JP7138025B2 - Rubber adhesion test method and rubber adhesion test system - Google Patents

Rubber adhesion test method and rubber adhesion test system Download PDF

Info

Publication number
JP7138025B2
JP7138025B2 JP2018222253A JP2018222253A JP7138025B2 JP 7138025 B2 JP7138025 B2 JP 7138025B2 JP 2018222253 A JP2018222253 A JP 2018222253A JP 2018222253 A JP2018222253 A JP 2018222253A JP 7138025 B2 JP7138025 B2 JP 7138025B2
Authority
JP
Japan
Prior art keywords
temperature
rubber
flat surface
road surface
friction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018222253A
Other languages
Japanese (ja)
Other versions
JP2020085718A (en
Inventor
直生 諫山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire Corp filed Critical Toyo Tire Corp
Priority to JP2018222253A priority Critical patent/JP7138025B2/en
Publication of JP2020085718A publication Critical patent/JP2020085718A/en
Application granted granted Critical
Publication of JP7138025B2 publication Critical patent/JP7138025B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

本発明は、ゴムの粘着試験方法、及びゴムの粘着試験システムに関する。 TECHNICAL FIELD The present invention relates to a rubber adhesion test method and a rubber adhesion test system.

タイヤなどに用いられるゴムの摩擦は、凝着(粘着)摩擦(アドヒージョン)と変形損失摩擦(ヒステリシスロス)に主に分類される。変形損失摩擦は、路面との接触に起因するゴムの変形によるエネルギー損失であり、tanδで評価可能である。凝着摩擦力は、ゴムと路面が接触することで結合し、それを引きはがすために必要なせん断力であり、真実接触面積と、粘着力とに依存すると考えられる。摩擦性能を向上するためには、ゴムのヒステリシスロスだけでなく、凝着摩擦を適切に評価することが必要である。 The friction of rubber used in tires and the like is mainly classified into adhesive friction (adhesion) and deformation loss friction (hysteresis loss). Deformation loss friction is energy loss due to deformation of rubber caused by contact with a road surface, and can be evaluated by tan δ. Adhesive frictional force is a shearing force required to separate the rubber and road surface by contacting them, and is considered to depend on the real contact area and the adhesive force. In order to improve the friction performance, it is necessary to properly evaluate not only the hysteresis loss of rubber but also the adhesive friction.

ゴムの凝着摩擦を評価する方法として、特許文献1には、試験対象のゴム試験部材の表面に対して小さな接触子を押しつけ引きはがし、引きはがすときの最大引力を測定し、最大引力を単位面積当たりの粘着力に換算して、粘着力を凝着摩擦の評価値として算出している。 As a method for evaluating the adhesive friction of rubber, Patent Document 1 discloses that a small contactor is pressed against the surface of a rubber test member to be tested, peeled off, and the maximum attractive force when peeled off is measured. Adhesive force is calculated as an evaluation value of adhesive friction by converting to adhesive force per area.

特開2016-170138号公報JP 2016-170138 A

ところで、発熱性の高いゴムは、同じ路面で摩擦された場合であっても、発熱性の低いゴムより表面温度が高くなると考えられるが、これまでは一定の温度条件下で粘着力の測定が行われており、ゴムの配合毎の発熱性は特に考慮されていなかった。 By the way, it is thought that the surface temperature of highly heat-generating rubber is higher than that of rubber with low heat-generating property, even when rubbed on the same road surface. However, no particular consideration was given to the exothermicity of each rubber compound.

本発明は、このような課題に着目してなされたものであって、その目的では、発熱性を考慮した粘着力の評価が可能なゴムの粘着試験方法、及びゴムの粘着試験システムを提供することである。 The present invention has been made with a focus on such problems, and for that purpose, it provides a rubber adhesion test method and a rubber adhesion test system capable of evaluating adhesive strength in consideration of heat build-up. That is.

本発明は、上記目的を達成するために、次のような手段を講じている。 In order to achieve the above objects, the present invention takes the following means.

すなわち、本発明のゴムの粘着試験方法は、ゴム試験部材を第1の路面に所定荷重にて押し付けた状態で路面方向に沿って移動させることにより、前記ゴム試験部材の少なくとも一つの平坦面を摩擦処理するステップと、
摩擦処理直後の前記平坦面の温度である摩擦後温度を計測するステップと、
摩擦処理直後から経時的に低下した前記平坦面の温度を前記摩擦後温度に温度調節するステップと、
温度調節した前記平坦面を第2の路面に対して所定の接触時間押し付けてから引き剥がし、引き剥がし時に作用する引力を計測し、計測した引力データに基づき、引力に対応する粘着力を特定するステップと、を有する。
That is, in the rubber adhesion test method of the present invention, at least one flat surface of the rubber test member is moved along the direction of the road surface while being pressed against a first road surface with a predetermined load. rubbing;
measuring a post-friction temperature, which is the temperature of the flat surface immediately after the friction treatment;
a step of adjusting the temperature of the flat surface, which has decreased over time immediately after the rubbing treatment, to the post-rubbing temperature;
The temperature-controlled flat surface is pressed against the second road surface for a predetermined contact time and then peeled off, the attractive force acting at the time of peeling off is measured, and based on the measured attractive force data, the adhesive force corresponding to the attractive force is specified. and a step.

