JP7133661B2 - Polythiophene-based compound/carbon fiber cloth electrode for generating water-splitting oxygen and method for producing the same - Google Patents

Polythiophene-based compound/carbon fiber cloth electrode for generating water-splitting oxygen and method for producing the same Download PDF

Info

Publication number
JP7133661B2
JP7133661B2 JP2021011260A JP2021011260A JP7133661B2 JP 7133661 B2 JP7133661 B2 JP 7133661B2 JP 2021011260 A JP2021011260 A JP 2021011260A JP 2021011260 A JP2021011260 A JP 2021011260A JP 7133661 B2 JP7133661 B2 JP 7133661B2
Authority
JP
Japan
Prior art keywords
carbon fiber
fiber cloth
polythiophene
based compound
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021011260A
Other languages
Japanese (ja)
Other versions
JP2021127518A (en
Inventor
新昊 李
仕楠 張
中華 薛
秀 林
雲霄 林
慧 蘇
接勝 陳
克敏 野田
哲 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Publication of JP2021127518A publication Critical patent/JP2021127518A/en
Application granted granted Critical
Publication of JP7133661B2 publication Critical patent/JP7133661B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/02Electrolytic coating other than with metals with organic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

本発明は、半導体ポリマーによる電気触媒水分解分野に属し、具体的には、水分解酸素発生用のポリチオフェン系化合物/炭素繊維布電極及びその製造方法に関する。 TECHNICAL FIELD The present invention belongs to the field of electrocatalytic water splitting by semiconducting polymers, and more particularly, to a polythiophene-based compound/carbon fiber cloth electrode for generating oxygen by water splitting and a method for producing the same.

社会の進歩及び科学技術の発展に伴い、人々の生活レベルは大幅に向上された。それと同時に、社会発展によってもたらされたエネルギー問題もさらに目立つになった。現在、一次エネルギーは依然として大きな比重を占めている。それがもたらす環境問題や資源不足問題によって、グリーンで持続可能な新たなエネルギーの開発が着目されている。太陽エネルギー、風力エネルギーなどのクリーンエネルギーは、直接に電気エネルギーに変換できるが、それによる電気エネルギーの貯蔵及び変換に関して、更に研究する価値がある。水の電気分解によって、水を水素と酸素に分解して、電気エネルギーを化学物質に変換して貯蔵することは、上記問題を解決するための新しい道である。また、高性能の触媒は、水分解過程における活性化エネルギーを低減でき、エネルギー消耗を大幅に低減できる。 With the progress of society and the development of science and technology, people's living standards have improved greatly. At the same time, the energy problem brought about by social development has become more prominent. At present, primary energy still occupies a large proportion. The development of green and sustainable new energy is attracting attention due to the environmental problems and resource shortages that it brings. Although clean energy such as solar energy, wind energy can be directly converted into electrical energy, the storage and conversion of electrical energy thereby deserves further research. Using water electrolysis to decompose water into hydrogen and oxygen and convert electrical energy into chemical substances for storage is a new way to solve the above problems. In addition, high-performance catalysts can reduce the activation energy in the water-splitting process, greatly reducing energy consumption.

水電解反応について、一般的に2つの半反応に分けて個別に検討する。カソードでは、2個の電子の転移に係る水素発生反応が起き、アノードでは、4個の電子の転移に係る酸素発生反応が起きるため、相対的には、酸素発生反応が難しく、過電位が高い。高効率で実用的な電極触媒によって酸素発生反応の動力学過程を加速させることは、電気化学分野において、近20年間の研究焦点であった。 Water electrolysis reactions are generally divided into two half-reactions and considered separately. At the cathode, a hydrogen-producing reaction involving the transfer of two electrons occurs, and at the anode, an oxygen-producing reaction involving the transfer of four electrons occurs, so the oxygen-producing reaction is relatively difficult and the overpotential is high. . Accelerating the kinetics of the oxygen evolution reaction with highly efficient and practical electrocatalysts has been a research focus for the last two decades in the field of electrochemistry.

現在、研究が最も広く、性能が最も優れるのは、貴金属基触媒(例えば、酸化イリジウム)であるが、このような金属基触媒は、実際の使用時に環境問題やコスト問題がある。したがって、金属を含まない高性能触媒の開発が非常に必要である。 At present, noble metal-based catalysts (for example, iridium oxide) are the most extensively researched and have the highest performance, but such metal-based catalysts have environmental problems and cost problems when actually used. Therefore, there is a great need for the development of high performance metal-free catalysts.

近年、金属を含まないフレキシブルな重合体材料を機能性触媒として酸素析出反応を含む各種の電気触媒反応に応用されることが周知されている。ポリマーは、適合なエネルギー帯構造を有するため、水分子の解離を促進できるとともに酸素析出反応において高活性を提供できる。しかし、ポリマー電極は、その電気化学安定性が依然として実際の応用における主要な障害となる。 In recent years, it is well known that metal-free, flexible polymer materials are used as functional catalysts and applied to various electrocatalytic reactions including oxygen precipitation reactions. Because the polymer has a suitable energy band structure, it can facilitate the dissociation of water molecules and provide high activity in the oxygen precipitation reaction. However, the electrochemical stability of polymer electrodes remains a major obstacle in practical applications.

