JP7138718B2 - 地物検出装置、地物検出方法および地物検出プログラム - Google Patents
地物検出装置、地物検出方法および地物検出プログラム Download PDFInfo
- Publication number
- JP7138718B2 JP7138718B2 JP2020553743A JP2020553743A JP7138718B2 JP 7138718 B2 JP7138718 B2 JP 7138718B2 JP 2020553743 A JP2020553743 A JP 2020553743A JP 2020553743 A JP2020553743 A JP 2020553743A JP 7138718 B2 JP7138718 B2 JP 7138718B2
- Authority
- JP
- Japan
- Prior art keywords
- feature
- area
- image
- candidate
- dimensional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims description 37
- 238000000605 extraction Methods 0.000 claims description 57
- 238000005259 measurement Methods 0.000 claims description 45
- 238000012545 processing Methods 0.000 claims description 30
- 238000000034 method Methods 0.000 description 53
- 239000013598 vector Substances 0.000 description 48
- 239000000284 extract Substances 0.000 description 20
- 230000010354 integration Effects 0.000 description 17
- 238000013527 convolutional neural network Methods 0.000 description 15
- 238000010586 diagram Methods 0.000 description 12
- 238000004364 calculation method Methods 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 240000004050 Pentaglottis sempervirens Species 0.000 description 7
- 235000004522 Pentaglottis sempervirens Nutrition 0.000 description 7
- 238000004891 communication Methods 0.000 description 5
- 230000005484 gravity Effects 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 238000012937 correction Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000010801 machine learning Methods 0.000 description 3
- 238000013528 artificial neural network Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- 239000003086 colorant Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/10—Image acquisition
- G06V10/16—Image acquisition using multiple overlapping images; Image stitching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/25—Determination of region of interest [ROI] or a volume of interest [VOI]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/80—Fusion, i.e. combining data from various sources at the sensor level, preprocessing level, feature extraction level or classification level
- G06V10/803—Fusion, i.e. combining data from various sources at the sensor level, preprocessing level, feature extraction level or classification level of input or preprocessed data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
- G06V20/58—Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
- G06V20/582—Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads of traffic signs
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
- G06V20/588—Recognition of the road, e.g. of lane markings; Recognition of the vehicle driving pattern in relation to the road
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/60—Type of objects
- G06V20/62—Text, e.g. of license plates, overlay texts or captions on TV images
- G06V20/63—Scene text, e.g. street names
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/60—Type of objects
- G06V20/64—Three-dimensional objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/60—Type of objects
- G06V20/64—Three-dimensional objects
- G06V20/647—Three-dimensional objects by matching two-dimensional images to three-dimensional objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/10—Character recognition
