JP7133854B2 - 超伝導複合量子計算回路 - Google Patents

超伝導複合量子計算回路 Download PDF

Info

Publication number
JP7133854B2
JP7133854B2 JP2019199420A JP2019199420A JP7133854B2 JP 7133854 B2 JP7133854 B2 JP 7133854B2 JP 2019199420 A JP2019199420 A JP 2019199420A JP 2019199420 A JP2019199420 A JP 2019199420A JP 7133854 B2 JP7133854 B2 JP 7133854B2
Authority
JP
Japan
Prior art keywords
electrode
ground
ground electrode
contact portion
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019199420A
Other languages
English (en)
Other versions
JP2020061554A (ja
Inventor
泰信 中村
豊 田渕
修平 玉手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2019199420A priority Critical patent/JP7133854B2/ja
Publication of JP2020061554A publication Critical patent/JP2020061554A/ja
Priority to JP2022131712A priority patent/JP7359476B2/ja
Application granted granted Critical
Publication of JP7133854B2 publication Critical patent/JP7133854B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

本発明は、超伝導複合量子計算回路に関する。
量子計算機に関する技術の研究や開発が行われている。量子計算機に関する技術において、超伝導量子ビットを用いた量子計算機において2量子ビットゲート操作を行う方法が知られている(特許文献1、2参照)。
米国特許第7613765号明細書 米国特許出願公開第2016/0380636号明細書
超伝導回路を用いた量子コンピュータの実現のために開発されてきた従来の量子回路では、演算において必要とされる量子ビット間の不要な相互作用を完全にオフすることが困難な回路構成となっている。オフする際に残留する相互作用が存在すると、残留する相互作用自身が量子ビットの制御誤りの原因となるだけでなく、量子ビットに発生したエラーが周囲に伝搬し、拡散する要因となる。残留する相互作用自身が量子ビットの制御誤りの原因となったり、量子ビットに発生したエラーが周囲に伝搬し拡散したりすることは、誤り耐性をもつ量子コンピュータの実装において大きな問題なると同時に、誤り耐性を持たない近似型計算の計算精度低下につながる大きな問題となる。
本発明は上記の点に鑑みてなされたものであり、量子ビット間の相互作用または漏話を抑制できる超伝導複合量子計算回路を提供する。
本発明は上記の課題を解決するためになされたものであり、本発明の一態様は、量子ビットと前記量子ビットの状態を観測する観測電極とを含む回路素子の配線パターンと、接地電位である接地パターンとが基板表面に形成され、前記基板表面のうちの第1面に形成される前記接地パターンと、前記第1面の裏面である第2面に形成される前記接地パターンとを基板内部において接続する貫通電極を備える回路基板と、前記回路基板の前記第1面に形成される前記接地パターンに接する第1接触部と、前記第1面に形成される前記配線パターンの形状に応じた形状の第1非接触部とを備える第1接地電極と、前記回路基板の前記第2面に形成される前記接地パターンに接する第2接触部を備える第2接地電極と、前記量子ビットに対応する位置に接触して、前記回路基板を押し上げる、または、前記回路基板押し下げる接触ばねピンを先端に設けた制御信号線と、前記第1接地電極を前記回路基板の前記第1面に押し付ける、または、前記第2接地電極を前記回路基板の前記第2面に押し付ける付勢部材と、を備え、前記第1接地電極は、前記接地パターンの展延性よりも高い展延性を有する超伝導体によって形成される第1展延部を介して前記接地パターンに接し、前記第2接地電極は、前記接地パターンの展延性よりも高い展延性を有する超伝導体によって形成される第2展延部を介して前記接地パターンに接する超伝導複合量子計算回路である。
また、本発明の一態様は、上記の超伝導複合量子計算回路において、前記第1接地電極を前記回路基板の前記第1面に押し付ける、または、前記第2接地電極を前記回路基板の前記第2面に押し付ける付勢部材をさらに備え、前記第1接地電極は、前記接地パターンの展延性よりも高い展延性を有する超伝導体によって形成される第1展延部を介して前記接地パターンに接し、前記第2接地電極は、前記接地パターンの展延性よりも高い展延性を有する超伝導体によって形成される第2展延部を介して前記接地パターンに接する。
また、本発明の一態様は、上記の超伝導複合量子計算回路において、前記量子ビットは、接地部と第1の結合容量を有する第1の電極と、接地部と前記第1の結合容量よりも大きい第2の結合容量を有し、前記第1の電極とジョセフソン接合により接続される第2の電極とを含む。
また、本発明の一態様は、上記の超伝導複合量子計算回路において、前記回路基板は、前記第1面に形成される前記配線パターンに含まれる前記量子ビットの位置に応じた前記第2面の位置である量子ビット対応位置に、中心部電極と、当該中心部電極の周囲を囲む周囲電極と、当該中心部電極と当該周囲電極とを接続する接続電極とを備える。
また、本発明の一態様は、上記の超伝導複合量子計算回路において、前記第1面に形成される前記配線パターンに含まれる前記量子ビットの位置に対応する位置に前記第1接地電極が有する前記第1非接触部の内部、または、前記第1面に形成される前記配線パターンに含まれる前記量子ビットの位置に応じた前記第2面の位置である量子ビット対応位置に対応する位置に前記第2接地電極が有する第2非接触部の内部、に配置され、前記量子ビットに制御信号を供給する制御信号線をさらに備える。
また、本発明の一態様は、上記の超伝導複合量子計算回路において、前記第1非接触部および前記第2非接触部の幅および高さが前記制御信号の波長より小さなサイズである。
また、本発明の一態様は、上記の超伝導複合量子計算回路において、前記制御信号の周波数帯域がマイクロ波帯域である。
本発明によれば、量子ビット間の相互作用または漏話を抑制できる。
本発明の実施形態に係る超伝導複合量子計算回路の構成の一例を示す図である。 本発明の実施形態に係る基板表面のうちの観測用領域の上面図である。 本発明の実施形態に係る第1非接触部及び第1接触部の一例を示す図である。 本発明の実施形態に係る量子ビットの一例を示す図である。 本発明の実施形態に係る第1等価回路の一例を示す図である。 本発明の実施形態に係るフィルタパターンの一例を示す図である。 本発明の実施形態に係る第2等価回路の一例を示す図である。 本発明の実施形態に係る第3キャパシタ―に流れる電流の制御電流の周波数に対する関係の一例を示す図である。 本発明の実施形態に係る超伝導複合量子計算回路の量子ビットの部分の断面の一例を示す図である。 本発明の実施形態に係る超伝導共振器及び観測電極の一例を示す図である。 本発明の実施形態に係る超伝導複合量子計算回路の観測電極の部分の断面の一例を示す図である。 本発明の変形例に係る量子ビットの一例を示す図である。 本発明の変形例に係る量子ビットの一例を示す図である。 本発明の変形例に係る量子ビットの一例を示す図である。 本発明の変形例に係る量子ビットの一例を示す図である。 本発明の変形例に係る量子ビットの一例を示す図である。 本発明の変形例に係る量子ビットの一例を示す図である。 本発明の変形例に係る量子ビットの一例を示す図である。 本発明の変形例に係るフィルタパターンの一例を示す図である。 本発明の変形例に係るフィルタパターンの一例を示す図である。 本発明の変形例に係るフィルタパターンの一例を示す図である。