このような研究に触発されて、本願発明者は、触媒活性を向上しつつ、電極の電気化学安定性を改善できる導電性ポリマーに着目した。このようなポリマー材料は、合成方法が簡単、安価で、工業製造条件も成熟であるとともに、比較的によい電気化学安定性が得られる。ポリマーによる電気触媒電極の開発は、化学工業、エネルギー等の分野に応用できるだけでなく、電気触媒材料の研究に対しても新しい視野を提供できる。 Inspired by such studies, the inventors of the present application have focused on conductive polymers that can improve the electrochemical stability of electrodes while improving catalytic activity. Such polymer materials have simple synthesis methods, low cost, mature industrial production conditions, and relatively good electrochemical stability. The development of polymer electrocatalyst electrodes can not only be applied to the chemical industry and energy fields, but also provide a new perspective for the research of electrocatalyst materials.

本願発明は、従来技術の不足に鑑みて、電気化学安定性が高くて且つ合成方法が簡単である水分解酸素発生用のポリチオフェン系化合物/炭素繊維布電極及びその製造方法を提供する。 SUMMARY OF THE INVENTION In view of the deficiencies of the prior art, the present invention provides a polythiophene-based compound/carbon fiber cloth electrode for hydrolysis oxygen generation with high electrochemical stability and a simple synthesis method, and a method for producing the same.

本願発明に係る水分解酸素発生用のポリチオフェン系化合物/炭素繊維布電極は、炭素繊維布と、当該炭素繊維布に形成されたポリチオフェン系化合物フィルムとを含む。
前記ポリチオフェン系化合物フィルムは、チオフェン系単体が電気化学析出反応によって炭素繊維布に現場重合されてなることが好ましい。
A polythiophene-based compound/carbon fiber cloth electrode for hydrolysis oxygen generation according to the present invention includes a carbon fiber cloth and a polythiophene-based compound film formed on the carbon fiber cloth.
Preferably, the polythiophene-based compound film is formed by in-situ polymerization of a thiophene-based monomer onto a carbon fiber cloth through an electrochemical deposition reaction.

前記チオフェン系単体は、チオフェン、3位に炭素原子数1-6のアルキル基が置換されたチオフェンから選ばれた少なくとも一つであることが好ましい。
前記ポリチオフェン系化合物フィルムは、厚さが20-100nmであることが好ましい。
The thiophene-based element is preferably at least one selected from thiophene and thiophene substituted with an alkyl group having 1 to 6 carbon atoms at the 3-position.
The polythiophene-based compound film preferably has a thickness of 20-100 nm.

これによって、水分解酸素発生用のポリチオフェン系化合物/炭素繊維布電極の触媒性能が優れる。
本願発明に係る水分解酸素発生用のポリチオフェン系化合物/炭素繊維布電極の製造方法は、チオフェン系単体と、電解質としての過塩素酸リチウムとを含有するアセトニトリル溶液を調製することと、炭素繊維布を作用電極として前記アセトニトリル溶液に浸漬させ、0.5-7時間通電して、定電圧電気化学析出法によって、チオフェン系単体を炭素繊維布に現場重合させることで、炭素繊維布にポリチオフェン系化合物フィルムを形成することと、ポリチオフェン系化合物フィルムが形成された炭素繊維布を取り出してから、純水に浸漬させて、不純物を除去し、自然乾燥させることで、ポリ水分解酸素発生用のポリチオフェン系化合物/炭素繊維布電極が得られることと、を含む。
Accordingly, the catalytic performance of the polythiophene-based compound/carbon fiber cloth electrode for generating oxygen by hydrolysis is excellent.
A method for producing a polythiophene-based compound/carbon fiber cloth electrode for generating water-splitting oxygen according to the present invention comprises preparing an acetonitrile solution containing a thiophene-based simple substance and lithium perchlorate as an electrolyte; is immersed in the acetonitrile solution as a working electrode, current is applied for 0.5 to 7 hours, and the thiophene-based simple substance is polymerized in situ on the carbon fiber cloth by a constant voltage electrochemical deposition method, so that the carbon fiber cloth is coated with a polythiophene-based compound. Forming a film, taking out the carbon fiber cloth on which the polythiophene-based compound film is formed, immersing it in pure water to remove impurities, and drying it naturally, yielding a polythiophene-based polythiophene-based compound for polyhydrolysis oxygen generation A compound/carbon fiber cloth electrode is obtained.

本願発明の製造方法によれば、均一のポリマーフィルムを形成でき、さらに、ポリマー電極に高い触媒活性を持たせることができる。
水分解酸素発生用のポリチオフェン系化合物/炭素繊維布電極の製造方法において、1mol/L-2mol/Lの硝酸で炭素繊維布に対して5-10分間超音波処理を行うことを含むことが好ましい。
According to the manufacturing method of the present invention, a uniform polymer film can be formed, and the polymer electrode can have high catalytic activity.
Preferably, in the method for producing a polythiophene-based compound/carbon fiber cloth electrode for hydrolysis oxygen generation, the carbon fiber cloth is subjected to ultrasonic treatment with 1 mol/L-2 mol/L nitric acid for 5-10 minutes. .