- G06V30/14—Image acquisition
- G06V30/146—Aligning or centring of the image pick-up or image-field
- G06V30/147—Determination of region of interest
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/10—Character recognition
- G06V30/19—Recognition using electronic means
- G06V30/191—Design or setup of recognition systems or techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06V30/19173—Classification techniques
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/09—Arrangements for giving variable traffic instructions
- G08G1/0962—Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
- G08G1/09623—Systems involving the acquisition of information from passive traffic signs by means mounted on the vehicle
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10028—Range image; Depth image; 3D point clouds
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30248—Vehicle exterior or interior
- G06T2207/30252—Vehicle exterior; Vicinity of vehicle
- G06T2207/30256—Lane; Road marking
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/10—Character recognition
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Computing Systems (AREA)
- Artificial Intelligence (AREA)
- Databases & Information Systems (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
- Traffic Control Systems (AREA)
Description
図化データは、自動運転を実現するためのダイナミックマップデータにおいて基盤データとなる。
そのため、図化データは、実際の道路の変化に合わせて更新されることが求められている。
自動運転車は、図化データを参照することで現在の走行環境を把握できる。そして、自動運転車は、リアルタイムでセンシングされた周辺の動的な情報(他車両および歩行者の位置など)を現在の走行環境と組み合わせることで、自身にとって最適な移動経路および移動制御を導き出すことが可能となる。
しかしながら、広範囲にわたる道路の図化データを作成するには、膨大な人的コストお
よび膨大な時間的コストを要する。そのため、図化データを自動的に作成する自動図化技術が求められている。そして、自動図化技術には、高精度な図化が求められている。ここでいう高精度とは、図化データにおいて地物の種類に誤りがないこと、つまり、図化データに示される地物の種類が現実の道路に存在する地物の種類と齟齬がないことを指す。
特許文献1には、点群クラスタから標識を見つけることが記載されている。
しかしながら、高精度な図化データを作成するには、それぞれのデータのみを用いた抽出では不十分である。点群データのみを用いた抽出では、地物の3次元位置が特定できる一方で、地物の種類を認識することが困難である。画像データのみを用いた抽出では、地物の種類が特定できる一方で、地物の3次元位置を特定できない。加えて、画像の撮影タイミングまたは撮影時の地物との位置関係によっては、地物の誤認識または地物の見落としが発生する。
地物が存在する計測地域での撮影によって得られた画像データを用いて、前記画像データが表す画像から前記地物の種類を認識する地物認識部と、
前記計測地域の中の複数の地点のそれぞれの3次元座標値を示す3次元点群データを用いて、前記地物の位置を特定する位置特定部と、を備える。
したがって、点群データと画像データとをもとに、高精度な地物検出を実現することが可能となる。
計測地域に存在する地物を3次元点群データと画像データとを用いて検出する形態について、図1から図23に基づいて説明する。
特に、道路標識を検出する形態について説明する。
図1に基づいて、地物検出装置100の構成を説明する。
地物検出装置100は、プロセッサ101とメモリ102と補助記憶装置103と通信装置104と入出力インタフェース105といったハードウェアを備えるコンピュータである。これらのハードウェアは、信号線を介して互いに接続されている。
メモリ102は揮発性の記憶装置である。メモリ102は、主記憶装置またはメインメモリとも呼ばれる。例えば、メモリ102はRAM(Random Access Memory)である。メモリ102に記憶されたデータは必要に応じて補助記憶装置103に保存される。
補助記憶装置103は不揮発性の記憶装置である。例えば、補助記憶装置103は、ROM(Read Only Memory)、HDD(Hard Disk Drive)、またはフラッシュメモリである。補助記憶装置103に記憶されたデータは必要に応じてメモリ102にロードされる。
通信装置104はレシーバ及びトランスミッタである。例えば、通信装置104は通信
チップまたはNIC(Network Interface Card)である。
入出力インタフェース105は入力装置および出力装置が接続されるポートである。例えば、入出力インタフェース105はUSB端子であり、入力装置はキーボードおよびマウスであり、出力装置はディスプレイである。USBはUniversal Serial Busの略称である。
さらに、補助記憶装置103にはOS(Operating System)が記憶されている。OSの少なくとも一部は、メモリ102にロードされて、プロセッサ101によって実行される。
つまり、プロセッサ101は、OSを実行しながら、地物検出プログラムを実行する。
地物検出プログラムを実行して得られるデータは、メモリ102、補助記憶装置103、プロセッサ101内のレジスタ、または、プロセッサ101内のキャッシュメモリといった記憶装置に記憶される。
記憶部190には、3次元点群データ191と複数の画像データ192とが記憶される。さらに、記憶部190には、地物検出装置100で使用される各種のデータが記憶される(図示省略)。
3次元点群データ191および複数の画像データ192は、モービルマッピングシステム(MMS)によって生成される。