これにより、摩擦処理直後の平坦面の温度である摩擦後温度を計測し、平坦面の温度を摩擦後温度に温度調節してから粘着力を特定することで、発熱性を考慮した、より実条件に近い粘着力を評価することができる。 As a result, by measuring the post-friction temperature, which is the temperature of the flat surface immediately after the friction treatment, and adjusting the temperature of the flat surface to the post-friction temperature, the adhesive strength is specified, which allows for a more practical application that takes heat build-up into consideration. Adhesive strength close to conditions can be evaluated.

本発明のゴム粘着試験方法及び粘着試験システムを示す概念図。BRIEF DESCRIPTION OF THE DRAWINGS The conceptual diagram which shows the rubber adhesion test method and adhesion test system of this invention. 本発明のゴム粘着試験方法を示すフローチャート。The flowchart which shows the rubber adhesion test method of this invention. ゴム試験部材の押し付け及び引き剥がし時に計測される圧力を示す図。FIG. 4 is a diagram showing the pressure measured during pressing and peeling of the rubber test member; 引力の最大値と接触時間との関係を示す図。The figure which shows the relationship between the maximum value of attraction, and contact time. 引力の時間積分値と接触時間との関係を示す図。The figure which shows the relationship between the time integral value of attraction, and contact time.

以下、本発明の一実施形態を、図面を参照して説明する。 An embodiment of the present invention will be described below with reference to the drawings.

ゴム粘着試験方法は、ゴム試験装置を使用する。ゴム試験装置1は、ブロック状のゴム試験部材2と、平板状の模擬路面と、を少なくとも2方向(X方向、Z方向)に相対移動可能に構成されている。そのために、ゴム試験部材2を第1の路面10に押し付けた状態で路面方向(X方向)に沿ってスライド移動させる摩擦動作、及び、ゴム試験部材2を第2の路面12に押し付けてから引き離す粘着計測動作を実行することが可能である。ゴム試験部材2は、プレート11に取り付けられており、プレート11には3方向の力を検出するためのロードセル等の圧力センサが取り付けられている。本実施形態では、模擬路面(第1の路面10又は第2の路面12)が固定され、プレート11が動作するように構成されているが、逆に模擬路面が動作するようにしてもよい。 The rubber adhesion test method uses a rubber tester. The rubber test apparatus 1 is configured such that a block-shaped rubber test member 2 and a flat plate-shaped simulated road surface are relatively movable in at least two directions (X direction and Z direction). For this purpose, the rubber test member 2 is pressed against the first road surface 10 and then slid in the direction of the road surface (X direction) by a friction action, and the rubber test member 2 is pressed against the second road surface 12 and then pulled away. Adhesion measurement operations can be performed. The rubber test member 2 is attached to a plate 11, to which pressure sensors such as load cells are attached for detecting forces in three directions. In this embodiment, the simulated road surface (the first road surface 10 or the second road surface 12) is fixed and the plate 11 is configured to move, but the simulated road surface may move conversely.

本実施形態のゴムの粘着試験システムは、上記ゴム試験装置1と、温度センサ21(温度計測器の一例)と、伝熱板22(温度調節器の一例)、ゴム試験装置1による計測結果を記憶する測定結果記憶部14と、計測結果から粘着力を特定する粘着力特定部15と、粘着力と接触時間との関係式を算出する関係式算出部16と、を有する。ゴム試験装置1を制御するコントローラは、ゴム試験装置1の駆動を制御する駆動制御部13が設けられている。本実施形態では、コントローラに、測定結果記憶部14と、粘着力特定部15と、関係式算出部16とを設けているが、これに限定されない。測定結果記憶部14、粘着力特定部15、及び関係式算出部16のうちの少なくとも1つが別の装置に実装されていてもよい。なお、本実施形態では、システム化しているが、人がゴム試験装置1を操作して引力を計測し、粘着力特定部15及び関係式算出部16が実行する処理を人が行ってもよい。 The rubber adhesion testing system of the present embodiment includes the rubber testing device 1, the temperature sensor 21 (an example of a temperature measuring device), the heat transfer plate 22 (an example of a temperature controller), and the measurement results obtained by the rubber testing device 1. It has a measurement result storage unit 14 for storing, an adhesion force specification unit 15 for specifying the adhesion force from the measurement result, and a relational expression calculation unit 16 for calculating the relational expression between the adhesion force and the contact time. A controller for controlling the rubber testing apparatus 1 is provided with a drive control section 13 for controlling driving of the rubber testing apparatus 1 . In the present embodiment, the controller is provided with the measurement result storage unit 14, the adhesive force identification unit 15, and the relational expression calculation unit 16, but is not limited to this. At least one of the measurement result storage unit 14, the adhesive force identification unit 15, and the relational expression calculation unit 16 may be implemented in another device. In this embodiment, systemization is performed, but a person may operate the rubber testing apparatus 1 to measure the attractive force, and perform the processing performed by the adhesive force specifying unit 15 and the relational expression calculating unit 16. .