それによって、硝酸処理後に、炭素布にポリマーをより均一に成膜できる。
前記水分解酸素発生用のポリチオフェン系化合物/炭素繊維布電極の製造方法において、前記アセトニトリル溶液は、過塩素酸リチウムの濃度が0.1-0.2mol/Lであり、前記チオフェン系単体の濃度が0.005-0.01mol/Lであることが好ましい。
Thereby, the polymer can be deposited more uniformly on the carbon cloth after the nitric acid treatment.
In the method for producing a polythiophene-based compound/carbon fiber cloth electrode for generating water-splitting oxygen, the acetonitrile solution has a lithium perchlorate concentration of 0.1-0.2 mol/L, and the concentration of the thiophene-based simple substance is is preferably 0.005-0.01 mol/L.

これによって、触媒性能を確保できると同時に、ポリマーフィルムが炭素布から抜けることを防止できる。
前記水分解酸素発生用のポリチオフェン系化合物/炭素繊維布電極の製造方法において、前記定電圧電気化学析出は、3時間通電することが好ましい。
As a result, the catalyst performance can be ensured, and at the same time, the polymer film can be prevented from falling out of the carbon cloth.
In the method for producing a polythiophene-based compound/carbon fiber cloth electrode for generating water-splitting oxygen, it is preferable that the constant-voltage electrochemical deposition is conducted for 3 hours.

これによって、優れる触媒性能が得られる。
前記水分解酸素発生用のポリチオフェン系化合物/炭素繊維布電極の製造方法において、前記チオフェン系単体は、炭素繊維布の表面で直接に現場重合されることが好ましい。
This results in excellent catalytic performance.
In the method for producing a polythiophene-based compound/carbon fiber cloth electrode for generating water-splitting oxygen, it is preferable that the thiophene-based monomer is directly polymerized in situ on the surface of the carbon fiber cloth.

本願発明は、水分解酸素発生における陽極としての上記電極の使用に関する。
前記ポリチオフェン系化合物は、触媒酸素析出反応の過程において制御可能な酸化反応が発生することで、触媒性能がよりよく且つより安定的なポリチオフェンを形成できる。
The present invention relates to the use of such electrodes as anodes in water-splitting oxygen generation.
The polythiophene-based compound undergoes a controllable oxidation reaction during the catalytic oxygen precipitation reaction, thereby forming a polythiophene with better catalytic performance and more stability.

本発明の水分解酸素発生用のポリチオフェン/炭素繊維布電は、活性が高く、且つ安定性がよく、水分解による酸素発生において陽極として使用でき、形状自由度が高く、水分解システムの小型化に有利であり、且つコストが低い、大規模製造に適合できる。 The polythiophene/carbon fiber cloth for water-splitting oxygen generation of the present invention has high activity and good stability, can be used as an anode in oxygen generation by water-splitting, has a high degree of freedom in shape, and can be used to reduce the size of the water-splitting system. and is low cost and amenable to large scale manufacturing.

本発明の水分解酸素発生用のポリチオフェン/炭素繊維布電極の製造方法は、プロセスが簡単で、制御しやすく、コストが低く、規模化生産を実現できる。 The method for producing the polythiophene/carbon fiber cloth electrode for water-splitting oxygen generation of the present invention is simple in process, easy to control, low in cost, and capable of being scaled up.

実施例1における水分解酸素発生用のポリチオフェン/炭素繊維布電極のデジタル写真である。1 is a digital photograph of a polythiophene/carbon fiber cloth electrode for water-splitting oxygen generation in Example 1. FIG. 実施例1における水分解酸素発生用のポリチオフェン/炭素繊維布電極の走査型電子顕微鏡写真である。1 is a scanning electron micrograph of a polythiophene/carbon fiber cloth electrode for water-splitting oxygen generation in Example 1. FIG. 実施例1における水分解酸素発生用のポリチオフェン/炭素繊維布電極の透過型電子顕微鏡写真である。1 is a transmission electron micrograph of a polythiophene/carbon fiber cloth electrode for hydrolysis oxygen generation in Example 1. FIG. 実施例1と比較例1で得られた電極によるリニアスキャン電流-電圧グラフである。4 is a linear scan current-voltage graph of electrodes obtained in Example 1 and Comparative Example 1. FIG. 実施例1の電極に対する48時間の定電位安定性循環テストにおける電流の経時変化を示すグラフである。1 is a graph showing current over time in a 48-hour potentiostatic stability cycling test for the electrodes of Example 1. FIG. 本発明の製造プロセスを示す模式図である。It is a schematic diagram which shows the manufacturing process of this invention.

本願発明の水分解酸素発生用のポリチオフェン系化合物/炭素繊維布電極の製造方法は、以下のステップを提供する。
まず、チオフェン類単体と電解質としての過塩素酸リチウムとをアセトニトリルに溶解してアセトニトリル溶液を調製する。本願発明の実施例において、使用されるチオフェン系単体は、チオフェン、3位に炭素原子数1-6のアルキル基が置換されたチオフェンから選ばれた少なくとも一つである。アセトニトリル溶液は、過塩素酸リチウムの濃度が0.1-0.2mol/Lであり、チオフェン系単体の濃度が0.005-0.01mol/Lである。
The method for producing a polythiophene-based compound/carbon fiber cloth electrode for generating water-splitting oxygen according to the present invention provides the following steps.
First, an acetonitrile solution is prepared by dissolving a thiophene simple substance and lithium perchlorate as an electrolyte in acetonitrile. In the embodiments of the present invention, the thiophene-based monomer used is at least one selected from thiophene and thiophene substituted with an alkyl group having 1-6 carbon atoms at the 3-position. The acetonitrile solution has a lithium perchlorate concentration of 0.1-0.2 mol/L and a thiophene-based monomer concentration of 0.005-0.01 mol/L.

