞれMSC及び血管細胞に由来し得る筋線維芽細胞マーカーである(Quante M. et al., Cancer Cell 2011;19:257-72))陽性細胞が観察されたが、親SW480細胞由来のスフェアでは観察されなかった(図4B)。このことから、大腸iCSCのみが、HUVECとMSCと共に組織を構築し、大腸がんオルガノイドをより成熟した段階に導き得ることが示された。
実施例3:Mock-SW480細胞、非V50細胞及び2 nd V50-OKS細胞における遺伝子発現プロファイルの比較
CSCsの特性を促進する分子メカニズムを同定するために、ソーティングから5日後のMock-SW480細胞、1stV50-OKS細胞由来の非V50細胞及び2ndV50-OKS細胞における網羅的遺伝子発現パターンを、マイクロアレイによって比較した。まず、Mock-SW480と2nd V50-OKS細胞間の遺伝子発現を比較し、3914のプローブがそれらの発現において有意差を有することを同定した(t検定、偽陽性率(FDR)<0.05及びFold Change>2)(図5A)。次に、2ndV50-OKS細胞の遺伝子発現プロファイルを、1st V50-OKS細胞由来の非V50細胞の遺伝子発現プロファイルと比較した(図5B)。FDR <0.05であり、Fold Change>2である56個のプローブを同定した。次に、非V50、Mockよりも2ndV50においてより高く発現するプローブ、及び非V50、Mockよりも2ndV50においてより低く発現するプローブのベン図を描き、ベン図で重なる8個のプローブを選択した(図5C)。これら8個のプローブのうち、各細胞における発現レベルとスフェア形成能がパラレルの関係にある、セマフォリン 6A(SEMA6A)、FAM105A(family with a sequence similarity 105 member A)、及びRCAN2(regulator of calcineurin 2)を含む3個のプローブに絞り込んだ(図5D、5E)。
SEMA6Aは、神経系以外の多くの発達プロセスにおいて役割を果たすセマフォリンファミリーの1つである(Luo Y. et al., Cell 1993;75:217-27)。セマフォリンのこれらの正常な機能に加えて、多くのセマフォリンは、腫瘍の進行に関連する機能的活性を有することが見出されている(Neufeld G. et al., Cold Spring Harb Perspect Med 2012;2:a006718、Worzfeld T. et al., Nat Rev Drug Discov 2014;13:603-21)。現在のところ、FAM105Aについてはほとんど報告されていないが、FAM105AはRho-GAPの保存されたタンパク質ドメインを有し(Marchler-Bauer A. et al., Nucleic Acids Res 2015;43:D222-6)、RhoGタンパク質を調節する可能性がある。RCAN2はもともとヒト線維芽細胞由来の甲状腺ホルモン応答遺伝子 ZAKI-4として同定されており(Miyazaki T. et al., J Biol Chem 1996;271:14567-71)、その後カルシニューリンのネガティブレギュレーターとして機能することが報告されている(Cao X., et al., Biochem J 2002;367:459-66)。
次に、SEMA6A、FAM105A若しくはRCAN2、又はそれらの標的分子に作用する低分子化合物を用いて実験を行うことにした。しかし、SEMA6Aのアゴニストもアンタゴニストも、探した限りでは市販されておらず、FAM105Aの機能は不明であった。対照的に、RCAN2はカルシニューリンを負に調節することが知られており、理論的には大腸iCSCに対するRCAN2と同じ効果を有すると推定されるFK506などのカルシニューリン-NFAT(nuclear factor of activated T cells)シグナル伝達阻害剤は市販されていた。従って、大腸iCSCの特性に対するFK506の影響を評価することに焦点を当てた。