上記システムを用いたゴム粘着試験方法の一例について、図1及び図2を参照しつつ説明する。 An example of a rubber adhesion test method using the above system will be described with reference to FIGS. 1 and 2. FIG.

まず、ステップST1において、ゴム試験装置1が摩擦工程を実行する。摩擦工程は、ゴム試験部材2を第1の路面10に所定荷重にて押し付けた状態で路面方向(X方向)に沿って所定回数スライド移動させることにより、ゴム試験部材2の平坦面2a(ここでは下面)を摩擦処理する。本実施形態では第1の路面10はドライであるが、ウエット路面にて摩擦を行っても良く、評価対象とする路面状態を再現することが好ましい。第1の路面10にてゴム試験部材2を摩擦することで、熱によりゴム試験部材2の接触面が性状変化し、粘着層が形成され、粘着力が向上する。本実施形態では、ゴム試験装置1が、ゴム試験部材2をドライの第1の路面10に300kPaにて押し付けた状態で15回スライド移動させた。荷重やスライド移動させる回数は適宜変更可能である。第1の路面10としては、実路面、試験路面、平板、凹凸に加工された路面等が挙げられる。 First, in step ST1, the rubber testing apparatus 1 performs a friction process. In the friction step, the rubber test member 2 is slid a predetermined number of times along the road surface direction (X direction) while being pressed against the first road surface 10 with a predetermined load. Then the lower surface) is rubbed. In this embodiment, the first road surface 10 is dry, but the friction may be performed on a wet road surface, and it is preferable to reproduce the road surface condition to be evaluated. By rubbing the rubber test member 2 on the first road surface 10, the contact surface of the rubber test member 2 is changed in properties by heat, an adhesive layer is formed, and the adhesive strength is improved. In this embodiment, the rubber test device 1 slides the rubber test member 2 15 times while pressing it against the dry first road surface 10 at 300 kPa. The load and the number of slide movements can be changed as appropriate. Examples of the first road surface 10 include an actual road surface, a test road surface, a flat plate, and a road surface processed to have unevenness.

次のステップST2において、表面温度計測工程を実行する。表面温度計測工程は、摩擦処理直後のゴム試験部材2の平坦面2aの温度(摩擦後温度t1と称する)を計測する。摩擦処理直後とは、摩擦処理終了後10秒以内、好ましくは3秒以内とする。 In the next step ST2, a surface temperature measurement process is executed. In the surface temperature measuring step, the temperature of the flat surface 2a of the rubber test member 2 immediately after the friction treatment (referred to as post-friction temperature t1) is measured. Immediately after the friction treatment is within 10 seconds, preferably within 3 seconds, after the end of the friction treatment.

表面温度計測工程において、摩擦後温度t1は、非接触の温度計測器により計測されることが好ましい。本実施形態では、非接触の温度センサ21により計測される。 In the surface temperature measurement step, the post-friction temperature t1 is preferably measured by a non-contact temperature measuring instrument. In this embodiment, the temperature is measured by the non-contact temperature sensor 21 .

次のステップST3において、温調工程を実行する。温調工程は、摩擦処理直後から経時的に低下したゴム試験部材2の平坦面2aの温度を摩擦後温度t1に温度調節する。 In the next step ST3, a temperature control process is executed. In the temperature control step, the temperature of the flat surface 2a of the rubber test member 2, which has decreased over time immediately after the friction treatment, is adjusted to the post-friction temperature t1.

温調工程において、平坦面2aの温度は、平坦面2aに非接触の温度調節器により温度調節されることが好ましい。本実施形態では、温度制御が可能な伝熱板22をゴム試験部材2の側面に押し当てて加熱することで、平坦面2aを温度調節しているが、これに限定されない。伝熱板22をプレート11に押し当ててゴム試験部材2を間接的に加熱することで、平坦面2aを温度調節してもよい。また、温度制御が可能なチャンバー(図示していない)を併設し、ゴム試験部材2全体をチャンバー内で温度調節することで、平坦面2aを温度調節してもよい。温調工程は、例えば前述の温度センサ21で平坦面2aの温度を計測しながら実行される。 In the temperature control step, the temperature of the flat surface 2a is preferably controlled by a temperature controller that does not come into contact with the flat surface 2a. In this embodiment, the temperature of the flat surface 2a is adjusted by pressing the temperature-controllable heat transfer plate 22 against the side surface of the rubber test member 2 to heat it, but the present invention is not limited to this. The temperature of the flat surface 2a may be adjusted by pressing the heat transfer plate 22 against the plate 11 to indirectly heat the rubber test member 2 . Alternatively, a temperature-controllable chamber (not shown) may be provided, and the temperature of the flat surface 2a may be adjusted by adjusting the temperature of the entire rubber test member 2 in the chamber. The temperature control process is performed while measuring the temperature of the flat surface 2a with the temperature sensor 21 described above, for example.

