JP2020159922A - Electric leakage detection circuit - Google Patents

Electric leakage detection circuit Download PDF

Info

Publication number
JP2020159922A
JP2020159922A JP2019060770A JP2019060770A JP2020159922A JP 2020159922 A JP2020159922 A JP 2020159922A JP 2019060770 A JP2019060770 A JP 2019060770A JP 2019060770 A JP2019060770 A JP 2019060770A JP 2020159922 A JP2020159922 A JP 2020159922A
Authority
JP
Japan
Prior art keywords
value
resistor
resistance
peak value
detection circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019060770A
Other languages
Japanese (ja)
Other versions
JP7135966B2 (en
Inventor
俊雄 小田切
Toshio Odagiri
俊雄 小田切
正彰 鈴木
Masaaki Suzuki
正彰 鈴木
慎司 広瀬
Shinji Hirose
慎司 広瀬
裕人 佐藤
Hiroto Sato
裕人 佐藤
卓矢 山本
Takuya Yamamoto
卓矢 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2019060770A priority Critical patent/JP7135966B2/en
Publication of JP2020159922A publication Critical patent/JP2020159922A/en
Application granted granted Critical
Publication of JP7135966B2 publication Critical patent/JP7135966B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Protection Of Static Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

To provide an electric leakage detection circuit for detecting a decrease in resistance value of an insulating resistor between the ground line of a DC power supply mounted in a vehicle and the body earth of the vehicle, with which a fault of the electric leakage detection circuit is determined by itself.SOLUTION: A electric leakage detection circuit 1 refers to information D1 when an insulating resistor Ri and a dummy insulating resistor Ri' are not connected in parallel to each other and defines a resistance value that corresponds to the peak value Vd of the voltage acting on a detection resistor Rd as a fault determining resistance value, refers to information D1 and defines a peak value that corresponds to the synthesized resistance value of the fault determining resistance value and the dummy insulating resistor Ri' as a fault determining peak value, and determines that the electric leakage detection circuit 1 is faulty when the peak value Vd of the voltage acting on the detection resistor Rd differs from the fault determining peak value while the insulating resistor Ri and the dummy insulating resistor Ri' are connected in parallel to each other.SELECTED DRAWING: Figure 1

Description

本発明は、漏電検知回路に関する。 The present invention relates to an earth leakage detection circuit.

漏電検知回路として、車両に搭載される直流電源のグランドラインにカップリングコンデンサを介して検出抵抗を接続するとともに、グランドラインと車両のボディアースとの間に発振信号を出力し、検出抵抗にかかる電圧の波高値が閾値以下であるとき、絶縁抵抗の抵抗値が低下していること、すなわち、漏電が発生していることを検知するものがある。 As an earth leakage detection circuit, a detection resistor is connected to the ground line of the DC power supply mounted on the vehicle via a coupling capacitor, and an oscillation signal is output between the ground line and the body ground of the vehicle, and the detection resistor is applied. When the peak value of the voltage is equal to or less than the threshold value, there is a device that detects that the resistance value of the insulation resistance has decreased, that is, that an electric leakage has occurred.

関連する技術として、例えば、特許文献1がある。 As a related technique, for example, there is Patent Document 1.

特開2014−155329号公報Japanese Unexamined Patent Publication No. 2014-155329

しかしながら、上記漏電検知回路は、検出抵抗のインピーダンスが下がるなど漏電検知回路が故障することで検出抵抗にかかる電圧の波高値が、漏電検知回路が故障していない場合に比べて高くなると、実際には漏電が発生しているにもかかわらず、漏電が発生していないと誤検知してしまうおそれがある。そのため、漏電検知回路が故障していることを判定して、ユーザに漏電検知回路の修理を促すことが必要である。 However, in the above-mentioned leakage detection circuit, when the leakage detection circuit fails due to a decrease in the impedance of the detection resistance and the peak value of the voltage applied to the detection resistance becomes higher than when the leakage detection circuit does not fail, it actually becomes higher. There is a risk of erroneous detection that no electric leakage has occurred even though there is an electric leakage. Therefore, it is necessary to determine that the earth leakage detection circuit is out of order and urge the user to repair the earth leakage detection circuit.

本発明の一側面に係る目的は、車両に搭載される直流電源のグランドラインと車両のボディアースとの間の絶縁抵抗の抵抗値の低下を検知する漏電検知回路の故障を漏電検知回路自身で判定することである。 An object according to one aspect of the present invention is to cause a failure of the earth leakage detection circuit for detecting a decrease in the resistance value of the insulation resistance between the ground line of the DC power supply mounted on the vehicle and the body ground of the vehicle by the earth leakage detection circuit itself. It is to judge.

本発明に係る一つの形態である漏電検知回路は、車両に搭載される直流電源のグランドラインと車両のボディアースとの間の絶縁抵抗の抵抗値の低下を検知する漏電検知回路であって、発振信号を出力する発振回路と、発振回路とグランドラインに接続されるカップリングコンデンサとの間に接続される検出抵抗と、模擬絶縁抵抗と、絶縁抵抗と模擬絶縁抵抗とが互いに並列接続されていない第1の状態、及び、絶縁抵抗と模擬絶縁抵抗とが互いに並列接続されている第2の状態のどちらか一方の状態に切り替えるスイッチと、第1の状態になるようにスイッチの動作を制御しているとき、検出抵抗にかかる電圧の波高値が閾値以下である場合、絶縁抵抗の抵抗値が低下していることを検知する検知部と、漏電検知回路が故障していないときの絶縁抵抗の抵抗値と検出抵抗にかかる電圧の波高値との対応関係を示す情報を記憶する記憶部とを備える。 The leakage detection circuit according to the present invention is a leakage detection circuit that detects a decrease in the resistance value of the insulation resistance between the ground line of the DC power supply mounted on the vehicle and the body ground of the vehicle. The oscillation circuit that outputs the oscillation signal, the detection resistance connected between the oscillation circuit and the coupling capacitor connected to the ground line, the simulated insulation resistance, and the insulation resistance and the simulated insulation resistance are connected in parallel with each other. The operation of the switch is controlled so that the switch switches to one of the first state, which is not present, and the second state, in which the insulation resistance and the simulated insulation resistance are connected in parallel to each other, and the first state. When the peak value of the voltage applied to the detection resistance is below the threshold value, the detection unit that detects that the resistance value of the insulation resistance has dropped and the insulation resistance when the leakage detection circuit is not faulty. It is provided with a storage unit that stores information indicating the correspondence between the resistance value of the above and the peak value of the voltage applied to the detection resistance.