炭素繊維布を硝酸で超音波処理する。適当面積の炭素繊維布を前記アセトニトリル溶液に浸漬させ、炭素繊維布を作用電極として、定電圧電気化学析出法によって、チオフェン系単体を炭素繊維布に現場重合させることで、炭素繊維布にポリチオフェン系化合物フィルムを形成する。そして、電気析出完成後、作用電極を取り出して、純水に浸漬させ、不純物を除去し、自然乾燥させることで、ポリ水分解酸素発生用のポリチオフェン系化合物/炭素繊維布電極が得られる。 Sonicate the carbon fiber cloth with nitric acid. A suitable area of the carbon fiber cloth is immersed in the acetonitrile solution, and the carbon fiber cloth is used as a working electrode, and the thiophene-based monomer is polymerized in situ on the carbon fiber cloth by a constant voltage electrochemical deposition method, thereby forming a polythiophene-based compound on the carbon fiber cloth. Form a compound film. After completion of the electrodeposition, the working electrode is taken out, immersed in pure water to remove impurities, and dried naturally to obtain a polythiophene-based compound/carbon fiber cloth electrode for polyhydrolysis oxygen generation.

必要のフィルム厚さに応じて定電圧電気化学析出の通電時間を制御できるが、フィルムの厚さは20-100nmであることが好ましく、通電時間は、0.5-7時間の範囲であることが好ましく、3時間であることがより好ましい。作用電極の純水への浸漬時間はフィルムの厚さに依存するが、例えば30分間浸漬する。超音波処理の時間は例えば5-10分間であり、硝酸濃度は例えば1mol/L-2mol/Lである。炭素繊維布は各種の規格の炭素繊維布であってもよい。前記炭素繊維布の面積は、任意の面積でよいが、必要に応じて小片に切断して使用する。本発明に使用するチオフェン類単体、過塩素酸リチウム、アセトニトリルは、すべて市販の通用製品を使用できる。 The energization time of constant voltage electrochemical deposition can be controlled according to the required film thickness, preferably the film thickness is 20-100 nm, and the energization time is in the range of 0.5-7 hours. is preferred, and 3 hours is more preferred. The immersion time of the working electrode in pure water depends on the thickness of the film, but is immersed for, for example, 30 minutes. The ultrasonic treatment time is for example 5-10 minutes and the nitric acid concentration is for example 1 mol/L-2 mol/L. The carbon fiber cloth may be carbon fiber cloth of various standards. The area of the carbon fiber cloth may be any area, but if necessary, it is cut into small pieces for use. The thiophenes simple substance, lithium perchlorate, and acetonitrile used in the present invention can all be commercially available products.

実施例1:
0.5cm×0.5cm炭素繊維布を1mol/Lの硝酸で5分間超音波処理してから、アルコールと水で超音波洗浄して用意した。0.1mol/Lの過塩素酸リチウムと0.005mol/Lのチオフェン単体を含むアセトニトリル溶液に、上記硝酸処理後の炭素繊維布を作動電極とし、チタンネットと飽和甘汞電極をそれぞれ対極と参照電極として、三電極システムを構成した。そして、1.73Vの外部電圧で3時間の定電流析出を行うことで、チオフェン単体を炭素繊維布に現場重合させ、ポリチオフェンフィルムを形成した。電気析出プロセスの完了後に、作用電極を取り出して純水に30分間浸漬させ、不純物を除去し、自然乾燥させることで、ポリチオフェンフィルムの厚さが40nmである水分解酸素発生用のポリチオフェン系化合物/炭素繊維布電極が得られた。標準水素電極に対して1.7Vの電圧で測定して得られたポリチオフェン/炭素繊維布分解水酸素生成電極の電流密度は20mA/cm-2であった。
Example 1:
A 0.5 cm×0.5 cm carbon fiber cloth was prepared by sonicating with 1 mol/L nitric acid for 5 minutes and then ultrasonically cleaning with alcohol and water. In an acetonitrile solution containing 0.1 mol/L lithium perchlorate and 0.005 mol/L thiophene simple substance, the carbon fiber cloth after nitric acid treatment is used as the working electrode, and a titanium net and a saturated calomel electrode are used as counter electrodes. As electrodes, a three-electrode system was configured. Then, galvanostatic deposition was performed at an external voltage of 1.73 V for 3 hours to polymerize the thiophene simple substance on the carbon fiber cloth in situ to form a polythiophene film. After completion of the electrodeposition process, the working electrode was taken out and immersed in pure water for 30 minutes to remove impurities, followed by air drying to obtain a polythiophene-based compound/ A carbon fiber cloth electrode was obtained. The resulting current density of the polythiophene/carbon fiber cloth decomposed water oxygen generating electrode measured at a voltage of 1.7 V against a standard hydrogen electrode was 20 mA/cm −2 .

