JP7136209B2 - chromatography detector - Google Patents

chromatography detector Download PDF

Info

Publication number
JP7136209B2
JP7136209B2 JP2020537910A JP2020537910A JP7136209B2 JP 7136209 B2 JP7136209 B2 JP 7136209B2 JP 2020537910 A JP2020537910 A JP 2020537910A JP 2020537910 A JP2020537910 A JP 2020537910A JP 7136209 B2 JP7136209 B2 JP 7136209B2
Authority
JP
Japan
Prior art keywords
light
solid
measurement
detector
measurement light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020537910A
Other languages
Japanese (ja)
Other versions
JPWO2020039478A1 (en
Inventor
悠佑 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=69591912&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP7136209(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Publication of JPWO2020039478A1 publication Critical patent/JPWO2020039478A1/en
Application granted granted Critical
Publication of JP7136209B2 publication Critical patent/JP7136209B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Measuring Cells (AREA)

Description

本発明は、示差屈折率検出器や吸光度検出器といったクロマトグラフィー用の検出器に関するものである。 The present invention relates to a chromatographic detector such as a differential refractive index detector and an absorbance detector.

液体クロマトグラフィー用の検出器として示差屈折率検出器が知られている。示差屈折率検出器は、隔壁によって仕切られた試料セルと参照セルを有するフローセルに対してスリットを介して測定光を照射し、フローセルを経た測定光のスリット像を受光素子上に結像させてそのスリット像の変位量を測定することにより、試料セルを流れる試料溶液と参照セルを流れる参照溶液との屈折率差の変化を検出するものである(特許文献1参照。)。 A differential refractive index detector is known as a detector for liquid chromatography. The differential refractive index detector irradiates a flow cell having a sample cell and a reference cell partitioned by a partition wall with measurement light through a slit, and forms a slit image of the measurement light passing through the flow cell on a light receiving element. By measuring the amount of displacement of the slit image, the change in refractive index difference between the sample solution flowing through the sample cell and the reference solution flowing through the reference cell is detected (see Patent Document 1).

近年、発光ダイオード(LED)やレーザーダイオード(LD)などの固体発光素子が検出器用の光源として使用される場合が多い。上記のように、示差屈折率検出器は受光素子上に結像されたスリット像の変位量によって屈折率変化を検出するものであるため、光源からの光量が一定でない場合には、スリット像の実際の位置が不変であっても、光源の光量変動がスリット像の変位として誤検出され、屈折率の変化として出力されてしまう。そのため、示差屈折率検出器では、本来屈折率変化として認識されるべき要素以外の要素の変化によって屈折率変化が誤検出されないよう、光学系の温調や光源の高精度な(低ノイズな)駆動電源の採用などの対策が採られている。 In recent years, solid state light emitting devices such as light emitting diodes (LEDs) and laser diodes (LDs) are often used as light sources for detectors. As described above, the differential refractive index detector detects changes in the refractive index based on the amount of displacement of the slit image formed on the light receiving element. Even if the actual position remains unchanged, variations in the amount of light from the light source are erroneously detected as displacement of the slit image, and are output as variations in the refractive index. Therefore, in a differential refractive index detector, in order to prevent erroneous detection of refractive index changes due to changes in elements other than those that should be recognized as refractive index changes, temperature control of the optical system and high-precision (low noise) light sources are required. Measures such as adoption of a drive power supply are taken.

特開2017-223507号公報JP 2017-223507 A

上記のような対策が採られているにも拘わらず、屈折率変化の誤検知やノイズの増大、感度の悪化といった問題が起こることがわかった。その原因を検証すると、LED等の固体発光素子の発光面の中心領域は光量が安定している一方で、発光面の周縁領域の光量は中心領域よりも変動が大きく、その周縁領域の光量変動が屈折率変化の誤検知等の原因となっていることがわかった。これは、はんだ付けやCANパッケージ化、樹脂封止といった固体発光素子のチップ実装時のバラツキや、ウエハからチップを切り出す際にチップに蓄積される応力の違い、プロセスの変化点(洗浄の有無など)、母材の変化といった原因により発生していると考えられる。 It has been found that problems such as erroneous detection of refractive index change, increase in noise, and deterioration in sensitivity occur in spite of the measures taken as described above. When examining the cause, while the light intensity is stable in the central region of the light emitting surface of a solid light emitting device such as an LED, the light intensity in the peripheral region of the light emitting surface fluctuates more than in the central region. is the cause of erroneous detection of refractive index change. This is due to variations in chip mounting of solid-state light emitting devices such as soldering, CAN packaging, and resin sealing, differences in stress accumulated in chips when chips are cut from wafers, and changes in processes (whether or not cleaning is performed, etc.). ) and the change in the base material.