(実施形態)
以下、図面を参照しながら本発明の実施形態について詳しく説明する。図1は、本実施形態に係る超伝導複合量子計算回路QCの構成の一例を示す図である。超伝導複合量子計算回路QCは、回路基板1と、第1接地電極2と、第2接地電極3とを備える。回路基板1は、第1接地電極2と、第2接地電極3とにより挟まれている。
回路基板1からみて第1接地電極2が備えられる側を上側、回路基板1からみて第2接地電極3が備えられる側を下側という。
回路基板1は、一例としてシリコン等の誘電体基板である。回路基板1では、シリコン等の誘電体基板の基板表面S上に超伝導膜により回路素子の配線パターンCP及び接地パターンGPが形成される。なお、回路基板1の材質がシリコンである場合、回路基板1は所定の温度よりも低い温度において備えられ当該シリコンは誘電体となる。
配線パターンCPには、量子ビット4と、量子ビット4の状態を観測する観測電極8と、超伝導共振器7と、キャパシター9とが含まれる。図1では、量子ビット4の一例として、量子ビット4-1~4-6が示されている。図1では、超伝導共振器7の一例として、超伝導共振器7-1~7-4が示されている。図1では、キャパシター9の一例として、キャパシター9-1~9-4が示されている。
接地パターンGPは、接地電位である。接地パターンGPには、第1接地パターンGP1と、第2接地パターンGP2とがある。第1接地パターンGP1は、基板表面Sのうち上側の第1面S1に形成される。第2接地パターンGP2は、第1面S1の裏面である第2面S2に形成される。第1接地パターンGP1には、基板上面接地電極11が含まれる。図1では、基板上面接地電極11の一例として、基板上面接地電極11-1~11-4が示されている。
貫通電極10は、回路基板1の第1面S1に形成される第1接地パターンGP1と、第1面S1の裏面である第2面S2に形成される第2接地パターンGP2とを基板内部において接続する。第1接地パターンGP1と、第2接地パターンGP2とは、貫通電極10によって電気的に接触する。図1では、貫通電極10の一例として、貫通電極10-1、及び貫通電極10-2が示されている。
また、回路基板1の基板表面S上において、量子ビット4-1~4-4のように隣接する4つの量子ビット4を頂点とする四角形の領域を、観測用領域Xという。図1では、観測用領域Xの一例として、観測用領域X1及び観測用領域X2が示されている。
回路基板1の誘電体基板上において、隣接する量子ビット4-4、量子ビット4-3、量子ビット4-5、及び量子ビット4-6のように隣接する4つの量子ビット4を頂点とする四角形の領域を、間隙接地領域Yという。図1では、間隙接地領域Yの一例として、第1間隙接地領域Y1及び第1間隙接地領域Y2が示されている。
基板表面Sでは、観測用領域X、及び観測用領域Xを囲む間隙接地領域Yのパターンが繰り返されている。図1では、当該パターンのうちの一部が示されている。
上述したように、回路基板1では、量子ビット4と量子ビット4の状態を観測する観測電極8とを含む回路素子の配線パターンCPと、接地電位である接地パターンGPとが基板表面Sに形成される。回路基板1は、基板表面Sのうちの第1面S1に形成される第1接地パターンGP1と、第1面S1の裏面である第2面S2に形成される第2接地パターンGP2とを基板内部において接続する貫通電極10を備える。
第1接地電極2には、基板表面Sと対向する面に、基板表面S上の配線パターンCPに合わせてエッチング加工が施された後、超伝導膜が形成される。第1接地電極2には、当該エッチング加工によって第1非接触部20が形成される。
第1非接触部20は、基板表面Sのうちの第1面S1と接触していない。第1非接触部20と、第1面S1との間の距離は、一例として、制御信号周波数が10GHz程度の場合に数十から数百ミクロンである。第1非接触部20(第2非接触部30も同様)の幅および高さは制御信号の波長より小さなサイズである。第1非接触部20は、基板表面Sのうちの第1面S1に形成される配線パターンCPの形状に応じた形状である。
一方、第1接地電極2には、第1接地電極2の基板表面Sと対向する面のうち第1非接触部20以外の部分として第1接触部21が備えられる。
第1接触部21は、回路基板1の第1面S1に形成される第1接地パターンGP1に、上面超伝導マイクロバンプ12-1を介して接する。上面超伝導マイクロバンプ12-1は、一例として、接地パターンGPの展延性よりも高い展延性を有する超伝導体である。上面超伝導マイクロバンプ12-1は、第1展延部12の一例である。
ここで本実施形態において、展延性とは、展性または延性、もしくは展性と延性との両方の性質をいう。図1では、第1接触部21の一例として、第1接触部21-1、第1接触部21-2、及び第1接触部21-3が示されている。
上述したように、第1接地電極2は、接地パターンGPの展延性よりも高い展延性を有する超伝導体によって形成される第1展延部12を介して接地パターンGPに接する。
ここで図2及び図3を参照し、第1非接触部20及び第1接触部21について説明する。
図2は、本実施形態に係る基板表面Sのうちの観測用領域X1の上面図である。
図2では、第1非接触部20の一例として、第1非接触部20-3、第1非接触部20-4、第1非接触部20-5、及び第1非接触部20-6が示されている。
図3は、本実施形態に係る第1非接触部20及び第1接触部21の一例を示す図である。図3では、第1接触部21の一例として、第1接触部21-1~21-12が示されている。第1非接触部20は、第1接触部21を除く部分であり、上述したようにエッチング加工により形成される。図3では、第1非接触部20の一例として、第1非接触部20-1及び第1非接触部20-2が示されている。
上述したように、第1接地電極2は、回路基板1の第1面S1に形成される第1接地パターンGP1に接する第1接触部21と、第1面S1に形成される配線パターンCPの形状に応じた形状の第1非接触部20とを備える。
図1に戻って超伝導複合量子計算回路QCの説明を続ける。
量子ビット4は、超伝導薄膜上に形成された超伝導量子ビットである。ここで図4及び図5を参照し、量子ビット4について説明する。
図4は、本実施形態に係る量子ビット4の一例を示す図である。量子ビット4は、内側円盤40と、外リング41と、ジョセフソン接合42と、量子ビット手部43-1と、量子ビット手部43-2とを備える。内側円盤40と、外リング41と、量子ビット手部43-1と、量子ビット手部43-2とは、それぞれ金属電極である。
内側円盤40と、外リング41とは、同心円の金属電極を形成する。内側円盤40と、外リング41とは、ジョセフソン接合42により接合される。外リング41には、量子ビット手部43-1と、量子ビット手部43-2と、量子ビット手部43-3と、量子ビット手部43-4とが接続される。図4では、量子ビット手部43-3と、量子ビット手部43-4とは不図示である。
外リング41は、基板上面接地電極11により周囲を囲まれている。基板上面接地電極11-1及び基板上面接地電極11-2は、基板上面接地電極11の一例である。
ここで図5を参照し、量子ビット4の等価回路である第1等価回路4Cについて説明する。
図5は、本実施形態に係る第1等価回路4Cの一例を示す図である。同心円の金属電極である内側円盤40と外リング41との間には、キャパシタ―Cdqが形成される。第1等価回路4Cでは、キャパシタ―Cdqと、ジョセフソン接合42に由来するインダクターによって、非線形なLC共振器LCRが形成される。キャパシタ―Cdqは容量Cqをもつ。
第1接地電極2、第2接地電極3、基板上面接地電極11、及び基板下面接地電極13をまとめて接地部GEという。
内側円盤40と接地部GEとの間には、第1キャパシタ―Cd1が形成される。第1キャパシタ―Cd1は第1容量C1をもつ。第1容量C1は、内側円盤40と基板上面接地電極11との距離によって主に決まる。図4の例では、内側円盤40と基板上面接地電極11との距離は、内側円盤40の半径によって決まる。
外リング41と接地部GEとの間には、第2キャパシタ―Cd2が形成される。第2キャパシタ―Cd2は第2容量C2をもつ。第2容量は、外リング41と基板上面接地電極11との距離によって主に決まる。外リング41と基板上面接地電極11との距離は、外リング41の半径によって決まる。