実施例4:カルシニューリン阻害によるiCSCの維持増幅での効果の検証(平面接着培養)
FK506は、親SW480培養において細胞の数を有意に減少させたが、これはカルシニューリンの阻害がin vitroで大腸がん細胞株の増殖を阻害するという報告と一致する(Peuker K. et al., Nat Med 2016;22:506-15)。一方で、2nd V50-OKS培養において、FK506の細胞数に対する有意な効果は観察されなかった(図7A)(継代±FK506添加5日後)。さらに、2ndV50-OKS細胞において顕著に観察された形態又はドーム型コロニーは、FK506を用いることでより顕著になったが、親SW480の細胞形態はFK506を用いても変化しなかった(図7B)(継代±FK506添加5日後)。これらのデータにより、FK506が大腸iCSC及び親SW480細胞に対して異なる作用を有することが示唆された。
また、FK506の添加有り、又は無しで継代から5日目に回収した2nd V50細胞について、大腸がん幹細胞マーカー(ABCG2、LGR5)の発現量を定量RT-PCRを用いて比較した。その結果、FK506は、大腸がん幹細胞マーカーの発現を増大することが示された(図8)。
さらに、2nd V50細胞をFK506の添加有りで接着培養したところ、全細胞数は、10日間で約100倍、15日間で約1000倍に増幅した(図9上図)。その間、CSCの形態的特徴は、FK506を添加しない条件と比べてよく維持されていた(紡錘形の平坦な細胞の出現が少なく、特徴的なコロニーを主体とする細胞集団が保たれていた)。
以上より、FK506を用いてカルシニューリンを阻害することにより、iCSCを維持増幅できることが示された。
実施例5:カルシニューリン阻害によるiCSCのスフェア形成能への効果の検証
FK506有り又は無しでの大腸iCSCの組織再構築能の指標として、スフェア形成能を評価した。FK506は、2nd V50-OKS細胞においてスフェアの数を有意に増加させたが、親SW480細胞では増加しなかった(図7C、7D)。免疫組織化学分析により、FK506処置を受けた2nd V50-OKS細胞のスフェアは、CK20及びCDX2が陽性であり、CK7が陰性であり、FK506を用いないスフェアと同じパターンであった(図7E)。また、FK506存在下で15日間接着培養を行った2nd V50細胞を、次いで7日間浮遊培養し、スフェアを形成させた。その結果、図7と同様に、2nd V50細胞のスフェアは、CK20及びCDX2が陽性であり、CK7が陰性であった(図10)。
スフェア形成アッセイを、FK506を添加せず(0μM)、あるいは1μM、2.5μM、10μM又は25μMの濃度でFK506を添加して、2ndV50-OKS細胞を10日間浮遊培養することにより行った。その結果、FK506の添加による大腸iCSCのスフェア形成能への効果は、少なくとも1μM~25μMの濃度域で認められた(図11)。
FK506(25μM)存在下の接着培養で15日間拡大培養した2nd V50細胞を、FK506添加あり又はFK506添加無しの条件で10日間スフェア形成実験に供した。その結果、少なくとも接着培養の際にFK506を添加しておくことで、浮遊培養の際にFK506を添加せずとも、大腸iCSCは高いスフェア形成能を示すことが実証された(図12)。
以上より、FK506を用いてカルシニューリンを阻害することにより、大腸iCSCのスフェア形成を促進すること、即ち、大腸iCSCの組織再構築能を増強できることが示された。
