TWI705587B - 超導複合量子計算電路 - Google Patents
超導複合量子計算電路 Download PDFInfo
- Publication number
- TWI705587B TWI705587B TW108139578A TW108139578A TWI705587B TW I705587 B TWI705587 B TW I705587B TW 108139578 A TW108139578 A TW 108139578A TW 108139578 A TW108139578 A TW 108139578A TW I705587 B TWI705587 B TW I705587B
- Authority
- TW
- Taiwan
- Prior art keywords
- electrode
- ground
- qubit
- substrate
- contact
- Prior art date
Links
Images
Landscapes
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Abstract
超導複合量子計算電路具有:電路基板,在基板表面形成有包含量子位元與觀測量子位元之狀態之觀測電極之電路元件之配線圖案、及、身為接地電位之接地圖案,具有將在基板表面中之第1面形成之接地圖案、及、在身為第1面之反面之第2面形成之接地圖案在基板內部予以連接之貫通電極;第1接地電極,具有與在電路基板之第1面形成之接地圖案接觸之第1接觸部、及、與在第1面形成之配線圖案之形狀對應之形狀之第1非接觸部;第2接地電極,具有與在電路基板之第2面形成之接地圖案接觸之第2接觸部;在前端設有接觸彈簧銷之控制訊號線,該接觸彈簧銷是接觸與量子位元對應之位置,而將電路基板之第1面推擠在第1接地電極、或者、將電路基板之第2面推擠在第2接地電極;賦予勢能構件,將第1接地電極推擠在電路基板之第1面、或者、將第2接地電極推擠在電路基板之第2面;第1接地電極是透過第1延展部而與接地圖案接觸,該第1延展部是藉由具有比接地圖案之延展性還高之延展性之超導體而形成;第2接地電極是透過第2延展部而與接地圖案接觸,該第2延展部是藉由具有比接地圖案之延展性還高之延展性之超導體而形成。
Description
發明領域
本發明是涉及超導複合量子計算電路。
發明背景
與量子計算機相關之技術是正受到研究、開發。關於與量子計算機相關之技術,在用到超導量子位元之量子計算機進行2量子位元閘操作之方法已為人知(參考專利文獻1、2)。
先行技術文獻
專利文獻
專利文獻1:美國專利第7613765號說明書
專利文獻2:美國專利申請案公開第2016/0380636號說明書
發明概要
為了實現用到超導電路之量子電腦而開發之習知之量子電路,是難以將演算上必要之量子位元間之不需要之相互作用完全關閉之電路構成。若關閉時有殘留之相互作用存在,則殘留之相互作用不但本身會成為量子位元之控
制誤差之原因,還會成為將在量子位元發生之錯誤朝周圍傳播、擴散之因素。殘留之相互作用本身成為量子位元之控制誤差之原因,或是令在量子位元發生之錯誤朝周圍傳播、擴散,對安裝具有誤差耐性之量子電腦而言是大問題,且是導致不具有誤差耐性之近似型計算之計算精度下降之大問題。
本發明是鑑於上述情形而建構之發明,提供可抑制量子位元間之相互作用或串擾之超導複合量子計算電路。
本發明是為了解決上述之課題而建構之發明,本發明之一態樣是一種超導複合量子計算電路,具有:電路基板,在基板表面形成有包含量子位元與觀測前述量子位元之狀態之觀測電極之電路元件之配線圖案、及接地電位即接地圖案,且具備貫通電極,前述貫通電極將在前述基板表面中之第1面形成之前述接地圖案、及在身為前述第1面之反面之第2面形成之前述接地圖案,在基板內部予以連接;第1接地電極,具備與在前述電路基板之前述第1面形成之前述接地圖案接觸之第1接觸部、及與在前述第1面形成之前述配線圖案之形狀對應之形狀之第1非接觸部;第2接地電極,具備與在前述電路基板之前述第2面形成之前述接地圖案接觸之第2接觸部;控制訊號線,在前端設有接觸彈簧銷,前述接觸彈簧銷是接觸與前述量子位元對應之位置,而將前述電路基板上推、或者將前述電
路基板下推;及賦予勢能構件,將前述第1接地電極推擠在前述電路基板之前述第1面、或者將前述第2接地電極推擠在前述電路基板之前述第2面,前述第1接地電極是透過第1延展部而與前述接地圖案接觸,前述第1延展部是藉由具有比前述接地圖案之延展性還高之延展性之超導體而形成,前述第2接地電極是透過第2延展部而與前述接地圖案接觸,前述第2延展部是藉由具有比前述接地圖案之延展性還高之延展性之超導體而形成。
又,本發明之一態樣是在上述之超導複合量子計算電路更具有:賦予勢能構件,將前述第1接地電極推擠在前述電路基板之前述第1面、或者將前述第2接地電極推擠在前述電路基板之前述第2面,前述第1接地電極是透過第1延展部而與前述接地圖案接觸,前述第1延展部是藉由具有比前述接地圖案之延展性還高之延展性之超導體而形成,前述第2接地電極是透過第2延展部而與前述接地圖案接觸,前述第2延展部是藉由具有比前述接地圖案之延展性還高之延展性之超導體而形成。
又,本發明之一態樣是在上述之超導複合量子計算電路中,前述量子位元包含:第1電極,與接地部具有第1耦合電容;及第2電極,與接地部具有比前述第1耦合電容還大之第2耦合電容,且藉由約瑟夫森接合而與前述第1電極連接。
又,本發明之一態樣是在上述之超導複合量子計算電路中,前述電路基板在量子位元對應位置具有中
心部電極、將該中心部電極之周圍圍住之周圍電極、及將該中心部電極與該周圍電極連接之連接電極,前述量子位元對應位置是前述第2面中之與在前述第1面形成之前述配線圖案所包含之前述量子位元之位置對應之位置。
又,本發明之一態樣是在上述之超導複合量子計算電路中,前述控制訊號線是在與形成於前述第1面之前述配線圖案所包含之前述量子位元之位置對應之位置,配置在前述第1接地電極具有之前述第1非接觸部之內部,或者是在與量子位元對應位置對應之位置,配置在前述第2接地電極具有之第2非接觸部之內部,而將控制訊號供給至前述量子位元,前述量子位元對應位置是前述第2面中之與在前述第1面形成之前述配線圖案所包含之前述量子位元之位置對應之位置。
又,本發明之一態樣是在上述之超導複合量子計算電路中,前述第1非接觸部及前述第2非接觸部之寬及高度是比前述控制訊號之波長還小之尺寸。
又,本發明之一態樣是在上述之超導複合量子計算電路中,前述控制訊號之頻帶是微波頻帶。
根據本發明,可抑制量子位元間之相互作用或串擾。
1:電路基板
2:第1接地電極
3:第2接地電極
4,4-1~4-6,4a,4b,4c,4d,4e,4f,4g:量子位元
4C:第1等價電路
4Ca:第2等價電路
5:控制訊號線
5A:控制用訊號線
5B:觀測用訊號線
6,6a,6b,6c:濾波器圖案
7,7-1~7-4:超導共振器
8:觀測電極
9,9-1~9-4,Cdq:電容器
10,10-1~10-2:貫通電極
11,11-1~11-6,11a-5~11a-6,11b-5~11b-6,11c-5~11c-6,11d-5~11d-6,11e-2,11e-5~11e-6,11f-2,11f-5~11f-6,11g-5~11g-6:基板上表面接地電極