量子ビット4と第1接地電極2との間や、量子ビット4と接地部GEとの間には、不要輻射電界Eが発生し得る。不要輻射電界E1は、量子ビット4と接地部GEとの間の不要輻射電界Eの一例である。不要輻射電界E2は、量子ビット4と接地部GEとの間の不要輻射電界Eの一例である。
量子ビット4では、内側円盤40の半径及び外リング41の半径は、第2容量C2が第1容量C1よりも大きくなるという条件に基づいて決められる。量子ビット4では、外リング41の半径を、第2容量C2が第1容量C1よりも大きくなるように大きくしている。
量子ビット4では、第2容量C2が第1容量C1よりも大きいため、不要輻射電界Eによる電位の変動は、外リング41を介して接地部GEへと伝搬する。つまり、第2キャパシタ―Cd2は、いわゆるバイパスコンデンサーとして機能する。
不要輻射電界Eによる電位の変動が外リング41を介して接地部GEへと伝搬するため、内側円盤40と外リング41との間の電位差は、不要輻射電界Eによる電位の変動の影響を第2容量C2が第1容量C1よりも大きくない場合に比べて受けにくい。ここで内側円盤40と外リング41との間の電位差は、量子ビット4がビット情報を記録するための素子として機能するために、不要輻射電界Eに対して安定的である必要がある。
上述したように、量子ビット4は、接地部GEと第1容量C1を有する内側円盤40と、接地部GEと第1容量C1よりも大きい第2容量C2を有し、内側円盤40とジョセフソン接合42により接続される外リング41とを含む。
図1に戻って超伝導複合量子計算回路QCの構成の説明を続ける。
第2接地電極3は、一例として、アルミニウム電極である。第2接地電極3は、第2非接触部30と、第2接触部31とを備える。
第2非接触部30は、回路基板1の基板表面Sのうちの下側の面である第2面S2と接触していない。第2接地電極3は、第2非接触部30を、量子ビット対応位置に対応する位置に有する。ここで量子ビット対応位置とは、回路基板1の基板表面Sのうちの上側の面である第1面S1に形成される配線パターンCPに含まれる量子ビット4の位置に応じた第2面S2の位置である。図1では、第2非接触部30の一例として、第2非接触部30-1、及び第2非接触部30-2が示されている。
第2接触部31は、第2面S2に形成される第2接地パターンGP2に、第2展延部14を介して接する。ここで、第2展延部14は、インジウムなど接地パターンGPの展延性よりも高い展延性を有する超伝導体である。第2展延部14には、後述する導電接触部14-1及び導電接触部14-2がある。
つまり、第2接地電極3は、接地パターンGPの展延性よりも高い展延性を有する超伝導体によって形成される第2展延部14を介して接地パターンGPに接する。
第2非接触部30の内部には、制御信号線5が、第2面S2に対して下側から垂直方向に伸びて配置される。制御信号線5には、制御用信号線5Aと、観測用信号線5Bとの2種類がある。制御用信号線5Aは、量子ビット4に制御信号を伝達するための制御信号線5である。
観測用信号線5Bは、量子ビット4の状態の観測結果を信号(観測信号という)として取り出すための制御信号線5である。観測信号は、観測用信号線5Bをプローブ信号が伝達し、観測電極8の第2面S2において当該プローブ信号が反射することによって、量子ビット4の状態の観測結果を反映して生成される。
制御信号及び観測信号には、一例として、通常は4~12ギガヘルツ帯のマイクロ波が用いられる。つまり、超伝導複合量子計算回路QCでは、制御信号の周波数帯域はマイクロ波帯域である。
量子ビットの制御信号である制御電流が、制御用信号線5Aを伝搬し、制御用信号線5Aの先端に供えられた接触ばねピン50Aにより基板下面接地電極13に形成されるフィルタパターン6へ流れ込む。回路基板1の下側の面である第2面S2に形成されるフィルタパターン6に流れ込んだ制御電流は、第2面S2に形成されたフィルタパターン6から数か所の細線を通じて基板下面接地電極13へ還流する。
上述したように、第2接地電極3は、回路基板1の第2面S2に形成される第2接地パターンGP2に接する第2接触部31を備える。
また、制御信号線5は、第1面S1に形成される配線パターンCPに含まれる量子ビット4の位置に応じた第2面S2の位置である量子ビット対応位置に対応する位置に第2接地電極3が有する第2非接触部30の内部に配置され、量子ビット4に制御信号を供給する。制御信号線5は、量子ビット4が配置される回路基板1の基板表面Sに対して、垂直な方向から配置される。つまり、制御信号線5は、3次元の構造に基づいて配置される。
ここで図6及び図7を参照し、フィルタパターン6について説明する。
図6は、本実施形態に係るフィルタパターン6の一例を示す図である。フィルタパターン6は、量子ビット4の位置に応じた第2面S2の位置である量子ビット対応位置に備えられる。
フィルタパターン6は、中心部電極60と、接続電極62とを備える。中心部電極60は円形の電極である。中心部電極60は、間隙部61を介して周囲を基板下面接地電極13によって囲まれる。中心部電極60と、基板下面接地電極13とは、接続電極62を介して接続される。ここで接続電極62は、数十マイクロメートル幅の細線状の金属電極である。
図6において、間隙部61-1~61-4は、間隙部61の一例である。図6において、接続電極62-1~62-4は、接続電極62の一例である。
ここで図7を参照し、フィルタパターン6を備える場合の量子ビット4の等価回路である第2等価回路4Caについて説明する。
図7は、本実施形態に係る第2等価回路4Caの一例を示す図である。第2等価回路4Ca(図7)と、第1等価回路4C(図5)とを比較すると、制御用信号線5A、インダクターIds、及び第3キャパシタ―Cdcが異なるが、他の構成要素(第1キャパシタ―Cd1、第2キャパシタ―Cd2、LC共振器LCR、内側円盤40、外リング41、量子ビット手部43-1、量子ビット手部43-2、及び接地部GE)が持つ機能は同じである。図7では、図5の第1等価回路4Cと異なる部分を中心に説明する。
制御用信号線5Aと、内側円盤40との間には、第3キャパシタ―Cdcが形成される。第3キャパシタ―Cdcは第3容量Ccをもつ。
接続電極62は、第3キャパシタ―Cdcと並列に備えられるインダクターIdsを形成する。インダクターIdsは、制御用信号線5Aと接地部GEとを接続する。インダクターIdsは、インダクタンスLsをもつ。
駆動電界EDは、制御用信号線5Aに流れる制御電流による電界である。
インダクターIdsと、第3容量Ccと、第1キャパシタ―Cd1及び第2キャパシタ―Cd2とは、ハイパスフィルターを形成する。ここで第2キャパシタ―Cd2のもつ第2容量C2の方が第1キャパシタ―Cd1のもつ第1容量C1よりも十分大きいため、当該ハイパスフィルターにおいて第1キャパシタ―Cd1と第2キャパシタ―Cd2とでは、第1キャパシタ―Cd1の効果に比べて第2キャパシタ―Cd2の効果が殆どである。当該ハイパスフィルターは、マイクロ波帯域よりも十分に高い周波数の信号を制御用信号線5Aなどの外部に通す。上述したように、量子ビット4の制御信号にはマイクロ波が用いられる。インダクターIdsは、量子ビット4のエネルギーが外部へ漏れ出すことを抑制する。
ここでインダクターIdsである接続電極62の効果について説明する。
制御用信号線5Aから供給される制御電流を制御電流Iとし、制御電流Iのうち第3キャパシタ―Cdcの側に流れる電流成分を電流Icとし、制御電流IのうちインダクターIdsの側に流れる電流成分を電流ILとする。制御電流Iの大きさを大きさiとし、電流Icの大きさを大きさiCとし、電流ILの大きさを大きさiLとする。
インダクターIdsのインダクタンスLsが無限大の場合、電流ILの大きさiLはゼロとなり、電流Icの大きさiCは制御電流Iの大きさiに等しくなる。LC共振器LCRが共振している場合、並列インピーダンスの大きさはゼロとなる。
LC共振器LCRに流れる電流は、電流Icの、第1キャパシタ―Cd1の側に流れる電流成分と第2キャパシタ―Cd2の側に流れる電流成分とのうち、第2キャパシタ―Cd2の側に流れる電流成分となる。LC共振器LCRに流れる電流の大きさは、式(1)のように表される。
Figure 0007133854000001
インダクタンスLsが小さくなる場合、電流ILの大きさiLが増加し、電流Icの大きさiCが減少する。したがって、上述した式(1)によれば、インダクタンスLsが小さくなる場合、LC共振器LCRに流れる電流の大きさは減少する。