また、スフェア形成アッセイを、別のカルシニューリン阻害薬であるシクロスポリンA(CsA)を用いて行った。CsAを添加せず(-)、あるいは1 μMのCsAを添加して(+)、2ndV50-OKS細胞を10日間浮遊培養することにより行った。その結果、CsAの添加によっても大腸iCSCのスフェア形成能の促進が認められた(図13)。従って、阻害薬の種類に関わらず、カルシニューリンを阻害するものであれば、同様に大腸iCSCの組織再構築能を増強できることが強く示唆される。
参考例1:GSK3阻害によるiCSCに対する効果の検証
カルシニューリンは、NFATの核移行を促進することが他の細胞で報告されていた。逆に、NFATの核から細胞質への移行を促進する分子としてGSK3が知られていた。そこで、大腸がん幹細胞に対して、GSK3を阻害すれば、カルシニューリン阻害薬FK506とは逆の効果があるという仮説のもとに本実験を行った。
まず、GSK3α及びGSK3βに対するsiRNAを用いて、GSK3を阻害した。その結果、平面接着培養において、GSK3αに対するsiRNAとGSK3βに対するsiRNAの両者を添加することで、iCSCの形態的特徴(ドーム状のコロニー)は抑制されて平坦となり、細胞数も減少した(図14A)。単独のsiRNAでは効果が見られなかったことから、大腸がんにおいてはGSK3αとGSK3βとの間には機能的なリダンダンシーがあることが示唆された。
次に、GSK3αおよびβ両者の阻害薬であるバルプロ酸(VPA)やCHIR99021(CHIR)添加によりsiRNAと同様の効果があるか否かを調べた。その結果、図14Bに示すとおり、いずれのGSK3阻害薬でも、siRNAと同様の効果が認められた。さらに、実施例4と同様に、スフェア形成能の及ぼすこれら阻害薬の効果を調べたところ、いずれのGSK3阻害薬も大腸iCSC(2nd V50)のスフェア形成能力を有意に抑制した。注目すべきことに、2ndV50-OKS細胞におけるiCSCの組織再構築能の尺度であるスフェア形成能は、VPAおよびCHIRの添加によって有意に抑制された(図14C)。
さらに、インビトロでの2ndV50細胞を用いたコロニー形成アッセイにおいて、二次ドーム形状のコロニーの数は、VPAおよびCHIR99021では減少し、FK506では増加した(図15)。この結果は、これらの化合物がiCSCの自己複製に影響することを示している。
参考例2:2 nd V50-OKS細胞でのNFATの局在
最後に、iCSCにおけるFK506、VPA及びCHIRの処置後のNFATの細胞内局在を試験した。GFPに融合したNFATc3(NFATc3-GFP; Aramburu J, et al., Science, 1999 ;285:2129-33、Peuker K, et al., Nat Med, 2016, 22:506-15)を2ndV50-OKS細胞にレトロウイルスで導入した。いずれの化合物も添加しなかった2nd VP50-OKS細胞、又はFK506を添加した2nd VP50-OKS細胞では、NFATc3-GFPが細胞質に局在することが観察された。対照的に、VPA又はCHIRで処理した2nd V50-OKS細胞の核において、NFATc3-GFPの局在が見出された(図16)。これらの結果から、GSK3の阻害がiCSCに影響を及ぼすことが示唆されるが、このことはNFATの細胞質-核移行を介したカルシニューリン阻害とは反対である。この結果は、図17で示した参考図を裏付けるものである。
本出願は、日本で出願された特願2017-110626(出願日:2017年6月5日)を基礎としており、その内容は本明細書に全て包含されるものである。
本発明により、大腸がん幹細胞又は大腸がんオルガノイドを大量に入手することが可能となるため、抗がん剤のスクリーニングなどへの適用において極めて有用である。