12:第1延展部
12-1:上表面超導微凸塊
13,13-1,13-2,13a,13b,13c:基板下面接地電極
14:第2延展部
14-1,14-2:導電接觸部
20,20-1~20-6:第1非接觸部
21,21-1~21-12:第1接觸部
30,30-1~30-2:第2非接觸部
31,31-1,31-2:第2接觸部
40,40a,40b:內側圓盤
40c,40d,40e,40f:第1長方形
40g:第1電極
41,41a,41b:外環
41c,41d:第2長方形
41e,41f:十字
41g:第2電極
42,42a,42b,42c,42d,42e,42f,42g:約瑟夫森接合
43,43-1~43-4,43a-1~43a-2,43b,43b-1~43b-2,43c-1~43c-2,43d-1~43d-2,43g-1~43g-2:量子位元手部
43e-1~43e-2,43f-1~43f-2:十字部分
44a,44b:間隙
45:基板下面接地電極
45b-1~45b-2,110d:凸部
46:壕部
46b-1~46b-2,46d-1~46d-2:前端部
50:接觸銷
50A,50B:接觸彈簧銷
51A,51B:彈簧
52A,52A-1,52A-2,52B,52B-1,52B-2:同軸線介電體部
60,60a,60b,60c:中心部電極
61,61-1~61-4,61a,61b,61b-1~61b-2,61c-1:間隙部
62,62-1~62-4,62a,62b,62c-1~62c-2:連接電極
80,80-1,80-2:觀測基板貫通電極
C1:第1電容
C2:第2電容
Cc:第3電容
Cq:電容
CP:配線圖案
Cd1:第1電容器
Cd2:第2電容器
Cdc:第3電容器
E,E1,E2:不需要之輻射電場
ED:驅動電場
G1:曲線
GE:接地部
GP:接地圖案
GP1:第1接地圖案
GP2:第2接地圖案
I:控制電流
Ic,IL:電流
i,iC,iL:電流之大小
Ids:電感器
LCR:LC共振器
Ls:電感
P:賦予勢能構件
QC:超導複合量子計算電路
S:基板表面
S1:第1面
S2:第2面
X,X1,X2:觀測用區域
Y,Y1,Y2:間隙接地區域
圖1是顯示與本發明之實施形態相關之超導複合量子計算電路之構成之一例的圖。
圖2是與本發明之實施形態相關之基板表面中之觀測用區域的上視圖。
圖3是顯示與本發明之實施形態相關之第1非接觸部及第1接觸部之一例的圖。
圖4是顯示與本發明之實施形態相關之量子位元之一例的圖。
圖5是顯示與本發明之實施形態相關之第1等價電路之一例的圖。
圖6是顯示與本發明之實施形態相關之濾波器圖案之一例的圖。
圖7是顯示與本發明之實施形態相關之第2等價電路之一例的圖。
圖8是顯示與本發明之實施形態相關之在第3電容器流動之電流對於控制電流之頻率之關係之一例的圖。
圖9是顯示與本發明之實施形態相關之超導複合量子計算電路之量子位元之部分之截面之一例的圖。
圖10是顯示與本發明之實施形態相關之超導共振器及觀測電極之一例的圖。
圖11是顯示與本發明之實施形態相關之超導複合量子計算電路之觀測電極之部分之截面之一例的圖。
圖12是顯示與本發明之變形例相關之量子位元之一例的圖。
圖13是顯示與本發明之變形例相關之量子位元之一例的圖。
圖14是顯示與本發明之變形例相關之量子位元之一例的圖。
圖15是顯示與本發明之變形例相關之量子位元之一例的圖。
圖16是顯示與本發明之變形例相關之量子位元之一例的圖。
圖17是顯示與本發明之變形例相關之量子位元之一例的圖。
圖18是顯示與本發明之變形例相關之量子位元之一例的圖。
圖19是顯示與本發明之變形例相關之濾波器圖案之一例的圖。
圖20是顯示與本發明之變形例相關之濾波器圖案之一例的圖。
圖21是顯示與本發明之變形例相關之濾波器圖案之一例的圖。
用以實施發明之形態
(實施形態)
以下,一面參考圖面、一面詳細說明本發明之實施形態。圖1是顯示與本實施形態相關之超導複合量子計算電路QC之構成之一例的圖。超導複合量子計算電路QC具有電路基板1、第1接地電極2、第2接地電極3。電路基板1是被第1接地電極2、第2接地電極3夾住。
將從電路基板1觀看時之具有第1基地電極2之側稱作上側,將從電路基板1觀看時之具有第2基地電極3之側稱作下側。
電路基板1之一例是矽等之介電體基板。電路基板1是在矽等之介電體基板之基板表面S上藉由超導膜而形成電路元件之配線圖案CP及接地圖案GP。另,當電路基板1之材質是矽的情況下,電路基板1是位在比預定之溫度還低之溫度,而該矽成為介電體。
配線圖案CP包含量子位元4、觀測量子位元4之狀態之觀測電極8、超導共振器7、電容器9。在圖1是顯示量子位元4-1~4-6來作為量子位元4之一例。在圖1是顯示超導共振器7-1~7-4來作為超導共振器7之一例。在圖1是顯示電容器9-1~9-4來作為電容器9之一例。
接地圖案GP是接地電位。接地圖案GP有第1接地圖案GP1、第2接地圖案GP2。第1接地圖案GP1是形成在基板表面S中之上側之第1面S1。第2接地圖案GP2是形成在身為第1面S1之反面之第2面S2。第1接地圖案GP1是包含基板上表面接地電極11。在圖1是顯示基板上表面接地電極11-1~11-4來作為基板上表面接地電極11之一例。
貫通電極10是將在電路基板1之第1面S1形成之第1接地圖案GP1、及、在身為第1面S1之反面之第2面S2形成之第2接地圖案GP2在基板內部予以連接。第1接地圖案GP1、第2接地圖案GP2是利用貫通電極10而電性接
觸。在圖1是顯示貫通電極10-1、及貫通電極10-2來作為貫通電極10之一例。
又,將在電路基板1之基板表面S上以如量子位元4-1~4-4般地鄰接之4個量子位元4作為頂點之四角形區域稱作觀測用區域X。在圖1是顯示觀測用區域X1及觀測用區域X2來作為觀測用區域X之一例。
將在電路基板1之介電體基板上以如鄰接之量子位元4-4、量子位元4-3、量子位元4-5、及量子位元4-6般地鄰接之4個量子位元4作為頂點之四角形區域稱作間隙接地區域Y。在圖1是顯示第1間隙接地區域Y1及第1間隙接地區域Y2來作為間隙接地區域Y之一例。
在基板表面S是反覆著觀測用區域X、及將觀測用區域X包圍之間隙接地區域Y的圖案。圖1是顯示該圖案中之一部分。
如上述,在電路基板1,於基板表面S形成有包含量子位元4與觀測量子位元4之狀態之觀測電極8之電路元件之配線圖案CP、及、接地電位之接地圖案GP。電路基板1具有將在基板表面S中之第1面S1形成之第1接地圖案GP1、及、在身為第1面S1之反面之第2面S2形成之第2接地圖案GP2在基板內部予以連接之貫通電極10。
在第1接地電極2,於與基板表面S對向之面,配合基板表面S上之配線圖案CP而施加蝕刻加工後,形成超導膜。在第1接地電極2,利用該蝕刻加工而形成第1非接觸部20。
第1非接觸部20未與基板表面S中之第1面S1接觸。第1非接觸部20與第1面S1之間的距離之一例是如下:當控制訊號頻率是10GHz程度的情況下,距離是數十至數百微米。第1非接觸部20(第2非接觸部30亦同樣)之寬及高度是比控制訊號之波長還小的尺寸。第1非接觸部20是與在基板表面S中之第1面S1形成之配線圖案CP之形狀對應之形狀。