次のステップST4において、ゴム試験装置1が粘着計測工程を実行する。粘着計測工程は、ゴム試験部材2の平坦面2aを第2の路面12に対して所定の接触時間押し付けてから引き剥がし、引き剥がし時に作用する引力を計測する。第2の路面12としては、実路面、試験路面、平板、凹凸に加工された路面等が挙げられる。本実施形態では、第2の路面12として、表面粗さRaが3~7μmの平滑面を有する硬質砂岩を用いた。路面の条件としては、ドライ又はウエットのどちらも設定可能である。なお、粘着計測工程で用いる第2の路面12と、摩擦工程で用いる第1の路面10とは同一でも異なっていてもよい。 In the next step ST4, the rubber testing device 1 performs an adhesion measurement step. In the adhesion measurement step, the flat surface 2a of the rubber test member 2 is pressed against the second road surface 12 for a predetermined contact time, then peeled off, and the attractive force acting at the time of peeling off is measured. Examples of the second road surface 12 include an actual road surface, a test road surface, a flat plate, and an uneven road surface. In this embodiment, hard sandstone having a smooth surface with a surface roughness Ra of 3 to 7 μm is used as the second road surface 12 . Either dry or wet road conditions can be set. The second road surface 12 used in the adhesion measurement process and the first road surface 10 used in the friction process may be the same or different.

次のステップST5において、計測した引力データに基づき、引力に対応する粘着力を特定する。例えば、図3に示すように、引き剥がし時に作用する引力の最大値Fmaxを粘着力としてもよい。このようにすれば、簡素な処理で粘着力を算出可能となる。 In the next step ST5, the adhesive force corresponding to the attractive force is specified based on the measured attractive force data. For example, as shown in FIG. 3, the adhesive force may be the maximum value Fmax of the attractive force acting upon peeling off. By doing so, it is possible to calculate the adhesive force with a simple process.

また、同図にて斜線で示すように、引き剥がし時に作用する引力を時間積分した値を粘着力としてもよい。計測した引力の値を0軸を基準に時間積分する。時間積分した値は図中にて斜線で示す面積に相当する。このようにすれば、引力の最大値Fmaxだけではなく、時間変化も含まれるので、ノイズの影響を受けにくくなり精度が向上する。なお、ゴム試験部材2を第2の路面12に押し付ける方向をZ方向としており、検出された力Fzが正である場合には押圧力であり、検出された力Fzが負である場合には引力となる。 Further, as indicated by diagonal lines in the figure, the adhesive force may be a value obtained by time-integrating the attractive force acting upon peeling off. The value of the measured attraction force is time-integrated based on the 0 axis. The time-integrated value corresponds to the hatched area in the figure. In this way, not only the maximum value Fmax of the attractive force but also the change over time is included, so that the influence of noise is reduced and the accuracy is improved. The direction in which the rubber test member 2 is pressed against the second road surface 12 is the Z direction. When the detected force Fz is positive, it is the pressing force. become a force of attraction.

ステップST5の引力の計測は、接触時間を異ならせて複数回(N回)実行するのが好ましい。Nは2以上の自然数であればよいが、多い方が好ましい。また、本実施形態では、接触時間を0~10秒としているが、接触時間は0.5~1.5秒とするのが好ましい。0.5~1.5秒とすることで、ゴムの緩和現象を抑えることができる。これにより、接触時間が長くなるほど緩和による面積の変化などのゴム粘弾性の要因が入ることを避けることができる。なお、ステップST5の粘着力の特定は、引力を計測する毎に行ってもよいし、全ての計測が終了した後に一括して実行してもよい。 The measurement of the attractive force in step ST5 is preferably performed a plurality of times (N times) with different contact times. Although N may be a natural number of 2 or more, the larger the number, the better. Further, in this embodiment, the contact time is 0 to 10 seconds, but the contact time is preferably 0.5 to 1.5 seconds. By setting the time to 0.5 to 1.5 seconds, the relaxation phenomenon of the rubber can be suppressed. This makes it possible to avoid factors of rubber viscoelasticity, such as changes in area due to relaxation, as the contact time becomes longer. Note that the determination of the adhesive force in step ST5 may be performed each time the attractive force is measured, or may be performed collectively after all the measurements are completed.