Measurement Unitの略称である。
例えば、GPS受信機とIMUとによって、各時刻における計測車両の位置および姿勢が計測される。レーザレーダによってレーザ計測が行われる。カメラによって、計測地域の各箇所で計測地域が撮影される。
計測地域は、計測車両によって計測された地域である。
例えば、位置姿勢データ、距離方位点群データおよび画像データ192などが得られる。
位置姿勢データは、各時刻における計測車両の位置および姿勢を示す。
距離方位点群データは、各時刻におけるレーザレーダから各地点への距離と方位とを示す。
画像データ192は、計測地域のうちの撮影された領域が映った画像を表す。
3次元点群データ191は、計測地域の中の複数の地点のそれぞれの3次元座標値を示す。3次元点群データ191は、複数の3次元点を含む。それぞれの3次元点は、レーザ光を反射した地点を表すデータである。
それぞれの3次元点は、計測時刻、3次元座標値および反射強度などを示す。3次元点が示す計測時刻は、3次元点で表される地点に対するレーザ計測が行われた時刻である。3次元点が示す3次元座標値は、3次元点で表される地点の位置を特定する。3次元点が示す反射強度は、3次元点で表される地点からレーザレーダが受光したレーザ光の強度である。
複数の画像データ192は、複数の撮影地点での撮影によって得られる。
計測地域には、道路標識または道路標示などの各種の地物が存在する。そして、画像データ192が表す画像には、計測地域に存在する各種の地物が映っている。
地物検出装置100の動作は地物検出方法に相当する。また、地物検出方法の手順は地物検出プログラムの手順に相当する。
ステップS110において、候補抽出部110は、3次元点群データ191を用いて、候補領域群を算出する。
候補領域群は、1つ以上の候補領域である。
候補領域は、地物領域の候補である。候補領域には、地物領域の少なくとも一部が含まれる。
地物領域は、地物が位置する3次元領域である。
3次元点群200は、3次元点群データ191に含まれる3次元点群の一例を表している。3次元点群200には、道路標識または道路標示などの地物の候補領域202が含まれる。
地物領域201は、「車両数減少」を示す道路標識が位置する領域である。地物領域201には、複数の3次元点が位置している。
ステップS120において、地物認識部120は、画像データ192毎に、画像データ192を用いて、候補領域群に対応した候補画像領域群を算出する。
候補画像領域群は、1つ以上の候補画像領域である。
候補画像領域は、画像データ192が表す画像の中で候補領域が映っている領域である。
具体的には、地物認識部120は、画像データ192が表す画像の中の候補画像領域に
対する画像処理によって、地物画像領域と識別結果候補とを得る。
識別結果候補は、地物を識別する識別結果の候補である。
同じ地物が複数の画像に映っている場合、複数の地物画像領域と複数の識別結果候補とが得られる。
つまり、地物毎に、1つ以上の地物画像領域と1つ以上の識別結果候補とが得られる。各地物の1つ以上の地物画像領域を「地物画像領域群」と称する。各地物の1つ以上の識別結果候補を「識別結果候補群」と称する。
画像210Aは、画像データ192Aが表す画像である。
画像210Bは、画像データ192Bが表す画像である。
画像210Cは、画像データ192Cが表す画像である。
地物画像領域211Aは、画像210Aの中で地物領域201が映っている領域である。
地物画像領域211Bは、画像210Bの中で地物領域201が映っている領域である。
地物画像領域211Cは、画像210Cの中で地物領域201が映っている領域Dである。
それぞれの地物画像領域211に基づいて、道路標示「車両数減少」が識別される。
ステップS140において、位置特定部130は、3次元点群データ191を用いて、各画像の地物画像領域毎に暫定領域を算出する。
暫定領域は、地物画像領域に対応する暫定の3次元領域である。つまり、暫定領域は、暫定の地物領域である。
同じ地物が複数の画像に映っている場合、複数の画像の複数の地物画像領域に対応する複数の暫定領域が算出される。
つまり、地物毎に、1つ以上の地物画像領域に対応する1つ以上の暫定領域が算出される。各地物の1つ以上の暫定領域を「暫定領域群」と称する。
さらに、地物認識部120は、地物毎に、識別結果候補群に基づいて識別結果を決定する。
3次元空間220は、計測地域を表すための3次元空間である。
地物領域221は、3次元空間220における地物領域である。
地物領域221は、地物画像領域211Aに対応する3次元領域と地物画像領域211Bに対応する3次元領域と地物画像領域211Cに対応する3次元領域とを統合すること
によって得られる。
地物の種類は、地物画像領域211Aに基づく識別結果と地物画像領域211Bに基づく識別結果と地物画像領域211Cに基づく識別結果とを統合することによって得られる。
地物は平面を有する。具体的には、地物は平面形状を成す。
以下の説明において、地物検出装置100は道路標識を検出する。道路標識は、地物検出装置100によって検出される地物の具体例である。
ステップS111において、候補抽出部110は、3次元点群データ191から、候補領域をなす平面点群を抽出する。抽出される平面点群は複数であってもよい。
平面点群は、同じ平面に位置する1つ以上の地点を表す1つ以上の3次元点である。「平面」には、近似的な平面が含まれる。
ステップS1111において、候補抽出部110は、3次元点毎に、3次元点が含まれる平面に対する法線ベクトルを算出する。
まず、候補抽出部110は、対象点の周辺領域を決定する。周辺領域は、対象点を含む3次元領域である。周辺領域の大きさは予め決められる。
次に、候補抽出部110は、周辺領域に含まれる1つ以上の3次元点を3次元点群データ191から抽出する。抽出される1つ以上の3次元点を「周辺領域点群」と称する。
次に、候補抽出部110は、周辺領域点群に含まれる1つ以上の3次元点が示す1つ以上の3次元座標値に基づいて、近似平面を算出する。
そして、候補抽出部110は、近似平面の法線ベクトルを算出する。
候補抽出部110は、各3次元点の3次元座標値と各3次元点の法線ベクトルとに基づいて、複数の3次元点をクラスタリングする。
これにより、1つ以上のクラスタが得られる。各クラスタは複数の3次元点を含み、複数の3次元点は近傍領域に位置し、複数の3次元点のそれぞれの法線ベクトルが成す角度は近似範囲に含まれる。近傍領域は、予め決められた大きさを有する3次元領域である。近似範囲は、角度について予め決められた範囲である。
得られる1つ以上のクラスタが、1つ以上の平面点群である。
まず、候補抽出部110は、対象点群に含まれる複数の3次元点に基づいて、近似平面を算出する。
そして、候補抽出部110は、近似平面の法線ベクトルを算出する。
記憶部190には、計測車両の移動ベクトルが予め記憶されている。移動ベクトルは、移動軌跡の方向を示す。
候補抽出部110は、平面点群毎に、計測車両の移動ベクトルと平面点群の法線ベクトルとが成す角度を算出する。算出される角度を「相対角度」と称する。
候補抽出部110は、相対角度が規定範囲に含まれる平面点群を選択する。選択される平面点群が候補領域をなす平面点群である。規定範囲は、角度について予め決められた範囲である。具体的には、規定範囲は0度付近を示す。
ステップS112において、候補抽出部110は、抽出した候補領域をなす平面点群に含まれる1つ以上の3次元点が示す1つ以上の3次元座標値に基づいて、3次元平面領域を算出する。