実施例2:
0.5cm×0.5cm炭素繊維布を1mol/Lの硝酸で5分間超音波処理してから、アルコールと水で超音波洗浄して用意した。0.1mol/Lの過塩素酸リチウムと0.005mol/Lのチオフェン単体を含むアセトニトリル溶液に、上記硝酸処理後の炭素繊維布を作動電極とし、チタンネットと飽和甘汞電極をそれぞれ対極と参照電極として、三電極システムを構成した。そして、1.73Vの外部電圧で0.5時間の定電流析出を行うことで、チオフェン単体を炭素繊維布に現場重合させ、ポリチオフェンフィルムを形成した。電気析出プロセスの完了後に、作用電極を取り出して純水に30分間浸漬させ、不純物を除去し、自然乾燥させることで、ポリチオフェンフィルムの厚さが20nmである水分解酸素発生用のポリチオフェン系化合物/炭素繊維布電極が得られた。標準水素電極に対して1.7Vの電圧で測定して得られたポリチオフェン/炭素繊維布分解水酸素生成電極の電流密度は6.4mA/cm-2であった。
Example 2:
A 0.5 cm×0.5 cm carbon fiber cloth was prepared by sonicating with 1 mol/L nitric acid for 5 minutes and then ultrasonically cleaning with alcohol and water. In an acetonitrile solution containing 0.1 mol/L lithium perchlorate and 0.005 mol/L thiophene simple substance, the carbon fiber cloth after nitric acid treatment is used as the working electrode, and a titanium net and a saturated calomel electrode are used as counter electrodes. As electrodes, a three-electrode system was configured. Then, the thiophene simple substance was polymerized in situ on the carbon fiber cloth by galvanostatic deposition at an external voltage of 1.73 V for 0.5 hours to form a polythiophene film. After completion of the electrodeposition process, the working electrode was taken out and immersed in pure water for 30 minutes to remove impurities and dried naturally to obtain a polythiophene-based compound/ A carbon fiber cloth electrode was obtained. The resulting current density of the polythiophene/carbon fiber cloth-decomposed water oxygen generating electrode measured at a voltage of 1.7 V against a standard hydrogen electrode was 6.4 mA/cm −2 .

実施例3:
0.5cm×0.5cm炭素繊維布を1mol/Lの硝酸で5分間超音波処理してから、アルコールと水で超音波洗浄して用意した。0.1mol/Lの過塩素酸リチウムと0.005mol/Lのチオフェン単体を含むアセトニトリル溶液に、上記硝酸処理後の炭素繊維布を作動電極とし、チタンネットと飽和甘汞電極をそれぞれ対極と参照電極として、三電極システムを構成した。そして、1.73Vの外部電圧で1時間の定電流析出を行うことで、チオフェン単体を炭素繊維布に現場重合させ、ポリチオフェンフィルムを形成した。電気析出プロセスの完了後に、作用電極を取り出して純水に30分間浸漬させ、不純物を除去し、自然乾燥させることで、水分解酸素発生用のポリチオフェン系化合物/炭素繊維布電極が得られた。標準水素電極に対して1.7Vの電圧で測定して得られたポリチオフェン/炭素繊維布分解水酸素生成電極の電流密度は12.9mA/cm-2であった。
Example 3:
A 0.5 cm×0.5 cm carbon fiber cloth was prepared by sonicating with 1 mol/L nitric acid for 5 minutes and then ultrasonically cleaning with alcohol and water. In an acetonitrile solution containing 0.1 mol/L lithium perchlorate and 0.005 mol/L thiophene simple substance, the carbon fiber cloth after nitric acid treatment is used as the working electrode, and a titanium net and a saturated calomel electrode are used as counter electrodes. As electrodes, a three-electrode system was configured. Then, galvanostatic deposition was performed at an external voltage of 1.73 V for 1 hour to polymerize the thiophene monomer on the carbon fiber cloth in situ to form a polythiophene film. After completion of the electrodeposition process, the working electrode was taken out and immersed in pure water for 30 minutes to remove impurities and air-dried to obtain a polythiophene-based compound/carbon fiber cloth electrode for hydrolysis oxygen generation. The resulting current density of the polythiophene/carbon fiber cloth-decomposed water oxygen generating electrode measured at a voltage of 1.7 V against a standard hydrogen electrode was 12.9 mA/cm −2 .