このような固体発光素子の発光面内における光量のバラツキは、固体発光素子を示差屈折率検出器の光源として用いた場合だけでなく、吸光度検出器などの検出器の光源として用いた場合にも悪影響を与える。 Such variations in the amount of light within the light-emitting surface of the solid-state light-emitting device occur not only when the solid-state light-emitting device is used as a light source for a differential refractive index detector, but also when it is used as a light source for a detector such as an absorbance detector. adversely affect.

そこで、本発明は、固体発光素子を光量の安定した検出器用の光源として用いることができるようにすることを目的とするものである。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to enable a solid-state light-emitting device to be used as a light source for a detector with a stable amount of light.

本発明に係るクロマトグラフィー用検出器は、測定光を発する固体発光素子と、前記測定光の光路上に配置されたフローセルと、前記フローセルを経た前記測定光を検出するための検出部と、前記固体発光素子から前記検出部までの間に設けられ、前記固体発光素子から発せられる前記測定光の光束の周縁領域の光量変動の影響を低減する光量変動低減素子と、を備えている。 The detector for chromatography according to the present invention comprises a solid-state light-emitting device that emits measurement light, a flow cell arranged on the optical path of the measurement light, a detection unit for detecting the measurement light that has passed through the flow cell, and the a light amount fluctuation reduction element provided between the solid light emitting element and the detection unit, and for reducing the influence of light amount fluctuation in a peripheral area of the light flux of the measurement light emitted from the solid light emitting element.

前記光量変動低減素子として、前記固体発光素子から発せられる前記測定光の光束の中心領域のみを前記フローセルへ導く開口遮光板を用いることができる。 As the light amount fluctuation reduction element, an aperture light shielding plate that guides only the central region of the light flux of the measurement light emitted from the solid-state light emitting element to the flow cell can be used.

前記開口遮光板は、前記固体発光素子から発せられる測定光の光束のうち周縁側の50%以上の光を遮光して中心領域のみを抽出するものであってもよい。 The aperture light shielding plate may shield 50% or more of light on the peripheral edge side of the light flux of the measurement light emitted from the solid-state light emitting device, and extract only the central region.

好ましい実施形態では、前記固体発光素子からの測定光を集光し、前記開口遮光板に照射する第1のレンズと、前記開口遮光板を通過した測定光を集光し、前記フローセルに照射する第2のレンズと、をさらに備えている。 In a preferred embodiment, a first lens collects the measurement light from the solid-state light emitting device and irradiates it onto the opening light shielding plate, and collects the measurement light passing through the opening light shielding plate and irradiates it onto the flow cell. and a second lens.

また、前記光量変動低減素子として、前記固体発光素子の発光面の周縁領域を覆って当該周縁領域から発せられる光を遮光するマスクを用いることもできる。 Further, as the light amount fluctuation reduction element, a mask that covers the peripheral area of the light emitting surface of the solid light emitting element to block the light emitted from the peripheral area can be used.

また、前記光量変動低減素子として、前記固体発光素子から発せられる前記測定光の光束の中心領域とその周囲領域とを混合して前記フローセルへ導く光拡散板を用いることもできる。 Further, as the light amount fluctuation reduction element, a light diffusion plate can be used that mixes the central area and the peripheral area of the luminous flux of the measurement light emitted from the solid-state light-emitting element and guides them to the flow cell.

本発明に係るクロマトグラフィー用検出器では、固体発光素子から発せられる測定光の光束の周縁領域の光量変動の影響を低減する光量変動低減素子を備えているので、固体発光素子の発光面の周縁領域から発せられる光の光量変動の影響が小さくなる。これにより、固体発光素子を光量の安定した検出器用の光源として用いることができる。 Since the detector for chromatography according to the present invention is provided with the light intensity fluctuation reduction element that reduces the influence of light intensity fluctuations in the peripheral area of the luminous flux of the measurement light emitted from the solid state light emitting element, the peripheral edge of the light emitting surface of the solid light emitting element The influence of fluctuations in the amount of light emitted from the region is reduced. As a result, the solid-state light-emitting device can be used as a light source for a detector with a stable amount of light.