算出される3次元平面領域が「候補領域」である。複数の平面点群がある場合、複数の候補領域が算出される。
地物認識部120は、画像データ192毎に候補画像領域群を算出する。
MMSにより、計測車両の周辺についての3次元点群200のほか、一定の時間間隔で行われるN回の撮影によってN枚の画像(I1~IN)が得られる。各画像を「フレーム」と称する。さらに、MMSにより、撮影時刻における計測車両の位置および姿勢が記録される。
候補領域202は、4つの端点(P1~P4)で表される。
「P-」は、候補領域202の重心である。
「TC (i)」は、計測車両に搭載されたカメラについて、iフレーム目の画像Iiが得られた撮影時の位置を表している。
「RC (i)」は、計測車両に搭載されたカメラについて、iフレーム目の画像Iiが得られた撮影時の姿勢を表している。
カメラ位置TCは、GPS測位によって求められた計測車両の位置を、GPS受信機とカメラとの位置関係(オフセット)に基づいて補正することによって、算出される。
カメラの姿勢RCは、計測車両に搭載されるジャイロセンサによって計測される。ジャイロセンサは、計測車両に搭載されるIMUに備わる。
ステップS121において、地物認識部120は、未選択の候補領域を1つ選択する。
選択される1枚以上の画像を「対象画像群」と称する。
まず、地物認識部120は、候補領域の4つの端点(P1~P4)を示す4つの3次元座標値に基づいて、候補領域の重心P-を算出する。
次に、地物認識部120は、候補領域の重心P-までの距離が閾値d以下であるカメラ位置TCの集合Xを選択する。集合Xは、式(1)で表すことができる。
これにより、1つ以上の画像データ192が選択される。選択された1つ以上の画像データ192が表す1つ以上の画像Ikが、1つ以上の対象画像Iからなる対象画像群である。
具体的には、地物認識部120は、対象画像Iの中で候補領域の4つの端点(P1~P4)が投影される4つの画素を特定する。つまり、地物認識部120は、4つの画素を示す4つの2次元座標値を算出する。4つの画素のそれぞれは、候補領域の端点(P1~P4)が対応する画素である。
端点MWの3次元座標値を[X,Y,Z]Tと表す。
iフレーム目の画像Iiの中で端点MWに対応する画素mの2次元座標値を[u,v]Tと表す。
これらの座標値の関係は、カメラモデルによって特定される。カメラモデルの具体例はピンホールカメラモデルである。ピンホールカメラモデルは、一般に広く用いられているモデルである。但し、端点MWの3次元座標値と画素mの2次元座標値との関係は、ピンホールカメラモデル以外のモデルによって特定されてもよい。
カメラ姿勢RCは、回転を表す3×3の行列である。
カメラ位置TCは、並進を表す3×1のベクトルである。
焦点距離(ズーム率)などの特性が異なる各種のカメラを統一的に取り扱うため、画像
Iiの撮影に用いられたカメラが正規化カメラであると仮定する。正規化カメラは、焦点距離が1画素に相当する仮想的なカメラである。
但し、「r’2=x’2+y’2」が成り立つものとする。
「A」は、カメラの内部パラメータを意味する。
「ax」は、水平方向の焦点距離を意味する。
「ay」は、垂直方向の焦点距離を意味する。
[u0,v0]は、カメラの光軸と画像平面との交点の2次元座標値を意味する。
未選択の候補領域がある場合、処理はステップS121に進む。
未選択の候補領域がない場合、処理は終了する。
ステップS131において、地物認識部120は、未選択の画像データ192を1つ選択する。
192の候補画像領域群に対して実行される。
具体的には、地物認識部120は、候補画像領域毎に、候補画像領域を含んだ矩形領域を画像から切り出す。切り出される矩形領域を「矩形画像」と称する。
矩形画像212Aの一部は、矩形画像212Bの一部と重複している。
ステップS133において、地物認識部120は、各矩形画像に対する機械学習手法により、認識結果集合を得る。
この機械学習手法は、画像処理の1種である。機械学習の具体例は深層学習である。
認識結果集合は、1つ以上の認識結果である。
認識結果は、地物画像領域と地物クラスとクラス信頼度とを含む。
地物クラスは、地物の種類を示す。地物クラスには、案内標識と、警戒標識(および警戒指示)と、規制標識と、補助標識との4種類がある。
クラス信頼度は、地物クラスの信頼度である。
図14において、矩形画像212Bに基づいて、3つの道路標識(213A~213C)に対応する3つの認識結果が得られる。
つまり、矩形画像212Aと矩形画像212Bとに基づいて、道路標識213Aについての2つの認識結果と、道路標識213Bについての2つの認識結果と、道路標識213Cについての1つの認識結果とが得られる。
ステップS134において、地物認識部120は、認識結果集合を統合することにより、地物別に統合結果を得る。
統合結果は、複数の認識結果を統合して得られる結果である。
まず、地物認識部120は、各認識結果の地物画像領域に基づいて、認識結果集合をグループ分けする。具体的には、地物認識部120は、地物画像領域の重なり率が閾値を超える複数の認識結果を1つのグループにまとめる。
そして、地物認識部120は、認識結果グループ毎に、認識結果グループを統合することにより、統合結果を生成する。
具体的には、地物認識部120は、統合結果を次のように生成する。
地物認識部120は、認識結果グループが示す複数の地物画像領域を統合することによって、1つの地物画像領域を算出する。そして、地物認識部120は、算出された地物画像領域を統合結果に設定する。
認識結果グループが示す複数の地物クラスが同じ種類を示す場合、地物認識部120は、その種類を示す地物クラスを統合結果に設定する。
認識結果グループが示す複数の地物クラスが異なる種類を示す場合、地物認識部120は、クラス信頼度が最も高い地物クラスを選択する。そして、地物認識部120は、選択された地物クラスを統合結果に設定する。
ステップS1351において、地物認識部120は、未選択の統合結果を1つ選択する。
具体的には、地物認識部120は、領域画像に対してガンマ補正を行う。これにより、木影などによって識別が困難な地物を識別することが可能となる。
領域画像214Aでは識別困難な道路標識が、領域画像214Bでは識別可能である。
ステップS1354において、地物認識部120は、複数種類の道路標識に対応する複数の識別器から、統合結果に示される地物クラスに対応する識別器を選択する。複数の識別器は予め用意される。
識別方法は、案内標識と案内標識以外の道路標識とで異なる
識別器として、複数の層から成る畳み込みニューラルネットワーク(CNN:Convolutional Neural Network)が用いられる。
図17は、畳み込みニューラルネットワーク230の概要図を示す。畳み込みニューラルネットワーク230は、複数の層から成る畳み込みニューラルネットワークである。
畳み込みニューラルネットワーク230については、非特許文献2に開示されている。
つまり、3つのCNNはネットワーク構造が同じであるが、3つのCNNはネットワークの重みパラメータが互いに異なる。
案内標識は、同じ種類のものでも様々なデザインが存在する。
学習用データセットにないデザインについては、CNNによる識別率が悪化する。
図18において、入力画像に映っている案内標識と同じデザインは学習用データセットに含まれない。この場合、CNNにより、誤った案内標識が識別される。
まず、地物認識部120は、領域画像から地物の特徴を検出する。特徴の検出には、画