実施例4:
0.5cm×0.5cm炭素繊維布を1mol/Lの硝酸で5分間超音波処理してから、アルコールと水で超音波洗浄して用意した。0.1mol/Lの過塩素酸リチウムと0.005mol/Lのチオフェン単体を含むアセトニトリル溶液に、上記硝酸処理後の炭素繊維布を作動電極とし、チタンネットと飽和甘汞電極をそれぞれ対極と参照電極として、三電極システムを構成した。そして、1.73Vの外部電圧で5時間の定電流析出を行うことで、チオフェン単体を炭素繊維布に現場重合させ、ポリチオフェンフィルムを形成した。電気析出プロセスの完了後に、作用電極を取り出して純水に30分間浸漬させ、不純物を除去し、自然乾燥させることで、ポリチオフェンフィルムの厚さが100nmである水分解酸素発生用のポリチオフェン系化合物/炭素繊維布電極が得られた。標準水素電極に対して1.7Vの電圧で測定して得られたポリチオフェン/炭素繊維布分解水酸素生成電極の電流密度は5.1mA/cm-2であった。
Example 4:
A 0.5 cm×0.5 cm carbon fiber cloth was prepared by sonicating with 1 mol/L nitric acid for 5 minutes and then ultrasonically cleaning with alcohol and water. In an acetonitrile solution containing 0.1 mol/L lithium perchlorate and 0.005 mol/L thiophene simple substance, the carbon fiber cloth after nitric acid treatment is used as the working electrode, and a titanium net and a saturated calomel electrode are used as counter electrodes. As electrodes, a three-electrode system was configured. Then, galvanostatic deposition was carried out at an external voltage of 1.73 V for 5 hours to polymerize the thiophene monomer on the carbon fiber cloth in situ to form a polythiophene film. After completion of the electrodeposition process, the working electrode was taken out and immersed in pure water for 30 minutes to remove impurities and dried naturally to obtain a polythiophene-based compound/ A carbon fiber cloth electrode was obtained. The resulting current density of the polythiophene/carbon fiber cloth decomposed water oxygen generating electrode measured at a voltage of 1.7 V against a standard hydrogen electrode was 5.1 mA/cm −2 .

実施例5:
0.5cm×0.5cm炭素繊維布を1mol/Lの硝酸で5分間超音波処理してから、アルコールと水で超音波洗浄して用意した。0.1mol/Lの過塩素酸リチウムと0.005Mのチオフェン単体を含むアセトニトリル溶液に、上記硝酸処理後の炭素繊維布を作動電極とし、チタンネットと飽和甘汞電極をそれぞれ対極と参照電極として、三電極システムを構成した。そして、1.73Vの外部電圧で7時間の定電流析出を行うことで、チオフェン単体を炭素繊維布に現場重合させ、ポリチオフェンフィルムを形成した。電気析出プロセスの完了後に、作用電極を取り出して純水に30分間浸漬させ、不純物を除去し、自然乾燥させることで、水分解酸素発生用のポリチオフェン系化合物/炭素繊維布電極が得られた。標準水素電極に対して1.7Vの電圧で測定して得られたポリチオフェン/炭素繊維布分解水酸素生成電極の電流密度は4.8mA/cm-2であった。
Example 5:
A 0.5 cm×0.5 cm carbon fiber cloth was prepared by sonicating with 1 mol/L nitric acid for 5 minutes and then ultrasonically cleaning with alcohol and water. In an acetonitrile solution containing 0.1 mol / L lithium perchlorate and 0.005 M thiophene simple substance, the carbon fiber cloth after the nitric acid treatment was used as the working electrode, and the titanium net and the saturated calomel electrode were used as the counter electrode and the reference electrode, respectively. , constituted a three-electrode system. Then, galvanostatic deposition was performed at an external voltage of 1.73 V for 7 hours to polymerize the thiophene monomer on the carbon fiber cloth in situ to form a polythiophene film. After completion of the electrodeposition process, the working electrode was taken out and immersed in pure water for 30 minutes to remove impurities and air-dried to obtain a polythiophene-based compound/carbon fiber cloth electrode for hydrolysis oxygen generation. The resulting current density of the polythiophene/carbon fiber cloth decomposed water oxygen generating electrode measured at a voltage of 1.7 V against a standard hydrogen electrode was 4.8 mA/cm −2 .

比較例1:商業化の酸化イリジウム/炭素繊維布電極の製造
オンラインショップで購入した商業化の酸化イリジウムナノ粒子を研磨処理し、5mg取って小サンプル管に加え、さらに0.35mLの超純水、0.70mLのエチルアルコールおよび0.08mLの5%ナフィオン溶液を入れ、超音波でインクを形成した。当該インクを0.2mL取って1cmx1cmの炭素繊維布に滴下し、自然乾燥させることで、商業化の酸化イリジウム/炭素繊維布電極を得た。比較例1は、従来にてよく使用されている商業化の貴金属酸化物を使用して電極を製造したもので、実施例と性能比較を行った。
Comparative Example 1: Production of commercial iridium oxide/carbon fiber cloth electrode Commercial iridium oxide nanoparticles purchased from online shops were polished, 5 mg was added to a small sample tube, and 0.35 mL of ultrapure water was added. , 0.70 mL of ethyl alcohol and 0.08 mL of 5% Nafion solution were added and ultrasonically formed to form an ink. Take 0.2 mL of the ink, drop it on a 1 cm×1 cm carbon fiber cloth, and let it air dry to obtain a commercial iridium oxide/carbon fiber cloth electrode. In Comparative Example 1, an electrode was produced using a commercially available noble metal oxide that has been often used in the past, and the performance was compared with Examples.