全ての計測が終了した後(ステップST6:YES)、ステップST7において、複数の計測結果に基づき、引力に対応する粘着力と接触時間との関係式を算出する。具体的には、図4A及び図4Bに示すように、一つの計測結果を、粘着力をy軸、接触時間をx軸としてプロットし、プロットされた各点を近似式を用いて近似することで、関係式を算出する。本実施形態では、対数近似して得られた近似式を関係式とし、y=αln(x)-βである。α、βは係数である。近似方法としては、最小二乗法を用いている。粘着力は接触時間に応じて対数的に変化するので、対数近似が好ましい。しかし、対数近似に限定されず、例えば線形や多項式で近似してもよい。 After all the measurements are completed (step ST6: YES), in step ST7, based on a plurality of measurement results, a relational expression between the adhesive force corresponding to the attractive force and the contact time is calculated. Specifically, as shown in FIGS. 4A and 4B, one measurement result is plotted with the adhesive force on the y-axis and the contact time on the x-axis, and each plotted point is approximated using an approximation formula. to calculate the relational expression. In the present embodiment, an approximation obtained by logarithmic approximation is used as a relational expression, y=αln(x)−β. α and β are coefficients. As an approximation method, the method of least squares is used. The logarithmic approximation is preferred since the adhesion varies logarithmically with contact time. However, the approximation is not limited to logarithmic approximation, and may be linear or polynomial approximation, for example.

図4Aは、引力の最大値Fmaxを粘着力とし、粘着力と接触時間との関係を示す図である。図中の丸印が或る配合ゴムの計測結果であり、図中の菱形が別の配合ゴムの計測結果である。図中の線は対数近似式を示す。図4Bは、引力の時間積分値を粘着力とし、粘着力と接触時間との関係を示す図である。図4Aと同じ傾向を示していることがわかる。 FIG. 4A is a diagram showing the relationship between the adhesive force and the contact time, with the maximum value Fmax of the attractive force being the adhesive force. The circular marks in the figure are the measurement results of a certain compounded rubber, and the diamonds in the figure are the measurement results of another compounded rubber. The line in the figure indicates the logarithmic approximation. FIG. 4B is a diagram showing the relationship between the adhesive force and the contact time, using the time integral value of the attractive force as the adhesive force. It can be seen that the same tendency as in FIG. 4A is shown.

上記実施形態では、ゴム試験部材2を第2の路面12に押し付けるとき、及び引き剥がすときの速度が全ての計測にて同一にしているが、これを種々変更してもよい。ゴム試験部材2を押し付けるときの速度及び、引き剥がすときの速度を異ならせて引力の計測を複数回実行すれば、ゴムの接触時間を異ならせるのと同様の評価が可能となる。 In the above-described embodiment, the speed at which the rubber test member 2 is pressed against the second road surface 12 and the speed at which it is peeled off is the same for all measurements, but this may be changed in various ways. By measuring the attractive force a plurality of times while varying the pressing speed and the peeling speed of the rubber test member 2, it is possible to make the same evaluation as when the rubber contact time is varied.

以上のように、本実施形態のゴムの粘着試験方法は、ゴム試験部材2を第1の路面10に所定荷重にて押し付けた状態で路面方向に沿って移動させることにより、ゴム試験部材2の少なくとも一つの平坦面2aを摩擦処理するステップ(ST1)と、摩擦処理直後の平坦面2aの温度である摩擦後温度t1を計測するステップ(ST2)と、摩擦処理直後から経時的に低下した平坦面2aの温度を摩擦後温度t1に温度調節するステップ(ST3)と、温度調節した平坦面2aを第2の路面12に対して所定の接触時間押し付けてから引き剥がし、引き剥がし時に作用する引力を計測し、計測した引力データに基づき、引力に対応する粘着力を特定するステップ(ST4、ST5)と、を有する。
これにより、摩擦処理直後の平坦面2aの温度である摩擦後温度t1を計測し、平坦面2aの温度を摩擦後温度t1に温度調節してから引力を測定し、計測した引力データに基づき、引力に対応する粘着力を特定することで、発熱性を考慮した、より実条件に近い粘着力を評価することができる。
As described above, in the rubber adhesion test method of the present embodiment, the rubber test member 2 is pressed against the first road surface 10 with a predetermined load and moved along the direction of the road surface. A step (ST1) of friction-treating at least one flat surface 2a; a step (ST2) of measuring a post-friction temperature t1, which is the temperature of the flat surface 2a immediately after the friction treatment; A step (ST3) of adjusting the temperature of the surface 2a to the post-friction temperature t1, pressing the temperature-adjusted flat surface 2a against the second road surface 12 for a predetermined contact time and then peeling it off, and an attractive force acting at the time of peeling off. and determining the adhesive force corresponding to the attractive force based on the measured attractive force data (ST4, ST5).
As a result, the post-friction temperature t1, which is the temperature of the flat surface 2a immediately after the friction treatment, is measured, the attractive force is measured after adjusting the temperature of the flat surface 2a to the post-friction temperature t1, and based on the measured attractive force data, By specifying the adhesive force corresponding to the attractive force, it is possible to evaluate the adhesive force that is closer to the actual conditions in consideration of heat generation.