像認識、物体検出および文字認識などの手法が用いられる。
そして、地物認識部120は、検出された特徴に基づいて、案内標識を以下のように識別する。
そして、地物認識部120は、案内標識特徴データから、特徴ベクトルと類似度が高い案内標識を選択する。案内標識特徴データは、案内標識毎に特徴ベクトルを示す。
図20に、案内標識特徴データ240と入力特徴ベクトル241とを示す。
案内標識特徴データ240は、3つの案内標識(G1~G3)のそれぞれの特徴ベクトルを示している。
入力特徴ベクトル241は、入力画像に映っている案内標識の特徴ベクトルである。
入力特徴ベクトル241と類似度が高い特徴ベクトルは、案内標識G1の特徴ベクトルである。そのため、入力画像に映っている案内標識の識別結果は案内標識G1となる。
第1案内標識の特徴ベクトルxと第2案内標識の特徴ベクトルyとのコサイン類似度は、式(6)によって求められる。
入力特徴ベクトル241と案内標識G2の特徴ベクトルとのコサイン類似度は「0.24」である。
入力特徴ベクトル241と案内標識G3の特徴ベクトルとのコサイン類似度は「0.5」である。
したがって、入力画像に映っている案内標識の識別結果は案内標識G1となる。
ステップS1356において、地物認識部120は、ステップS1351で選択されていない統合結果(未選択の統合結果)があるか判定する。
未選択の統合結果がある場合、処理はステップS1351に進む。
未選択の統合結果がない場合、処理は終了する。
ステップS141において、位置特定部130は、未選択の地物画像領域を1つ選択する。
そして、位置特定部130は、選択された候補領域に対応する基準平面を算出する。
基準平面は、3次元空間において候補領域の各端点を含む平面である。
自動図化では、点群から検出された道路標識領域点に対して、以下の(1)から(3)の処理が行われる。
(1)点群から画像への関連付けで画像上の大まかな領域を特定する。
(2)画像上で正確な領域を特定する。
(3)特定された(矩形)領域の四隅の画素について、画像から点群への関連付けによって3次元座標値を算出する。
したがって、画像から点群への関連付けの入力となる画素について、対応する道路標識領域点が既知である。
視線ベクトルは、撮影地点から画像平面の中の地物画像領域の端点へのベクトルである。画像平面は、地物画像領域を含む画像に対応する3次元平面である。
まず、位置特定部130は、レーザ座標系におけるカメラ中心の位置PCを求める。具体的には、位置特定部130は、式(7)を計算することによって、レーザ座標系におけるカメラ中心の位置PCを求める。
式(7)は、カメラ座標系の点MCをレーザ座標系の点MWに変換するための式である。
具体的には、位置特定部130は、正規化カメラ座標系における点mnを求める。そして、位置特定部130は、上記式(7)を用いて点mnをレーザ座標系に変換することにより、レーザ座標系における位置PPを得る。
未選択の地物画像領域がある場合、処理はステップS141に進む。
未選択の地物画像領域がない場合、処理は終了する。
図22に示すように、地物画像領域の端点(入力)に対応する3次元点(出力)は、視線ベクトル(PP-PC)と基準平面との交点に相当する。
ステップS151において、位置特定部130は、暫定領域群をクラスタ分けする。
具体的には、位置特定部130は、近接する1つ以上の暫定領域を1つのクラスタにまとめる。
例えば、位置特定部130は、各暫定領域の重心に基づいて、近接する1つ以上の暫定領域を決定する。第1暫定領域の重心と第2暫定領域の重心との距離が閾値以下である場合、第1暫定領域と第2暫定領域とは互いに近接する。
例えば、位置特定部130は、各暫定領域の4つの端点について、端点毎に3次元座標値の平均を算出する。算出される4つの平均値で表される3次元領域が暫定領域を統合化して得られる地物領域である。
具体的には、位置特定部130は、1つ以上の識別結果に対する投票処理を行い、最も投票数が多い識別結果を採用する。投票処理において、位置特定部130は、識別結果毎に重みを付けるとよい。例えば、重みは、識別結果のクラス信頼度に比例し、識別結果に対応する地物領域からカメラまでの距離に反比例する。
実施の形態1により、MMSで取得される点群データと画像データとをもとに、高精度な図化を実現することが可能となる。
点群データと画像データとの双方が活用されるため、地物をより精度良く認識することができる。
点群データを用いて候補領域が絞り込まれるため、画像内の全領域を対象に地物を探索する必要がなくなる。その結果、図化処理が高速化される。
点群データだけでなく画像データも用いられるため、地物をより精度良く認識することができる。
候補抽出処理(S110)により、以降の処理が画像内の候補領域のみを対象に実行することができる。そのため、以降の処理を画像内の全領域を対象に実行する場合に比べて、データ処理の演算量を削減することができる。その結果、処理時間が短縮される。
但し、データ処理の演算量を削減する必要がない場合、候補抽出処理(S110)は省略することができる。この場合、以降の処理は画像内の全領域を対象に実行される。
道路面に記された道路標示を検出する形態について、主に実施の形態1と異なる点を図24から図27に基づいて説明する。
道路標示は、分離された2つ以上の構成要素を有する地物の一例である。
候補領域は、要素領域に相当する。要素領域は、要素画像領域に対応する3次元領域である。
暫定領域群は、2つ以上の要素領域に相当する。
地物検出装置100の構成は、実施の形態1における構成と同じである(図1および図2参照)。
地物検出方法の概要は、実施の形態1における概要と同じである(図3参照)。
ステップS111において、候補抽出部110は、3次元点群データ191から、道路面点群を抽出する。
道路面点群は、道路面に位置する複数の地点を表す複数の3次元点である。
まず、候補抽出部110は、道路面の高度を算出する。例えば、計測車両に搭載されたIMUの位置が計測車両の基準位置として扱われる場合、候補抽出部110は、計測車両の高度から、道路からIMUまでの高さを引くことによって、道路面の高度を算出する。
そして、候補抽出部110は、道路面の高度に基づいて、道路面点群を3次元点群データ191から抽出する。例えば、候補抽出部110は、道路面との高度差が閾値以下である複数の3次元点を抽出する。
区画線点群は、区画線に位置する複数の地点を表す複数の3次元点である。
まず、候補抽出部110は、反射強度が閾値以上である3次元点群を3次元点群データ191から抽出する。
そして、候補抽出部110は、抽出された3次元点群から、計測車両の走行軌跡に沿って並んでいる複数の3次元点を抽出する。抽出される複数の3次元点が区画線点群である。
但し、候補抽出部110は、上記以外の方法で区画線点群を抽出してもよい。
対象点群は、道路面点群から区画線点群を除いた残りの3次元点群である。
候補点群は、道路標示の文字の部分に位置する2つ以上の3次元点。
まず、候補抽出部110は、反射強度が閾値以上である3次元点群を対象点群から抽出する。
次に、候補抽出部110は、各3次元点の3次元座標値に基づいて、抽出された3次元点群をクラスタリングする。これにより、1つ以上クラスタが得られる。各クラスタは複数の3次元点を含み、複数の3次元点は近傍領域に位置する。近傍領域は、予め決められた大きさを有する3次元領域である。
そして、候補抽出部110は、閾値以上の数の3次元点を含むクラスタを選択する。選択されるクラスタが候補点群である。