また、検知部は、第1の状態になるようにスイッチの動作を制御しているとき、上記情報を参照して、検出抵抗にかかる電圧の波高値に対応する抵抗値を故障判定用抵抗値とし、上記情報を参照して、故障判定用抵抗値と模擬絶縁抵抗の抵抗値との合成抵抗値に対応する波高値を故障判定用波高値とし、第2の状態になるようにスイッチの動作を制御しているとき、検出抵抗にかかる電圧の波高値が故障判定用波高値と異なる場合、漏電検知回路が故障していると判定する。 Further, when the detection unit controls the operation of the switch so as to be in the first state, the resistance value corresponding to the peak value of the voltage applied to the detection resistance is set as the resistance value for failure determination by referring to the above information. Then, referring to the above information, the peak value corresponding to the combined resistance value of the resistance value for failure determination and the resistance value of the simulated insulation resistance is set as the peak value for failure determination, and the switch is operated so as to be in the second state. If the peak value of the voltage applied to the detection resistor is different from the peak value for failure determination, it is determined that the leakage detection circuit has failed.

漏電検知回路が故障していない場合、絶縁抵抗と模擬絶縁抵抗とが互いに並列接続されているときに検出抵抗にかかる電圧の波高値は、故障判定用波高値と同じになると想定される。そのため、検出抵抗のインピーダンスが下がるなど漏電検知回路が故障している場合、絶縁抵抗と模擬絶縁抵抗とが互いに並列接続されているときに検出抵抗にかかる電圧の波高値は、故障判定用波高値と異なると想定される。 If the earth leakage detection circuit is not faulty, it is assumed that the peak value of the voltage applied to the detection resistance when the insulation resistance and the simulated insulation resistance are connected in parallel to each other will be the same as the peak value for fault determination. Therefore, when the leakage detection circuit is out of order, such as when the impedance of the detection resistor drops, the peak value of the voltage applied to the detection resistor when the insulation resistance and the simulated insulation resistance are connected in parallel is the peak value for failure determination. Is expected to be different.

そこで、本発明に係る一つの形態である漏電検知回路では、絶縁抵抗と模擬絶縁抵抗とが互いに並列接続されるようにスイッチの動作を制御しているときに検出抵抗にかかる電圧の波高値が故障判定用波高値と異なる場合、漏電検知回路が故障していると判定する。これにより、漏電検知回路は、自身が故障していると判定することができる。 Therefore, in the leakage detection circuit, which is one embodiment of the present invention, the peak value of the voltage applied to the detection resistor is measured when the operation of the switch is controlled so that the insulation resistor and the simulated insulation resistor are connected in parallel with each other. If it is different from the fault determination peak value, it is determined that the leakage detection circuit has failed. As a result, the leakage detection circuit can determine that it is out of order.

また、検知部は、絶縁抵抗に並列接続される浮遊容量の容量値を求め、その求めた容量値により上記情報を補正するように構成してもよい。 Further, the detection unit may be configured to obtain the capacitance value of the stray capacitance connected in parallel to the insulation resistor and correct the above information based on the obtained capacitance value.

浮遊容量の容量値が増加すると、検出抵抗にかかる電圧の波高値が低下する。
そこで、本発明に係る一つの形態である漏電検知回路では、浮遊容量の容量値により上記情報を補正する。これにより、浮遊容量の容量値の増加に伴って波高値が低下してしまっても、故障判定用抵抗値や故障判定用波高値を適切に求めていることができるため、漏電検知回路の故障判定精度を向上させることができる。
As the capacitance value of stray capacitance increases, the peak value of the voltage applied to the detection resistor decreases.
Therefore, in the leakage detection circuit, which is one embodiment of the present invention, the above information is corrected by the capacitance value of the stray capacitance. As a result, even if the crest value decreases as the capacitance value of the stray capacitance increases, the resistance value for failure determination and the crest value for failure determination can be appropriately obtained, so that the leakage detection circuit fails. The determination accuracy can be improved.

本発明によれば、車両に搭載される直流電源のグランドラインと車両のボディアースとの間の絶縁抵抗の抵抗値の低下を検知する漏電検知回路の故障を漏電検知回路自身で判定することができる。 According to the present invention, the leakage detection circuit itself can determine the failure of the leakage detection circuit that detects a decrease in the resistance value of the insulation resistance between the ground line of the DC power supply mounted on the vehicle and the body ground of the vehicle. it can.

実施形態の漏電検知回路の一例を示す図である。It is a figure which shows an example of the leakage detection circuit of an embodiment. ローパスフィルタの周波数特性及び記憶部に記憶される情報の一例を示す図である。It is a figure which shows an example of the frequency characteristic of a low-pass filter and the information which is stored in the storage part. 故障検知処理実行時の検知部の動作の一例を示すフローチャートである。It is a flowchart which shows an example of the operation of the detection part at the time of execution of failure detection processing. 情報の補正の一例及び故障判定の一例を示す図である。It is a figure which shows an example of the correction of information and an example of failure determination.

以下図面に基づいて実施形態について詳細を説明する。
図1は、実施形態の漏電検知回路の一例を示す図である。
Hereinafter, embodiments will be described in detail based on the drawings.
FIG. 1 is a diagram showing an example of an earth leakage detection circuit of the embodiment.

直流電源Pは、直列接続される複数の電池(例えば、リチウムイオン電池またはニッケル水素電池)により構成される高圧バッテリであって、ハイブリッド車や電気自動車などの車両に搭載され、走行用モータを駆動するインバータ回路などの負荷Loに電力を供給する。 The DC power supply P is a high-pressure battery composed of a plurality of batteries (for example, a lithium ion battery or a nickel hydrogen battery) connected in series, and is mounted on a vehicle such as a hybrid vehicle or an electric vehicle to drive a traveling motor. Power is supplied to the load Lo such as the inverter circuit.

漏電検知回路1は、直流電源PのグランドラインGLと車両のボディアースBEとの間の絶縁抵抗Riの抵抗値の低下を検知する。また、漏電検知回路1は、発振回路2と、検出抵抗Rdと、模擬絶縁抵抗Ri´と、スイッチSWと、記憶部3と、検知部4とを備える。 The leakage detection circuit 1 detects a decrease in the resistance value of the insulation resistance Ri between the ground line GL of the DC power supply P and the body ground BE of the vehicle. Further, the leakage detection circuit 1 includes an oscillation circuit 2, a detection resistor Rd, a simulated insulation resistor Ri', a switch SW, a storage unit 3, and a detection unit 4.