ここで制御電流Iの大きさを大きさiは、式(2)のように表される。
Figure 0007133854000002
第2容量C2が第3容量Ccよりも十分に大きい場合には、式(2)より制御電流Iの大きさを大きさiは、式(3)のように表される。
Figure 0007133854000003
第2容量C2が第3容量Ccよりも十分に大きい場合には、式(3)より電流Icの大きさiCは、式(4)のように表される。
Figure 0007133854000004
ここで図8を参照し、第3キャパシタ―Cdcに流れる電流Icの制御電流Iの周波数ωに対する関係について説明する。
図8は、本実施形態に係る第3キャパシタ―Cdcに流れる電流Icの制御電流Iの周波数ωに対する関係の一例を示す図である。グラフG1は、制御電流Iの周波数ωの対数に対する電流Icの大きさiCの対数を示す。ここでグラフG1の横軸は、制御電流Iの周波数ωは、インダクターIdsと第3キャパシタ―CdcとのLC共振器の共振周波数によって規格化されている。
ここでLC共振器LCRの共振周波数は、式(5)によって表される。
Figure 0007133854000005
マイクロ波帯域であるLC共振器LCRの共振周波数は、横軸の座標の値が0.1の近傍の範囲Xに含まれる値に対応する。制御電流Iの周波数ωはマイクロ波帯域であるため、インダクターIdsは、範囲Xよりも低い周波数を通過させず、ハイパスフィルターとして機能する。
上述したように、回路基板1は、第1面S1に形成される第1接地パターンGP1に含まれる量子ビット4の位置に応じた第2面S2の位置である量子ビット対応位置に、中心部電極60と、中心部電極60の周囲を囲む基板下面接地電極13と、当該中心部電極60と基板下面接地電極13とを接続する接続電極62とを備える。
ここで図9を参照し、超伝導複合量子計算回路QCの量子ビット4の部分の断面について説明する。
図9は、本実施形態に係る超伝導複合量子計算回路QCの量子ビット4の部分の断面の一例を示す図である。
制御用信号線5Aは、接触ばねピン50Aと、同軸線誘電体部52Aとを備える。接触ばねピン50Aは、ばね51Aを内部に含み、ばね51Aの弾性力により回路基板1を第1接地電極2に押し付ける。同軸線誘電体部52Aは、接触ばねピン50Aを第2接地電極3から絶縁する。同軸線誘電体部52Aの形状は円筒状であり、図9では、同軸線誘電体部52Aの断面の一例として、同軸線誘電体部52A-1及び同軸線誘電体部52A―2が示されている。
基板下面接地電極13-1と第2接触部31-1との間には、導電接触部14-1が備えられる。基板下面接地電極13-2と第2接触部31-2との間には、導電接触部14-2が備えられる。上述したように導電接触部14-1及び導電接触部14-2は、第2展延部14の一例である。
なお、導電接触部14-1及び導電接触部14-2に代えて、超伝導マイクロバンプが備えられてもよい。
ここで超伝導複合量子計算回路QCは、第1接地電極2の上側に、第1接地電極2を回路基板1の第1面S1に押し付ける付勢部材P(不図示)を備える。ここで付勢部材Pは、ばね51Aの弾性力と反対向きに第1接地電極2を回路基板1の第1面S1に押し付ける。
付勢部材Pは、第1接地電極2を回路基板1の第1面S1に押し付けることにより、第1接地電極2を回路基板1に密着させ、かつ回路基板1を第2接地電極3に密着させる。付勢部材Pは、一例として、板ばね、または接触ばねピンである。
このような構成により基板下面接地電極13-1と基板下面接地電極13-2は第2接地電極3に密着し、これらの電位が接地部GEの電位と均一化される。これによって第2容量C2を介して外リング41の電位も実効的に接地部GEと同一になるため、量子ビットへの制御信号をほぼ漏洩・漏話なく量子ビットを構成する内側円盤40とジョセフソン接合42に到達させることができる。
図1に戻って超伝導複合量子計算回路QCの説明を続ける。
超伝導共振器7は、量子ビット4と相互作用することによって量子ビット4の状態を読み出す。隣接する4つの超伝導共振器7-1~7-4は、観測電極8によって集約される。上述したように、読みだされた量子ビット4の状態は、観測電極8を介して観測用信号線5Bに観測信号として取り出される。
ここで図10及び図11を参照し、超伝導共振器7及び観測電極8について説明する。 図10は、本実施形態に係る超伝導共振器7及び観測電極8の一例を示す図である。超伝導共振器7は、一例として第1面S1上において蛇行する形状を有する。なお、超伝導共振器7の形状は、超伝導共振器7が共振器として機能しさえすればどのような形状であってもよい。例えば、超伝導共振器7は、蛇行する形状に代えて、直線状の形状を有してもよいし、U字状に湾曲した形状であってもよい。
観測電極8は、観測基板貫通電極80を備える。観測基板貫通電極80は、回路基板1において備えられる場所が異なる以外は、貫通電極10と同一の特徴を備える。
図11は、本実施形態に係る超伝導複合量子計算回路QCの観測電極8の部分の断面の一例を示す図である。観測基板貫通電極80の形状は円筒状であり、図11では、観測基板貫通電極80の断面の一例として、観測基板貫通電極80-1及び観測基板貫通電極80-2が示されている。
観測用信号線5Bは、接触ばねピン50Bと、同軸線誘電体部52Bとを備える。接触ばねピン50Bは、ばね51Bを内部に含み、ばね51Bの弾性力により回路基板1を第1接地電極2に押し付ける。同軸線誘電体部52Bは、接触ばねピン50Bを第2接地電極3から絶縁する。同軸線誘電体部52Bの形状は円筒状であり、図11では、同軸線誘電体部52Bの断面の一例として、同軸線誘電体部52B-1及び同軸線誘電体部52B―2が示されている。
なお、本実施形態では、制御信号線5が、第2接地電極3が有する第2非接触部30の内部から、基板表面Sの第2面S2に対して下側から垂直方向に伸びて配置される場合について説明したが、これに限らない。制御信号線5は、第1接地電極2が有する第1非接触部20の内部から、基板表面Sの第1面S1に上側から垂直方向に伸びて配置されてもよい。
つまり、制御信号線5は、第1面S1に形成される配線パターンCPに含まれる量子ビット4の位置に対応する位置に第1接地電極2が有する第1非接触部20の内部に配置されてもよい。
制御信号線5が、第1接地電極2が有する第1非接触部20の内部から、基板表面Sの第1面S1に上側から垂直方向に伸びて配置される場合、超伝導複合量子計算回路QCにはフィルタパターン6は備えられなくてよい。
また、制御信号線5は、量子ビット4及び観測電極8毎に、第2接地電極3が有する第2非接触部30の内部から、基板表面Sの第2面S2に対して下側から垂直方向に伸びて配置される場合と、第1接地電極2が有する第1非接触部20の内部から、基板表面Sの第1面S1に上側から垂直方向に伸びて配置される場合とがあってもよい。
なお、本実施形態では、付勢部材Pが第1接地電極2を回路基板1の第1面S1に押し付ける場合について説明したが、これに限らない。付勢部材Pは、第2接地電極3を回路基板1の第2面S2に押し付けてもよい。また、超伝導複合量子計算回路QCは、第1接地電極2を回路基板1の第1面S1に押し付ける付勢部材と、第2接地電極3を回路基板1の第2面S2に押し付ける付勢部材との2種類の付勢部材とを備えてもよい。
以上に説明したように、本実施形態に係る超伝導複合量子計算回路QCは、回路基板1と、第1接地電極2と、第2接地電極3とを備える。
回路基板1は、量子ビット4と量子ビット4の状態を観測する観測電極8とを含む回路素子の配線パターンCPと、接地電位である接地パターンGPとが基板表面Sに形成され、基板表面Sのうちの第1面S1に形成される第1接地パターンGP1と、第1面S1の裏面である第2面S2に形成される第2接地パターンGP2とを基板内部において接続する貫通電極10を備える。
第1接地電極2は、回路基板1の第1面S1に形成される第1接地パターンGP1に接する第1接触部21と、第1面S1に形成される配線パターンCPの形状に応じた形状の第1非接触部20とを備える。
第2接地電極3は、回路基板1の第2面S2に形成される第2接地パターンGP2に接する第2接触部31を備える。
この構成により、本実施形態に係る超伝導複合量子計算回路QCでは、量子ビット4の上側の空間や回路基板1内の不要な電磁モード(電磁波の共振現象)の発生や広がりを抑制できるため、量子ビット間の相互作用または漏話を抑制できる。