まず、候補抽出部110は、候補点群毎に、各候補点の3次元座標値に基づいて、候補点群が位置する矩形領域を算出する。
そして、候補抽出部110は、大きさが規定範囲に含まれる矩形領域を選択する。選択される矩形領域が候補領域である。
ステップS131において、地物認識部120は、未選択の画像データ192を1つ選択する。
具体的には、地物認識部120は、候補画像領域毎に、候補画像領域を含んだ矩形領域を画像から切り出す。切り出される矩形領域を「矩形画像」と称する。
矩形画像から俯瞰画像への変換は、画像視点変換に相当する。
まず、地物認識部120は、矩形画像の4頂点のそれぞれの2次元座標値と俯瞰画像の4頂点のそれぞれの2次元座標値とに基づいて、変換行列を算出する。
(xi,yi)は、変換前(矩形画像)の4頂点のそれぞれの2次元座標値である。
(x’i,y’i)は、変換後(俯瞰画像)の4頂点のそれぞれの2次元座標値である。
「ti」は、変換に応じた拡縮のパラメータである。
変換後(俯瞰画像)の画素の2次元座標値(ui,vi)は、式(10)を計算することによって算出される。
「100」を斜め方向から撮影することと矩形画像215が得られる。矩形画像215には、「100」が斜めに映っている。一方、俯瞰画像216には、正面から撮影した場合の「100」が映っている。
矩形画像215の各頂点の2次元座標値(xi,yi){i=1~3}は、俯瞰画像216の各頂点の2次元座標値(x’i,y’i)に変換される。
ステップS134において、地物認識部120は、各俯瞰画像に対する識別処理により、地物を識別する。
具体的には、地物認識部120は、各俯瞰画像を入力として識別処理を実行する。これにより、道路標示の文字毎に識別結果が得られる。
例えば、識別処理として、ニューラルネットワークを用いた手法を適用することができる。ニューラルネットワークを用いた手法については、非特許文献3に開示されている。
基準平面の算出について補足する。画素が路面上の道路標示領域に属する場合は、点群に基づいて、路面に対応する平面の方程式を求める。
クラスタ分けの方法は、実施の形態1における方法と同じである。
具体的には、位置特定部130は、クラスタに属する1つ以上の暫定領域を連結した矩形領域を算出する。算出される領域が地物領域である。
地物領域218は、暫定領域217Aと暫定領域217Bとを連結した矩形領域である。
具体的には、位置特定部130は、1つ以上の識別結果が示す1つ以上の文字を連結することによって、1つの道路標示(文字列)を生成する。生成される道路標示が識別結果である。
実施の形態2により、分離された2つ以上の構成要素を有する地物を検出することができる。具体的には、道路面に記された道路標示を識別することができる。
実施の形態では、画像データと点群データとが互いに関連付けられ、画像データを用いて検出された地物が点群データを用いて復元される。これにより、地物の検出、地物の種類の特定および地物の3次元位置の特定を精度よく実現することができる。
画像データのみを用いて地物を検出する場合には、点群データが保有する高精度な3次元座標値を利用することができない。しかし、実施の形態のように画像データと点群データとの双方が利用されることで、地物の3次元位置を精度よく特定することができる。
点群データのみを用いて地物を検出する場合には、地物の具体的な種類を特定することが困難である。例えば、道路標識の種類または道路標示の種類を特定することが困難である。実施の形態では、地物の検出および地物の種類の特定が画像データを用いて行われる。そのため、地物をより細かく分類することが可能となる。
実施の形態では地物の候補領域が点群データを用いて特定される。そして、特定された候補領域に対して、画像データを用いた処理が行われる。これにより、データ処理の演算量を削減することができる。その結果、処理時間が短縮される。
実施の形態では、道路標識の種類(クラス)を特定するための識別器と、具体的な種類を特定するための識別器とが用いられる。これにより、標識の種類を識別する精度を向上させることができる。
実施の形態では、画像視点変換の後に道路標示が識別される。そのため、道路標示を識別する精度を向上させることができる。
実施の形態では、フレーム(画像)ごとに地物の検出および地物の種類の特定が行われる。そして、点群データを用いた復元の後、近接する地物がまとめられ、フレームごとの検出結果に基づいて、地物の種類が特定される。そのため、1つの画像を用いて地物の種類を特定する場合と比較して、誤検出を削減することができる。
実施の形態は、好ましい形態の例示であり、本発明の技術的範囲を制限することを意図するものではない。実施の形態は、部分的に実施してもよいし、他の形態と組み合わせて実施してもよい。フローチャート等を用いて説明した手順は、適宜に変更してもよい。
「部」は、「処理」または「工程」と読み替えてもよい。
Claims (4)
- 計測地域の中の複数の地点のそれぞれの3次元座標値を示す3次元点群データを用いて、地物が位置する3次元領域の候補である候補領域を算出する候補抽出部と、
前記計測地域での撮影によって得られた画像データを用いて前記候補領域が映っている候補画像領域を算出し、前記候補画像領域に対する画像処理によって前記地物が映っている地物画像領域を検出するとともに前記地物の種類を認識する地物認識部と、
前記地物画像領域に対応する3次元領域を前記地物が位置する地物領域として算出し、前記地物の位置を特定する位置特定部と、
を備え、
前記地物認識部は、複数の撮影地点での撮影によって得られた複数の画像データを用いて、前記複数の画像データが表す複数の画像から複数の地物画像領域を検出し、
前記位置特定部は、検出された複数の地物画像領域に対応する複数の暫定領域を算出し、算出された複数の暫定領域の端点毎に前記地物領域の端点を算出する
ことを特徴とする地物検出装置。 - 前記地物は、道路標識であり、
前記地物認識部は、前記道路標識の種類を識別し、複数種類の道路標識に対応する複数の識別器から、識別された種類の道路標識に対応する識別器を選択し、選択された識別器を用いて前記道路標識を識別する
請求項1に記載の地物検出装置。 - 候補抽出部が、計測地域の中の複数の地点のそれぞれの3次元座標値を示す3次元点群データを用いて、地物が位置する3次元領域の候補である候補領域を算出し、
地物認識部が、前記計測地域での撮影によって得られた画像データを用いて前記候補領域が映っている候補画像領域を算出し、前記候補画像領域に対する画像処理によって前記地物が映っている地物画像領域を検出するとともに前記地物の種類を認識し、
位置特定部が、前記地物画像領域に対応する3次元領域を前記地物が位置する地物領域として算出し、前記地物の位置を特定する
地物検出方法であって、
前記地物認識部は、複数の撮影地点での撮影によって得られた複数の画像データを用いて、前記複数の画像データが表す複数の画像から複数の地物画像領域を検出し、
前記位置特定部は、検出された複数の地物画像領域に対応する複数の暫定領域を算出し、算出された複数の暫定領域の端点毎に前記地物領域の端点を算出する
ことを特徴とする地物検出方法。 - 計測地域の中の複数の地点のそれぞれの3次元座標値を示す3次元点群データを用いて、地物が位置する3次元領域の候補である候補領域を算出する候補抽出部と、
前記計測地域での撮影によって得られた画像データを用いて前記候補領域が映っている候補画像領域を算出し、前記候補画像領域に対する画像処理によって前記地物が映っている地物画像領域を検出するとともに前記地物の種類を認識する地物認識部と、