発振回路2は、ボディアースBEに接続され、矩形波などの発振信号SをグランドラインGLとボディアースBEとの間に出力する。なお、発振信号Sは、漏電検知用発振信号S1または浮遊容量検知用発振信号S2とする。また、漏電検知用発振信号S1の周波数は、絶縁抵抗Ri、絶縁抵抗Riに仮想的に並列接続される浮遊容量Cf、カップリングコンデンサCc、及び検出抵抗Rdなどにより構成されるローパスフィルタLPFのカットオフ周波数fcより低い周波数とする。また、浮遊容量検知用発振信号S2の周波数は、ローパスフィルタLPFのカットオフ周波数fcより高い周波数とする。 The oscillation circuit 2 is connected to the body ground BE and outputs an oscillation signal S such as a square wave between the ground line GL and the body ground BE. The oscillation signal S is an oscillation signal S1 for leakage detection or an oscillation signal S2 for stray capacitance detection. Further, the frequency of the oscillation signal S1 for leak detection is a cut of the low-pass filter LPF composed of the insulation resistor Ri, the stray capacitance Cf virtually connected in parallel to the insulation resistor Ri, the coupling capacitor Cc, the detection resistor Rd, and the like. The frequency is lower than the off frequency fc. Further, the frequency of the stray capacitance detection oscillation signal S2 is set to be higher than the cutoff frequency fc of the low-pass filter LPF.

ここで、図2(a)は、ローパスフィルタLPFの周波数特性を示す図である。図2(a)に示す2次元座標の横軸は発振信号Sの周波数[Hz]を示し、縦軸は発振信号Sの波高値に対する、検出抵抗Rdにかかる電圧の波高値Vdの比率(検出抵抗Rdにかかる電圧の波高値Vd/発振信号Sの波高値)、すなわち、ローパスフィルタLPFのゲイン[dB]を示している。 Here, FIG. 2A is a diagram showing the frequency characteristics of the low-pass filter LPF. The horizontal axis of the two-dimensional coordinates shown in FIG. 2A indicates the frequency [Hz] of the oscillation signal S, and the vertical axis represents the ratio (detection) of the peak value Vd of the voltage applied to the detection resistance Rd to the peak value of the oscillation signal S. The peak value Vd of the voltage applied to the resistor Rd / the peak value of the oscillation signal S), that is, the gain [dB] of the low-pass filter LPF is shown.

漏電検知用発振信号S1の周波数がローパスフィルタLPFのカットオフ周波数fcより低い周波数f1になるように発振回路2の動作が制御される場合、絶縁抵抗Riの抵抗値riが低下すると、検出抵抗Rdにかかる電圧の波高値Vdが低下する。 When the operation of the oscillation circuit 2 is controlled so that the frequency of the oscillation signal S1 for leak detection becomes lower than the cutoff frequency fc of the low-pass filter LPF, when the resistance value ri of the insulation resistor Ri decreases, the detection resistor Rd The peak value Vd of the voltage applied to is lowered.

すなわち、漏電検知回路1が故障していない場合で、かつ、検出抵抗Rdの抵抗値、及びカップリングコンデンサCcの容量値がそれぞれ変動しない場合において、漏電検知用発振信号S1の周波数が周波数f1になるように発振回路2の動作を制御することにより、抵抗値riと波高値Vdとを一対一で対応付けることができる。 That is, when the leakage detection circuit 1 has not failed and the resistance value of the detection resistor Rd and the capacitance value of the coupling capacitor Cc do not fluctuate, the frequency of the leakage detection oscillation signal S1 becomes the frequency f1. By controlling the operation of the oscillation circuit 2 so as to be, the resistance value ri and the peak value Vd can be associated one-to-one.

実施形態では、漏電検知回路1が故障していないときの抵抗値riと波高値Vdとの対応関係を示す情報D1を、実験またはシミュレーションなどにより求めて記憶部3に記憶させておく。 In the embodiment, the information D1 indicating the correspondence relationship between the resistance value ri and the peak value Vd when the leakage detection circuit 1 is not broken is obtained by an experiment or a simulation and stored in the storage unit 3.

図2(b)は、情報D1の一例を示す図である。なお、図2(a)に示す2次元座標の横軸は、漏電検知回路1が故障していないときの絶縁抵抗Riの抵抗値ri[kΩ]を示し、縦軸は、検出抵抗Rdにかかる電圧の波高値Vd[V]を示している。また、図2(b)に示す実線は、漏電検知回路1が故障していないときの抵抗値riと波高値Vdとの対応関係を示す情報D1を示している。 FIG. 2B is a diagram showing an example of information D1. The horizontal axis of the two-dimensional coordinates shown in FIG. 2A indicates the resistance value ri [kΩ] of the insulation resistance Ri when the leakage detection circuit 1 is not faulty, and the vertical axis relates to the detection resistance Rd. The peak value Vd [V] of the voltage is shown. Further, the solid line shown in FIG. 2B shows information D1 indicating the correspondence relationship between the resistance value ri and the peak value Vd when the leakage detection circuit 1 is not out of order.

図2(b)に示す情報D1では、抵抗値riが小さくなるほど、波高値Vdが小さくなる。言い換えると、抵抗値riが閾値rith以上である場合、波高値Vdが閾値Vdth1以上になり、抵抗値riが閾値rithより小さい場合、波高値Vdが閾値Vdth1より小さくなる。 In the information D1 shown in FIG. 2B, the smaller the resistance value ri, the smaller the peak value Vd. In other words, when the resistance value ri is equal to or more than the threshold value rit, the peak value Vd becomes the threshold value Vds1 or more, and when the resistance value ri is smaller than the threshold value rit, the peak value Vd becomes smaller than the threshold value Vds1.

また、図2(a)に示すように、浮遊容量検知用発振信号S2の周波数がローパスフィルタLPFのカットオフ周波数fcより高い周波数f2になるように発振回路2の動作が制御される場合、ローパスフィルタLPFを構成する絶縁抵抗Ri、浮遊容量Cf、検出抵抗Rd、及びカップリングコンデンサCcの影響を受けてローパスフィルタLPFのゲインが「ゼロ」よりも小さい「G」に下るため、浮遊容量検知用発振信号S2の周波数がローパスフィルタLPFのカットオフ周波数fcより高い周波数f1になるように発振回路2の動作が制御される場合に比べて、波高値Vdが低くなる。 Further, as shown in FIG. 2A, when the operation of the oscillation circuit 2 is controlled so that the frequency of the oscillation signal S2 for detecting floating capacitance is higher than the cutoff frequency fc of the low-pass filter LPF, the low-pass filter 2 is operated. The gain of the low-pass filter LPF drops to "G", which is smaller than "zero", due to the influence of the insulation resistance Ri, the floating capacitance Cf, the detection resistor Rd, and the coupling capacitor Cc that make up the filter LPF. The peak value Vd is lower than when the operation of the oscillation circuit 2 is controlled so that the frequency of the oscillation signal S2 becomes a frequency f1 higher than the cutoff frequency fc of the low-pass filter LPF.