Claims (16)

  1. 大腸がん幹細胞をカルシニューリン阻害薬の存在下で培養することを含む、大腸がん幹細胞の維持増幅又は大腸がんオルガノイドの誘導方法。
  2. 出発大腸がん幹細胞が、外来性の初期化因子を導入した大腸がん細胞を、胚性幹(ES)細胞を維持し得ない条件下で培養することにより誘導されたものである、請求項1に記載の方法。
  3. 出発大腸がん幹細胞が、外来性の初期化因子を導入していない大腸がん細胞の薬剤排除能を抑制するのに有効な濃度のABCトランスポーター阻害薬の存在下で、薬剤排除能を有するものである、請求項2に記載の方法。
  4. 大腸がん幹細胞を接着培養する工程を含む、請求項1~3のいずれか1項に記載の方法。
  5. 大腸がん幹細胞を三次元培養する工程を含む、請求項1~4のいずれか1項に記載の方法。
  6. 接着培養工程の後に三次元培養工程を行う、請求項5に記載の方法であって、前記両工程の一方又は両方がカルシニューリン阻害薬の存在下で行われる、方法。
  7. 少なくとも接着培養工程がカルシニューリン阻害薬の存在下で行われる、請求項6に記載の方法。
  8. 三次元培養工程が間葉系幹細胞及び血管内皮細胞との共培養により行われる、請求項5~7のいずれか1項に記載の方法。
  9. カルシニューリン阻害薬の添加期間が5~25日間である、請求項1~8のいずれか1項に記載の方法。
  10. カルシニューリン阻害薬がFK506である、請求項1~9のいずれか1項に記載の方法。
  11. (1)請求項1~10のいずれか1項に記載の方法により大腸がん幹細胞を維持増幅又は大腸がんオルガノイドを誘導する工程、及び
    (2)工程(1)で維持増幅された大腸がん幹細胞又は誘導された大腸がんオルガノイドと、被検物質とを接触させ、該幹細胞又は該オルガノイドの維持又は増殖に及ぼす該被検物質の効果を検定する工程
    を含む、抗がん剤のスクリーニング方法。
  12. 請求項1~10のいずれか1項に記載の方法において、カルシニューリン阻害薬の存在下での培養を、被検物質の共存下で行い、大腸がん幹細胞の維持増幅又は大腸がんオルガノイドオの誘導に及ぼす該被検物質の効果を検定することを含む、抗がん剤のスクリーニング方法。
  13. カルシニューリン阻害薬を含有してなる、大腸がん幹細胞の維持増幅又は大腸がんオルガノイドの誘導剤。
  14. カルシニューリン阻害薬がFK506である、請求項13に記載の剤。
  15. 請求項13又は14に記載の剤と、外来性の初期化因子を導入した大腸がん細胞由来であって、外来性の初期化因子を導入していない大腸がん細胞の薬剤排除能を抑制するのに有効な濃度のABCトランスポーター阻害薬の存在下で、薬剤排除能を有する、大腸がん幹細胞とを含んでなる、大腸がん幹細胞の維持増幅又は大腸がんオルガノイドオルガノイドの誘導用キット。
  16. 抗がん剤のスクリーニングのための、請求項15に記載のキット。
JP2019523923A 2017-06-05 2018-06-05 大腸がん幹細胞の維持増幅方法、及び大腸がんオルガノイドの誘導方法 Active JP7141125B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017110626 2017-06-05
JP2017110626 2017-06-05
PCT/JP2018/021624 WO2018225751A1 (ja) 2017-06-05 2018-06-05 大腸がん幹細胞の維持増幅方法、及び大腸がんオルガノイドの誘導方法