クロマトグラフィー用検出器の一実施例を示す概略構成図である。1 is a schematic configuration diagram showing an example of a chromatographic detector; FIG. 同実施例において光量変動低減素子により遮光される測定光の周縁領域を説明するための概念図である。FIG. 4 is a conceptual diagram for explaining a peripheral area of measurement light that is blocked by a light amount fluctuation reducing element in the same embodiment; 光量変動低減素子の変形例を示す図である。It is a figure which shows the modification of a light amount fluctuation|variation reduction element. 光量変動低減素子のさらなる変形例を示す図である。FIG. 10 is a diagram showing a further modified example of the light intensity fluctuation reducing element; 光量変動低減素子の配置の有無と受光素子の検出信号の安定性との関係性についての検証結果を示すデータである。It is data showing the verification result of the relationship between the presence or absence of arrangement of the light intensity fluctuation reduction element and the stability of the detection signal of the light receiving element.

以下、クロマトグラフィー用検出器の1つである示差屈折率検出器の一実施例について図面を用いて説明する。 An embodiment of a differential refractive index detector, which is one of detectors for chromatography, will be described below with reference to the drawings.

図1に示されているように、示差屈折率検出器は、フローセル2、固体発光素子4、レンズ5、開口遮光板8、レンズ10、ミラー12、ゼログラス14、受光素子16及び演算制御装置20を備えている。固体発光素子4はLED又はLDである。フローセル2は、固体発光素子4から発せられる測定光6の光軸上に配置されている。フローセル2は試料セル2aと参照セル2bをもち、それらのセル2a,2bが透明な隔壁によって仕切られている。 As shown in FIG. 1, the differential refractive index detector includes a flow cell 2, a solid state light emitting element 4, a lens 5, an aperture shielding plate 8, a lens 10, a mirror 12, a zero glass 14, a light receiving element 16, and an arithmetic control unit 20. It has The solid light emitting device 4 is an LED or LD. The flow cell 2 is arranged on the optical axis of the measurement light 6 emitted from the solid state light emitting device 4 . The flow cell 2 has a sample cell 2a and a reference cell 2b, and these cells 2a and 2b are separated by a transparent partition.

フローセル2の前方にはレンズ10が配置され、後方にフローセル2を透過した測定光6を反射させるミラー12が配置されている。ミラー12により反射された測定光6aの光路上にフォトダイオードなどの受光素子16が設けられており、ミラー12で反射してフローセル2を透過した測定光6aが受光素子16上に結像される。反射後の測定光6aの光路上のレンズ10と受光素子16との間に、受光素子16上に結像された測定光6aの像を平行移動させるためのゼログラス14が配置されている。受光素子16には演算処理装置20が接続されている。 A lens 10 is arranged in front of the flow cell 2, and a mirror 12 for reflecting the measuring light 6 transmitted through the flow cell 2 is arranged in the rear. A light receiving element 16 such as a photodiode is provided on the optical path of the measuring light 6a reflected by the mirror 12, and the measuring light 6a reflected by the mirror 12 and transmitted through the flow cell 2 forms an image on the light receiving element 16. . A zero glass 14 is arranged between the lens 10 and the light receiving element 16 on the optical path of the reflected measuring light 6a to translate the image of the measuring light 6a formed on the light receiving element 16 . An arithmetic processing unit 20 is connected to the light receiving element 16 .

固体発光素子4から発せられた測定光6はレンズ5で集光された後、開口遮光板8を通り、さらにレンズ10を通ってフローセル2に照射され、フローセル2を透過してミラー12で反射される。ミラー12で反射した測定光6aは再びフローセル2を透過してレンズ10によって受光素子16上に結像される。受光素子16は2つの受光領域16Aと16Bを備え、それぞれの受光領域への入射光量に基づく検出信号が演算処理装置20に取り込まれるようになっている。 The measurement light 6 emitted from the solid-state light-emitting element 4 is condensed by the lens 5, passes through the aperture light shielding plate 8, passes through the lens 10, is irradiated onto the flow cell 2, passes through the flow cell 2, and is reflected by the mirror 12. be done. The measurement light 6a reflected by the mirror 12 passes through the flow cell 2 again and is imaged on the light receiving element 16 by the lens 10. FIG. The light-receiving element 16 has two light-receiving regions 16A and 16B, and a detection signal based on the amount of light incident on each light-receiving region is fetched into the processing unit 20. FIG.