本実施形態では、摩擦後温度t1は、非接触の温度計測器により計測される。
これにより、温度計測器が平坦面2aに形成された粘着層に接触することなく摩擦後温度t1を計測できるため、より精度よく粘着力を評価することができる。
In this embodiment, the post-friction temperature t1 is measured by a non-contact temperature measuring instrument.
As a result, the post-friction temperature t1 can be measured without the temperature measuring device coming into contact with the adhesive layer formed on the flat surface 2a, so that the adhesive strength can be evaluated with higher accuracy.

本実施形態では、平坦面2aの温度は、平坦面2aに非接触の温度調節器により温度調節される。
これにより、温度調節器が平坦面2aに形成された粘着層に接触することなく平坦面2aの温度を調節できるため、より精度よく粘着力を評価することができる。
In this embodiment, the temperature of the flat surface 2a is adjusted by a temperature controller that does not come into contact with the flat surface 2a.
As a result, the temperature controller can adjust the temperature of the flat surface 2a without coming into contact with the adhesive layer formed on the flat surface 2a, so that the adhesive strength can be evaluated with higher accuracy.

本実施形態では、引力の計測は、摩擦処理直後から2時間以内に実行される。
粘着力は時間の経過とともに低下するため、摩擦処理直後から2時間を超えると粘着力の評価精度が低下するおそれがある。
In this embodiment, the measurement of the attractive force is performed within two hours immediately after the friction treatment.
Since the adhesive strength decreases with the lapse of time, there is a possibility that the evaluation accuracy of the adhesive strength will decrease if two hours have passed since immediately after the friction treatment.

本実施形態では、接触時間は、0.5~1.5秒である。
ゴムは緩和現象により、時間の経過とともに応力(接地圧力)が減少するため、接触時間が長くなると粘着力の評価精度が低下するおそれがある。
In this embodiment, the contact time is 0.5-1.5 seconds.
Due to the relaxation phenomenon, the stress (contact pressure) of rubber decreases over time, so if the contact time is long, there is a risk that the evaluation accuracy of the adhesive strength will decrease.

本実施形態のゴムの粘着試験システムは、ゴム試験部材2を第1の路面10に所定荷重にて押し付けた状態で路面方向に沿って移動させることにより、ゴム試験部材2の少なくとも一つの平坦面2aを摩擦処理するように、ゴム試験装置1を制御する駆動制御部13と、摩擦処理直後の平坦面2aの温度である摩擦後温度t1を計測する温度計測器と、摩擦処理直後から経時的に低下した平坦面2aの温度を摩擦後温度t1に温度調節する温度調節器と、温度調節した平坦面2aを第2の路面12に対して所定の接触時間押し付けてから引き剥がし、引き剥がし時に作用する引力を計測するように、駆動制御部13によりゴム試験装置1が制御され、計測した引力データに基づき、引力に対応する粘着力を特定する粘着力特定部15と、を有する。
このシステムを使用することによっても、上記方法の奏する作用効果を得ることが可能となる。
The rubber adhesion test system of this embodiment moves the rubber test member 2 along the direction of the road surface while pressing it against the first road surface 10 with a predetermined load. A drive control unit 13 that controls the rubber testing apparatus 1 so as to friction-process the flat surface 2a, a temperature measuring instrument that measures the post-friction temperature t1, which is the temperature of the flat surface 2a immediately after the friction process, and A temperature controller that adjusts the temperature of the flat surface 2a that has been lowered to a post-friction temperature t1; The rubber testing apparatus 1 is controlled by the drive control unit 13 so as to measure the acting attractive force, and has an adhesive force specifying unit 15 that specifies the adhesive force corresponding to the attractive force based on the measured attractive force data.
By using this system as well, it is possible to obtain the effects of the above method.

以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものでないと考えられるべきである。本発明の範囲は、上記した実施形態の説明だけではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。 Although the embodiments of the present invention have been described above with reference to the drawings, it should be considered that the specific configuration is not limited to these embodiments. The scope of the present invention is indicated not only by the description of the above embodiments but also by the scope of claims, and includes all modifications within the scope and meaning equivalent to the scope of claims.

上記の各実施形態で採用している構造を他の任意の実施形態に採用することは可能である。各部の具体的な構成は、上述した実施形態のみに限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。 It is possible to adopt the structure adopted in each of the above embodiments in any other embodiment. The specific configuration of each part is not limited to the above-described embodiment, and various modifications are possible without departing from the scope of the present invention.