前記地物画像領域に対応する3次元領域を前記地物が位置する地物領域として算出し、前記地物の位置を特定する位置特定部として、
コンピュータを機能させるための地物検出プログラムであって、
前記地物認識部は、複数の撮影地点での撮影によって得られた複数の画像データを用いて、前記複数の画像データが表す複数の画像から複数の地物画像領域を検出し、
前記位置特定部は、検出された複数の地物画像領域に対応する複数の暫定領域を算出し、算出された複数の暫定領域の端点毎に前記地物領域の端点を算出する
ことを特徴とする地物検出プログラム。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018204074 | 2018-10-30 | ||
JP2018204074 | 2018-10-30 | ||
PCT/JP2019/040369 WO2020090428A1 (ja) | 2018-10-30 | 2019-10-15 | 地物検出装置、地物検出方法および地物検出プログラム |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2020090428A1 JPWO2020090428A1 (ja) | 2021-09-02 |
JP7138718B2 true JP7138718B2 (ja) | 2022-09-16 |
Family
ID=70462447
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020553743A Active JP7138718B2 (ja) | 2018-10-30 | 2019-10-15 | 地物検出装置、地物検出方法および地物検出プログラム |
Country Status (4)
Country | Link |
---|---|
US (1) | US11625851B2 (ja) |
EP (1) | EP3876189A4 (ja) |
JP (1) | JP7138718B2 (ja) |
WO (1) | WO2020090428A1 (ja) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7297705B2 (ja) * | 2020-03-18 | 2023-06-26 | 株式会社東芝 | 処理装置、処理方法、学習装置およびプログラム |
JP7417465B2 (ja) | 2020-05-07 | 2024-01-18 | 株式会社トヨタマップマスター | 情報処理装置、情報処理方法及び情報処理プログラム |
JP7151742B2 (ja) * | 2020-06-11 | 2022-10-12 | トヨタ自動車株式会社 | 画像変換装置、画像変換方法及び画像変換用コンピュータプログラム |
CN111882601B (zh) * | 2020-07-23 | 2023-08-25 | 杭州海康威视数字技术股份有限公司 | 定位方法、装置及设备 |
TWI812888B (zh) * | 2020-10-14 | 2023-08-21 | 財團法人工業技術研究院 | 影像辨識方法及影像辨識系統 |
TWI767601B (zh) * | 2021-03-10 | 2022-06-11 | 廣達電腦股份有限公司 | 用於室內定位、成像、偵測、姿勢判別、形狀判別的電子裝置及方法 |
CN113343840B (zh) * | 2021-06-02 | 2022-03-08 | 合肥泰瑞数创科技有限公司 | 基于三维点云的对象识别方法及装置 |
WO2023286217A1 (ja) * | 2021-07-14 | 2023-01-19 | 日本電信電話株式会社 | 位置検出装置、位置検出方法、及び位置検出プログラム |
KR102426583B1 (ko) * | 2021-08-30 | 2022-07-29 | (주)뷰런테크놀로지 | 라이다 센서를 이용하여 이정표를 검출하는 방법 및 상기 방법을 수행하는 이정표 검출 장치 |
CN114241298A (zh) * | 2021-11-22 | 2022-03-25 | 腾晖科技建筑智能(深圳)有限公司 | 一种激光雷达和图像融合的塔吊环境目标检测方法及系统 |
CN116486099A (zh) * | 2023-06-21 | 2023-07-25 | 广州市易鸿智能装备有限公司 | 一种点云数据的数据提取方法和装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009076096A (ja) | 2008-11-27 | 2009-04-09 | Mitsubishi Electric Corp | 対象特定装置 |
JP2014130404A (ja) | 2012-12-28 | 2014-07-10 | Aero Asahi Corp | 路面画像生成システム並びに影除去装置、方法及びプログラム |
JP2018523865A (ja) | 2016-01-18 | 2018-08-23 | ▲騰▼▲訊▼科技(深▲セン▼)有限公司 | 情報処理方法、デバイス、および端末 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4902575B2 (ja) | 2008-02-27 | 2012-03-21 | 日立オートモティブシステムズ株式会社 | 道路標示認識装置、および道路標示認識方法 |
JP5188429B2 (ja) | 2009-03-24 | 2013-04-24 | 富士重工業株式会社 | 環境認識装置 |
DE102009048066A1 (de) | 2009-10-01 | 2011-04-07 | Conti Temic Microelectronic Gmbh | Verfahren zur Verkehrszeichenerkennung |
JP5962442B2 (ja) | 2012-11-02 | 2016-08-03 | アイシン・エィ・ダブリュ株式会社 | 標識認識システム、標識認識方法、及び標識認識プログラム |
JP6381137B2 (ja) | 2015-07-21 | 2018-08-29 | 日本電信電話株式会社 | 標識検出装置、方法、及びプログラム |
US20180188736A1 (en) * | 2016-08-16 | 2018-07-05 | Faraday&Future Inc. | System and method for vehicle localization assistance using sensor data |
CN107918753B (zh) * | 2016-10-10 | 2019-02-22 | 腾讯科技(深圳)有限公司 | 点云数据处理方法及装置 |
CN111542860B (zh) * | 2016-12-30 | 2024-08-27 | 辉达公司 | 用于自主车辆的高清地图的标志和车道创建 |
US10430641B2 (en) * | 2017-03-08 | 2019-10-01 | GM Global Technology Operations LLC | Methods and systems for object tracking using bounding boxes |