另一方面,在第1接地電極2,於第1接地電極2之與基板表面S對向之面中之第1非接觸部20以外之部分具有第1接觸部21。
第1接觸部21是透過上表面超導微凸塊12-1而與在電路基板1之第1面S1形成之第1接地圖案GP1接觸。上表面超導微凸塊12-1之一例是具有比接地圖案GP之延展性還高之延展性的超導體。上表面超導微凸塊12-1是第1延展部12之一例。
在本實施形態,延展性是指展性或延性、或是展性與延性雙方之性質。在圖1是顯示第1接觸部21-1、第1接觸部21-2、及第1接觸部21-3來作為第1接觸部21之一例。
如上述,第1接地電極2是透過利用具有比接地圖案GP之延展性還高之延展性的超導體而形成之第1延展部12,來接觸接地圖案GP。
在此,參考圖2及圖3來說明第1非接觸部20及第1接觸部21。
圖2是與本實施形態相關之基板表面S中之觀測用區域X1的上視圖。
在圖2是顯示第1非接觸部20-3、第1非接觸部20-4、第1非接觸部20-5、及第1非接觸部20-6來作為第1非接觸部20之一例。
圖3是顯示與本實施形態相關之第1非接觸部20及第1接觸部21之一例的圖。在圖3是顯示第1接觸部21-1~21-12來作為第1接觸部21之一例。第1非接觸部20是第1接觸部21以外之部分,如上述般地藉由蝕刻加工而形成。在圖3是顯示第1非接觸部20-1及第1非接觸部20-2來作為第1非接觸部20之一例。
如上述,第1接地電極2具有與在電路基板1之第1面S1形成之第1接地圖案GP1接觸之第1接觸部21、及、與在第1面S1形成之配線圖案CP之形狀對應之形狀之第1非接觸部20。
回到圖1來接著說明超導複合量子計算電路QC。
量子位元4是在超導薄膜上形成之超導量子位元。在此,參考圖4及圖5來說明量子位元4。
圖4是顯示與本實施形態相關之量子位元4之一例的圖。量子位元4具有內側圓盤40、外環41、約瑟夫森接合42、量子位元手部43-1、量子位元手部43-2。內側圓盤40、外環41、量子位元手部43-1、量子位元手部43-2分別是金屬電極。
內側圓盤40與外環41形成同心圓之金屬電極。內側圓盤40與外環41是藉由約瑟夫森接合42而接合。外環41是與量子位元手部43-1、量子位元手部43-2、量子位元手部43-3、量子位元手部43-4連接。在圖4並未顯示量子位元手部43-3、量子位元手部43-4。
外環41是被基板上表面接地電極11圍住周圍。基板上表面接地電極11-1及基板上表面接地電極11-2是基板上表面接地電極11之一例。
在此,參考圖5來說明身為量子位元4之等價電路之第1等價電路4C。
圖5是顯示與本實施形態相關之第1等價電路4C之一例的圖。在身為同心圓之金屬電極之內側圓盤40與外環41之間形成電容器Cdq。第1等價電路4C是利用電容器Cdq與源自約瑟夫森接合42之電感器而形成非線形之LC共振器LCR。電容器Cdq具有電容Cq。
將第1接地電極2、第2接地電極3、基板上表面接地電極11、及基板下表面接地電極13總稱為接地部GE。
在內側圓盤40與接地部GE之間形成第1電容器Cd1。第1電容器Cd1具有第1電容C1。第1電容C1主要是由內側圓盤40與基板上表面接地電極11的距離而決定。在圖4之例,內側圓盤40與基板上表面接地電極11的距離是由內側圓盤40之半徑而決定。
在外環41與接地部GE之間形成第2電容器Cd2。第2
電容器Cd2具有第2電容C2。第2電容主要是由外環41與基板上表面接地電極11的距離而決定。外環41與基板上表面接地電極11的距離是由外環41之半徑而決定。
在量子位元4與第1接地電極2之間、量子位元4與接地部GE之間可能發生不需要之輻射電場E。不需要之輻射電場E1是量子位元4與接地部GE之間之不需要之輻射電場E之一例。不需要之輻射電場E2是量子位元4與接地部GE之間之不需要之輻射電場E之一例。
在量子位元4,內側圓盤40之半徑及外環41之半徑是基於第2電容C2比第1電容C1大這樣之條件而決定。在量子位元4,以第2電容C2比第1電容C1大的方式而將外環41之半徑變大。
在量子位元4,因為第2電容C2比第1電容C1大,故由不需要之輻射電場E造成之電位之變動是透過外環41而往接地部GE傳播。亦即,第2電容器Cd2發揮所謂去耦電容之功能。
因為由不需要之輻射電場E造成之電位之變動會透過外環41而往接地部GE傳播,故與第2電容C2不比第1電容C1大的情況相比,內側圓盤40與外環41之間的電位差是較不容易被由不需要之輻射電場E造成之電位之變動影響。在此,內側圓盤40與外環41之間的電位差是作為量子位元4用於記錄位元資訊之元件而發揮功能,故其必須是相對於不需要之輻射電場E而穩定。
如上述,量子位元4包含:內側圓盤40,與
接地部GE具有第1電容C1;外環41,與接地部GE具有比第1電容C1還大之第2電容C2,藉由約瑟夫森接合42而與內側圓盤40連接。
回到圖1來接著說明超導複合量子計算電路QC之構成。
第2接地電極3之一例是鋁電極。第2接地電極3具有第2非接觸部30與第2接觸部31。
第2非接觸部30未與電路基板1之基板表面S中之下側之面、亦即第2面S2接觸。第2接地電極3是在與量子位元對應位置對應之位置具有第2非接觸部30。在此,量子位元對應位置是指第2面S2中之、與在電路基板1之基板表面S中之上側之面、亦即第1面S1形成之配線圖案CP所包含之量子位元4之位置對應之位置。在圖1是顯示第2非接觸部30-1、及第2非接觸部30-2來作為第2非接觸部30之一例。
第2接觸部31是透過第2延展部14而與在第2面S2形成之第2接地圖案GP2接觸。在此,第2延展部14是銦等具有比接地圖案GP之延展性還高之延展性的超導體。第2延展部14有後述之導電接觸部14-1及導電接觸部14-2。
亦即,第2接地電極3是透過利用具有比接地圖案GP之延展性還高之延展性的超導體而形成之第2延展部14,來接觸接地圖案GP。
在第2非接觸部30之內部,控制訊號線5是相
對於第2面S2從下側朝垂直方向延伸而配置。控制訊號線5有控制用訊號線5A與觀測用訊號線5B之2種類。控制用訊號線5A是用於朝量子位元4傳達控制訊號之控制訊號線5。
觀測用訊號線5B是用於將量子位元4之狀態之觀測結果作為訊號(稱作觀測訊號)而取出之控制訊號線5。觀測訊號之生成是如下:將探針訊號傳達通過觀測用訊號線5B,在觀測電極8之第2面S2反射該探針訊號,藉此,反映量子位元4之狀態之觀測結果而生成。
關於控制訊號及觀測訊號,作為一例,通常是使用4~12吉赫帶之微波。亦即,在超導複合量子計算電路QC,控制訊號之頻帶是微波頻帶。
量子位元之控制訊號即控制電流是傳播通過控制用訊號線5A,藉由在控制用訊號線5A之前端具備之接觸彈簧銷50A而往在基板下表面接地電極13形成之濾波器圖案6流入。流入至形成於電路基板1之下側之面即第2面S2之濾波器圖案6後的控制電流,從形成於第2面S2之濾波器圖案6通過幾個地方之細線而往基板下表面接地電極13回流。
如上述,第2接地電極3具有與在電路基板1之第2面S2形成之第2接地圖案GP2接觸之第2接觸部31。
又,控制訊號線5是在與量子位元對應位置對應之位置,配置在第2接地電極3具有之第2非接觸部30之內部,將控制訊號朝量子位元4供給,該量子位元對應位置是第2面S2中之與在第1面S1形成之配線圖案CP所包含之量子