以下では、製造例、特に実施例1で得られたポリチオフェン系化合物/炭素繊維布について観察して評価した。
図1は、実施例1における水分解酸素発生用のポリチオフェン/炭素繊維布電極のデジタル写真である。図2は、実施例1で得られた水分解酸素発生用のポリチオフェン/炭素繊維布電極の走査型電子顕微鏡写真である。図3は、実施例1で得られた水分解酸素発生用のポリチオフェン/炭素繊維布電極の透過型電子顕微鏡写真である。これらの写真から分かるように、電気化学析出法によって、非常に均一で高品質のポリマーフィルムが得られた。
In the following, the polythiophene-based compound/carbon fiber cloth obtained in the production examples, particularly Example 1, was observed and evaluated.
1 is a digital photograph of a polythiophene/carbon fiber cloth electrode for hydrolytic oxygen generation in Example 1. FIG. 2 is a scanning electron micrograph of the polythiophene/carbon fiber cloth electrode for hydrolysis oxygen generation obtained in Example 1. FIG. 3 is a transmission electron micrograph of the polythiophene/carbon fiber cloth electrode for hydrolysis oxygen generation obtained in Example 1. FIG. As can be seen from these photographs, electrochemical deposition yielded very uniform and high quality polymer films.

図4は、実施例1で得られたポリチオフェン/炭素繊維布電極と、比較例1で得られた酸化イリジウム/炭素繊維布電極とを酸素飽和0.1MのKOH溶液(pH=13.0)で測定したリニアスキャン電流-電圧グラフを示す。 FIG. 4 shows the polythiophene/carbon fiber cloth electrode obtained in Example 1 and the iridium oxide/carbon fiber cloth electrode obtained in Comparative Example 1 in an oxygen-saturated 0.1 M KOH solution (pH=13.0). shows a linear scan current-voltage graph measured at .

図5は、標準水素電極に対して1.7Vの印加電圧で48時間の定電位安定性試験を行った場合の電流の経時変化を示すグラフを示し、最終電流は、初期電流に比べて顕著な減衰が見られなかった。 FIG. 5 shows a graph showing the change in current over time for a 48 hour potentiostatic stability test at an applied voltage of 1.7 V for a standard hydrogen electrode, the final current being significantly higher than the initial current. No significant attenuation was observed.

図4、図5のデータから分かるように、本願発明のポリチオフェン系化合物/炭素繊維布電極は、酸素発生電極として使用される場合、非常に高い電流密度を獲得できるばかりでなく、10mA/cm-2の過電位がただ430mVであった。なお、当該電極は、極めて優れる電気触媒安定性を有し、48時間の定電圧安定性試験後も高電流密度を維持できることが確認された。 As can be seen from the data in FIGS. 4 and 5, the polythiophene-based compound/carbon fiber cloth electrode of the present invention not only achieves a very high current density when used as an oxygen generating electrode, but also achieves a current density of 10 mA/cm The overpotential of 2 was only 430 mV. In addition, it was confirmed that the electrode has excellent electrocatalytic stability and can maintain a high current density even after a constant voltage stability test for 48 hours.

Claims (7)