超伝導複合量子計算回路QCでは、第1接地電極2は、量子ビット4の上側の空間を、第1接地電極2が備えられない場合に比べて小さくする。量子ビット4の上側の空間には、不要な電磁モードが発生し得る。超伝導複合量子計算回路QCでは、不要な電磁モードのモード周波数を、量子ビット4の周波数から離調できる。また、超伝導複合量子計算回路QCでは、不要な電磁モードの量子ビット4の上側の空間における広がりを局所化することによって、量子ビット4の制御信号の広範囲への漏話を抑制できる。
貫通電極10は、回路基板1内の不要な電磁モードが発生することを抑制し、量子ビット4間の制御信号の広範囲への漏話を抑制できる。
また、本実施形態に係る超伝導複合量子計算回路QCは、第1接地電極2を回路基板1の第1面S1に押し付ける、または、第2接地電極3を回路基板1の第2面S2に押し付ける付勢部材Pをさらに備える。
ここで第1接地電極2は、接地パターンGPの展延性よりも高い展延性を有する超伝導体によって形成される第1展延部12を介して接地パターンGPに接する。
第2接地電極3は、接地パターンGPの展延性よりも高い展延性を有する超伝導体によって形成される第2展延部14を介して接地パターンGPに接する。
この構成により、本実施形態に係る超伝導複合量子計算回路QCでは、第1接地電極2と回路基板1の第1面S1上の接地パターンGPとの間の空隙、または第2接地電極3と回路基板1の第2面S2上の接地パターンGPと間の空隙を除去できるため、隣接する制御信号線5を伝搬する制御用信号または観測用信号相互間の漏話を抑制できる。
また、本実施形態に係る超伝導複合量子計算回路QCでは、量子ビット4は、接地部GEと第1の結合容量(この一例において、第1容量C1)を有する第1の電極(この一例において、内側円盤40)と、接地部GEと第1の結合容量(この一例において、第1容量C1)よりも大きい第2の結合容量(この一例において、第2容量C2)を有し、第1の電極(この一例において、内側円盤40)とジョセフソン接合42により接続される第2の電極(この一例において、外リング41)とを含む。
この構成により、本実施形態に係る超伝導複合量子計算回路QCでは、外リング41によって、量子ビット4を構成する金属電極(この一例において、内側円盤40、及び外リング41)を伝搬する不要な電磁モードから遮蔽できるため、量子ビット4の誤り率を抑制できる。ここで量子ビット4を構成する金属電極(この一例において、内側円盤40、及び外リング41)を伝搬する不要な電磁モードとは、例えば、第1接地電極2や貫通電極10等を備えてもなお残った不要な電磁モードである。
従来、量子ビットを形成する二つの金属電極は、接地電極に対して対称であるか、または、片側の金属電極が接地であった。二つの金属電極が接地電極に対して対称とは、二つの金属電極のうちの一方の金属電極と当該接地電極との間の結合容量と、二つの金属電極のうちの他方の金属電極と当該接地電極との間の結合容量とが等しいことをいう。また、量子ビットを形成する二つの金属電極のうち片側の金属電極が接地であるとは、片側の金属電極が接地電極と同等の機能を備えていることを意味する。
本実施形態に係る超伝導複合量子計算回路QCでは、量子ビットを形成する二つの金属電極のうち片側の金属電極を接地電極へ短絡しないことにより、接地電極面の電位揺らぎの影響を排除できる。
また、本実施形態に係る超伝導複合量子計算回路QCでは、回路基板1は、第1面S1に形成される第1接地パターンGP1に含まれる量子ビット4の位置に応じた第2面S2の位置である量子ビット対応位置に、中心部電極60と、中心部電極60の周囲を囲む周囲電極(この一例において、基板下面接地電極13)と、中心部電極60と周囲電極(この一例において、基板下面接地電極13とを接続する接続電極62とを備える。
この構成により、本実施形態に係る超伝導複合量子計算回路QCでは、量子ビット4の制御オフ時において、量子ビット4と制御信号線5との相互作用により量子ビット4のエネルギーが外部へ漏れ出すことを抑制できるため、量子ビット4の計算の誤り率を抑制できる。
また、本実施形態に係る超伝導複合量子計算回路QCは、制御信号線5をさらに備える。制御信号線5は、第1面S1に形成される配線パターンCPに含まれる量子ビット4の位置に対応する位置に第1接地電極2が有する第1非接触部20の内部、または、第1面S1に形成される配線パターンCPに含まれる量子ビット4の位置に応じた第2面S2の位置である量子ビット対応位置に対応する位置に第2接地電極3が有する第2非接触部の内部、に配置され、量子ビット4に制御信号を供給する。
この構成により、本実施形態に係る超伝導複合量子計算回路QCでは、回路基板1の基板表面S上において、量子ビット4の数に依らず一定の配線パターンCPの密度を確保できるため、回路基板1の基板表面S上において配線パターンCPの密度が大きくなることを抑制できる。
従来、制御信号線は、基板の側面から導入され、基板の周辺から基板の表面の二次元平面に配置された量子ビットを制御していた。従来の回路では、量子ビットの数の増大に伴い、回路の配線密度が増え、いずれは限界となる。
一方、本実施形態に係る超伝導複合量子計算回路QCでは、制御信号線5を回路基板1の下側の第2面S2または上側の第1面S1に配置する三次元構造をとることにより、量子ビット4の数に依らず一定の配線パターンCPの密度を確保できる。本実施形態に係る超伝導複合量子計算回路QCでは、量子ビット4の数に依らず一定の配線パターンCPの密度を確保できるため、回路の大規模化に向けた拡張性を担保可能である。
また、本実施形態に係る超伝導複合量子計算回路QCでは、制御信号線5が量子ビット4に供給する制御信号の周波数帯域がマイクロ波帯域である。
本実施形態に係る超伝導複合量子計算回路QCでは、制御や観測にマイクロ波信号を用いることができるため、従来のRF(Radio Frequency)による制御に比べ、接地電極を流れる表面電流面積を最小化し、電極電位のゆらぎが抑制できる。
(量子ビットを構成する金属電極の変形例)
上述した実施形態においては、量子ビット4を構成する金属電極である内側円盤40と、外リング41とが同心円の金属電極を形成する場合について説明したが、量子ビット4を構成する金属電極の形状は同心円に限らない。
ここで図12~18を参照し、量子ビット4を構成する金属電極の形状の変形例について説明する。変形例では、上述した実施形態の量子ビット4を構成する金属電極(図4)と異なる部分を中心に説明する。
図12は、本実施形態の変形例に係る量子ビット4aの一例を示す図である。量子ビット4aは、内側円盤40aと、外リング41aと、ジョセフソン接合42aと、量子ビット手部43a-1と、量子ビット手部43a-2とを備える。
外リング41aは、外リング41(図4)と異なり、閉じておらず、間隙44aを有する。
図13は、本実施形態の変形例に係る量子ビット4bの一例を示す図である。量子ビット4bは、内側円盤40bと、外リング41bと、ジョセフソン接合42bと、量子ビット手部43b-1と、量子ビット手部43b-2とを備える。
外リング41bは、外リング41(図4)と異なり、閉じておらず、間隙44bを有する。外リング41bは、外リング41a(図12)と異なり、量子ビット手部43bと直接には繋がっていない。
外リング41bは、凸部45b-1及び凸部45b-2を有する。量子ビット手部43b-1は先端部46b-1を有し、量子ビット手部43b-2は先端部46b-2を有する。凸部45b-1及び凸部45b-2は、先端部46b-1及び先端部46b-2の形状に応じた凹部を形成する。
図14は、本実施形態の変形例に係る量子ビット4cの一例を示す図である。量子ビット4cは、第1長方形40cと、第2長方形41cと、ジョセフソン接合42cと、量子ビット手部43c-1と、量子ビット手部43c-2とを備える。
第1長方形40cと、第2長方形41cとは、ジョセフソン接合42cにより接続される。第1長方形40cと基板上面接地電極11c-6との距離は、第1容量C1の値が第2容量C2に比べて十分に小さくなる程度に大きい。図14では、一例として、第1長方形40cの面積を小さくして、第1長方形40cと基板上面接地電極11c-6との距離を大きくしている。第2長方形41cの第1長方形40cと対向する辺の長さは、第1長方形40cの第2長方形41cと対向する辺の長さに比べて長い。