位元4之位置對應之位置。控制訊號線5是相對於配置量子位元4之電路基板1之基板表面S而從垂直之方向配置。亦即,控制訊號線5是基於3次元之構造而配置。
在此,參考圖6及圖7來說明濾波器圖案6。
圖6是顯示與本實施形態相關之濾波器圖案6之一例的圖。濾波器圖案6是位在與量子位元4之位置對應之第2面S2之位置、亦即量子位元對應位置。
濾波器圖案6具有中心部電極60與連接電極62。中心部電極60是圓形之電極。中心部電極60是隔著間隙部61而被基板下表面接地電極13圍住周圍。中心部電極60與基板下表面接地電極13是透過連接電極62而連接。在此,連接電極62是寬度數十微米之細線狀之金屬電極。
在圖6,間隙部61-1~61-4是間隙部61之一例。在圖6,連接電極62-1~62-4是連接電極62之一例。
在此,參考圖7來說明具備濾波器圖案6的情況下之量子位元4之等價電路、亦即第2等價電路4Ca。
圖7是顯示與本實施形態相關之第2等價電路4Ca之一例的圖。若將第2等價電路4Ca(圖7)與第1等價電路4C(圖5)予以比較,則除了控制用訊號線5A、電感器Ids、及第3電容器Cdc不同之外,其他之構成要素(第1電容器Cd1、第2電容器Cd2、LC共振器LCR、內側圓盤40、外環41、量子位元手部43-1、量子位元手部43-2、及接地部GE)具有之功能是相同。在圖7是以與圖5之第1等價電路4C不同之部分為中心而說明。
在控制用訊號線5A與內側圓盤40之間形成第3電容器Cdc。第3電容器Cdc具有第3電容Cc。
連接電極62是形成與第3電容器Cdc並聯之電感器Ids。電感器Ids是與控制用訊號線5A、接地部GE連接。電感器Ids具有電感Ls。
驅動電場ED是由流過控制用訊號線5A之控制電流造成之電場。
電感器Ids、第3電容Cc、第1電容器Cd1及第2電容器Cd2形成高通濾波器。在此,由於第2電容器Cd2所具有之第2電容C2是充分地大於第1電容器Cd1所具有之第1電容C1,故在該高通濾波器,就第1電容器Cd1與第2電容器Cd2而言,與第1電容器Cd1之效果相比,第2電容器Cd2之效果是占大部分。該高通濾波器是讓頻率充分地高於微波頻帶之訊號通往控制用訊號線5A等之外部。如上述,量子位元4之控制訊號是使用微波。電感器Ids抑制了量子位元4之能量往外部洩漏之情形。
在此,說明身為電感器Ids之連接電極62的效果。
以從控制用訊號線5A供給之控制電流作為控制電流I,以控制電流I中之朝第3電容器Cdc側流動之電流成分作為電流Ic,以控制電流I中之朝電感器Ids側流動之電流成分作為電流IL。以控制電流I之大小作為大小i,以電流Ic之大小作為大小iC,以電流IL之大小作為大小iL。
當電感器Ids之電感Ls是無限大的情況下,
電流IL之大小iL變成零,電流Ic之大小iC是變成與控制電流I之大小i相等。當LC共振器LCR是共振的情況下,並聯阻抗之大小變成零。
在LC共振器LCR流動之電流是電流Ic之朝第1電容器Cd1側流動之電流成分與朝第2電容器Cd2側流動之電流成分當中,朝第2電容器Cd2側流動之電流成分。在LC共振器LCR流動之電流之大小是如式子(1)般表示。
當電感Ls變小的情況下,電流IL之大小iL增加,電流Ic之大小iC減少。所以,根據上述之式子(1),當電感Ls變小的情況下,在LC共振器LCR流動之電流之大小減少。
在此,將控制電流I之大小,大小i是如式子(2)般地表示。
當第2電容C2充分地大於第3電容Cc的情況下,藉由式子(2),將控制電流I之大小,大小i是如式子(3)般地表示。
當第2電容C2充分地大於第3電容Cc的情況下,藉由式子(3),電流Ic之大小iC是如式子(4)般地表示。
在此,參考圖8來說明在第3電容器Cdc流動之電流Ic對於控制電流I之頻率ω之關係。
圖8是顯示與本實施形態相關之在第3電容器Cdc流動之電流Ic對於控制電流I之頻率ω之關係之一例的圖。曲線G1是顯示相對於控制電流I之頻率ω之對數的電流Ic之大小iC之對數。在此,曲線G1之橫軸是,控制電流I之頻率ω是藉由電感器Ids與第3電容器Cdc之LC共振器的共振頻率而規格化。
在此,LC共振器LCR的共振頻率是由式子(5)而表示。
微波頻帶之LC共振器LCR的共振頻率是與橫軸之座標之值為0.1之附近之範圍X包含之值對應。因為控制電流I之頻率ω是微波頻帶,故電感器Ids是作為不讓比範圍X還低之頻率通過之高通濾波器而發揮功能。
如上述,電路基板1是在量子位元對應位置、亦即第2面S2中之與在第1面S1形成之第1接地圖案GP1所包含之量子位元4之位置對應之位置,具有中心部電極60、將中心部電極60之周圍圍住之基板下表面接地電極13、將該中心部電極60與基板下表面接地電極13連接之連接電極62。
在此,參考圖9來說明超導複合量子計算電路QC之量子位元4之部分之截面。
圖9是顯示與本實施形態相關之超導複合量子計算電路QC之量子位元4之部分之截面之一例的圖。
控制用訊號線5A具備接觸彈簧銷50A、同軸線介電體部52A。接觸彈簧銷50A是在內部含有彈簧51A,藉由彈簧51A之彈力而將電路基板1推擠在第1接地電極2。同軸線介電體部52A是令接觸彈簧銷50A對第2接地電極3絕緣。同軸線介電體部52A之形狀是圓筒狀,在圖9是顯示同軸線介電體部52A-1及同軸線介電體部52A-2來作為同軸線介電體部52A之截面之一例。
在基板下表面接地電極13-1與第2接觸部31-1之間具有導電接觸部14-1。在基板下表面接地電極13-2與第2接觸部31-2之間具有導電接觸部14-2。如上
述,導電接觸部14-1及導電接觸部14-2是第2延展部14之一例。
另,亦可以是具有超導微凸塊來代替導電接觸部14-1及導電接觸部14-2。
在此,超導複合量子計算電路QC是在第1接地電極2之上側具有將第1接地電極2推擠在電路基板1之第1面S1之賦予勢能構件P(未圖示)。在此,賦予勢能構件P是與彈簧51A彈力反向地將第1接地電極2推擠在電路基板1之第1面S1。
賦予勢能構件P是藉由將第1接地電極2推擠在電路基板1之第1面S1,而令第1接地電極2密接於電路基板1,且令電路基板1密接於第2接地電極3。賦予勢能構件P之一例是板片彈簧、或接觸彈簧銷。
藉由如此之構成,基板下表面接地電極13-1與基板下表面接地電極13-2是密接於第2接地電極3,該等之電位是與接地部GE之電位均一化。藉此,因為外環41之電位是透過第2電容C2而實質上亦與接地部GE同一,故可令往量子位元之控制訊號在幾乎沒有洩漏‧串擾之情形下到達構成量子位元之內側圓盤40與約瑟夫森接合42。
回到圖1來接著說明超導複合量子計算電路QC。
超導共振器7是藉由與量子位元4相互作用而讀取量子位元4之狀態。鄰接之4個超導共振器7-1~7-4是藉由觀測電極8而結合。如上述,讀取出之量子位元4之狀態是透
過觀測電極8而在觀測用訊號線5B以觀測訊號被取出。
在此,參考圖10及圖11來說明超導共振器7及觀測電極8。
圖10是顯示與本實施形態相關之超導共振器7及觀測電極8之一例的圖。超導共振器7之一例是在第1面S1上具有蛇行之形狀。另,只要超導共振器7可作為共振器而發揮功能,則超導共振器7之形狀是何種形狀皆無妨。例如,超導共振器7可以是具有直線狀之形狀來代替蛇行之形狀,亦可以是具有彎曲成U字狀之形狀來代替蛇行之形狀。