また、浮遊容量Cfの容量値cfが増加するほど、カットオフ周波数fcが低下するため、すなわち、図2(a)に示すように、浮遊容量Cfの容量値cfが増加すると、ローパスフィルタLPFの周波数特性が実線で示される周波数特性から破線で示される周波数特性に変化するため、浮遊容量検知用発振信号S2の周波数が周波数f2になるように発振回路2の動作が制御される場合、ローパスフィルタLPFのゲインが「G」から「G´」にさらに下がり、波高値Vdがさらに低下する。なお、「G´」<「G」とする。 Further, as the capacitance value cf of the floating capacitance Cf increases, the cutoff frequency fc decreases. That is, as shown in FIG. 2A, when the capacitance value cf of the floating capacitance Cf increases, the low-pass filter LPF Since the frequency characteristic changes from the frequency characteristic shown by the solid line to the frequency characteristic shown by the broken line, when the operation of the oscillation circuit 2 is controlled so that the frequency of the oscillation signal S2 for floating capacitance detection becomes the frequency f2, the low-pass filter The gain of the LPF further decreases from "G" to "G'", and the peak value Vd further decreases. It should be noted that "G'" <"G".

すなわち、絶縁抵抗Riの抵抗値ri、検出抵抗Rdの抵抗値、及びカップリングコンデンサCcの容量値がそれぞれ変動しない場合において、浮遊容量検知用発振信号S2の周波数が周波数f2になるように発振回路2の動作を制御することにより、容量値cfと波高値Vdとを一対一で対応付けることができる。 That is, when the resistance value ri of the insulation resistor Ri, the resistance value of the detection resistor Rd, and the capacitance value of the coupling capacitor Cc do not fluctuate, the oscillation circuit is such that the frequency of the stray capacitance detection oscillation signal S2 becomes the frequency f2. By controlling the operation of 2, the capacitance value cf and the peak value Vd can be associated one-to-one.

実施形態では、絶縁抵抗Riの抵抗値ri、検出抵抗Rdの抵抗値、及びカップリングコンデンサCcの容量値がそれぞれ変動しない場合で、かつ、浮遊容量発振信号S2の周波数が周波数f2になるように発振回路2の動作を制御している場合において、波高値Vdと容量値cfとの対応関係を示す情報D2を、実験またはシミュレーションなどにより求めて記憶部3に記憶させておく。 In the embodiment, the resistance value ri of the insulation resistor Ri, the resistance value of the detection resistor Rd, and the capacitance value of the coupling capacitor Cc do not fluctuate, and the frequency of the stray capacitance oscillation signal S2 becomes the frequency f2. When the operation of the oscillation circuit 2 is controlled, the information D2 indicating the correspondence between the peak value Vd and the capacitance value cf is obtained by an experiment or a simulation and stored in the storage unit 3.

図2(c)は、情報D2の一例を示す図である。
図2(c)に示す情報D2では、容量値cfとしての「cf1」と波高値Vdとしての「Vd3」とが互いに対応付けられ、容量値cfとしての「cf2」と波高値Vdとしての「Vd2」とが互いに対応付けられ、容量値cfとしての「cf3」と波高値Vdとしての「Vd1」とが互いに対応付けられている。なお、「cf1」<「cf2」<「cf3」、「Vd1」<「Vd2」<「Vd3」とする。すなわち、情報D2では、容量値cfが増加するほど、波高値Vdが低下する。言い換えると、容量値cfが閾値cfth以下である場合、波高値Vdが閾値Vdth2以上になり、容量値cfが閾値cfthより大きい場合、波高値Vdが閾値Vdth2より小さくなる。
FIG. 2C is a diagram showing an example of information D2.
In the information D2 shown in FIG. 2C, "cf1" as the capacitance value cf and "Vd3" as the peak value Vd are associated with each other, and "cf2" as the capacitance value cf and "cf2" as the peak value Vd are ". "Vd2" is associated with each other, and "cf3" as a capacitance value cf and "Vd1" as a peak value Vd are associated with each other. It should be noted that "cf1"<"cf2"<"cf3","Vd1"<"Vd2"<"Vd3". That is, in the information D2, as the capacitance value cf increases, the peak value Vd decreases. In other words, when the capacitance value cf is equal to or less than the threshold value cfth, the peak value Vd becomes equal to or greater than the threshold value Vdts2, and when the capacitance value cf is larger than the threshold value cfth, the peak value Vd becomes smaller than the threshold value Vds2.

また、図1に示す検出抵抗Rdは、グランドラインGLに接続されるカップリングコンデンサCcと、ボディアースBEに接続される発振回路2との間に接続される。 Further, the detection resistor Rd shown in FIG. 1 is connected between the coupling capacitor Cc connected to the ground line GL and the oscillation circuit 2 connected to the body ground BE.

模擬絶縁抵抗Ri´の一方端はボディアースBEに接続され、模擬絶縁抵抗Ri´の他方端はスイッチSWの一方端に接続され、スイッチSWの他方端はカップリングコンデンサCcと検出抵抗Rdとの接続点に接続されている。 One end of the simulated insulation resistor Ri'is connected to the body ground BE, the other end of the simulated insulation resistor Ri'is connected to one end of the switch SW, and the other end of the switch SW is the coupling capacitor Cc and the detection resistor Rd. It is connected to the connection point.

スイッチSWは、半導体スイッチまたは電磁式リレーなどにより構成され、検知部4により動作が制御される。また、スイッチSWは、カップリングコンデンサCcと検出抵抗Rdとの接続点と模擬絶縁抵抗Ri´とが互いに接続されていない状態、すなわち、絶縁抵抗Riと模擬絶縁抵抗Ri´とが互いに並列接続されていない第1の状態、及び、カップリングコンデンサCcと検出抵抗Rdとの接続点と模擬絶縁抵抗Ri´とが互いに接続されている、すなわち、絶縁抵抗Riと模擬絶縁抵抗Ri´とが互いに並列接続されている第2の状態のどちらか一方の状態に切り替える。 The switch SW is composed of a semiconductor switch, an electromagnetic relay, or the like, and its operation is controlled by the detection unit 4. Further, in the switch SW, the connection point between the coupling capacitor Cc and the detection resistor Rd and the simulated insulation resistor Ri'are not connected to each other, that is, the insulation resistor Ri and the simulated insulation resistor Ri'are connected in parallel to each other. In the first state, the connection point between the coupling capacitor Cc and the detection resistor Rd and the simulated insulation resistor Ri'are connected to each other, that is, the insulation resistor Ri and the simulated insulation resistor Ri'are parallel to each other. Switch to either of the connected second states.