Publications (2)

Publication Number Publication Date
JPWO2018225751A1 JPWO2018225751A1 (ja) 2020-04-02
JP7141125B2 true JP7141125B2 (ja) 2022-09-22

Family

ID=64567109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019523923A Active JP7141125B2 (ja) 2017-06-05 2018-06-05 大腸がん幹細胞の維持増幅方法、及び大腸がんオルガノイドの誘導方法

Country Status (3)

Country Link
US (1) US20200165573A1 (ja)
JP (1) JP7141125B2 (ja)
WO (1) WO2018225751A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4305169A1 (en) * 2021-03-12 2024-01-17 Alnylam Pharmaceuticals, Inc. Glycogen synthase kinase 3 alpha (gsk3a) irna compositions and methods of use thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015199088A1 (ja) 2014-06-23 2015-12-30 国立大学法人京都大学 誘導型がん幹細胞

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015199088A1 (ja) 2014-06-23 2015-12-30 国立大学法人京都大学 誘導型がん幹細胞

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DOTTO, G. et al.,Calcineurin Signaling as a Negative Determinant of Keratinocyte Cancer Stem Cell Potential and Carcinogenesis,Cancer Research,2011年03月15日,Vol. 71, No. 6,pp. 2029-2033.,要約、図1、図2
ISHIDA R. et al.,The Tissue-Reconstructing Ability of Colon CSCs Is Enhanced by FK506 and Suppressed by GSK3 Inhibition,Molecular cancer research,Vol. 15, No. 10,2017年07月14日,pp.1455-1466.,全文
NIITSU H. et al.,KRAS mutation leads to decreased expression of regulator of Calcineurin 2, resulting in tumor proliferation in colorectal cancer.,Oncogenesis,2016年,5,e253;doi:10.1038/oncsis.2016.47,要約
PEUKER, K. et al.,Cell-specific roles of calcineurin in intestinal tumor development.,United European Gastroenterology Journal,2016年10月,Vol. 4, Issue 5,Suppl.,pp. A17. Abstract Number: OP038.,全文
PEUKER, K. et al.,Epithelial calcineurin controls microbiota-dependent intestinal tumor development.,Nature Medicine,2016年05月,Vol. 22, No. 5,pp. 506-515,第12頁第1~18行、要約、第3-4頁、第6頁下から第8行~第9頁下から第3行、図5
WERNECK M.B.F.et al.,Cyclosporin A inhibits colon cancer cell growth independently of the Calcineurin pathway.,Cell Cycle,2012年11月01日,Vol.11, No.21,p.3997-4008,要約

Also Published As

Publication number Publication date
WO2018225751A1 (ja) 2018-12-13
US20200165573A1 (en) 2020-05-28
JPWO2018225751A1 (ja) 2020-04-02

Similar Documents

Publication Publication Date Title
Kitamoto et al. Notch3 null mutation in mice causes muscle hyperplasia by repetitive muscle regeneration
Miharada et al. Dppa5 improves hematopoietic stem cell activity by reducing endoplasmic reticulum stress
US8932857B2 (en) Method for selecting reduced differentiation resistance human induced pluripotent stem cells
JP6956398B2 (ja) がんオルガノイドを用いた抗がん薬のスクリーニング方法
AU2015218082A1 (en) Kits and methods for reprograming non-hepatocyte cells into hepatocyte cells
US20150017134A1 (en) Emt-inducing transcription factors cooperate with sox9
JP5751548B2 (ja) イヌiPS細胞及びその製造方法
WO2016174604A1 (en) Means and methods for generation of breast stem cells
JP2014506453A (ja) 生得的多能性体細胞
US20210254016A1 (en) Generation of airway basal stem cells from human pluripotent stem cells
JP7253692B2 (ja) 肝細胞誘導方法
JP7141125B2 (ja) 大腸がん幹細胞の維持増幅方法、及び大腸がんオルガノイドの誘導方法
Pichler et al. Tuning the 3D microenvironment of reprogrammed tubule cells enhances biomimetic modeling of polycystic kidney disease
JP6385340B2 (ja) 巨核球の成熟化促進物質
JP6795140B2 (ja) 誘導型がん幹細胞
JP6847374B2 (ja) がんの治療薬のスクリーニング方法
WO2017126616A1 (ja) ユーイング肉腫ファミリー腫瘍モデル細胞とそれを用いた抗腫瘍剤のスクリーニング方法
Takeuchi et al. Incorporation of human iPSC-derived stromal cells creates a pancreatic cancer organoid with heterogeneous cancer-associated fibroblasts
WO2016167329A1 (ja) 体細胞への分化誘導に適した幹細胞クローンを製造する方法
JPWO2018052126A1 (ja) 巨核球細胞群における細胞の不均質性を識別する方法及び血小板の製造方法
JP7191041B2 (ja) 機能的肝前駆細胞もしくは肝細胞または機能的小腸上皮前駆細胞もしくは小腸上皮細胞を調製する方法
US20220257666A1 (en) Method for separating pancreatic progenitor cells
JP7030343B2 (ja) 疾患iPS細胞を用いた神経毒性評価モデル系及びその使用
Tross et al. Transcription Factor RFX3 Stabilizes Mammary Basal Cell Identity
Greco The role of the m6A methyltransferase METTL3 in an in vitro model of antigen-selected germinal center B cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220412

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220902

R150 Certificate of patent or registration of utility model

Ref document number: 7141125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150