試料セル2a内と参照セル2b内の屈折率差が変化すると、フローセル2を通過する測定光6の光路に変化が生じ、受光素子16の受光面に結像する測定光6aの像が一定方向へ変位する。受光素子16の受光領域16Aと16Bは、測定光6aの像の変位方向に並んで隣接配置されている。 When the refractive index difference between the sample cell 2a and the reference cell 2b changes, the optical path of the measurement light 6 passing through the flow cell 2 changes, and the image of the measurement light 6a formed on the light receiving surface of the light receiving element 16 is oriented in a certain direction. to The light receiving areas 16A and 16B of the light receiving element 16 are arranged side by side in the displacement direction of the image of the measurement light 6a.

試料セル2a内と参照セル2b内の屈折率差が0であるときに、測定光6aの像が受光領域16A,16Bの境界部分を跨ぐようにして受光素子16の受光面上に結像されるように調整される。試料セル2a内に試料成分が導入されて試料セル2a内の屈折率が変化すると、試料セル2a内と参照セル2b内の屈折率差が変化し、受光素子16の受光面に結像する測定光6aの像が変位する。その変位を受光領域16Aと16Bの検出信号値の差分をとることにより検出し、試料セル2a内と参照セル2b内の屈折率差を求める。 When the refractive index difference between the sample cell 2a and the reference cell 2b is 0, an image of the measurement light 6a is formed on the light receiving surface of the light receiving element 16 so as to straddle the boundary between the light receiving regions 16A and 16B. adjusted to When the sample component is introduced into the sample cell 2a and the refractive index in the sample cell 2a changes, the difference in refractive index between the sample cell 2a and the reference cell 2b changes and an image is formed on the light receiving surface of the light receiving element 16. The image of light 6a is displaced. The displacement is detected by taking the difference between the detection signal values of the light receiving regions 16A and 16B, and the refractive index difference between the sample cell 2a and the reference cell 2b is obtained.

演算処理装置20は、この示差屈折率検出器内に設けられたコンピュータや、この示差屈折率検出器に接続された専用の又は汎用のコンピュータによって実現されるものである。演算処理装置20は、受光素子16の各受光領域16A、16Bの検出信号値に基づいてフローセル2における試料セル2aと参照セル2bとの屈折率差を求める機能を有する。 The arithmetic processing unit 20 is implemented by a computer provided in this differential refractive index detector or a dedicated or general-purpose computer connected to this differential refractive index detector. The arithmetic processing unit 20 has a function of obtaining the refractive index difference between the sample cell 2a and the reference cell 2b in the flow cell 2 based on the detection signal values of the respective light receiving areas 16A and 16B of the light receiving element 16. FIG.

この実施例では、フローセル2と固体発光素子4との間に開口遮光板8が設けられている。開口遮光板8は、図2に示されているように、固体発光素子4から発せられてレンズ5を通過した測定光6の光束の周縁領域を遮光して中心領域のみを抽出するためのものである。すなわち、開口遮光板8は、固体発光素子4から発せられた光束のうち光量変動の大きい周縁領域を遮光することによって光量変動の影響を低減する光量変動低減素子を構成する。 In this embodiment, an opening light shielding plate 8 is provided between the flow cell 2 and the solid state light emitting device 4 . The aperture light shielding plate 8, as shown in FIG. 2, shields the peripheral area of the light flux of the measurement light 6 emitted from the solid state light emitting element 4 and passed through the lens 5, and extracts only the central area. is. In other words, the aperture light shielding plate 8 constitutes a light amount fluctuation reducing element that reduces the influence of light amount fluctuations by shielding the peripheral region where the light amount fluctuations are large among the luminous flux emitted from the solid state light emitting element 4 .

開口遮光板8は、固体発光素子4から発せられる測定光6の光束のうち周縁側の50%以上の光を遮光して中心領域のみを抽出する。本来的に、示差屈折率検出器の光源とフローセルとの間にはスリットが設けられるが、このスリットは平行光を取り出すためのものであって光量の安定している光束の中心領域のみを抽出するためのものではない。 The aperture light shielding plate 8 shields 50% or more of light on the peripheral edge side of the light flux of the measurement light 6 emitted from the solid-state light emitting device 4, and extracts only the central region. Originally, a slit is provided between the light source of the differential refractive index detector and the flow cell, but this slit is for extracting parallel light, and only the central region of the light flux where the light amount is stable is extracted. It's not for

固体発光素子4の発光面の周縁領域から発せられた光の光量が不安定であるという知見は本発明者によって初めて得られたものである。さらに、示差屈折率検出器等の検出器では、フローセルを通過して受光部に到達する光の光量が小さいと検出感度の低下やS/Nの増大といった問題があるため、光源から発せられた光の大部分を遮光するということはこれまでは考えられないことである。 The inventor of the present invention was the first to find out that the amount of light emitted from the peripheral region of the light emitting surface of the solid light emitting element 4 is unstable. Furthermore, in a detector such as a differential refractive index detector, if the amount of light that passes through the flow cell and reaches the light receiving part is small, there are problems such as a decrease in detection sensitivity and an increase in S/N. Blocking out most of the light is hitherto inconceivable.

固体発光素子4の発光面の周縁領域から発せられた光を遮光するという観点からすれば、図3に示されているように、固体発光素子4の発光面の周縁領域上に、アルミニウムなどの金属や、酸化物、誘電体からなる等からなるマスク8’を光量変動低減素子として配置してもよい。マスク8’により、固体発光素子4から発せられた測定光6の光束の中心領域のみを抽出することができる。 From the viewpoint of shielding the light emitted from the peripheral region of the light emitting surface of the solid state light emitting device 4, as shown in FIG. A mask 8' made of metal, oxide, dielectric, or the like may be arranged as the light amount variation reduction element. The mask 8 ′ makes it possible to extract only the central region of the flux of the measurement light 6 emitted by the solid-state light emitters 4 .

また、図4に示されているように、固体発光素子4から発せられる測定光6の光軸上に、測定光6の中心領域の光と周縁領域の光とを混合する、すなわち、光量の不安定性を光束内において均一化させるための光拡散板9を配置してもよい。光拡散板9としては、光拡散機能をもつマイクロレンズアレイ(例えば、LSD(レンズ拡散板:株式会社オプティカルソリューションズの製品))などを用いることができる。このような光拡散板9により、固体発光素子4から発せられる測定光6の光束内で光が混合されて光量の不安定性が光束内において均一化し、光束の周縁領域の光量変動の影響が低減される。 Further, as shown in FIG. 4, the light in the central area and the light in the peripheral area of the measurement light 6 are mixed on the optical axis of the measurement light 6 emitted from the solid-state light-emitting device 4. A light diffuser 9 may be arranged to even out instabilities within the beam. As the light diffusing plate 9, a microlens array (for example, LSD (lens diffusing plate: a product of Optical Solutions Co., Ltd.)) having a light diffusing function can be used. With such a light diffusion plate 9, the light is mixed within the light flux of the measurement light 6 emitted from the solid-state light emitting element 4, the instability of the light intensity is uniformed within the light flux, and the influence of light intensity fluctuations in the peripheral region of the light flux is reduced. be done.

図5は、開口遮光板や光拡散板といった光量変動低減素子の配置の有無と受光素子16の検出信号の安定性との関係性についての検証結果を示すデータである。 FIG. 5 shows data showing the results of verification of the relationship between the presence or absence of arrangement of the light amount fluctuation reducing element such as the aperture light shielding plate and the light diffusion plate and the stability of the detection signal of the light receiving element 16 .

図5の検証では、試料セル2aと参照セル2bとの屈折率差が変化しない条件下で、固体発光素子4(LED)からの測定光6の光軸上に、開口遮光板8を設置した場合、光拡散板9(LSD)を配置した場合、及び光量変動低減素子を配置しなかった場合、のそれぞれについて検出信号の変動を監視した。この検証で使用した開口遮光板8は、測定光6の光束の周縁側を70%程度遮光するように設計されたものである。 In the verification of FIG. 5, under the condition that the refractive index difference between the sample cell 2a and the reference cell 2b does not change, the aperture light shielding plate 8 was placed on the optical axis of the measurement light 6 from the solid state light emitting device 4 (LED). In the case where the light diffusion plate 9 (LSD) was arranged, and in the case where the light amount fluctuation reduction element was not arranged, the variation of the detection signal was monitored. The aperture light shielding plate 8 used in this verification is designed to shield the peripheral side of the luminous flux of the measuring light 6 by about 70%.

試料セル2aと参照セル2bとの間の屈折率差が変化しない場合、理論上は、受光素子16の信号強度が一定となるはずである。しかしながら、図5のように、光量変動低減素子を配置しない場合には、信号強度に大きなノイズが含まれているとともに、信号強度が約100~1100の間で変動している。このように信号強度が変動すると、受光素子16に結像される測定光6aの像の変位として誤検出され、試料セル2aと参照セル2bとの屈折率差の変化として誤検知されてしまう。一方で、測定光6の光軸上に開口遮光板8や光拡散板9を配置した場合には、信号強度に含まれるノイズが小さく、受光素子16の信号強度が安定している。このため、試料セル2aと参照セル2bとの屈折率差の変化が誤検知されることはない。 If the refractive index difference between the sample cell 2a and the reference cell 2b does not change, theoretically, the signal intensity of the light receiving element 16 should be constant. However, as shown in FIG. 5, when the light amount fluctuation reduction element is not arranged, the signal intensity includes large noise and fluctuates between approximately 100 and 1100. FIG. When the signal intensity fluctuates in this way, it is erroneously detected as a displacement of the image of the measurement light 6a formed on the light receiving element 16, and is erroneously detected as a change in the refractive index difference between the sample cell 2a and the reference cell 2b. On the other hand, when the aperture light shielding plate 8 and the light diffusing plate 9 are arranged on the optical axis of the measurement light 6, the noise included in the signal intensity is small and the signal intensity of the light receiving element 16 is stable. Therefore, the change in refractive index difference between the sample cell 2a and the reference cell 2b is not erroneously detected.

このように、光量変動低減素子を用いて測定光6の光束の中心領域のみを抽出したり光束の中心領域と周縁領域とを混合したりすることによって、固体発光素子4の発光面の周縁領域から発せられる光の光量変動が検出信号に与える影響を低減することができ、固体発光素子4を光量の安定した検出器用の光源として使用することが可能となる。 In this way, by extracting only the central region of the light flux of the measurement light 6 or by mixing the central region and the peripheral region of the light flux using the light intensity fluctuation reduction element, the peripheral region of the light emitting surface of the solid state light emitting device 4 It is possible to reduce the influence of fluctuations in the amount of light emitted from the solid-state light-emitting element 4 on the detection signal, and to use the solid-state light-emitting element 4 as a light source for a detector with a stable amount of light.

また、本発明者は、開口遮光板8の開口の幅寸法と受光素子16の信号強度との関係性についても検証を実施した。その検証結果は以下の通りである。
開口幅寸法(mm) ノイズ量(ASTM)
1.92 67.42
1.37 59.84
0.70 43.53
0.50 22.21
0.42 18.64
The inventor also verified the relationship between the width dimension of the aperture of the aperture light shielding plate 8 and the signal intensity of the light receiving element 16 . The verification results are as follows.
Aperture width dimension (mm) Noise amount (ASTM)
1.92 67.42
1.37 59.84
0.70 43.53
0.50 22.21
0.42 18.64

上記の検証結果から、開口遮光板8の開口幅寸法が小さいほどノイズ量も小さくなることがわかる。これは、測定光6の光束の中心側へ近づくほど光量が安定しており、逆に、測定光6の光束の周縁側へ近づくほど光量変動が大きいことを示している。 From the above verification results, it can be seen that the smaller the aperture width dimension of the aperture light shielding plate 8, the smaller the noise amount. This indicates that the closer to the center of the measuring light beam 6, the more stable the light intensity, and conversely, the closer to the peripheral side of the measuring beam 6, the greater the light intensity fluctuation.

以上において説明した実施例では、開口遮光板8、光拡散板9といった光量変動低減素子を固体発光素子4とフローセル2との間の測定光6の光軸上に配置しているが、本発明はこれに限定されるものではなく、フローセル2と受光素子16との間の測定光6aの光軸上に光量変動低減素子を配置してもよい。 In the embodiment described above, the light amount fluctuation reducing elements such as the aperture light shielding plate 8 and the light diffusing plate 9 are arranged on the optical axis of the measurement light 6 between the solid light emitting device 4 and the flow cell 2. is not limited to this, and a light quantity fluctuation reducing element may be arranged on the optical axis of the measurement light 6a between the flow cell 2 and the light receiving element 16. FIG.

また、上記実施例では、クロマトグラフィー用検出器として示差屈折率検出器を例に挙げて説明したが、固体発光素子を光源として使用する吸光度検出器などの検出器に対しても同様に本発明を適用することができる。 Further, in the above embodiments, a differential refractive index detector was described as an example of a detector for chromatography, but the present invention can also be applied to a detector such as an absorbance detector that uses a solid light emitting device as a light source. can be applied.

2 フローセル
2a 試料セル
2b 参照セル
4 固体発光素子
5,10 レンズ
6,6a 測定光
12 ミラー
14 ゼログラス
16 受光素子
20 演算処理装置
2 flow cell 2a sample cell 2b reference cell 4 solid state light emitting element 5, 10 lens 6, 6a measurement light 12 mirror 14 zero glass 16 light receiving element 20 arithmetic processing unit

Claims (5)

測定光を発する固体発光素子であって、前記測定光の光束の中心領域は光量が安定している一方で、前記測定光の光束の周縁領域の光量は前記中心領域よりも変動が大きい固体発光素子と、
前記測定光の光路上に配置されたフローセルと、
前記フローセルを経た前記測定光を検出するための検出部と、
前記固体発光素子から前記検出部までの間における前記測定光の光路上に設けられ、前記固体発光素子から発せられる前記測定光の光束の周縁領域の光量変動の影響を低減する光量変動低減素子と、を備え、
前記光量変動低減素子は、前記固体発光素子から発せられる前記測定光の光束の中心領域のみを前記フローセルへ導き、前記中心領域よりも変動が大きい前記測定光の光束の周縁領域を遮光する、
クロマトグラフィー用検出器。
A solid-state light-emitting element that emits measurement light, wherein the light intensity is stable in a central region of the luminous flux of the measurement light, while the light intensity in the peripheral region of the luminous flux of the measurement light fluctuates more than in the central region. an element;
a flow cell arranged on the optical path of the measurement light;
a detection unit for detecting the measurement light that has passed through the flow cell;
a light amount fluctuation reduction element provided on the optical path of the measurement light between the solid state light emitting element and the detection unit, the element reducing the influence of light amount fluctuation in a peripheral area of the luminous flux of the measurement light emitted from the solid state light emitting element; , and
The light amount fluctuation reduction element guides only a central region of the luminous flux of the measurement light emitted from the solid-state light emitting device to the flow cell, and blocks a peripheral region of the luminous flux of the measurement light that fluctuates more than the central region.
Chromatographic detector.
前記光量変動低減素子は、開口遮光板である、請求項1に記載のクロマトグラフィー用検出器。 2. The detector for chromatography according to claim 1, wherein said light amount fluctuation reduction element is an aperture light shielding plate. 前記開口遮光板は、前記固体発光素子から発せられる測定光の光束のうち周縁側の50%以上の光を遮光して中心領域のみを抽出するものである、請求項2に記載のクロマトグラフィー用検出器。 3. The light shielding plate for chromatography according to claim 2, wherein the aperture light shielding plate shields 50% or more of light on the peripheral side of the light flux of the measurement light emitted from the solid-state light emitting device, and extracts only the central region. Detector. 前記固体発光素子からの測定光を集光し、前記開口遮光板に照射する第1のレンズと、
前記開口遮光板を通過した測定光を集光し、前記フローセルに照射する第2のレンズと、をさらに備えている、請求項2又は3に記載の クロマトグラフィー用検出器。
a first lens that collects measurement light from the solid-state light-emitting element and irradiates it onto the aperture light shielding plate;
4. The detector for chromatography according to claim 2, further comprising a second lens that condenses the measurement light that has passed through said opening light shielding plate and irradiates said flow cell.
前記光量変動低減素子は、前記固体発光素子の発光面の周縁領域を覆って当該周縁領域から発せられる光を遮光するマスクである、請求項1に記載のクロマトグラフィー用検出器。 2. The detector for chromatography according to claim 1, wherein said light amount fluctuation reduction element is a mask that covers a peripheral area of a light emitting surface of said solid light emitting element to block light emitted from said peripheral area.
JP2020537910A 2018-08-20 2018-08-20 chromatography detector Active JP7136209B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/030660 WO2020039478A1 (en) 2018-08-20 2018-08-20 Detector for chromatography

Publications (2)

Publication Number Publication Date
JPWO2020039478A1 JPWO2020039478A1 (en) 2021-08-10
JP7136209B2 true JP7136209B2 (en) 2022-09-13

Family

ID=69591912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020537910A Active JP7136209B2 (en) 2018-08-20 2018-08-20 chromatography detector

Country Status (2)

Country Link
JP (1) JP7136209B2 (en)
WO (1) WO2020039478A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002296181A (en) 2001-03-30 2002-10-09 Jasco Corp Differential refractometer
US20030206290A1 (en) 2002-05-06 2003-11-06 Leica Microsystems Inc. Optical configuration and method for differential refractive index measurements
JP2004170218A (en) 2002-11-19 2004-06-17 Atago:Kk Refractometer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4816856B1 (en) * 1968-12-25 1973-05-25
JPS6453132A (en) * 1987-08-24 1989-03-01 Fujitsu Ltd Particle detecting device
JP2732320B2 (en) * 1990-10-31 1998-03-30 有限会社島村計器製作所 Differential refractive index detector for liquid chromatography
JP2566124Y2 (en) * 1992-06-01 1998-03-25 有限会社島村計器製作所 Differential refractive index detector for liquid chromatography
JP2791970B2 (en) * 1994-05-20 1998-08-27 有限会社島村計器製作所 Differential refractive index detector for liquid chromatography
JP3032485B2 (en) * 1997-05-29 2000-04-17 ホーチキ株式会社 Light emission device of photoelectric smoke detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002296181A (en) 2001-03-30 2002-10-09 Jasco Corp Differential refractometer
US20030206290A1 (en) 2002-05-06 2003-11-06 Leica Microsystems Inc. Optical configuration and method for differential refractive index measurements
JP2004170218A (en) 2002-11-19 2004-06-17 Atago:Kk Refractometer

Also Published As

Publication number Publication date
WO2020039478A1 (en) 2020-02-27
JPWO2020039478A1 (en) 2021-08-10

Similar Documents

Publication Publication Date Title
US20080049210A1 (en) Range-finding sensor, and electronic device equipped with range-finding sensor
US3786261A (en) Optical scanning device
CN107532995B (en) Optical analysis device and method for manufacturing the same
JP2009150690A (en) Reflection-type optical sensor
US10732126B2 (en) Method and apparatus for inspecting defects on transparent substrate and method emitting incident light
JP7136209B2 (en) chromatography detector
JP2008003650A (en) Pointing device
KR20170125743A (en) Light module comprising a laser element
JP5309785B2 (en) Differential refractometer
JP2007225400A (en) Optical detector
JP2013195079A (en) Reflective optical sensor
KR20110052467A (en) Photo electric sensor
TW202144162A (en) Thermal radiation light detection device and laser processing device
JP2004219131A (en) Oil mist detector
JP2020041935A (en) Toner deposition amount sensor
JP4186185B2 (en) Object detection method
JP2018124122A (en) Raindrop detector
TWI827148B (en) Concentration measuring device
KR20190140344A (en) Light-scatering type particle sensor
JP4906626B2 (en) Photoelectric sensor
WO2024116593A1 (en) Concentration measurement device
US20190331475A1 (en) Boundary detector of an optical inspection machine
JPH07146115A (en) Optical sensor
JP7509575B2 (en) Thermal radiation detection device and laser processing device
WO2015146429A1 (en) Particle counting device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220815

R151 Written notification of patent or utility model registration

Ref document number: 7136209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151