なお、模擬絶縁抵抗Ri´の抵抗値は、例えば、スイッチSWにより第2の状態に切り替えられているときに検出抵抗Rdにかかる電圧の波高値Vdが、スイッチSWにより第1の状態に切り替えられているときで、かつ、漏電しているときに検出抵抗Rdにかかる電圧の波高値Vdと同じになるときの模擬絶縁抵抗Riの抵抗値とする。 As for the resistance value of the simulated insulation resistor Ri', for example, the peak value Vd of the voltage applied to the detection resistor Rd when the switch SW is switched to the second state is switched to the first state by the switch SW. It is the resistance value of the simulated insulation resistor Ri when the voltage is equal to the peak value Vd of the voltage applied to the detection resistor Rd when the voltage is leaking.

記憶部3は、例えば、RAM(Random Access Memory)またはROM(Read Only Memory)などにより構成され、上記情報D1、D2などを記憶する。 The storage unit 3 is composed of, for example, a RAM (Random Access Memory) or a ROM (Read Only Memory), and stores the above-mentioned information D1 and D2.

検知部4は、例えば、CPU(Central Processing Unit)、マルチコアCPU、またはプログラマブルなデバイス(FPGA(Field Programmable Gate Array)やPLD(Programmable Logic Device))などにより構成され、カップリングコンデンサCcと検出抵抗Rdとの間に接続される。なお、検出抵抗Rdと検知部4との間にローパスフィルタまたはバンドパスフィルタなどを接続してもよい。 The detection unit 4 is composed of, for example, a CPU (Central Processing Unit), a multi-core CPU, or a programmable device (FPGA (Field Programmable Gate Array) or PLD (Programmable Logic Device)), and includes a coupling capacitor Cc and a detection resistor Rd. Is connected to. A low-pass filter, a band-pass filter, or the like may be connected between the detection resistor Rd and the detection unit 4.

また、検知部4は、第1の状態になるようにスイッチSWの動作を制御しているときで、かつ、発振回路2から漏電検知用発振信号S1を出力させているとき、検出抵抗Rdにかかる電圧の波高値Vdが閾値Vdth3以下である場合、絶縁抵抗Riの抵抗値riが低下していること、すなわち、漏電が発生していることを検知する。なお、閾値Vdth3は、実験やシミュレーションなどにより求められ記憶部3に記憶されているものとし、例えば、漏電になる直前の波高値Vdとする。 Further, when the detection unit 4 controls the operation of the switch SW so as to be in the first state and when the oscillation signal S1 for leakage detection is output from the oscillation circuit 2, the detection resistor Rd is set. When the peak value Vd of such a voltage is equal to or less than the threshold value Vds3, it is detected that the resistance value ri of the insulation resistor Ri is lowered, that is, that an electric leakage has occurred. It is assumed that the threshold value Vds3 is obtained by an experiment, a simulation, or the like and is stored in the storage unit 3, and is, for example, a peak value Vd immediately before an electric leakage occurs.

また、検知部4は、故障判定処理を実行することにより、漏電検知回路1が故障しているか否かを判定する。なお、漏電検知回路1の故障とは、カップリングコンデンサCcから検知部4までの配線或いは検出抵抗Rdのインピーダンスが通常より高い状態、または、カップリングコンデンサCcから検知部4までの配線或いは検出抵抗Rdのインピーダンスが通常よりも低い状態とする。カップリングコンデンサCcから検知部4までの配線或いは検出抵抗Rdのインピーダンスが通常より高い状態とは、例えば、カップリングコンデンサCcから検知部4までの配線或いは検出抵抗Rdが断線している状態とする。カップリングコンデンサCcから検知部4までの配線或いは検出抵抗Rdのインピーダンスが通常よりも低い状態とは、例えば、カップリングコンデンサCcから検知部4までの配線或いは検出抵抗Rdの両端が短絡している状態とする。 Further, the detection unit 4 determines whether or not the leakage detection circuit 1 has failed by executing the failure determination process. The failure of the leakage detection circuit 1 means that the impedance of the wiring from the coupling capacitor Cc to the detection unit 4 or the detection resistor Rd is higher than usual, or the wiring from the coupling capacitor Cc to the detection unit 4 or the detection resistor. The impedance of Rd is assumed to be lower than usual. The state in which the impedance of the wiring from the coupling capacitor Cc to the detection unit 4 or the detection resistor Rd is higher than usual is, for example, a state in which the wiring from the coupling capacitor Cc to the detection unit 4 or the detection resistor Rd is disconnected. .. When the impedance of the wiring from the coupling capacitor Cc to the detection unit 4 or the detection resistor Rd is lower than usual, for example, the wiring from the coupling capacitor Cc to the detection unit 4 or both ends of the detection resistor Rd are short-circuited. Make it a state.

図3は、故障検知処理実行時の検知部4の動作の一例を示すフローチャートである。
まず、検知部4は、第1の状態になるようにスイッチSWの動作を制御する(ステップS1)。
FIG. 3 is a flowchart showing an example of the operation of the detection unit 4 when the failure detection process is executed.
First, the detection unit 4 controls the operation of the switch SW so as to be in the first state (step S1).

次に、検知部4は、現在の浮遊容量Cfの容量値cfを求める(ステップS2)。例えば、検知部4は、記憶部3に記憶されている情報D2を参照し、発振回路2から浮遊容量検知用発振信号S2を出力させているときに検出抵抗Rdにかかる電圧の波高値Vdに対応する容量値cfを、現在の浮遊容量Cfの容量値cfとする。 Next, the detection unit 4 obtains the capacitance value cf of the current stray capacitance Cf (step S2). For example, the detection unit 4 refers to the information D2 stored in the storage unit 3 and sets the peak value Vd of the voltage applied to the detection resistor Rd when the oscillation signal S2 for stray capacitance detection is output from the oscillation circuit 2. Let the corresponding capacitance value cf be the capacitance value cf of the current stray capacitance Cf.

次に、検知部4は、現在の浮遊容量Cfの容量値cfを用いて、情報D1を補正する(ステップS3)。例えば、検知部4は、図4(a)に示すように、現在の浮遊容量Cfの容量値cf(今回の故障判定処理の実行時で求めた容量値cf)から前回の故障判定処理の実行時で求めた容量値cfを減算した差に応じて、情報D1に示される各波高値Vdをそれぞれ低下させることにより、情報D1を情報D1´に補正する。 Next, the detection unit 4 corrects the information D1 by using the capacitance value cf of the current stray capacitance Cf (step S3). For example, as shown in FIG. 4A, the detection unit 4 executes the previous failure determination process from the capacitance value cf of the current stray capacitance Cf (the capacitance value cf obtained at the time of executing the failure determination process this time). Information D1 is corrected to information D1'by reducing each peak value Vd shown in information D1 according to the difference obtained by subtracting the capacitance value cf obtained at the time.

次に、図3に示すフローチャートにおいて、検知部4は、故障判定用抵抗値を求める(ステップS4)。例えば、検知部4は、第1の状態になるようにスイッチSWの動作を制御しているとき、検出抵抗Rdにかかる電圧の波高値Vdとして波高値Vd3を取得する。次に、検知部4は、図4(b)に示すように、補正後の情報D1´を参照して、波高値Vd3に対応する抵抗値ri3を故障判定用抵抗値とする。 Next, in the flowchart shown in FIG. 3, the detection unit 4 obtains a failure determination resistance value (step S4). For example, when the detection unit 4 controls the operation of the switch SW so as to be in the first state, the detection unit 4 acquires the peak value Vd3 as the peak value Vd of the voltage applied to the detection resistor Rd. Next, as shown in FIG. 4B, the detection unit 4 refers to the corrected information D1'and sets the resistance value ri3 corresponding to the peak value Vd3 as the failure determination resistance value.

次に、図3に示すフローチャートにおいて、検知部4は、故障判定用波高値を求める(ステップS5)。例えば、検知部4は、図4(b)に示すように、故障判定用抵抗値ri3と模擬絶縁抵抗Ri´の抵抗値との合成抵抗値ri1を求め、補正後の情報D1´を参照して、合成抵抗値ri1に対応する波高値Vd1を故障判定用波高値とする。なお、検知部4は、合成抵抗値=1/((1/故障判定用抵抗値)+(1/模擬絶縁抵抗Ri´の抵抗値))を計算することにより合成抵抗値を求める。模擬絶縁抵抗Ri´の抵抗値は、記憶部3に記憶されているものとする。 Next, in the flowchart shown in FIG. 3, the detection unit 4 obtains the peak value for failure determination (step S5). For example, as shown in FIG. 4B, the detection unit 4 obtains the combined resistance value ri1 of the failure determination resistance value ri3 and the resistance value of the simulated insulation resistance Ri ′, and refers to the corrected information D1 ′. Therefore, the peak value Vd1 corresponding to the combined resistance value ri1 is set as the failure determination peak value. The detection unit 4 obtains the combined resistance value by calculating the combined resistance value = 1 / ((1 / resistance value for failure determination) + (1 / resistance value of the simulated insulation resistance Ri')). It is assumed that the resistance value of the simulated insulation resistor Ri'is stored in the storage unit 3.

次に、検知部4は、第2の状態になるようにスイッチSWの動作を制御する(ステップS6)。 Next, the detection unit 4 controls the operation of the switch SW so as to be in the second state (step S6).

次に、検知部4は、検出抵抗Rdにかかる電圧の波高値Vdを求める(ステップS7)。 Next, the detection unit 4 obtains the peak value Vd of the voltage applied to the detection resistor Rd (step S7).

次に、検知部4は、ステップS7で求めた波高値VdがステップS5で求めた故障判定用波高値と異なっているか否かを判断する(ステップS8)。例えば、検知部4は、図4(b)に示すように、故障判定用波高値Vd1に一定値Vdαを加算した結果である閾値Vdthαを求めるとともに、故障判定用波高値Vd1から一定値Vdβを減算した結果である閾値Vdthβを求める。次に、検知部4は、ステップS7で求めた波高値Vdが閾値Vdthαより大きい、または、ステップS7で求めた波高値Vdが閾値Vdthβより小さい場合、ステップS7で求めた波高値VdがステップS5で求めた故障判定用波高値Vd1と異なっていると判断する。一方、検知部4は、ステップS7で求めた波高値Vdが閾値Vdthα以下である場合で、かつ、ステップS7で求めた波高値Vdが閾値Vdthβ以上である場合、ステップS7で求めた波高値VdがステップS5で求めた故障判定用波高値Vd1と異なっていないと判断する。なお、一定値Vdα及び一定値Vdβは、互いに同じ値でもよいし、互いに異なる値でもよい。また、一定値Vdα及び一定値Vdβは、実験またはシミュレーションなどにより波高値Vdの測定誤差などにより求めて記憶部3に記憶させておく。 Next, the detection unit 4 determines whether or not the peak value Vd obtained in step S7 is different from the failure determination peak value obtained in step S5 (step S8). For example, as shown in FIG. 4B, the detection unit 4 obtains the threshold value Vdsα which is the result of adding the constant value Vdα to the failure determination peak value Vd1, and obtains the constant value Vdβ from the failure determination peak value Vd1. The threshold value Vdsβ, which is the result of the subtraction, is obtained. Next, when the peak value Vd obtained in step S7 is larger than the threshold value Vdsα, or the peak value Vd obtained in step S7 is smaller than the threshold value Vdsβ, the detection unit 4 finds the peak value Vd in step S7 in step S5. It is determined that the peak value Vd1 for failure determination obtained in On the other hand, when the peak value Vd obtained in step S7 is equal to or less than the threshold value Vdsα and the peak value Vd obtained in step S7 is equal to or greater than the threshold value Vdsβ, the detection unit 4 finds the peak value Vd in step S7. Is not different from the failure determination crest value Vd1 obtained in step S5. The constant value Vdα and the constant value Vdβ may be the same value or different values from each other. Further, the constant value Vdα and the constant value Vdβ are obtained by a measurement error of the peak value Vd or the like by an experiment or a simulation, and are stored in the storage unit 3.

次に、図3に示すフローチャートにおいて、検知部4は、ステップS7で求めた波高値VdがステップS5で求めた故障判定用波高値と異なっている場合(ステップS8:Yes)、漏電検知回路1が故障していると判定し(ステップS9)、ステップS7で求めた波高値VdがステップS5で求めた故障判定用波高値と異なっていない場合(ステップS8:No)、漏電検知回路1が故障していないと判定する(ステップS10)。 Next, in the flowchart shown in FIG. 3, when the peak value Vd obtained in step S7 is different from the failure determination peak value obtained in step S5 (step S8: Yes), the earth leakage detection circuit 1 (Step S9), and if the peak value Vd obtained in step S7 is not different from the failure determination peak value obtained in step S5 (step S8: No), the earth leakage detection circuit 1 has failed. It is determined that this has not been done (step S10).