觀測電極8具有觀測基板貫通電極80。除了在電路基板1之部位不同之外,觀測基板貫通電極80是與貫通電極10具有同一特徵。
圖11是顯示與本實施形態相關之超導複合量子計算電路QC之觀測電極8之部分之截面之一例的圖。觀測基板貫通電極80之形狀是圓筒狀,在圖11是顯示觀測基板貫通電極80-1及觀測基板貫通電極80-2來作為觀測基板貫通電極80之截面之一例。
觀測用訊號線5B具有接觸彈簧銷50B、同軸線介電體部52B。接觸彈簧銷50B是在內部含有彈簧51B,藉由彈簧51B之彈力而將電路基板1推擠在第1接地電極2。同軸線介電體部52B是令接觸彈簧銷50B對第2接地電極3絕緣。同軸線介電體部52B之形狀是圓筒狀,在圖11是顯示同軸線介電體部52B-1及同軸線介電體部52B-2來作為同軸線介電體部52B之截面之一例。
另,雖然本實施形態說明的情況是令控制訊號線5從第2接地電極3具有之第2非接觸部30之內部,相對於基板表面S之第2面S2從下側朝垂直方向延伸而配置,但並非限定於此。控制訊號線5亦可以是從第1接地電極2具有之第1非接觸部20之內部,從上側朝垂直方向延伸而配置於基板表面S之第1面S1。
亦即,控制訊號線5亦可以是在與形成於第1面S1之配線圖案CP含有之量子位元4之位置對應之位置,配置在第1接地電極2具有之第1非接觸部20之內部。
當控制訊號線5是從第1接地電極2具有之第1非接觸部20之內部、從上側朝垂直方向沿伸而配置在基板表面S之第1面S1的情況下,超導複合量子計算電路QC亦可以不具有濾波器圖案6。
又,控制訊號線5亦可以是依各個量子位元4及觀測電極8而有:從第2接地電極3具有之第2非接觸部30之內部、相對於基板表面S之第2面S2從下側朝垂直方向延伸而配置的情況;及從第1接地電極2具有之第1非接觸部20之內部、從上側朝垂直方向延伸而配置在基板表面S之第1面S1的情況。
另,雖然本實施形態說明的情況是令賦予勢能構件P將第1接地電極2推擠在電路基板1之第1面S1,但並非限定於此。賦予勢能構件P亦可以是將第2接地電極3推擠在電路基板1之第2面S2。又,超導複合量子計算電路QC亦可以是具有將第1接地電極2推擠在電路基板1之第1
面S1之賦予勢能構件、及、將第2接地電極3推擠在電路基板1之第2面S2之賦予勢能構件的2種類賦予勢能構件。
如以上之說明,與本實施形態相關之超導複合量子計算電路QC具有電路基板1、第1接地電極2、第2接地電極3。
電路基板1是在基板表面S形成有包含量子位元4與觀測量子位元4之狀態之觀測電極8之電路元件之配線圖案CP、及、身為接地電位之接地圖案GP,具有將在基板表面S中之第1面S1形成之第1接地圖案GP1、及、在身為第1面S1之反面之第2面S2形成之第2接地圖案GP2在基板內部予以連接之貫通電極10。
第1接地電極2具有與在電路基板1之第1面S1形成之第1接地圖案GP1接觸之第1接觸部21、及、與在第1面S1形成之配線圖案CP之形狀對應之形狀之第1非接觸部20。
第2接地電極3具有與在電路基板1之第2面S2形成之第2接地圖案GP2接觸之第2接觸部31。
藉由此構成,與本實施形態相關之超導複合量子計算電路QC可抑制量子位元4之上側之空間或電路基板1內之不需要之電磁模式(電磁波之共振現象)之發生或擴展,故可抑制量子位元間之相互作用或串擾。
在超導複合量子計算電路QC,第1接地電極2將量子位元4之上側之空間變成比不具有第1接地電極2的情況下還小。在量子位元4之上側之空間可能發生不需要之電磁模式。超導複合量子計算電路QC可令不需要之電
磁模式之模式頻率離開量子位元4之頻率。又,超導複合量子計算電路QC可藉由將在量子位元4之上側之空間之不需要之電磁模式之擴展予以局部化,而抑制量子位元4之控制訊號之往廣範圍之串擾。
貫通電極10可抑制電路基板1內之不需要之電磁模式之發生、抑制量子位元4間之控制訊號之往廣範圍之串擾。
又,與本實施形態相關之超導複合量子計算電路QC更具有將第1接地電極2推擠在電路基板1之第1面S1、或者、將第2接地電極3推擠在電路基板1之第2面S2之賦予勢能構件P。
在此,第1接地電極2是透過利用具有比接地圖案GP之延展性還高之延展性之超導體而形成之第1延展部12,來與接地圖案GP接觸。
第2接地電極3是透過利用具有比接地圖案GP之延展性還高之延展性之超導體而形成之第2延展部14,來與接地圖案GP接觸。
藉由此構成,與本實施形態相關之超導複合量子計算電路QC可將第1接地電極2與電路基板1之第1面S1上之接地圖案GP之間之空隙、或者、第2接地電極3與電路基板1之第2面S2上之接地圖案GP之間之空隙去除,故可抑制在鄰接之控制訊號線5傳播之控制用訊號或觀測用訊號相互間之串擾。
又,在與本實施形態相關之超導複合量子計算電路QC,量子位元4包含:第1電極(在此一例是內側圓
盤40),與接地部GE具有第1耦合電容(在此一例是第1電容C1);第2電極(在此一例是外環41),與接地部GE具有比第1耦合電容(在此一例是第1電容C1)還大之第2耦合電容(在此一例是第2電容C2),藉由約瑟夫森接合42而與第1電極(在此一例是內側圓盤40)連接。
藉由此構成,與本實施形態相關之超導複合量子計算電路QC可利用外環41而遮蔽在構成量子位元4之金屬電極(在此一例是內側圓盤40、及外環41)傳播之不需要之電磁模式,故可抑制量子位元4之錯誤率。在此,在構成量子位元4之金屬電極(在此一例是內側圓盤40、及外環41)傳播之不需要之電磁模式是例如即便具有第1接地電極2、貫通電極10等仍殘存之不需要之電磁模式。
習知,形成量子位元之二個金屬電極是相對於接地電極而對稱,或者其中一側之金屬電極是接地。二個金屬電極相對於接地電極而對稱是指:二個金屬電極中之一金屬電極與該接地電極之間之耦合電容、及、二個金屬電極中之另一金屬電極與該接地電極之間之耦合電容相等。又,形成量子位元之二個金屬電極中之一側之金屬電極接地是意指:一側之金屬電極具有與接地電極同等之功能。
與本實施形態相關之超導複合量子計算電路QC是藉由不讓形成量子位元之二個金屬電極中之一側之金屬電極對接地電極短路,而可排除接地電極面之電位波動之影響。
又,在與本實施形態相關之超導複合量子計
算電路QC,電路基板1是在量子位元對應位置、亦即第2面S2中之與在第1面S1形成之第1接地圖案GP1所包含之量子位元4之位置對應之位置,具有中心部電極60、將中心部電極60之周圍圍住之周圍電極(在此一例是基板下表面接地電極13)、將中心部電極60與周圍電極(在此一例是基板下表面接地電極13連接之連接電極62。
藉由此構成,與本實施形態相關之超導複合量子計算電路QC可抑制當量子位元4之控制關閉時因為量子位元4與控制訊號線5之相互作用而造成量子位元4之能源往外部洩漏之情形,故可抑制量子位元4之計算之錯誤率。
又,與本實施形態相關之超導複合量子計算電路QC更具有控制訊號線5。控制訊號線5是在與在第1面S1形成之配線圖案CP所包含之量子位元4之位置對應之位置,配置在第1接地電極2具有之第1非接觸部20之內部,或者,在與量子位元對應位置對應之位置,配置在第2接地電極3具有之第2非接觸部之內部,而將控制訊號朝量子位元4供給,該量子位元對應位置是第2面S2中之與在第1面S1形成之配線圖案CP所包含之量子位元4之位置對應之位置。