1…ゴム試験装置
2…ゴム試験部材
2a…平坦面
10…第1の路面
12…第2の路面
13…駆動制御部
15…粘着力特定部
DESCRIPTION OF SYMBOLS 1... Rubber test apparatus 2... Rubber test member 2a... Flat surface 10... 1st road surface 12... 2nd road surface 13... Drive control part 15... Adhesive force specific part

Claims (6)

ゴム試験部材を第1の路面に所定荷重にて押し付けた状態で路面方向に沿って移動させることにより、前記ゴム試験部材の少なくとも一つの平坦面を摩擦処理するステップと、
摩擦処理直後の前記平坦面の温度である摩擦後温度を計測するステップと、
摩擦処理直後から経時的に低下した前記平坦面の温度を前記摩擦後温度に温度調節するステップと、
温度調節した前記平坦面を第2の路面に対して所定の接触時間押し付けてから引き剥がし、引き剥がし時に作用する引力を計測し、計測した引力データに基づき、引力に対応する粘着力を特定するステップと、を有するゴムの粘着試験方法。
rubbing at least one flat surface of the rubber test member by moving the rubber test member along the direction of the road surface while pressing the rubber test member against the first road surface with a predetermined load;
measuring a post-friction temperature, which is the temperature of the flat surface immediately after the friction treatment;
a step of adjusting the temperature of the flat surface, which has decreased over time immediately after the rubbing treatment, to the post-rubbing temperature;
The temperature-controlled flat surface is pressed against the second road surface for a predetermined contact time and then peeled off, the attractive force acting at the time of peeling off is measured, and based on the measured attractive force data, the adhesive force corresponding to the attractive force is specified. A rubber adhesion test method comprising the steps of:
前記摩擦後温度は、非接触の温度計測器により計測される、請求項1に記載の粘着試験方法。 The adhesion test method according to claim 1, wherein the post-friction temperature is measured by a non-contact thermometer. 前記平坦面の温度は、前記平坦面に非接触の温度調節器により温度調節される、請求項1又は2に記載の粘着試験方法。 The adhesion test method according to claim 1 or 2, wherein the temperature of said flat surface is adjusted by a temperature controller that does not come into contact with said flat surface. 前記引力の計測は、摩擦処理直後から2時間以内に実行される、請求項1~3の何れかに記載の粘着試験方法。 The adhesion test method according to any one of claims 1 to 3, wherein the measurement of the attractive force is performed within 2 hours immediately after the friction treatment. 前記接触時間は、0.5~1.5秒である、請求項1~4の何れかに記載の粘着試験方法。 The adhesion test method according to any one of claims 1 to 4, wherein the contact time is 0.5 to 1.5 seconds. ゴム試験部材を第1の路面に所定荷重にて押し付けた状態で路面方向に沿って移動させることにより、前記ゴム試験部材の少なくとも一つの平坦面を摩擦処理するように、ゴム試験装置を制御する駆動制御部と、
摩擦処理直後の前記平坦面の温度である摩擦後温度を計測する温度計測器と、
摩擦処理直後から経時的に低下した前記平坦面の温度を前記摩擦後温度に温度調節する温度調節器と、
温度調節した前記平坦面を第2の路面に対して所定の接触時間押し付けてから引き剥がし、引き剥がし時に作用する引力を計測するように、前記駆動制御部により前記ゴム試験装置が制御され、計測した引力データに基づき、引力に対応する粘着力を特定する粘着力特定部と、を有する、ゴムの粘着試験システム。


The rubber testing apparatus is controlled so that at least one flat surface of the rubber test member is rubbed by moving the rubber test member along the direction of the road surface while pressing the rubber test member against the first road surface with a predetermined load. a drive control unit;
a temperature measuring instrument for measuring a post-friction temperature, which is the temperature of the flat surface immediately after the friction treatment;
a temperature controller that adjusts the temperature of the flat surface, which has decreased over time immediately after the rubbing treatment, to the post-rubbing temperature;
The rubber test device is controlled by the drive control unit so that the temperature-controlled flat surface is pressed against the second road surface for a predetermined contact time and then peeled off, and the attractive force acting at the time of peeling off is measured. and an adhesion force identifying unit that identifies an adhesion force corresponding to the attraction force based on the obtained attraction force data.