なお、ステップS2、S3を省略してもよい。このように構成する場合、検知部4は、補正していない情報D1を参照して、故障判定用抵抗値や故障判定用波高値を求める。 Note that steps S2 and S3 may be omitted. In this configuration, the detection unit 4 obtains the failure determination resistance value and the failure determination peak value with reference to the uncorrected information D1.

漏電検知回路1が故障していない場合、絶縁抵抗Riと模擬絶縁抵抗Ri´とが互いに並列接続されているときに検出抵抗Rdにかかる電圧の波高値Vdは、絶縁抵抗Riと模擬絶縁抵抗Ri´とが互いに並列接続されていないときに検出抵抗Rdにかかる電圧の波高値Vdに対応する抵抗値である故障判定用抵抗値と模擬絶縁抵抗Ri´の抵抗値との合成抵抗値に対応する波高値である故障判定用波高値と同じになると想定される。そのため、検出抵抗Rdのインピーダンスが下がるなど漏電検知回路1が故障している場合、絶縁抵抗Riと模擬絶縁抵抗Ri´とが互いに並列接続されているときに検出抵抗Rdにかかる電圧の波高値Vdは、故障判定用波高値と異なると想定される。 When the leakage detection circuit 1 is not faulty, the peak value Vd of the voltage applied to the detection resistor Rd when the insulation resistance Ri and the simulated insulation resistance Ri'are connected in parallel to each other is the insulation resistance Ri and the simulated insulation resistance Ri'. Corresponds to the combined resistance value of the fault determination resistance value and the resistance value of the simulated insulation resistance Ri', which is the resistance value corresponding to the peak value Vd of the voltage applied to the detection resistor Rd when ´ and ′ are not connected in parallel with each other. It is assumed that the crest value will be the same as the crest value for fault determination. Therefore, when the leakage detection circuit 1 is out of order, such as when the impedance of the detection resistor Rd drops, the peak value Vd of the voltage applied to the detection resistor Rd when the insulation resistor Ri and the simulated insulation resistor Ri'are connected in parallel to each other. Is assumed to be different from the fault determination peak value.

そこで、実施形態の漏電検知回路1では、絶縁抵抗Riと模擬絶縁抵抗Ri´とが互いに並列接続されるようにスイッチSWの動作を制御しているときに検出抵抗Rdにかかる電圧の波高値Vdが故障判定用波高値と異なる場合、漏電検知回路1が故障していると判定する。これにより、実施形態の漏電検知回路1は、自身が故障していると判定することができる。 Therefore, in the leakage detection circuit 1 of the embodiment, the peak value Vd of the voltage applied to the detection resistor Rd when the operation of the switch SW is controlled so that the insulation resistor Ri and the simulated insulation resistor Ri'are connected to each other in parallel. If is different from the fault determination peak value, it is determined that the leakage detection circuit 1 has failed. As a result, the leakage detection circuit 1 of the embodiment can determine that it is out of order.

また、浮遊容量Cfの容量値cfが増加すると、検出抵抗Rdにかかる電圧の波高値Vdが低下する。 Further, as the capacitance value cf of the stray capacitance Cf increases, the peak value Vd of the voltage applied to the detection resistor Rd decreases.

そこで、実施形態の漏電検知回路1では、浮遊容量Cfの容量値cfにより情報D1を補正している。これにより、浮遊容量Cfの容量値cfの増加に伴って波高値Vdが低下してしまっても、故障判定用抵抗値や故障判定用波高値を適切に求めていることができるため、漏電検知回路1の故障判定精度を向上させることができる。 Therefore, in the leakage detection circuit 1 of the embodiment, the information D1 is corrected by the capacitance value cf of the stray capacitance Cf. As a result, even if the peak value Vd decreases as the capacitance value cf of the stray capacitance Cf increases, the resistance value for failure determination and the peak value for failure determination can be appropriately obtained, so that leakage detection can be performed. The failure determination accuracy of the circuit 1 can be improved.

また、本発明は、以上の実施の形態に限定されるものでなく、本発明の要旨を逸脱しない範囲内で種々の改良、変更が可能である。 Further, the present invention is not limited to the above embodiments, and various improvements and changes can be made without departing from the gist of the present invention.

1 漏電検知回路
2 発振回路
3 記憶部
4 検知部
P 直流電源
Lo 負荷
GL グランドライン
BE ボディアース
Ri 絶縁抵抗
Cf 浮遊容量
Cc カップリングコンデンサ
Rd 検出抵抗
Ri´ 模擬絶縁抵抗
SW スイッチ
1 Leakage detection circuit 2 Oscillation circuit 3 Storage unit 4 Detection unit P DC power supply Lo Load GL Ground line BE Body ground Ri Insulation resistance Cf Stray capacitance Cc Coupling capacitor Rd Detection resistance Ri'Simulated insulation resistance SW switch

Claims (2)

車両に搭載される直流電源のグランドラインと前記車両のボディアースとの間の絶縁抵抗の抵抗値の低下を検知する漏電検知回路であって、
発振信号を出力する発振回路と、
前記発振回路と前記グランドラインに接続されるカップリングコンデンサとの間に接続される検出抵抗と、
模擬絶縁抵抗と、
前記絶縁抵抗と前記模擬絶縁抵抗とが互いに並列接続されていない第1の状態、及び、前記絶縁抵抗と前記模擬絶縁抵抗とが互いに並列接続されている第2の状態のどちらか一方の状態に切り替えるスイッチと、
前記第1の状態になるように前記スイッチの動作を制御しているとき、前記検出抵抗にかかる電圧の波高値が閾値以下である場合、前記絶縁抵抗の抵抗値が低下していることを検知する検知部と、
当該漏電検知回路が故障していないときの前記絶縁抵抗の抵抗値と前記検出抵抗にかかる電圧の波高値との対応関係を示す情報を記憶する記憶部と、
を備え、
前記検知部は、
前記第1の状態になるように前記スイッチの動作を制御しているとき、前記情報を参照して、前記検出抵抗にかかる電圧の波高値に対応する抵抗値を故障判定用抵抗値とし、
前記情報を参照して、前記故障判定用抵抗値と前記模擬絶縁抵抗の抵抗値との合成抵抗値に対応する波高値を故障判定用波高値とし、
前記第2の状態になるように前記スイッチの動作を制御しているとき、前記検出抵抗にかかる電圧の波高値が前記故障判定用波高値と異なる場合、当該漏電検知回路が故障していると判定する
ことを特徴とする漏電検知回路。
An earth leakage detection circuit that detects a decrease in the resistance value of the insulation resistance between the ground line of the DC power supply mounted on the vehicle and the body ground of the vehicle.
An oscillator circuit that outputs an oscillation signal and
A detection resistor connected between the oscillator circuit and the coupling capacitor connected to the ground line,
Simulated insulation resistance and
In either the first state in which the insulation resistance and the simulated insulation resistance are not connected in parallel to each other, or the second state in which the insulation resistance and the simulated insulation resistance are connected in parallel to each other. Toggle switch and
When the operation of the switch is controlled so as to be in the first state, if the peak value of the voltage applied to the detection resistor is equal to or less than the threshold value, it is detected that the resistance value of the insulation resistor is lowered. Detection unit and
A storage unit that stores information indicating the correspondence between the resistance value of the insulation resistor and the peak value of the voltage applied to the detection resistor when the leakage detection circuit is not broken.
With
The detector is
When the operation of the switch is controlled so as to be in the first state, the resistance value corresponding to the peak value of the voltage applied to the detection resistor is set as the failure determination resistance value with reference to the information.
With reference to the above information, the crest value corresponding to the combined resistance value of the failure determination resistance value and the resistance value of the simulated insulation resistance is defined as the failure determination crest value.
When the operation of the switch is controlled so as to be in the second state, if the peak value of the voltage applied to the detection resistor is different from the peak value for failure determination, it means that the leakage detection circuit has failed. An earth leakage detection circuit characterized by making a judgment.
請求項1に記載の漏電検知回路であって、
前記検知部は、前記絶縁抵抗に並列接続される浮遊容量の容量値を求め、その求めた容量値により前記情報を補正する
ことを特徴とする漏電検知回路。
The leakage detection circuit according to claim 1.
The earth leakage detection circuit is characterized in that the detection unit obtains a capacitance value of a stray capacitance connected in parallel to the insulation resistor and corrects the information based on the obtained capacitance value.
JP2019060770A 2019-03-27 2019-03-27 Leakage detection circuit Active JP7135966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019060770A JP7135966B2 (en) 2019-03-27 2019-03-27 Leakage detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019060770A JP7135966B2 (en) 2019-03-27 2019-03-27 Leakage detection circuit

Publications (2)

Publication Number Publication Date
JP2020159922A true JP2020159922A (en) 2020-10-01
JP7135966B2 JP7135966B2 (en) 2022-09-13

Family

ID=72642912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019060770A Active JP7135966B2 (en) 2019-03-27 2019-03-27 Leakage detection circuit

Country Status (1)

Country Link
JP (1) JP7135966B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022070050A (en) * 2020-10-26 2022-05-12 株式会社デンソーテン Earth leakage detection device and earth leakage detection method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163141A (en) * 2005-12-09 2007-06-28 Yazaki Corp State detection method and insulation resistance decline detector
WO2010143534A1 (en) * 2009-06-12 2010-12-16 日産自動車株式会社 Connection diagnostic device for ground fault detector
JP2014095628A (en) * 2012-11-09 2014-05-22 Toyota Motor Corp Insulation resistance reduction detection apparatus, vehicle including the same, and insulation resistance reduction detection method
JP2014155329A (en) * 2013-02-08 2014-08-25 Toyota Motor Corp Insulation resistance deterioration detection device, vehicle equipped with the same, and insulation resistance deterioration detection method
JP2015210086A (en) * 2014-04-23 2015-11-24 株式会社デンソー Ground fault determination device
JP2018009864A (en) * 2016-07-13 2018-01-18 株式会社デンソーテン Device and system for detecting electrical leakage

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163141A (en) * 2005-12-09 2007-06-28 Yazaki Corp State detection method and insulation resistance decline detector
WO2010143534A1 (en) * 2009-06-12 2010-12-16 日産自動車株式会社 Connection diagnostic device for ground fault detector
JP2014095628A (en) * 2012-11-09 2014-05-22 Toyota Motor Corp Insulation resistance reduction detection apparatus, vehicle including the same, and insulation resistance reduction detection method
JP2014155329A (en) * 2013-02-08 2014-08-25 Toyota Motor Corp Insulation resistance deterioration detection device, vehicle equipped with the same, and insulation resistance deterioration detection method
JP2015210086A (en) * 2014-04-23 2015-11-24 株式会社デンソー Ground fault determination device
JP2018009864A (en) * 2016-07-13 2018-01-18 株式会社デンソーテン Device and system for detecting electrical leakage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022070050A (en) * 2020-10-26 2022-05-12 株式会社デンソーテン Earth leakage detection device and earth leakage detection method

Also Published As

Publication number Publication date
JP7135966B2 (en) 2022-09-13

Similar Documents

Publication Publication Date Title
US20140008970A1 (en) Ground fault detecting device for an ungrounded circuit
CN103250061B (en) Insulation resistance measurement circuit having self-est function without generating leakage current
WO2012073836A1 (en) Ground fault detection device, ground fault detection method, solar energy generator system, and ground fault detection program
US10436853B2 (en) Failure detection apparatus
US20130162213A1 (en) Voltage equalizer for battery pack
JP6390359B2 (en) Inspection method and inspection apparatus for photovoltaic power generation system
JP2015214264A (en) Power storage system
JP2014137272A (en) Voltage monitoring device
JP2014134467A (en) Secondary battery state diagnostic method
JP6229584B2 (en) Ground fault judgment device
JP2013140074A (en) Electric leak detecting device
JP2020159922A (en) Electric leakage detection circuit
JP4978970B2 (en) Non-grounded circuit insulation detector
KR20180042755A (en) Device for fault detection of pra
JP2020106517A (en) Electric leak detection circuit
JP6453200B2 (en) Voltage detector
WO2016199445A1 (en) Method and device for testing photovoltaic generation system
JPWO2017159053A1 (en) Anomaly detection device
US11867768B2 (en) Battery voltage measurement circuit
JP6822584B2 (en) Leakage detection circuit
KR102642100B1 (en) Method for diagnosing failure of relays
JP6753730B2 (en) Battery monitoring system, self-diagnosis method of disconnection detection function
JP6229585B2 (en) Ground fault judgment device
JP2020106420A (en) Electric leak detection circuit and failure detection method
US11789089B2 (en) Apparatus and method for detecting defect of battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220815

R151 Written notification of patent or utility model registration

Ref document number: 7135966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151