藉由此構成,與本實施形態相關之超導複合量子計算電路QC可在電路基板1之基板表面S上不論量子位元4之數量而確保一定之配線圖案CP之密度,故可抑制在電路基板1之基板表面S上之配線圖案CP之密度變大之
情形。
習知,控制訊號線是從基板之側面導入,從基板之周邊來對配置在基板之表面之二維平面之量子位元進行控制。在習知之電路,電路之配線密度是隨著量子位元之數量之增大而增加,遲早會達到極限。
另一方面,與本實施形態相關之超導複合量子計算電路QC是採用將控制訊號線5配置在電路基板1之下側之第2面S2或上側之第1面S1之三維構造,藉此,可不論量子位元4之數量而確保一定之配線圖案CP之密度。因為與本實施形態相關之超導複合量子計算電路QC可不論量子位元4之數量而確保一定之配線圖案CP之密度,故可保障適合讓電路大規模化之擴張性。
又,在與本實施形態相關之超導複合量子計算電路QC,控制訊號線5朝量子位元4供給之控制訊號之頻帶是微波頻帶。
因為與本實施形態相關之超導複合量子計算電路QC可在控制、觀測方面使用微波訊號,故與習知之利用RF(Radio Frequency,無線電頻率)之控制相比,可令在接地電極流動之表面電流面積最小化而抑制電極電位之波動。
(構成量子位元之金屬電極之變形例)
雖然在上述之實施形態說明的情況是令身為構成量子位元4之金屬電極之內側圓盤40、外環41形成同心圓之金屬電極,但構成量子位元4之金屬電極之形狀並非限定
於同心圓。
在此,參考圖12~18來說明構成量子位元4之金屬電極之形狀之變形例。變形例是以與上述之實施形態之構成量子位元4之金屬電極(圖4)不同之部分為中心而進行說明。
圖12是顯示與本實施形態之變形例相關之量子位元4a之一例的圖。量子位元4a具有內側圓盤40a、外環41a、約瑟夫森接合42a、量子位元手部43a-1、量子位元手部43a-2。
外環41a是不同於外環41(圖4),並未封閉,具有間隙44a。
圖13是顯示與本實施形態之變形例相關之量子位元4b之一例的圖。量子位元4b具有內側圓盤40b、外環41b、約瑟夫森接合42b、量子位元手部43b-1、量子位元手部43b-2。
外環41b是不同於外環41(圖4),並未封閉,具有間隙44b。外環41b是不同於外環41a(圖12),未與量子位元手部43b直接連繫。
外環41b具有凸部45b-1及凸部45b-2。量子位元手部43b-1具有前端部46b-1,量子位元手部43b-2具有前端部46b-2。凸部45b-1及凸部45b-2是形成與前端部46b-1及前端部46b-2之形狀對應之凹部。
圖14是顯示與本實施形態之變形例相關之量子位元4c之一例的圖。量子位元4c具有第1長方形40c、第2長方形41c、約瑟夫森接合42c、量子位元手部43c-1、
量子位元手部43c-2。
第1長方形40c與第2長方形41c是藉由約瑟夫森接合42c而連接。第1長方形40c與基板上表面接地電極11c-6的距離是大到讓第1電容C1之值成為與第2電容C2相較之下充分地小之程度。在圖14,作為一例,將第1長方形40c之面積變小而使第1長方形40c與基板上表面接地電極11c-6的距離變大。第2長方形41c之與第1長方形40c之對向之邊的長度是相較於第1長方形40c之與第2長方形41c對向之邊的長度而言為長。
量子位元手部43c-1及量子位元手部43c-2是未與第2長方形41c直接連繫。
基板上表面接地電極11c-5與基板上表面接地電極11c-6之形狀、及、基板上表面接地電極11-5(圖4)與基板上表面接地電極11-6(圖4)是因應第1長方形40c之形狀與第2長方形41c之形狀而不同。
圖15是顯示與本實施形態之變形例相關之量子位元4d之一例的圖。量子位元4d具有第1長方形40d、第2長方形41d、約瑟夫森接合42d、量子位元手部43d-1、量子位元手部43d-2。
第1長方形40d與基板上表面接地電極11d-6的距離是大到讓第1電容C1之值成為與第2電容C2相較之下充分地小之程度。在圖15,作為一例,將第1長方形40d之面積變小而使第1長方形40d與基板上表面接地電極11d-6的距離變大。在圖15顯示之例是令第2長方形41d之與第1長方形
40d對向之邊的長度相等於第1長方形40d之與第2長方形41d對向之邊的長度。另,第2長方形41d之與第1長方形40d對向之邊的長度、及、第1長方形40d之與第2長方形41d對向之邊的長度亦可以是如圖14之第1長方形40c及第2長方形41c般地不相等。
量子位元手部43d-1具有折曲之前端部46d-1,量子位元手部43d-2具有折曲之前端部46d-2。基板上表面接地電極11d-5具有凸部110d。前端部46d-1、前端部46d-2、及凸部110d是朝第2長方形41d對向。在圖15之量子位元4d,因為前端部46d-1、前端部46d-2、及凸部110d,故與不具有前端部46d-1、前端部46d-2、及凸部110d的情況相比,第2電容C2是變大。
圖16是顯示與本實施形態之變形例相關之量子位元4e之一例的圖。量子位元4e具有第1長方形40e、十字41e、約瑟夫森接合42e。十字部分43e-1、十字部分43e-2是分別顯示與量子位元4e鄰接之量子位元之十字的一部分。
第1長方形40e與十字41e是藉由約瑟夫森接合42e而連接。
基板上表面接地電極11e-5與基板上表面接地電極11e-6之形狀之形狀、及、基板上表面接地電極11-5(圖4)與基板上表面接地電極11-6(圖4)是因應第1長方形40e與十字41e之形狀而不同。
圖17是顯示與本實施形態之變形例相關之
量子位元4f之一例的圖。量子位元4f具有第1長方形40f、十字41f、約瑟夫森接合42f。十字部分43f-1、十字部分43f-2是分別顯示與量子位元4f鄰接之量子位元之十字的一部分。
量子位元4f(圖17)與量子位元4e(圖16)具有如下之不同:第1長方形40f(圖17)與基板上表面接地電極11f-2(圖17)的距離變成比第1長方形40e(圖16)與基板上表面接地電極11e-2(圖16)的距離還大。在此一例,基板上表面接地電極11f-2(圖17)之與十字41f(圖17)、第1長方形40f(圖17)對向之部分之形狀是曲線,相對於此,基板上表面接地電極11e-2(圖16)之與十字41e(圖16)、第1長方形40e(圖16)對向之部分之形狀是直線,因此,第1長方形40f(圖17)與基板上表面接地電極11f-2(圖17)的距離是變大。
在量子位元4f(圖17),因為第1長方形40f(圖17)與基板上表面接地電極11f-2(圖17)的距離大,故與量子位元4e(圖16)相比,第1電容C1是小。
圖18是顯示與本實施形態之變形例相關之量子位元4g之一例的圖。量子位元4g具有第1電極40g、第2電極41g、約瑟夫森接合42g、量子位元手部43g-1、量子位元手部43g-2。
第1電極40g與第2電極41g是藉由約瑟夫森接合42g而連接。第1電極40g與第2電極41g分別具有梳子型之形狀且互相對向,藉此形成梳子型電極。在圖18顯示之例中,
第1電極40g具有2個突出,第2電極41g具有3個突出。
第1電極40g與基板上表面接地電極11g-6的距離是大到讓第1電容C1之值成為與第2電容C2相較之下充分地小之程度。在圖18,作為一例,將第1電極40g之面積變小而使第1電極40g與基板上表面接地電極11g-6的距離變大。
在上述之變形例,內側圓盤40a、內側圓盤40b、第1長方形40c、第1長方形40d、第1長方形40e、第1長方形40f、及第1電極40g是第1電極之一例。外環41a、外環41b、第2長方形41c、第2長方形41d、十字41e、十字41f、及第2電極41g是第2電極之一例。
第2電極與接地部GE之間的耦合電容是大於第1電極與接地部GE之間的耦合電容。相較於第2電極與接地部GE之間之耦合電容未大於第1電極與接地部GE之間之耦合電容的情況,第1電極與第2電極之間的電位差會較不易被由不需要之輻射電場E造成之電位之變動影響。
(濾波器圖案之變形例)
雖然在上述之實施形態是說明濾波器圖案6藉由4個連接電極62而將中心部電極60與基板下面接地電極13連接的情況,但並非限定於此。
在此,參考圖19~21來說明濾波器圖案6之變形例。變形例是以與上述之實施形態之濾波器圖案6(圖6)不同之部分為中心而進行說明。
圖19是顯示與本實施形態相關之濾波器圖
案6a之一例的圖。濾波器圖案6a具有中心部電極60a與連接電極62a。中心部電極60a是隔著間隙部61a而被基板下面接地電極13a圍住周圍。中心部電極60a與基板下面接地電極13a是藉由1個連接電極62a而連接。
另,連接電極62之數量並非限定於圖6所說明之4個的情況、圖19所說明之1個的情況,亦可以是2個、3個、5個以上。
圖20是顯示與本實施形態相關之濾波器圖案6b之一例的圖。濾波器圖案6b具有中心部電極60b與連接電極62b。中心部電極60b是隔著間隙部61b而被基板下面接地電極13b圍住周圍。中心部電極60b與基板下面接地電極13b是透過連接電極62b而連接。
在濾波器圖案6b,具有之中心部電極60b與連接電極62b是成為一體。作為一例,中心部電極60b與連接電極62b是形成曲線狀之輪廓。連接電極62b(圖20)之寬是從中心部電極60b往基板下面接地電極13b而越來越窄。
另,連接電極62b之數量並非限定於圖20所說明之1個的情況,亦可以是2個以上。
圖21是顯示與本實施形態相關之濾波器圖案6c之一例的圖。濾波器圖案6c具有中心部電極60c、連接電極62c-1及連接電極62c-2。中心部電極60c是隔著間隙部61b-1及間隙部61b-2而被基板下面接地電極13c圍住周圍。中心部電極60c與基板下面接地電極13c是透過連接電極62c-1及連接電極62c-2而連接。
中心部電極60c之形狀是長方形。
另,連接電極62c-1及連接電極62c-2之數量並非限定於圖21所說明之2個的情況,亦可以是1個或3個以上。
雖然以上是參考圖面來詳細說明此發明之一實施形態,但具體之構成並非限定於上述內容,可在不超脫此發明之主旨之範圍內進行各式各樣之設計變更等。
1:電路基板
2:第1接地電極
3:第2接地電極
4-1~4-6:量子位元
5A:控制用訊號線
5B:觀測用訊號線
6:濾波器圖案
7-1~7-4:超導共振器
8:觀測電極
9-1~9-4:電容器
10-1~10-2:貫通電極
11-1~11-4:基板上面接地電極
12-1:上面超導微凸塊
20-1~20-2:第1非接觸部
21-1~21-3:第1接觸部
30-1~30-2:第2非接觸部
31:第2接觸部
QC:超導複合量子計算電路
S:基板表面
X1,X2:觀測用區域
Y1,Y2:間隙接地區域
Claims (6)
- 一種超導複合量子計算電路,具有:電路基板,在基板表面形成有包含量子位元與觀測前述量子位元之狀態之觀測電極之電路元件之配線圖案、及接地電位即接地圖案,且具備貫通電極,前述貫通電極將在前述基板表面中之第1面形成之前述接地圖案、及在前述第1面之反面即第2面形成之前述接地圖案,在基板內部予以連接;第1接地電極,具備與在前述電路基板之前述第1面形成之前述接地圖案接觸之第1接觸部、及與在前述第1面形成之前述配線圖案之形狀對應之形狀之第1非接觸部;第2接地電極,具備與在前述電路基板之前述第2面形成之前述接地圖案接觸之第2接觸部;控制訊號線,在前端設有接觸彈簧銷,前述接觸彈簧銷是接觸與前述量子位元對應之位置,而將前述電路基板上推、或者將前述電路基板下推;及賦予勢能構件,將前述第1接地電極推擠在前述電路基板之前述第1面、或者將前述第2接地電極推擠在前述電路基板之前述第2面,前述第1接地電極是透過第1延展部而與前述接地圖案接觸,前述第1延展部是藉由具有比前述接地圖案之延展性還高之延展性之超導體而形成,前述第2接地電極是透過第2延展部而與前述接地圖案接觸,前述第2延展部是藉由具有比前述接地圖案之延 展性還高之延展性之超導體而形成。
- 如請求項1之超導複合量子計算電路,其中前述量子位元包含:第1電極,與接地部具有第1耦合電容;及第2電極,與接地部具有比前述第1耦合電容還大之第2耦合電容,且藉由約瑟夫森接合而與前述第1電極連接。
- 如請求項2之超導複合量子計算電路,其中前述電路基板在量子位元對應位置具有中心部電極、將該中心部電極之周圍圍住之周圍電極、及將該中心部電極與該周圍電極連接之連接電極,前述量子位元對應位置是前述第2面中之與在前述第1面形成之前述配線圖案所包含之前述量子位元之位置對應之位置。
- 如請求項1至3中任一項之超導複合量子計算電路,其中前述控制訊號線是在與形成於前述第1面之前述配線圖案所包含之前述量子位元之位置對應之位置,配置在前述第1接地電極具有之前述第1非接觸部之內部,或者是在與量子位元對應位置對應之位置,配置在前述第2接地電極具有之第2非接觸部之內部,而將控制訊號供給至前述量子位元,前述量子位元對應位置是前述第2面中之與在前述第1面形成之前述配線圖案所包含之前述量子位元之位置對應之位置。
- 如請求項4之超導複合量子計算電路,其中前述第1非接觸部及前述第2非接觸部之寬及高度是比前述控制訊號之波長還小之尺寸。
- 如請求項5之超導複合量子計算電路,其中前述控制訊號之頻帶是微波頻帶。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108139578A TWI705587B (zh) | 2019-10-31 | 2019-10-31 | 超導複合量子計算電路 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108139578A TWI705587B (zh) | 2019-10-31 | 2019-10-31 | 超導複合量子計算電路 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI705587B true TWI705587B (zh) | 2020-09-21 |
TW202119658A TW202119658A (zh) | 2021-05-16 |
Family
ID=74091512
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108139578A TWI705587B (zh) | 2019-10-31 | 2019-10-31 | 超導複合量子計算電路 |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI705587B (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7613764B1 (en) * | 2004-03-26 | 2009-11-03 | D-Wave Systems Inc. | Methods for quantum processing |
US20150372217A1 (en) * | 2013-01-18 | 2015-12-24 | Yale University | Methods for making a superconducting device with at least one enclosure |
WO2018052414A1 (en) * | 2016-09-14 | 2018-03-22 | Google Llc | Reducing dissipation and frequency noise in quantum devices using a local vacuum cavity |
US10084436B2 (en) * | 2016-07-15 | 2018-09-25 | Kabushiki Kaisha Toshiba | Computing device comprising a josephson junction |
-
2019
- 2019-10-31 TW TW108139578A patent/TWI705587B/zh active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7613764B1 (en) * | 2004-03-26 | 2009-11-03 | D-Wave Systems Inc. | Methods for quantum processing |
US20150372217A1 (en) * | 2013-01-18 | 2015-12-24 | Yale University | Methods for making a superconducting device with at least one enclosure |
US10084436B2 (en) * | 2016-07-15 | 2018-09-25 | Kabushiki Kaisha Toshiba | Computing device comprising a josephson junction |
WO2018052414A1 (en) * | 2016-09-14 | 2018-03-22 | Google Llc | Reducing dissipation and frequency noise in quantum devices using a local vacuum cavity |
Also Published As
Publication number | Publication date |
---|---|
TW202119658A (zh) | 2021-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7359476B2 (ja) | 超伝導複合量子計算回路 | |
EP3427310B1 (en) | Superconducting microwave-frequency vias for mult-planar quantum circuits | |
US20230380303A1 (en) | Superconducting complex quantum computing circuit | |
US7253788B2 (en) | Mixed-signal systems with alternating impedance electromagnetic bandgap (AI-EBG) structures for noise suppression/isolation | |
CN114611704B (zh) | 一种量子比特耦合方法和结构 | |
US12086689B1 (en) | Scalable quantum processor design | |
TWI705587B (zh) | 超導複合量子計算電路 | |
CN115917739A (zh) | 快速射频封装 | |
US6397171B1 (en) | Method and apparatus for modeling electromagnetic interactions in electrical circuit metalizations to simulate their electrical characteristics | |
CN116709894A (zh) | 一种基于超导量子比特3d晶格的超导量子处理器 | |
Sivaraman | Design of magnetic probes for near field measurements and the development of algorithms for the prediction of EMC | |
TWI778409B (zh) | 超導複合量子計算電路 | |
TW201438558A (zh) | 電路板高頻焊墊區之接地圖型結構 | |
Cai et al. | Scaling superconducting quantum chip with highly integratable quantum building blocks | |
US11894614B2 (en) | Antenna apparatus | |
US20110241803A1 (en) | Signal transmission line | |
US9418945B2 (en) | Integrated circuit for generating or processing a radio frequency signal | |
TWI739592B (zh) | 探針組件 | |
US20230391609A1 (en) | Micromachined superconducting interconnect in silicon | |
US20240104414A1 (en) | Edge capacitive coupling for quantum chips | |
US20220239256A1 (en) | Oscillator | |
Hou et al. | An Efficient Method for Calculating the Dispersion and Characteristic Impedance of Silicon Substrate-Integrated Gap Waveguide in Terahertz Band | |
Pair | Introduction to 3D Integration | |
OO | Efficient modeling of power and signal integrity for semiconductors and advanced electronic package systems |