量子ビット手部43c-1及び量子ビット手部43c-2は、第2長方形41cに直接には繋がっていない。
基板上面接地電極11c-5、及び基板上面接地電極11c-6の形状と、基板上面接地電極11-5(図4)、及び基板上面接地電極11-6(図4)とは、第1長方形40cの形状、及び第2長方形41cの形状に応じて異なる。
図15は、本実施形態の変形例に係る量子ビット4dの一例を示す図である。量子ビット4dは、第1長方形40dと、第2長方形41dと、ジョセフソン接合42dと、量子ビット手部43d-1と、量子ビット手部43d-2とを備える。
第1長方形40dと基板上面接地電極11d-6との距離は、第1容量C1の値が第2容量C2に比べて十分に小さくなる程度に大きい。図15では、一例として、第1長方形40dの面積を小さくして、第1長方形40dと基板上面接地電極11d-6との距離を大きくしている。図15に示す例では、第2長方形41dの第1長方形40dと対向する辺の長さと、第1長方形40dの第2長方形41dと対向する辺の長さとは等しい。なお、第2長方形41dの第1長方形40dと対向する辺の長さと、第1長方形40dの第2長方形41dと対向する辺の長さとは、図14の第1長方形40c及び第2長方形41cのように等しくなくてもよい。
量子ビット手部43d-1は、屈曲した先端部46d-1を有し、量子ビット手部43d-2は屈曲した先端部46d-2を有する。基板上面接地電極11d-5は、凸部110dを有する。先端部46d-1、先端部46d-2、及び凸部110dは、第2長方形41dに対向する。図15の量子ビット4dでは、先端部46d-1、先端部46d-2、及び凸部110dのため、先端部46d-1、先端部46d-2、及び凸部110dが備えられない場合に比べて第2容量C2が大きくなる。
図16は、本実施形態の変形例に係る量子ビット4eの一例を示す図である。量子ビット4eは、第1長方形40eと、十字41eと、ジョセフソン接合42eとを備える。十字部分43e-1と、十字部分43e-2とは、量子ビット4eと隣接する量子ビットの十字の一部がそれぞれ示されている。
第1長方形40eと、十字41eとは、ジョセフソン接合42eにより接続される。
基板上面接地電極11e-5及び基板上面接地電極11e-6の形状の形状と、基板上面接地電極11-5(図4)、及び基板上面接地電極11-6(図4)とは、第1長方形40eと、十字41eの形状に応じて異なる。
図17は、本実施形態の変形例に係る量子ビット4fの一例を示す図である。量子ビット4fは、第1長方形40fと、十字41fと、ジョセフソン接合42fとを備える。十字部分43f-1と、十字部分43f-2とは、量子ビット4fと隣接する量子ビットの十字の一部がそれぞれ示されている。
量子ビット4f(図17)と、量子ビット4e(図16)とでは、第1長方形40f(図17)と基板上面接地電極11f-2(図17)との距離は、第1長方形40e(図16)と基板上面接地電極11e-2(図16)との距離よりも大きくなっている点が異なる。この一例では、基板上面接地電極11e-2(図16)の十字41e(図16)及び第1長方形40e(図16)に対向する部分の形状が直線であるのに対して、基板上面接地電極11f-2(図17)の十字41f(図17)及び第1長方形40f(図17)に対向する部分の形状が曲線であることによって、第1長方形40f(図17)と基板上面接地電極11f-2(図17)との距離が大きくなっている。
量子ビット4f(図17)では、第1長方形40f(図17)と基板上面接地電極11f-2(図17)との距離が大きいため、量子ビット4e(図16)に比べて第1容量C1が小さい。
図18は、本実施形態の変形例に係る量子ビット4gの一例を示す図である。量子ビット4gは、第1電極40gと、第2電極41gと、ジョセフソン接合42gと、量子ビット手部43g-1と、量子ビット手部43g-2とを備える。
第1電極40gと、第2電極41gとは、ジョセフソン接合42gにより接続される。第1電極40gと、第2電極41gとは、それぞれ櫛型の形状を有し、互いに対向することによって櫛形電極を形成する。図18に示す例では、第1電極40gは2つの歯を有し、第2電極41gは3つの歯を有する。
第1電極40gと基板上面接地電極11g-6との距離は、第1容量C1の値が第2容量C2に比べて十分に小さくなる程度に大きい。図18では、一例として、第1電極40gの面積を小さくして、第1電極40gと基板上面接地電極11g-6との距離を大きくしている。
上述した変形例においては、内側円盤40a、内側円盤40b、第1長方形40c、第1長方形40d、第1長方形40e、第1長方形40f、及び第1電極40gは、第1の電極の一例である。外リング41a、外リング41b、第2長方形41c、第2長方形41d、十字41e、十字41f、及び第2電極41gは、第2の電極の一例である。
第2の電極と接地部GEとの間の結合容量は、第1の電極と接地部GEとの間の結合容量よりも大きい。第1の電極と第2の電極との間の電位差は、不要輻射電界Eによる電位の変動の影響を、第2の電極と接地部GEとの間の結合容量が第1の電極と接地部GEとの間の結合容量よりも大きくない場合に比べて受けにくい。
(フィルタパターンの変形例)
上述した実施形態においては、フィルタパターン6が、中心部電極60と基板下面接地電極13とが4つの接続電極62によって接続される場合について説明したが、これに限らない。
ここで図19~21を参照し、フィルタパターン6の変形例について説明する。変形例では、上述した実施形態のフィルタパターン6(図6)と異なる部分を中心に説明する。
図19は、本実施形態に係るフィルタパターン6aの一例を示す図である。フィルタパターン6aは、中心部電極60aと、接続電極62aとを備える。中心部電極60aは、間隙部61aを介して周囲を基板下面接地電極13aによって囲まれる。中心部電極60aと、基板下面接地電極13aとは、1つの接続電極62aによって接続される。
なお、接続電極62の数は、図6において説明した4つの場合、図19において説明した1つの場合に限られず、2つ、3つ、5つ以上であってもよい。
図20は、本実施形態に係るフィルタパターン6bの一例を示す図である。フィルタパターン6bは、中心部電極60bと、接続電極62bとを備える。中心部電極60bは、間隙部61bを介して周囲を基板下面接地電極13bによって囲まれる。中心部電極60bと、基板下面接地電極13bとは、接続電極62bを介して接続される。
フィルタパターン6bにおいて、中心部電極60bと、接続電極62bとは、一体となって備えられる。中心部電極60bと、接続電極62bとは、一例として曲線状の輪郭を形成する。接続電極62b(図20)の幅は、中心部電極60bから基板下面接地電極13bへ向かう向きに狭くなる。
なお、接続電極62bの数は、図20において説明した1つの場合に限られず、2つ以上であってもよい。
図21は、本実施形態に係るフィルタパターン6cの一例を示す図である。フィルタパターン6cは、中心部電極60cと、接続電極62c-1及び接続電極62c-2とを備える。中心部電極60cは、間隙部61b-1及び間隙部61b-2を介して周囲を基板下面接地電極13cによって囲まれる。中心部電極60cと、基板下面接地電極13cとは、接続電極62c-1及び接続電極62c-2を介して接続される。
中心部電極60cの形状は、長方形である。
なお、接続電極62c-1及び接続電極62c-2の数は、図21において説明した2つの場合に限られず、1つまたは3つ以上であってもよい。
以上、図面を参照してこの発明の一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。
QC…超伝導複合量子計算回路、1…回路基板、S…基板表面、S1…第1面、S2…第2面、2…第1接地電極、3…第2接地電極、4…量子ビット、5…制御信号線、6…フィルタパターン、7…超伝導共振器、8…観測電極、9…キャパシター、10…貫通電極10、11…基板上面接地電極、12…第1展延部、13…基板下面接地電極、14…第2展延部、20…第1非接触部、21…第1接触部、30…第2非接触部、31…第2接触部、40…内側円盤、41…外リング、42…ジョセフソン接合、43…量子ビット手部、45…基板下面接地電極、46…堀部、50…接触ピン、60…中心部電極、61…間隙部61、62…接続電極、80…観測基板貫通電極、P付勢部材、CP…配線パターン、GP…接地パターン

Claims (6)

  1. 量子ビットと前記量子ビットの状態を観測する観測電極とを含む回路素子の配線パターンと、接地電位である接地パターンとが基板表面に形成され、前記基板表面のうちの第1面に形成される前記接地パターンと、前記第1面の裏面である第2面に形成される前記接地パターンとを基板内部において接続する貫通電極を備える回路基板と、
    前記回路基板の前記第1面に形成される前記接地パターンに接する第1接触部と、前記第1面に形成される前記配線パターンの形状に応じた形状の第1非接触部とを備える第1接地電極と、
    前記回路基板の前記第2面に形成される前記接地パターンに接する第2接触部を備える第2接地電極と、
    前記量子ビットに対応する位置に接触して、前記回路基板を押し上げる、または、前記回路基板押し下げる接触ばねピンを先端に設けた制御信号線と、
    前記第1接地電極を前記回路基板の前記第1面に押し付ける、または、前記第2接地電極を前記回路基板の前記第2面に押し付ける付勢部材と、を備え、
    前記第1接地電極は、前記接地パターンの展延性よりも高い展延性を有する超伝導体によって形成される第1展延部を介して前記接地パターンに接し、
    前記第2接地電極は、前記接地パターンの展延性よりも高い展延性を有する超伝導体によって形成される第2展延部を介して前記接地パターンに接する、
    超伝導複合量子計算回路。
  2. 前記量子ビットは、接地部と第1の結合容量を有する第1の電極と、接地部と前記第1の結合容量よりも大きい第2の結合容量を有し、前記第1の電極とジョセフソン接合により接続される第2の電極とを含む
    請求項1に記載の超伝導複合量子計算回路。
  3. 前記回路基板は、前記第1面に形成される前記配線パターンに含まれる前記量子ビットの位置に応じた前記第2面の位置である量子ビット対応位置に、中心部電極と、当該中心部電極の周囲を囲む周囲電極と、当該中心部電極と当該周囲電極とを接続する接続電極とを備える
    請求項2に記載の超伝導複合量子計算回路。
  4. 前記制御信号線は前記第1面に形成される前記配線パターンに含まれる前記量子ビットの位置に対応する位置に前記第1接地電極が有する前記第1非接触部の内部、または、前記第1面に形成される前記配線パターンに含まれる前記量子ビットの位置に応じた前記第2面の位置である量子ビット対応位置に対応する位置に前記第2接地電極が有する第2非接触部の内部、に配置され、前記量子ビットに制御信号を供給する
    請求項1から請求項3のいずれか一項に記載の超伝導複合量子計算回路。
  5. 前記第1非接触部および前記第2非接触部の幅および高さが前記制御信号の波長より小さなサイズである
    請求項4に記載の超伝導複合量子計算回路。
  6. 前記制御信号の周波数帯域がマイクロ波帯域である
    請求項5に記載の超伝導複合量子計算回路。
JP2019199420A 2019-10-31 2019-10-31 超伝導複合量子計算回路 Active JP7133854B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019199420A JP7133854B2 (ja) 2019-10-31 2019-10-31 超伝導複合量子計算回路
JP2022131712A JP7359476B2 (ja) 2019-10-31 2022-08-22 超伝導複合量子計算回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019199420A JP7133854B2 (ja) 2019-10-31 2019-10-31 超伝導複合量子計算回路

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018191287A Division JP7133842B2 (ja) 2018-10-09 2018-10-09 超伝導複合量子計算回路

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022131712A Division JP7359476B2 (ja) 2019-10-31 2022-08-22 超伝導複合量子計算回路

Publications (2)

Publication Number Publication Date
JP2020061554A JP2020061554A (ja) 2020-04-16
JP7133854B2 true JP7133854B2 (ja) 2022-09-09

Family

ID=70219105

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019199420A Active JP7133854B2 (ja) 2019-10-31 2019-10-31 超伝導複合量子計算回路
JP2022131712A Active JP7359476B2 (ja) 2019-10-31 2022-08-22 超伝導複合量子計算回路

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022131712A Active JP7359476B2 (ja) 2019-10-31 2022-08-22 超伝導複合量子計算回路

Country Status (1)

Country Link
JP (2) JP7133854B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021245949A1 (ja) * 2020-06-05 2021-12-09 日本電気株式会社 量子デバイス及び量子計算機
TW202331945A (zh) 2021-11-10 2023-08-01 日商大日本印刷股份有限公司 貫通電極基板,組裝基板及貫通電極基板的製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140264287A1 (en) 2013-03-15 2014-09-18 International Business Machines Corporation Removal of spurious microwave modes via flip-chip crossover
JP2016511534A (ja) 2013-01-18 2016-04-14 イェール ユニバーシティーYale University 少なくとも1つの囲いを有する超伝導デバイスを製造するための方法
JP2018011266A (ja) 2016-07-15 2018-01-18 株式会社東芝 計算装置
WO2018052414A1 (en) 2016-09-14 2018-03-22 Google Llc Reducing dissipation and frequency noise in quantum devices using a local vacuum cavity

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7613765B1 (en) * 2004-03-26 2009-11-03 D-Wave Systems, Inc. Bus architecture for quantum processing
WO2006011451A1 (ja) 2004-07-27 2006-02-02 Japan Science And Technology Agency ジョセフソン量子計算素子及びそれを用いた集積回路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016511534A (ja) 2013-01-18 2016-04-14 イェール ユニバーシティーYale University 少なくとも1つの囲いを有する超伝導デバイスを製造するための方法
US20140264287A1 (en) 2013-03-15 2014-09-18 International Business Machines Corporation Removal of spurious microwave modes via flip-chip crossover
JP2018011266A (ja) 2016-07-15 2018-01-18 株式会社東芝 計算装置
WO2018052414A1 (en) 2016-09-14 2018-03-22 Google Llc Reducing dissipation and frequency noise in quantum devices using a local vacuum cavity

Also Published As

Publication number Publication date
JP7359476B2 (ja) 2023-10-11
JP2020061554A (ja) 2020-04-16
JP2022172189A (ja) 2022-11-15

Similar Documents

Publication Publication Date Title
JP7359476B2 (ja) 超伝導複合量子計算回路
US20230380303A1 (en) Superconducting complex quantum computing circuit
US7149666B2 (en) Methods for modeling interactions between massively coupled multiple vias in multilayered electronic packaging structures
Kosen et al. Building blocks of a flip-chip integrated superconducting quantum processor
Harokopus et al. Characterization of microstrip discontinuities on multilayer dielectric substrates including radiation losses
US7253788B2 (en) Mixed-signal systems with alternating impedance electromagnetic bandgap (AI-EBG) structures for noise suppression/isolation
CN114611704B (zh) 一种量子比特耦合方法和结构
JPWO2004068922A1 (ja) 多層プリント基板、電子機器、および実装方法
CN115917739A (zh) 快速射频封装
CN210515357U (zh) 一种量子芯片结构
Lee et al. Analysis and suppression of SSN noise coupling between power/ground plane cavities through cutouts in multilayer packages and PCBs
TWI705587B (zh) 超導複合量子計算電路
JP7410125B2 (ja) 量子計算チップのためのワイヤボンド・クロストーク減少
TWI778409B (zh) 超導複合量子計算電路
Sivaraman Design of magnetic probes for near field measurements and the development of algorithms for the prediction of EMC
Nešić et al. Shielding effectiveness estimation by using monopole-receiving antenna and comparison with dipole antenna
Roy et al. Dumbbell‐shaped defected ground structure
Stumpf Pulsed EM Field Computation in Planar Circuits: The Contour Integral Method
Egorova et al. Analog Ising chain simulation with transmons
Yook Electromagnetic modeling of high-speed high-frequency interconnects
Lin et al. Study of crosstalk effects on the packaged SAW by the FDTD method
WO2023152308A1 (en) Quantum computing apparatus with interposer and methods of fabrication and operation thereof, quantum computing apparatus comprising tantalum nitride and method of fabrication thereof
CN116596078A (zh) 一种双层微波量子计算芯片
Milsom et al. Radio frequency simulation of a complex printed circuit board layout by the quasi‐static boundary element method
Lee et al. Performance Simulations and Verification for Power/Ground Planes Connected with Ground Area-Fills on Multilayer PCBs

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220823

R150 Certificate of patent or registration of utility model

Ref document number: 7133854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150