US20180074506A1 (en) * | 2017-11-21 | 2018-03-15 | GM Global Technology Operations LLC | Systems and methods for mapping roadway-interfering objects in autonomous vehicles |
CN108225348B (zh) * | 2017-12-29 | 2021-08-24 | 百度在线网络技术(北京)有限公司 | 地图创建以及运动实体定位的方法和装置 |
US10671860B2 (en) * | 2018-02-20 | 2020-06-02 | GM Global Technology Operations LLC | Providing information-rich map semantics to navigation metric map |
-
2019
- 2019-10-15 JP JP2020553743A patent/JP7138718B2/ja active Active
- 2019-10-15 EP EP19879079.2A patent/EP3876189A4/en active Pending
- 2019-10-15 US US17/283,250 patent/US11625851B2/en active Active
- 2019-10-15 WO PCT/JP2019/040369 patent/WO2020090428A1/ja unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009076096A (ja) | 2008-11-27 | 2009-04-09 | Mitsubishi Electric Corp | 対象特定装置 |
JP2014130404A (ja) | 2012-12-28 | 2014-07-10 | Aero Asahi Corp | 路面画像生成システム並びに影除去装置、方法及びプログラム |
JP2018523865A (ja) | 2016-01-18 | 2018-08-23 | ▲騰▼▲訊▼科技(深▲セン▼)有限公司 | 情報処理方法、デバイス、および端末 |
Non-Patent Citations (1)
Title |
---|
ZHOU, Lipu et al.,LIDAR and vision-based real-time traffic sign detection and recognition algorithm for intelligent vehicle,17th International IEEE Conference on Intelligent Transportation Systems (ITSC),2014年11月20日,pp.578-583 |
Also Published As
Publication number | Publication date |
---|---|
WO2020090428A1 (ja) | 2020-05-07 |
EP3876189A4 (en) | 2022-05-11 |
US11625851B2 (en) | 2023-04-11 |
JPWO2020090428A1 (ja) | 2021-09-02 |
US20210342620A1 (en) | 2021-11-04 |
EP3876189A1 (en) | 2021-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7138718B2 (ja) | 地物検出装置、地物検出方法および地物検出プログラム | |
CN110163930B (zh) | 车道线生成方法、装置、设备、系统及可读存储介质 | |
CN112396650B (zh) | 一种基于图像和激光雷达融合的目标测距系统及方法 | |
CN109243289B (zh) | 高精度地图制作中地下车库停车位提取方法及系统 | |
CN105512646B (zh) | 一种数据处理方法、装置及终端 | |
US9454692B2 (en) | Method for identifying and positioning building using outline region restraint of mountain | |
CN112667837A (zh) | 图像数据自动标注方法及装置 | |
JP2019527832A (ja) | 正確な位置特定およびマッピングのためのシステムおよび方法 | |
CN112740225B (zh) | 一种路面要素确定方法及装置 | |
CN104484870B (zh) | 校验飞机定位方法 | |
KR102167835B1 (ko) | 영상 처리 방법 및 장치 | |
CN116452852A (zh) | 一种高精度矢量地图的自动生成方法 | |
WO2021212477A1 (zh) | 校正点云数据的方法和相关装置 | |
KR20200093271A (ko) | 랜드마크 위치 추정 장치와 방법 및 이러한 방법을 수행하도록 프로그램된 컴퓨터 프로그램을 저장하는 컴퓨터 판독 가능한 기록매체 | |
CN115147328A (zh) | 三维目标检测方法及装置 | |
CN114969221A (zh) | 一种更新地图的方法及相关设备 | |
CN112562005A (zh) | 一种空间标定方法和系统 | |
CN116997771A (zh) | 车辆及其定位方法、装置、设备、计算机可读存储介质 | |
KR102316818B1 (ko) | 도로 네트워크를 갱신하는 방법 및 장치 | |
CN118411507A (zh) | 一种具有动态目标的场景的语义地图构建方法及系统 | |
JP5928010B2 (ja) | 道路標示検出装置及びプログラム | |
CN111833443A (zh) | 自主机器应用中的地标位置重建 | |
CN113219472A (zh) | 一种测距系统和方法 | |
KR20220062709A (ko) | 모바일 디바이스 영상에 기반한 공간 정보 클러스터링에 의한 재난 상황 인지 시스템 및 방법 | |
KR102249381B1 (ko) | 3차원 영상 정보를 이용한 모바일 디바이스의 공간 정보 생성 시스템 및 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201211 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201211 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220215 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220322 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220809 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220906 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7138718 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |