JP7135966B2 - Leakage detection circuit - Google Patents

Leakage detection circuit Download PDF

Info

Publication number
JP7135966B2
JP7135966B2 JP2019060770A JP2019060770A JP7135966B2 JP 7135966 B2 JP7135966 B2 JP 7135966B2 JP 2019060770 A JP2019060770 A JP 2019060770A JP 2019060770 A JP2019060770 A JP 2019060770A JP 7135966 B2 JP7135966 B2 JP 7135966B2
Authority
JP
Japan
Prior art keywords
value
resistance
peak value
resistor
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019060770A
Other languages
Japanese (ja)
Other versions
JP2020159922A (en
Inventor
俊雄 小田切
正彰 鈴木
慎司 広瀬
裕人 佐藤
卓矢 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2019060770A priority Critical patent/JP7135966B2/en
Publication of JP2020159922A publication Critical patent/JP2020159922A/en
Application granted granted Critical
Publication of JP7135966B2 publication Critical patent/JP7135966B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Protection Of Static Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、漏電検知回路に関する。 The present invention relates to an earth leakage detection circuit.

漏電検知回路として、車両に搭載される直流電源のグランドラインにカップリングコンデンサを介して検出抵抗を接続するとともに、グランドラインと車両のボディアースとの間に発振信号を出力し、検出抵抗にかかる電圧の波高値が閾値以下であるとき、絶縁抵抗の抵抗値が低下していること、すなわち、漏電が発生していることを検知するものがある。 As a leakage detection circuit, a detection resistor is connected to the ground line of the DC power supply installed in the vehicle via a coupling capacitor, and an oscillation signal is output between the ground line and the vehicle's body ground, and the detection resistor is applied. When the peak value of the voltage is equal to or less than a threshold, there is a device that detects that the resistance value of the insulation resistance has decreased, that is, that an electric leak has occurred.

関連する技術として、例えば、特許文献1がある。 As a related technique, there is, for example, Patent Document 1.

特開2014-155329号公報JP 2014-155329 A

しかしながら、上記漏電検知回路は、検出抵抗のインピーダンスが下がるなど漏電検知回路が故障することで検出抵抗にかかる電圧の波高値が、漏電検知回路が故障していない場合に比べて高くなると、実際には漏電が発生しているにもかかわらず、漏電が発生していないと誤検知してしまうおそれがある。そのため、漏電検知回路が故障していることを判定して、ユーザに漏電検知回路の修理を促すことが必要である。 However, in the above ground leakage detection circuit, if the peak value of the voltage applied to the detection resistor becomes higher than when the ground leakage detection circuit is not broken due to a failure of the ground leakage detection circuit such as a decrease in the impedance of the detection resistor, There is a risk of erroneously detecting that there is no earth leakage even though there is an earth leakage. Therefore, it is necessary to determine that the leakage detection circuit is out of order and prompt the user to repair the leakage detection circuit.

本発明の一側面に係る目的は、車両に搭載される直流電源のグランドラインと車両のボディアースとの間の絶縁抵抗の抵抗値の低下を検知する漏電検知回路の故障を漏電検知回路自身で判定することである。 An object according to one aspect of the present invention is to detect a failure of an earth leakage detection circuit for detecting a decrease in the resistance value of an insulation resistance between a ground line of a DC power supply mounted on a vehicle and a body ground of the vehicle by the earth leakage detection circuit itself. It is to judge.

本発明に係る一つの形態である漏電検知回路は、車両に搭載される直流電源のグランドラインと車両のボディアースとの間の絶縁抵抗の抵抗値の低下を検知する漏電検知回路であって、発振信号を出力する発振回路と、発振回路とグランドラインに接続されるカップリングコンデンサとの間に接続される検出抵抗と、模擬絶縁抵抗と、絶縁抵抗と模擬絶縁抵抗とが互いに並列接続されていない第1の状態、及び、絶縁抵抗と模擬絶縁抵抗とが互いに並列接続されている第2の状態のどちらか一方の状態に切り替えるスイッチと、第1の状態になるようにスイッチの動作を制御しているとき、検出抵抗にかかる電圧の波高値が閾値以下である場合、絶縁抵抗の抵抗値が低下していることを検知する検知部と、漏電検知回路が故障していないときの絶縁抵抗の抵抗値と検出抵抗にかかる電圧の波高値との対応関係を示す情報を記憶する記憶部とを備える。 An earth leakage detection circuit according to one aspect of the present invention is an earth leakage detection circuit that detects a decrease in the resistance value of an insulation resistance between a ground line of a DC power supply mounted on a vehicle and a body ground of the vehicle, An oscillation circuit that outputs an oscillation signal, a detection resistor connected between the oscillation circuit and a coupling capacitor connected to the ground line, a simulated insulation resistance, and an insulation resistance and a simulated insulation resistance are connected in parallel with each other. A switch that switches to either a first state in which the insulation resistance is not present or a second state in which the insulation resistance and the simulated insulation resistance are connected in parallel to each other, and the operation of the switch is controlled to be in the first state. When the peak value of the voltage applied to the detection resistor is less than the threshold, the detection unit detects that the resistance value of the insulation resistance has decreased, and the insulation resistance when the leakage detection circuit is not broken. and a storage unit for storing information indicating a correspondence relationship between the resistance value of the detection resistor and the peak value of the voltage applied to the detection resistor.

また、検知部は、第1の状態になるようにスイッチの動作を制御しているとき、上記情報を参照して、検出抵抗にかかる電圧の波高値に対応する抵抗値を故障判定用抵抗値とし、上記情報を参照して、故障判定用抵抗値と模擬絶縁抵抗の抵抗値との合成抵抗値に対応する波高値を故障判定用波高値とし、第2の状態になるようにスイッチの動作を制御しているとき、検出抵抗にかかる電圧の波高値が故障判定用波高値と異なる場合、漏電検知回路が故障していると判定する。 Further, when the detection unit is controlling the operation of the switch so as to be in the first state, the detection unit refers to the above information and determines the resistance value corresponding to the peak value of the voltage applied to the detection resistor as the failure judgment resistance value. Then, referring to the above information, the peak value corresponding to the combined resistance value of the resistance value for failure determination and the resistance value of the simulated insulation resistance is set as the peak value for failure determination, and the switch is operated so as to be in the second state. is controlled, if the peak value of the voltage applied to the detection resistor is different from the peak value for fault determination, it is determined that the leakage detection circuit is faulty.

漏電検知回路が故障していない場合、絶縁抵抗と模擬絶縁抵抗とが互いに並列接続されているときに検出抵抗にかかる電圧の波高値は、故障判定用波高値と同じになると想定される。そのため、検出抵抗のインピーダンスが下がるなど漏電検知回路が故障している場合、絶縁抵抗と模擬絶縁抵抗とが互いに並列接続されているときに検出抵抗にかかる電圧の波高値は、故障判定用波高値と異なると想定される。 When the leakage detection circuit is not malfunctioning, the peak value of the voltage applied to the detection resistor when the insulation resistor and the simulated insulation resistor are connected in parallel is assumed to be the same as the failure determination peak value. Therefore, if the leakage detection circuit fails, such as when the impedance of the detection resistor drops, the peak value of the voltage applied to the detection resistor when the insulation resistance and the simulated insulation resistance are connected in parallel will be the peak value for fault determination. is assumed to be different from

そこで、本発明に係る一つの形態である漏電検知回路では、絶縁抵抗と模擬絶縁抵抗とが互いに並列接続されるようにスイッチの動作を制御しているときに検出抵抗にかかる電圧の波高値が故障判定用波高値と異なる場合、漏電検知回路が故障していると判定する。これにより、漏電検知回路は、自身が故障していると判定することができる。 Therefore, in the earth leakage detection circuit, which is one embodiment of the present invention, when the operation of the switch is controlled so that the insulation resistance and the simulated insulation resistance are connected in parallel, the peak value of the voltage applied to the detection resistance is If it is different from the peak value for fault determination, it is determined that the leakage detection circuit is faulty. Thereby, the earth leakage detection circuit can determine that itself is out of order.

また、検知部は、絶縁抵抗に並列接続される浮遊容量の容量値を求め、その求めた容量値により上記情報を補正するように構成してもよい。 Further, the detection unit may be configured to obtain the capacitance value of the stray capacitance connected in parallel with the insulation resistor, and correct the above information based on the obtained capacitance value.

浮遊容量の容量値が増加すると、検出抵抗にかかる電圧の波高値が低下する。
そこで、本発明に係る一つの形態である漏電検知回路では、浮遊容量の容量値により上記情報を補正する。これにより、浮遊容量の容量値の増加に伴って波高値が低下してしまっても、故障判定用抵抗値や故障判定用波高値を適切に求めていることができるため、漏電検知回路の故障判定精度を向上させることができる。
As the capacitance value of the stray capacitance increases, the peak value of the voltage across the detection resistor decreases.
Therefore, in the leakage detection circuit, which is one embodiment of the present invention, the above information is corrected based on the capacitance value of the stray capacitance. As a result, even if the peak value decreases due to an increase in the capacitance value of the stray capacitance, the failure determination resistance value and the peak value for failure determination can be obtained appropriately. Judgment accuracy can be improved.

本発明によれば、車両に搭載される直流電源のグランドラインと車両のボディアースとの間の絶縁抵抗の抵抗値の低下を検知する漏電検知回路の故障を漏電検知回路自身で判定することができる。 According to the present invention, the leakage detection circuit itself can determine a failure of the leakage detection circuit that detects a decrease in the resistance value of the insulation resistance between the ground line of the DC power supply mounted on the vehicle and the body ground of the vehicle. can.

実施形態の漏電検知回路の一例を示す図である。It is a figure which shows an example of the earth-leakage detection circuit of embodiment. ローパスフィルタの周波数特性及び記憶部に記憶される情報の一例を示す図である。It is a figure which shows an example of the information memorize|stored in the frequency characteristic of a low-pass filter, and a memory|storage part. 故障検知処理実行時の検知部の動作の一例を示すフローチャートである。9 is a flow chart showing an example of the operation of the detection unit when performing failure detection processing; 情報の補正の一例及び故障判定の一例を示す図である。It is a figure which shows an example of correction|amendment of information, and an example of failure determination.

以下図面に基づいて実施形態について詳細を説明する。
図1は、実施形態の漏電検知回路の一例を示す図である。
Embodiments will be described in detail below with reference to the drawings.
FIG. 1 is a diagram showing an example of an earth leakage detection circuit according to an embodiment.

直流電源Pは、直列接続される複数の電池(例えば、リチウムイオン電池またはニッケル水素電池)により構成される高圧バッテリであって、ハイブリッド車や電気自動車などの車両に搭載され、走行用モータを駆動するインバータ回路などの負荷Loに電力を供給する。 The DC power supply P is a high-voltage battery composed of a plurality of batteries (for example, lithium-ion batteries or nickel-metal hydride batteries) connected in series. power is supplied to a load Lo such as an inverter circuit that

漏電検知回路1は、直流電源PのグランドラインGLと車両のボディアースBEとの間の絶縁抵抗Riの抵抗値の低下を検知する。また、漏電検知回路1は、発振回路2と、検出抵抗Rdと、模擬絶縁抵抗Ri´と、スイッチSWと、記憶部3と、検知部4とを備える。 The leakage detection circuit 1 detects a decrease in the resistance value of the insulation resistance Ri between the ground line GL of the DC power supply P and the body ground BE of the vehicle. The leakage detection circuit 1 also includes an oscillation circuit 2 , a detection resistor Rd, a simulated insulation resistance Ri′, a switch SW, a storage section 3 and a detection section 4 .

発振回路2は、ボディアースBEに接続され、矩形波などの発振信号SをグランドラインGLとボディアースBEとの間に出力する。なお、発振信号Sは、漏電検知用発振信号S1または浮遊容量検知用発振信号S2とする。また、漏電検知用発振信号S1の周波数は、絶縁抵抗Ri、絶縁抵抗Riに仮想的に並列接続される浮遊容量Cf、カップリングコンデンサCc、及び検出抵抗Rdなどにより構成されるローパスフィルタLPFのカットオフ周波数fcより低い周波数とする。また、浮遊容量検知用発振信号S2の周波数は、ローパスフィルタLPFのカットオフ周波数fcより高い周波数とする。 The oscillator circuit 2 is connected to the body ground BE and outputs an oscillation signal S such as a rectangular wave between the ground line GL and the body ground BE. The oscillation signal S is assumed to be the leakage detection oscillation signal S1 or the stray capacitance detection oscillation signal S2. Further, the frequency of the leakage detection oscillation signal S1 is set by the cutoff of a low-pass filter LPF composed of an insulation resistor Ri, a stray capacitance Cf virtually connected in parallel with the insulation resistor Ri, a coupling capacitor Cc, a detection resistor Rd, and the like. A frequency lower than the off frequency fc. The frequency of the stray capacitance detection oscillation signal S2 is set to a frequency higher than the cutoff frequency fc of the low-pass filter LPF.

ここで、図2(a)は、ローパスフィルタLPFの周波数特性を示す図である。図2(a)に示す2次元座標の横軸は発振信号Sの周波数[Hz]を示し、縦軸は発振信号Sの波高値に対する、検出抵抗Rdにかかる電圧の波高値Vdの比率(検出抵抗Rdにかかる電圧の波高値Vd/発振信号Sの波高値)、すなわち、ローパスフィルタLPFのゲイン[dB]を示している。 Here, FIG. 2A is a diagram showing frequency characteristics of the low-pass filter LPF. The horizontal axis of the two-dimensional coordinates shown in FIG. 2A indicates the frequency [Hz] of the oscillation signal S, and the vertical axis indicates the ratio of the peak value Vd of the voltage applied to the detection resistor Rd to the peak value of the oscillation signal S (detection The peak value Vd of the voltage applied to the resistor Rd/the peak value of the oscillation signal S), that is, the gain [dB] of the low-pass filter LPF.

漏電検知用発振信号S1の周波数がローパスフィルタLPFのカットオフ周波数fcより低い周波数f1になるように発振回路2の動作が制御される場合、絶縁抵抗Riの抵抗値riが低下すると、検出抵抗Rdにかかる電圧の波高値Vdが低下する。 When the operation of the oscillation circuit 2 is controlled so that the frequency of the leakage detection oscillation signal S1 becomes a frequency f1 lower than the cutoff frequency fc of the low-pass filter LPF, when the resistance value ri of the insulation resistance Ri decreases, the detection resistance Rd The peak value Vd of the voltage applied to is lowered.

すなわち、漏電検知回路1が故障していない場合で、かつ、検出抵抗Rdの抵抗値、及びカップリングコンデンサCcの容量値がそれぞれ変動しない場合において、漏電検知用発振信号S1の周波数が周波数f1になるように発振回路2の動作を制御することにより、抵抗値riと波高値Vdとを一対一で対応付けることができる。 That is, when the leakage detection circuit 1 does not fail and the resistance value of the detection resistor Rd and the capacitance value of the coupling capacitor Cc do not change, the frequency of the oscillation signal S1 for leakage detection is set to the frequency f1. By controlling the operation of the oscillation circuit 2 such that the resistance value ri and the crest value Vd can be associated on a one-to-one basis.

実施形態では、漏電検知回路1が故障していないときの抵抗値riと波高値Vdとの対応関係を示す情報D1を、実験またはシミュレーションなどにより求めて記憶部3に記憶させておく。 In the embodiment, the information D1 indicating the correspondence relationship between the resistance value ri and the peak value Vd when the leakage detection circuit 1 is not out of order is obtained by experiments or simulations and stored in the storage unit 3 .

図2(b)は、情報D1の一例を示す図である。なお、図2(a)に示す2次元座標の横軸は、漏電検知回路1が故障していないときの絶縁抵抗Riの抵抗値ri[kΩ]を示し、縦軸は、検出抵抗Rdにかかる電圧の波高値Vd[V]を示している。また、図2(b)に示す実線は、漏電検知回路1が故障していないときの抵抗値riと波高値Vdとの対応関係を示す情報D1を示している。 FIG. 2(b) is a diagram showing an example of the information D1. Note that the horizontal axis of the two-dimensional coordinates shown in FIG. 2(a) indicates the resistance value ri [kΩ] of the insulation resistance Ri when the leakage detection circuit 1 is not faulty, and the vertical axis indicates the resistance value of the detection resistance Rd. It shows the peak value Vd [V] of the voltage. Further, the solid line shown in FIG. 2(b) indicates information D1 indicating the correspondence relationship between the resistance value ri and the peak value Vd when the leakage detection circuit 1 is not out of order.

図2(b)に示す情報D1では、抵抗値riが小さくなるほど、波高値Vdが小さくなる。言い換えると、抵抗値riが閾値rith以上である場合、波高値Vdが閾値Vdth1以上になり、抵抗値riが閾値rithより小さい場合、波高値Vdが閾値Vdth1より小さくなる。 In the information D1 shown in FIG. 2B, the crest value Vd decreases as the resistance value ri decreases. In other words, when the resistance value ri is equal to or greater than the threshold value rith, the peak value Vd is equal to or greater than the threshold value Vdth1, and when the resistance value ri is smaller than the threshold value rith, the peak value Vd is smaller than the threshold value Vdth1.

また、図2(a)に示すように、浮遊容量検知用発振信号S2の周波数がローパスフィルタLPFのカットオフ周波数fcより高い周波数f2になるように発振回路2の動作が制御される場合、ローパスフィルタLPFを構成する絶縁抵抗Ri、浮遊容量Cf、検出抵抗Rd、及びカップリングコンデンサCcの影響を受けてローパスフィルタLPFのゲインが「ゼロ」よりも小さい「G」に下るため、浮遊容量検知用発振信号S2の周波数がローパスフィルタLPFのカットオフ周波数fcより高い周波数f1になるように発振回路2の動作が制御される場合に比べて、波高値Vdが低くなる。 Further, as shown in FIG. 2A, when the operation of the oscillation circuit 2 is controlled so that the frequency of the stray capacitance detection oscillation signal S2 becomes a frequency f2 higher than the cutoff frequency fc of the low-pass filter LPF, the low-pass The gain of the low-pass filter LPF drops to "G" which is smaller than "zero" under the influence of the insulation resistance Ri, stray capacitance Cf, detection resistor Rd, and coupling capacitor Cc that make up the filter LPF. The crest value Vd is lower than when the operation of the oscillation circuit 2 is controlled so that the frequency of the oscillation signal S2 becomes a frequency f1 higher than the cutoff frequency fc of the low-pass filter LPF.

また、浮遊容量Cfの容量値cfが増加するほど、カットオフ周波数fcが低下するため、すなわち、図2(a)に示すように、浮遊容量Cfの容量値cfが増加すると、ローパスフィルタLPFの周波数特性が実線で示される周波数特性から破線で示される周波数特性に変化するため、浮遊容量検知用発振信号S2の周波数が周波数f2になるように発振回路2の動作が制御される場合、ローパスフィルタLPFのゲインが「G」から「G´」にさらに下がり、波高値Vdがさらに低下する。なお、「G´」<「G」とする。 In addition, as the capacitance value cf of the stray capacitance Cf increases, the cutoff frequency fc decreases. Since the frequency characteristic changes from the frequency characteristic indicated by the solid line to the frequency characteristic indicated by the broken line, when the operation of the oscillation circuit 2 is controlled so that the frequency of the stray capacitance detection oscillation signal S2 becomes the frequency f2, the low-pass filter The gain of the LPF further decreases from "G" to "G'", and the crest value Vd further decreases. Note that “G′”<“G”.

すなわち、絶縁抵抗Riの抵抗値ri、検出抵抗Rdの抵抗値、及びカップリングコンデンサCcの容量値がそれぞれ変動しない場合において、浮遊容量検知用発振信号S2の周波数が周波数f2になるように発振回路2の動作を制御することにより、容量値cfと波高値Vdとを一対一で対応付けることができる。 That is, when the resistance value ri of the insulation resistor Ri, the resistance value of the detection resistor Rd, and the capacitance value of the coupling capacitor Cc do not fluctuate, the oscillation circuit is arranged so that the frequency of the stray capacitance detection oscillation signal S2 becomes the frequency f2. 2, the capacitance value cf and the peak value Vd can be associated on a one-to-one basis.

実施形態では、絶縁抵抗Riの抵抗値ri、検出抵抗Rdの抵抗値、及びカップリングコンデンサCcの容量値がそれぞれ変動しない場合で、かつ、浮遊容量発振信号S2の周波数が周波数f2になるように発振回路2の動作を制御している場合において、波高値Vdと容量値cfとの対応関係を示す情報D2を、実験またはシミュレーションなどにより求めて記憶部3に記憶させておく。 In the embodiment, when the resistance value ri of the insulation resistor Ri, the resistance value of the detection resistor Rd, and the capacitance value of the coupling capacitor Cc do not fluctuate, and the frequency of the stray capacitance oscillation signal S2 is set to the frequency f2, When the operation of the oscillation circuit 2 is being controlled, the information D2 indicating the correspondence between the peak value Vd and the capacitance value cf is obtained by experiments or simulations and stored in the storage unit 3 .

図2(c)は、情報D2の一例を示す図である。
図2(c)に示す情報D2では、容量値cfとしての「cf1」と波高値Vdとしての「Vd3」とが互いに対応付けられ、容量値cfとしての「cf2」と波高値Vdとしての「Vd2」とが互いに対応付けられ、容量値cfとしての「cf3」と波高値Vdとしての「Vd1」とが互いに対応付けられている。なお、「cf1」<「cf2」<「cf3」、「Vd1」<「Vd2」<「Vd3」とする。すなわち、情報D2では、容量値cfが増加するほど、波高値Vdが低下する。言い換えると、容量値cfが閾値cfth以下である場合、波高値Vdが閾値Vdth2以上になり、容量値cfが閾値cfthより大きい場合、波高値Vdが閾値Vdth2より小さくなる。
FIG. 2(c) is a diagram showing an example of the information D2.
In the information D2 shown in FIG. 2C, "cf1" as the capacitance value cf and "Vd3" as the peak value Vd are associated with each other, and "cf2" as the capacitance value cf and "cf2" as the peak value Vd are associated with each other. Vd2" are associated with each other, and "cf3" as the capacitance value cf and "Vd1" as the peak value Vd are associated with each other. Note that "cf1"<"cf2"<"cf3" and "Vd1"<"Vd2"<"Vd3". That is, in the information D2, the peak value Vd decreases as the capacitance value cf increases. In other words, when the capacitance value cf is equal to or less than the threshold value cfth, the peak value Vd becomes equal to or greater than the threshold value Vdth2, and when the capacitance value cf is greater than the threshold value cfth, the peak value Vd becomes smaller than the threshold value Vdth2.

また、図1に示す検出抵抗Rdは、グランドラインGLに接続されるカップリングコンデンサCcと、ボディアースBEに接続される発振回路2との間に接続される。 Also, the detection resistor Rd shown in FIG. 1 is connected between the coupling capacitor Cc connected to the ground line GL and the oscillation circuit 2 connected to the body ground BE.

模擬絶縁抵抗Ri´の一方端はボディアースBEに接続され、模擬絶縁抵抗Ri´の他方端はスイッチSWの一方端に接続され、スイッチSWの他方端はカップリングコンデンサCcと検出抵抗Rdとの接続点に接続されている。 One end of the simulated insulation resistance Ri' is connected to the body ground BE, the other end of the simulated insulation resistance Ri' is connected to one end of the switch SW, and the other end of the switch SW is connected between the coupling capacitor Cc and the detection resistor Rd. Connected to the connection point.

スイッチSWは、半導体スイッチまたは電磁式リレーなどにより構成され、検知部4により動作が制御される。また、スイッチSWは、カップリングコンデンサCcと検出抵抗Rdとの接続点と模擬絶縁抵抗Ri´とが互いに接続されていない状態、すなわち、絶縁抵抗Riと模擬絶縁抵抗Ri´とが互いに並列接続されていない第1の状態、及び、カップリングコンデンサCcと検出抵抗Rdとの接続点と模擬絶縁抵抗Ri´とが互いに接続されている、すなわち、絶縁抵抗Riと模擬絶縁抵抗Ri´とが互いに並列接続されている第2の状態のどちらか一方の状態に切り替える。 The switch SW is configured by a semiconductor switch, an electromagnetic relay, or the like, and its operation is controlled by the detector 4 . The switch SW is set in a state in which the connection point between the coupling capacitor Cc and the detection resistor Rd and the simulated insulation resistance Ri' are not connected to each other, that is, the insulation resistance Ri and the simulated insulation resistance Ri' are connected in parallel to each other. A first state in which the connection point between the coupling capacitor Cc and the detection resistor Rd and the simulated insulation resistance Ri′ are connected to each other, that is, the insulation resistance Ri and the simulated insulation resistance Ri′ are connected in parallel with each other. Switch to either one of the connected second states.

なお、模擬絶縁抵抗Ri´の抵抗値は、例えば、スイッチSWにより第2の状態に切り替えられているときに検出抵抗Rdにかかる電圧の波高値Vdが、スイッチSWにより第1の状態に切り替えられているときで、かつ、漏電しているときに検出抵抗Rdにかかる電圧の波高値Vdと同じになるときの模擬絶縁抵抗Riの抵抗値とする。 Note that the resistance value of the simulated insulation resistor Ri′ is, for example, the peak value Vd of the voltage applied to the detection resistor Rd when the switch SW is switched to the second state, and the switch SW is switched to the first state. The resistance value of the simulated insulation resistor Ri is set to be the same as the peak value Vd of the voltage applied to the detection resistor Rd when there is a current leakage.

記憶部3は、例えば、RAM(Random Access Memory)またはROM(Read Only Memory)などにより構成され、上記情報D1、D2などを記憶する。 The storage unit 3 is configured by, for example, a RAM (Random Access Memory) or a ROM (Read Only Memory), and stores the information D1, D2 and the like.

検知部4は、例えば、CPU(Central Processing Unit)、マルチコアCPU、またはプログラマブルなデバイス(FPGA(Field Programmable Gate Array)やPLD(Programmable Logic Device))などにより構成され、カップリングコンデンサCcと検出抵抗Rdとの間に接続される。なお、検出抵抗Rdと検知部4との間にローパスフィルタまたはバンドパスフィルタなどを接続してもよい。 The detection unit 4 is configured by, for example, a CPU (Central Processing Unit), a multicore CPU, or a programmable device (FPGA (Field Programmable Gate Array) or PLD (Programmable Logic Device)), and includes a coupling capacitor Cc and a detection resistor Rd. connected between A low-pass filter, band-pass filter, or the like may be connected between the detection resistor Rd and the detection section 4 .

また、検知部4は、第1の状態になるようにスイッチSWの動作を制御しているときで、かつ、発振回路2から漏電検知用発振信号S1を出力させているとき、検出抵抗Rdにかかる電圧の波高値Vdが閾値Vdth3以下である場合、絶縁抵抗Riの抵抗値riが低下していること、すなわち、漏電が発生していることを検知する。なお、閾値Vdth3は、実験やシミュレーションなどにより求められ記憶部3に記憶されているものとし、例えば、漏電になる直前の波高値Vdとする。 Further, when the detection unit 4 is controlling the operation of the switch SW to be in the first state and when the oscillation circuit 2 is outputting the leakage detection oscillation signal S1, the detection resistor Rd When the peak value Vd of the voltage is equal to or less than the threshold value Vdth3, it is detected that the resistance value ri of the insulation resistance Ri has decreased, that is, that an electric leak has occurred. The threshold value Vdth3 is assumed to be determined by experiments, simulations, or the like and stored in the storage unit 3. For example, the peak value Vd immediately before electric leakage occurs.

また、検知部4は、故障判定処理を実行することにより、漏電検知回路1が故障しているか否かを判定する。なお、漏電検知回路1の故障とは、カップリングコンデンサCcから検知部4までの配線或いは検出抵抗Rdのインピーダンスが通常より高い状態、または、カップリングコンデンサCcから検知部4までの配線或いは検出抵抗Rdのインピーダンスが通常よりも低い状態とする。カップリングコンデンサCcから検知部4までの配線或いは検出抵抗Rdのインピーダンスが通常より高い状態とは、例えば、カップリングコンデンサCcから検知部4までの配線或いは検出抵抗Rdが断線している状態とする。カップリングコンデンサCcから検知部4までの配線或いは検出抵抗Rdのインピーダンスが通常よりも低い状態とは、例えば、カップリングコンデンサCcから検知部4までの配線或いは検出抵抗Rdの両端が短絡している状態とする。 Further, the detection unit 4 determines whether or not the leakage detection circuit 1 is out of order by executing the failure determination process. The failure of the leakage detection circuit 1 means that the impedance of the wiring from the coupling capacitor Cc to the detection unit 4 or the detection resistor Rd is higher than normal, or the wiring from the coupling capacitor Cc to the detection unit 4 or the detection resistor Let the impedance of Rd be lower than normal. A state in which the impedance of the wiring from the coupling capacitor Cc to the detection unit 4 or the detection resistor Rd is higher than normal is, for example, a state in which the wiring from the coupling capacitor Cc to the detection unit 4 or the detection resistor Rd is disconnected. . A state in which the impedance of the wiring from the coupling capacitor Cc to the detection unit 4 or the detection resistor Rd is lower than normal is, for example, that the wiring from the coupling capacitor Cc to the detection unit 4 or both ends of the detection resistor Rd are short-circuited. state.

図3は、故障検知処理実行時の検知部4の動作の一例を示すフローチャートである。
まず、検知部4は、第1の状態になるようにスイッチSWの動作を制御する(ステップS1)。
FIG. 3 is a flow chart showing an example of the operation of the detection unit 4 during failure detection processing.
First, the detection unit 4 controls the operation of the switch SW so as to enter the first state (step S1).

次に、検知部4は、現在の浮遊容量Cfの容量値cfを求める(ステップS2)。例えば、検知部4は、記憶部3に記憶されている情報D2を参照し、発振回路2から浮遊容量検知用発振信号S2を出力させているときに検出抵抗Rdにかかる電圧の波高値Vdに対応する容量値cfを、現在の浮遊容量Cfの容量値cfとする。 Next, the detection unit 4 obtains the current capacitance value cf of the floating capacitance Cf (step S2). For example, the detection unit 4 refers to the information D2 stored in the storage unit 3, and detects the peak value Vd of the voltage applied to the detection resistor Rd when the oscillation circuit 2 is outputting the floating capacitance detection oscillation signal S2. Let the corresponding capacitance value cf be the current capacitance value cf of the stray capacitance Cf.

次に、検知部4は、現在の浮遊容量Cfの容量値cfを用いて、情報D1を補正する(ステップS3)。例えば、検知部4は、図4(a)に示すように、現在の浮遊容量Cfの容量値cf(今回の故障判定処理の実行時で求めた容量値cf)から前回の故障判定処理の実行時で求めた容量値cfを減算した差に応じて、情報D1に示される各波高値Vdをそれぞれ低下させることにより、情報D1を情報D1´に補正する。 Next, the detection unit 4 corrects the information D1 using the current capacitance value cf of the stray capacitance Cf (step S3). For example, as shown in FIG. 4A, the detection unit 4 executes the previous failure determination process from the current capacitance value cf of the stray capacitance Cf (capacitance value cf obtained when the current failure determination process is performed). The information D1 is corrected to the information D1' by lowering each peak value Vd indicated in the information D1 in accordance with the difference obtained by subtracting the capacitance value cf obtained at time.

次に、図3に示すフローチャートにおいて、検知部4は、故障判定用抵抗値を求める(ステップS4)。例えば、検知部4は、第1の状態になるようにスイッチSWの動作を制御しているとき、検出抵抗Rdにかかる電圧の波高値Vdとして波高値Vd3を取得する。次に、検知部4は、図4(b)に示すように、補正後の情報D1´を参照して、波高値Vd3に対応する抵抗値ri3を故障判定用抵抗値とする。 Next, in the flowchart shown in FIG. 3, the detection unit 4 obtains a resistance value for failure determination (step S4). For example, the detection unit 4 acquires the peak value Vd3 as the peak value Vd of the voltage applied to the detection resistor Rd when controlling the operation of the switch SW so as to be in the first state. Next, as shown in FIG. 4B, the detection unit 4 refers to the corrected information D1′ and sets the resistance value ri3 corresponding to the crest value Vd3 as the resistance value for failure determination.

次に、図3に示すフローチャートにおいて、検知部4は、故障判定用波高値を求める(ステップS5)。例えば、検知部4は、図4(b)に示すように、故障判定用抵抗値ri3と模擬絶縁抵抗Ri´の抵抗値との合成抵抗値ri1を求め、補正後の情報D1´を参照して、合成抵抗値ri1に対応する波高値Vd1を故障判定用波高値とする。なお、検知部4は、合成抵抗値=1/((1/故障判定用抵抗値)+(1/模擬絶縁抵抗Ri´の抵抗値))を計算することにより合成抵抗値を求める。模擬絶縁抵抗Ri´の抵抗値は、記憶部3に記憶されているものとする。 Next, in the flowchart shown in FIG. 3, the detection unit 4 obtains a peak value for fault determination (step S5). For example, as shown in FIG. 4B, the detection unit 4 obtains a combined resistance value ri1 of the resistance value ri3 for failure judgment and the resistance value of the simulated insulation resistance Ri', and refers to the corrected information D1'. Then, the crest value Vd1 corresponding to the combined resistance value ri1 is set as the crest value for fault determination. Note that the detection unit 4 obtains the combined resistance value by calculating the combined resistance value=1/((1/resistance value for failure determination)+(1/resistance value of the simulated insulation resistance Ri′)). It is assumed that the resistance value of the simulated insulation resistance Ri' is stored in the storage unit 3. FIG.

次に、検知部4は、第2の状態になるようにスイッチSWの動作を制御する(ステップS6)。 Next, the detection unit 4 controls the operation of the switch SW so as to enter the second state (step S6).

次に、検知部4は、検出抵抗Rdにかかる電圧の波高値Vdを求める(ステップS7)。 Next, the detection unit 4 obtains the peak value Vd of the voltage applied to the detection resistor Rd (step S7).

次に、検知部4は、ステップS7で求めた波高値VdがステップS5で求めた故障判定用波高値と異なっているか否かを判断する(ステップS8)。例えば、検知部4は、図4(b)に示すように、故障判定用波高値Vd1に一定値Vdαを加算した結果である閾値Vdthαを求めるとともに、故障判定用波高値Vd1から一定値Vdβを減算した結果である閾値Vdthβを求める。次に、検知部4は、ステップS7で求めた波高値Vdが閾値Vdthαより大きい、または、ステップS7で求めた波高値Vdが閾値Vdthβより小さい場合、ステップS7で求めた波高値VdがステップS5で求めた故障判定用波高値Vd1と異なっていると判断する。一方、検知部4は、ステップS7で求めた波高値Vdが閾値Vdthα以下である場合で、かつ、ステップS7で求めた波高値Vdが閾値Vdthβ以上である場合、ステップS7で求めた波高値VdがステップS5で求めた故障判定用波高値Vd1と異なっていないと判断する。なお、一定値Vdα及び一定値Vdβは、互いに同じ値でもよいし、互いに異なる値でもよい。また、一定値Vdα及び一定値Vdβは、実験またはシミュレーションなどにより波高値Vdの測定誤差などにより求めて記憶部3に記憶させておく。 Next, the detection unit 4 determines whether or not the peak value Vd obtained in step S7 is different from the failure determination peak value obtained in step S5 (step S8). For example, as shown in FIG. 4B, the detection unit 4 obtains a threshold value Vdthα that is the result of adding a constant value Vdα to the peak value Vd1 for failure determination, and calculates a constant value Vdβ from the peak value Vd1 for failure determination. A threshold value Vdthβ, which is the result of the subtraction, is obtained. Next, when the peak value Vd obtained in step S7 is larger than the threshold value Vdthα, or the peak value Vd obtained in step S7 is smaller than the threshold value Vdthβ, the detection unit 4 determines that the peak value Vd obtained in step S7 is equal to the threshold value Vdthβ in step S5. It is determined that it is different from the peak value Vd1 for fault determination obtained in . On the other hand, when the peak value Vd obtained in step S7 is equal to or less than the threshold value Vdthα and when the peak value Vd obtained in step S7 is equal to or greater than the threshold value Vdthβ, the detection unit 4 detects the peak value Vd obtained in step S7. is not different from the peak value Vd1 for failure judgment obtained in step S5. The constant value Vdα and the constant value Vdβ may be the same value or different values. Further, the constant value Vdα and the constant value Vdβ are obtained from the measurement error of the crest value Vd by experiments or simulations, and stored in the storage unit 3 .

次に、図3に示すフローチャートにおいて、検知部4は、ステップS7で求めた波高値VdがステップS5で求めた故障判定用波高値と異なっている場合(ステップS8:Yes)、漏電検知回路1が故障していると判定し(ステップS9)、ステップS7で求めた波高値VdがステップS5で求めた故障判定用波高値と異なっていない場合(ステップS8:No)、漏電検知回路1が故障していないと判定する(ステップS10)。 Next, in the flowchart shown in FIG. 3, when the peak value Vd obtained in step S7 is different from the failure determination peak value obtained in step S5 (step S8: Yes), the detection unit 4 is faulty (step S9), and if the peak value Vd obtained in step S7 is not different from the fault determination peak value obtained in step S5 (step S8: No), the leakage detection circuit 1 is faulty It is determined that it is not (step S10).

なお、ステップS2、S3を省略してもよい。このように構成する場合、検知部4は、補正していない情報D1を参照して、故障判定用抵抗値や故障判定用波高値を求める。 Note that steps S2 and S3 may be omitted. In this configuration, the detection unit 4 refers to the uncorrected information D1 to obtain the failure determination resistance value and the failure determination peak value.

漏電検知回路1が故障していない場合、絶縁抵抗Riと模擬絶縁抵抗Ri´とが互いに並列接続されているときに検出抵抗Rdにかかる電圧の波高値Vdは、絶縁抵抗Riと模擬絶縁抵抗Ri´とが互いに並列接続されていないときに検出抵抗Rdにかかる電圧の波高値Vdに対応する抵抗値である故障判定用抵抗値と模擬絶縁抵抗Ri´の抵抗値との合成抵抗値に対応する波高値である故障判定用波高値と同じになると想定される。そのため、検出抵抗Rdのインピーダンスが下がるなど漏電検知回路1が故障している場合、絶縁抵抗Riと模擬絶縁抵抗Ri´とが互いに並列接続されているときに検出抵抗Rdにかかる電圧の波高値Vdは、故障判定用波高値と異なると想定される。 If the leakage detection circuit 1 is not malfunctioning, the peak value Vd of the voltage applied to the detection resistor Rd when the insulation resistance Ri and the simulated insulation resistance Ri' are connected in parallel to each other is equal to the insulation resistance Ri and the simulated insulation resistance Ri ' corresponds to the combined resistance value of the resistance value for fault determination, which is the resistance value corresponding to the peak value Vd of the voltage applied to the detection resistor Rd when R' is not connected in parallel to the detection resistor Rd, and the resistance value of the simulated insulation resistor Ri'. It is assumed that it will be the same as the peak value for failure determination. Therefore, if the leakage detection circuit 1 fails, such as when the impedance of the detection resistor Rd is lowered, the peak value Vd of the voltage applied to the detection resistor Rd when the insulation resistance Ri and the simulated insulation resistance Ri' are connected in parallel to each other is assumed to be different from the crest value for fault determination.

そこで、実施形態の漏電検知回路1では、絶縁抵抗Riと模擬絶縁抵抗Ri´とが互いに並列接続されるようにスイッチSWの動作を制御しているときに検出抵抗Rdにかかる電圧の波高値Vdが故障判定用波高値と異なる場合、漏電検知回路1が故障していると判定する。これにより、実施形態の漏電検知回路1は、自身が故障していると判定することができる。 Therefore, in the earth leakage detection circuit 1 of the embodiment, when the operation of the switch SW is controlled so that the insulation resistance Ri and the simulated insulation resistance Ri' are connected in parallel, the peak value Vd of the voltage applied to the detection resistance Rd is is different from the peak value for fault determination, it is determined that the leakage detection circuit 1 is faulty. As a result, the leakage detection circuit 1 of the embodiment can determine that it is out of order.

また、浮遊容量Cfの容量値cfが増加すると、検出抵抗Rdにかかる電圧の波高値Vdが低下する。 Further, when the capacitance value cf of the stray capacitance Cf increases, the peak value Vd of the voltage applied to the detection resistor Rd decreases.

そこで、実施形態の漏電検知回路1では、浮遊容量Cfの容量値cfにより情報D1を補正している。これにより、浮遊容量Cfの容量値cfの増加に伴って波高値Vdが低下してしまっても、故障判定用抵抗値や故障判定用波高値を適切に求めていることができるため、漏電検知回路1の故障判定精度を向上させることができる。 Therefore, in the leakage detection circuit 1 of the embodiment, the information D1 is corrected by the capacitance value cf of the stray capacitance Cf. As a result, even if the peak value Vd decreases with an increase in the capacitance value cf of the stray capacitance Cf, the failure determination resistance value and the failure determination peak value can be obtained appropriately. Failure determination accuracy of the circuit 1 can be improved.

また、本発明は、以上の実施の形態に限定されるものでなく、本発明の要旨を逸脱しない範囲内で種々の改良、変更が可能である。 Moreover, the present invention is not limited to the above embodiments, and various improvements and modifications are possible without departing from the gist of the present invention.

1 漏電検知回路
2 発振回路
3 記憶部
4 検知部
P 直流電源
Lo 負荷
GL グランドライン
BE ボディアース
Ri 絶縁抵抗
Cf 浮遊容量
Cc カップリングコンデンサ
Rd 検出抵抗
Ri´ 模擬絶縁抵抗
SW スイッチ
1 earth leakage detection circuit 2 oscillation circuit 3 storage unit 4 detection unit P DC power source Lo load GL ground line BE body ground Ri insulation resistance Cf stray capacitance Cc coupling capacitor Rd detection resistance Ri' simulated insulation resistance SW switch

Claims (2)

車両に搭載される直流電源のグランドラインと前記車両のボディアースとの間の絶縁抵抗の抵抗値の低下を検知する漏電検知回路であって、
発振信号を出力する発振回路と、
前記発振回路と前記グランドラインに接続されるカップリングコンデンサとの間に接続される検出抵抗と、
模擬絶縁抵抗と、
前記絶縁抵抗と前記模擬絶縁抵抗とが互いに並列接続されていない第1の状態、及び、前記絶縁抵抗と前記模擬絶縁抵抗とが互いに並列接続されている第2の状態のどちらか一方の状態に切り替えるスイッチと、
前記第1の状態になるように前記スイッチの動作を制御しているとき、前記検出抵抗にかかる電圧の波高値が閾値以下である場合、前記絶縁抵抗の抵抗値が低下していることを検知する検知部と、
当該漏電検知回路が故障していないときの前記絶縁抵抗の抵抗値と前記検出抵抗にかかる電圧の波高値との対応関係を示す情報を記憶する記憶部と、
を備え、
前記検知部は、
前記第1の状態になるように前記スイッチの動作を制御しているとき、前記情報を参照して、前記検出抵抗にかかる電圧の波高値に対応する抵抗値を故障判定用抵抗値とし、
前記情報を参照して、前記故障判定用抵抗値と前記模擬絶縁抵抗の抵抗値との合成抵抗値に対応する波高値を故障判定用波高値とし、
前記第2の状態になるように前記スイッチの動作を制御しているとき、前記検出抵抗にかかる電圧の波高値が前記故障判定用波高値と異なる場合、当該漏電検知回路が故障していると判定する
ことを特徴とする漏電検知回路。
A leakage detection circuit for detecting a decrease in the resistance value of an insulation resistance between a ground line of a DC power supply mounted on a vehicle and a body ground of the vehicle,
an oscillation circuit that outputs an oscillation signal;
a detection resistor connected between the oscillation circuit and a coupling capacitor connected to the ground line;
a simulated insulation resistance;
a first state in which the insulation resistance and the simulated insulation resistance are not connected in parallel; and a second state in which the insulation resistance and the simulated insulation resistance are connected in parallel. switch to switch and
When the peak value of the voltage applied to the detection resistor is equal to or less than a threshold value when the operation of the switch is controlled so as to be in the first state, it is detected that the resistance value of the insulation resistor has decreased. a detection unit that
a storage unit that stores information indicating a correspondence relationship between the resistance value of the insulation resistor and the peak value of the voltage applied to the detection resistor when the leakage detection circuit is not malfunctioning;
with
The detection unit is
When the operation of the switch is controlled so as to be in the first state, referring to the information, the resistance value corresponding to the peak value of the voltage applied to the detection resistor is set as the failure determination resistance value;
By referring to the information, a peak value corresponding to a combined resistance value of the resistance value for failure determination and the resistance value of the simulated insulation resistance is set as a peak value for failure determination,
When the peak value of the voltage applied to the detection resistor is different from the peak value for fault determination when the operation of the switch is controlled so as to be in the second state, it is determined that the leakage detection circuit is faulty. A leakage detection circuit characterized by:
請求項1に記載の漏電検知回路であって、
前記検知部は、前記絶縁抵抗に並列接続される浮遊容量の容量値を求め、その求めた容量値により前記情報を補正する
ことを特徴とする漏電検知回路。
The earth leakage detection circuit according to claim 1,
The leakage detection circuit, wherein the detection unit obtains a capacitance value of a stray capacitance connected in parallel with the insulation resistor, and corrects the information based on the obtained capacitance value.
JP2019060770A 2019-03-27 2019-03-27 Leakage detection circuit Active JP7135966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019060770A JP7135966B2 (en) 2019-03-27 2019-03-27 Leakage detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019060770A JP7135966B2 (en) 2019-03-27 2019-03-27 Leakage detection circuit

Publications (2)

Publication Number Publication Date
JP2020159922A JP2020159922A (en) 2020-10-01
JP7135966B2 true JP7135966B2 (en) 2022-09-13

Family

ID=72642912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019060770A Active JP7135966B2 (en) 2019-03-27 2019-03-27 Leakage detection circuit

Country Status (1)

Country Link
JP (1) JP7135966B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022070050A (en) * 2020-10-26 2022-05-12 株式会社デンソーテン Earth leakage detection device and earth leakage detection method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163141A (en) 2005-12-09 2007-06-28 Yazaki Corp State detection method and insulation resistance decline detector
WO2010143534A1 (en) 2009-06-12 2010-12-16 日産自動車株式会社 Connection diagnostic device for ground fault detector
JP2014155329A (en) 2013-02-08 2014-08-25 Toyota Motor Corp Insulation resistance deterioration detection device, vehicle equipped with the same, and insulation resistance deterioration detection method
JP2015210086A (en) 2014-04-23 2015-11-24 株式会社デンソー Ground fault determination device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014095628A (en) * 2012-11-09 2014-05-22 Toyota Motor Corp Insulation resistance reduction detection apparatus, vehicle including the same, and insulation resistance reduction detection method
JP6787708B2 (en) * 2016-07-13 2020-11-18 株式会社デンソーテン Leakage detection device and leakage detection system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163141A (en) 2005-12-09 2007-06-28 Yazaki Corp State detection method and insulation resistance decline detector
WO2010143534A1 (en) 2009-06-12 2010-12-16 日産自動車株式会社 Connection diagnostic device for ground fault detector
JP2014155329A (en) 2013-02-08 2014-08-25 Toyota Motor Corp Insulation resistance deterioration detection device, vehicle equipped with the same, and insulation resistance deterioration detection method
JP2015210086A (en) 2014-04-23 2015-11-24 株式会社デンソー Ground fault determination device

Also Published As

Publication number Publication date
JP2020159922A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
JP5406614B2 (en) Insulation state detector
US9255957B2 (en) Earth fault detection circuit and power source device
WO2012073836A1 (en) Ground fault detection device, ground fault detection method, solar energy generator system, and ground fault detection program
US20140008970A1 (en) Ground fault detecting device for an ungrounded circuit
US8766661B2 (en) Malfunction detecting device for solar cell panel
US8598897B2 (en) Isolation monitoring system and method utilizing a variable emulated inductance
JP5385688B2 (en) Insulation resistance detector
WO2020116133A1 (en) Insulation resistance detection device
JP6004514B2 (en) Earth leakage detector
US20160245853A1 (en) Systems and methods of detecting ground faults in energy storage and/or generation systems that employ dc/ac power conversion systems
JP6229584B2 (en) Ground fault judgment device
JP2017062168A (en) Electric leakage detection circuit
JP7135966B2 (en) Leakage detection circuit
JP4978970B2 (en) Non-grounded circuit insulation detector
JP5423766B2 (en) Ground fault detection device
JP2020106517A (en) Electric leak detection circuit
JP6438729B2 (en) Insulation performance diagnostic device and method of setting capacitance value of pseudo capacitor
JP2015087217A (en) Leakage detection device
WO2017159053A1 (en) Abnormality detection device
US10514307B2 (en) Fault detection apparatus
JP6229585B2 (en) Ground fault judgment device
JP6822584B2 (en) Leakage detection circuit
JP6753730B2 (en) Battery monitoring system, self-diagnosis method of disconnection detection function
KR102325681B1 (en) Method and apparatus for correcting measurement error in battery management system
JP2020106420A (en) Electric leak detection circuit and failure detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220815

R151 Written notification of patent or utility model registration

Ref document number: 7135966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151