JP2018222253A 2018-11-28 2018-11-28 Rubber adhesion test method and rubber adhesion test system Active JP7138025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018222253A JP7138025B2 (en) 2018-11-28 2018-11-28 Rubber adhesion test method and rubber adhesion test system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018222253A JP7138025B2 (en) 2018-11-28 2018-11-28 Rubber adhesion test method and rubber adhesion test system

Publications (2)

Publication Number Publication Date
JP2020085718A JP2020085718A (en) 2020-06-04
JP7138025B2 true JP7138025B2 (en) 2022-09-15

Family

ID=70907592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018222253A Active JP7138025B2 (en) 2018-11-28 2018-11-28 Rubber adhesion test method and rubber adhesion test system

Country Status (1)

Country Link
JP (1) JP7138025B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004037286A (en) 2002-07-04 2004-02-05 Yokohama Rubber Co Ltd:The Indoor tire durability testing method
JP2007103757A (en) 2005-10-06 2007-04-19 Shin Etsu Polymer Co Ltd Holding jig and small electronic component retainer
JP2007218746A (en) 2006-02-16 2007-08-30 Bridgestone Corp Frictional abrasion testing machine
JP2009188278A (en) 2008-02-07 2009-08-20 Fujikura Rubber Ltd Adhesion rubber sheet for substrate carrying tool, and substrate carrying tool
JP2016170138A (en) 2015-03-16 2016-09-23 住友ゴム工業株式会社 Adhesive force testing method of tyre rubber
JP2017067453A (en) 2015-09-28 2017-04-06 住友ゴム工業株式会社 Method for evaluating friction performance of rubber
JP2017096766A (en) 2015-11-24 2017-06-01 住友ゴム工業株式会社 Cohesive strength testing method for tires
WO2018050531A1 (en) 2016-09-14 2018-03-22 Rhodia Operations Device for measuring rubber wear

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1215251A (en) * 1982-09-23 1986-12-16 Goodrich (B.F.) Company (The) Tack measuring device and method
JP2729697B2 (en) * 1990-07-13 1998-03-18 横浜ゴム株式会社 Tack meter with thermostat

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004037286A (en) 2002-07-04 2004-02-05 Yokohama Rubber Co Ltd:The Indoor tire durability testing method
JP2007103757A (en) 2005-10-06 2007-04-19 Shin Etsu Polymer Co Ltd Holding jig and small electronic component retainer
JP2007218746A (en) 2006-02-16 2007-08-30 Bridgestone Corp Frictional abrasion testing machine
JP2009188278A (en) 2008-02-07 2009-08-20 Fujikura Rubber Ltd Adhesion rubber sheet for substrate carrying tool, and substrate carrying tool
JP2016170138A (en) 2015-03-16 2016-09-23 住友ゴム工業株式会社 Adhesive force testing method of tyre rubber
JP2017067453A (en) 2015-09-28 2017-04-06 住友ゴム工業株式会社 Method for evaluating friction performance of rubber
JP2017096766A (en) 2015-11-24 2017-06-01 住友ゴム工業株式会社 Cohesive strength testing method for tires
WO2018050531A1 (en) 2016-09-14 2018-03-22 Rhodia Operations Device for measuring rubber wear

Also Published As

Publication number Publication date
JP2020085718A (en) 2020-06-04

Similar Documents

Publication Publication Date Title
US10718704B2 (en) Rubber adhesion test method and rubber adhesion test system
JP7018938B2 (en) A device for measuring rubber wear
JP5862914B1 (en) Viscoelastic property measuring apparatus and viscoelastic property measuring method
JP7138025B2 (en) Rubber adhesion test method and rubber adhesion test system
JP2017096759A (en) Method for evaluating the on-ice brake performance of tire
JP2007113944A (en) Measuring instrument of viscoelasticity, and measuring method of viscoelasticity
JP5425513B2 (en) Friction tester on ice and friction test method on ice using the same
JP6786915B2 (en) Evaluation method of rubber composition for tires
TW201443417A (en) Sliding test apparatus and method for protecting film or protecting coating
JP7503843B2 (en) Surface tension measuring method, surface tension measuring device and program
RU2327137C2 (en) Method of surface layer material destruction activation energy estimation
JP6150324B2 (en) Indentation test method and indentation test apparatus
JP2008164568A (en) Method and device for analyzing surface physical property
JP5858855B2 (en) Friction characteristic measuring device and friction characteristic measuring method
RU2665500C1 (en) Method for determining glass transition temperature
Suzuki et al. Identification of nonlinear viscoelasticity of polishing pad using an on-machine compression tester
JP2003262577A (en) Apparatus for evaluating young's modulus due to indentation fracture
JP2005017064A (en) Testing method of stick slip
JP7487248B2 (en) Fatigue damage level identification device and method for identifying fatigue damage level
JP7403770B2 (en) Tactile measurement system
JP7051112B2 (en) Method for measuring viscoelastic properties of skin and equipment using this
Cappella et al. Mechanical properties of silicone methacrylate microparticles determined by AFM Colloidal Probe Technique
岸本喜久雄 et al. Evaluation of Thin Film Elastic Modulus from Inverse Analysis of Multiple Indentation Unloading Curves
JP2005156413A (en) Apparatus for evaluating characteristics of material
JP2018084471A (en) Identification method of material parameter of rubber-like material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220905

R150 Certificate of patent or registration of utility model

Ref document number: 7138025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150