水分解酸素発生用のポリチオフェン系化合物/炭素繊維布電極であって、炭素繊維布と、チオフェン、3位に炭素原子数1-6のアルキル基が置換されたチオフェンから選ばれた少なくとも1種である単体が当該炭素繊維布に現場重合されたポリチオフェン系化合物フィルムとからなるポリチオフェン系化合物/炭素繊維布電極。 A polythiophene-based compound/carbon fiber cloth electrode for generating oxygen by hydrolysis, comprising at least one selected from carbon fiber cloth, thiophene, and thiophene substituted with an alkyl group having 1 to 6 carbon atoms at the 3-position. A polythiophene-based compound/carbon fiber cloth electrode comprising a polythiophene-based compound film in situ polymerized on the carbon fiber cloth. 前記ポリチオフェン系化合物フィルムは、厚さが20-100nmである、請求項1に記載の水分解酸素発生用のポリチオフェン系化合物/炭素繊維布電極。 The polythiophene-based compound/carbon fiber cloth electrode for hydrolysis oxygen generation according to claim 1, wherein the polythiophene-based compound film has a thickness of 20-100 nm. 請求項1又は2に記載の水分解酸素発生用のポリチオフェン系化合物/炭素繊維布電極の製造方法であって、
チオフェン系単体と、電解質としての過塩素酸リチウムとを含有するアセトニトリル溶液を調製することと、
炭素繊維布を作用電極として前記アセトニトリル溶液に浸漬させ、0.5-7時間通電して、定電圧電気化学析出法によって、チオフェン系単体を炭素繊維布に現場重合させることで、炭素繊維布にポリチオフェン系化合物フィルムを形成することと、
ポリチオフェン系化合物フィルムが形成された炭素繊維布を取り出してから、純水に浸漬させて、不純物を除去し、自然乾燥させることで、水分解酸素発生用のポリチオフェン系化合物/炭素繊維布電極が得られることと、
を含み、
前記チオフェン系単体は、チオフェン、3位に炭素原子数1-6のアルキル基が置換されたチオフェンから選ばれた少なくとも1種であり、
前記アセトニトリル溶液において、過塩素酸リチウムの濃度が0.1-0.2mol/Lであり、前記チオフェン系単体の濃度が0.005-0.01mol/Lであるポリチオフェン系化合物/炭素繊維布電極の製造方法。
3. A method for producing a polythiophene-based compound/carbon fiber cloth electrode for generating water-splitting oxygen according to claim 1 or 2,
preparing an acetonitrile solution containing a thiophene-based element and lithium perchlorate as an electrolyte;
The carbon fiber cloth is immersed in the acetonitrile solution as a working electrode, energized for 0.5 to 7 hours, and the thiophene-based monomer is polymerized in situ on the carbon fiber cloth by a constant voltage electrochemical deposition method. forming a polythiophene-based compound film;
After taking out the carbon fiber cloth on which the polythiophene-based compound film was formed, it was immersed in pure water to remove impurities, and dried naturally to obtain a polythiophene-based compound/carbon fiber cloth electrode for generating oxygen by hydrolysis. to be
including
The thiophene-based monomer is at least one selected from thiophene and thiophene substituted with an alkyl group having 1 to 6 carbon atoms at the 3-position,
In the acetonitrile solution, the concentration of lithium perchlorate is 0.1-0.2 mol/L, and the concentration of the thiophene-based element is 0.005-0.01 mol/L. manufacturing method.
1mol/L-2mol/Lの硝酸で炭素繊維布に対して5-10分間超音波処理を行うことを含む、請求項3に記載のポリチオフェン系化合物/炭素繊維布電極の製造方法。 The method for producing a polythiophene-based compound/carbon fiber cloth electrode according to claim 3, comprising subjecting the carbon fiber cloth to ultrasonic treatment with 1 mol/L-2 mol/L nitric acid for 5-10 minutes. 前記定電圧電気化学析出において、3時間通電する、請求項3又は4に記載のポリチオフェン系化合物/炭素繊維布電極の製造方法。 The method for producing a polythiophene-based compound/carbon fiber cloth electrode according to claim 3 or 4, wherein the constant voltage electrochemical deposition is conducted for 3 hours. 前記チオフェン系単体は、炭素繊維布の表面で直接に現場重合される、請求項3又は4に記載のポリチオフェン系化合物/炭素繊維布電極の製造方法。 The method for producing a polythiophene-based compound/carbon fiber cloth electrode according to claim 3 or 4, wherein the thiophene-based monomer is directly polymerized in situ on the surface of the carbon fiber cloth. 水分解による酸素発生における、請求項1又は2に記載のポリチオフェン系化合物/炭素繊維布電極の陽極としての使用。 Use of the polythiophene-based compound/carbon fiber cloth electrode according to claim 1 or 2 as an anode in oxygen generation by water decomposition.
JP2021011260A 2020-02-14 2021-01-27 Polythiophene-based compound/carbon fiber cloth electrode for generating water-splitting oxygen and method for producing the same Active JP7133661B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010093256.7 2020-02-14
CN202010093256.7A CN113337833B (en) 2020-02-14 2020-02-14 Polythiophene compound/carbon fiber cloth decomposed water oxygen generating electrode and preparation method thereof

Publications (2)

Publication Number Publication Date
JP2021127518A JP2021127518A (en) 2021-09-02
JP7133661B2 true JP7133661B2 (en) 2022-09-08

Family

ID=77466946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021011260A Active JP7133661B2 (en) 2020-02-14 2021-01-27 Polythiophene-based compound/carbon fiber cloth electrode for generating water-splitting oxygen and method for producing the same

Country Status (2)

Country Link
JP (1) JP7133661B2 (en)
CN (1) CN113337833B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114960194B (en) * 2022-06-30 2024-01-09 马鞍山欧凯新材料科技有限公司 Preparation method of carbon fiber composite anode material for electroplating

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004253224A (en) 2003-02-19 2004-09-09 Junji Nakamura Method of holding catalyst on fibrous carbon, fuel cell electrode utilizing the same, and fuel cell
JP2005044664A (en) 2003-07-23 2005-02-17 Toyota Central Res & Dev Lab Inc Electrode catalyst and its manufacturing method
JP2011239604A (en) 2010-05-12 2011-11-24 Alps Electric Co Ltd Method for manufacturing polymer actuator element
CN103114301A (en) 2013-03-04 2013-05-22 北京师范大学 Preparation process of nanometer Fe3O4-V2O5-Au-doped polythiophene-membrane-modified active carbon fiber electrode
JP2017206773A (en) 2012-06-12 2017-11-24 アクアハイドレックス プロプライエタリー リミテッドAquahydrex Pty Ltd Gas permeable electrode and method of manufacturing
WO2019065258A1 (en) 2017-09-27 2019-04-04 積水化学工業株式会社 Carbon dioxide reduction device, and porous electrode

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345389A (en) * 1986-08-13 1988-02-26 Agency Of Ind Science & Technol Metal oxide supporting graphite electrode
CN101603188A (en) * 2009-06-22 2009-12-16 江西科技师范学院 Method for directly preparing conductive polythiophene and 3-alkyl substituted polythiophene self-supporting film on surface of stainless steel
CN107118205A (en) * 2017-06-01 2017-09-01 浙江工业大学 A kind of thiophene pyrrole thiophene derivant and preparation method and application
CN110541174B (en) * 2018-05-28 2021-11-12 丰田自动车株式会社 Polyimide/carbon fiber cloth water decomposition oxygen generation electrode and preparation method thereof
CN109369890A (en) * 2018-08-29 2019-02-22 浙江工业大学 A kind of poly- 3,4- ethene dioxythiophene Nanostructure Network film and the preparation method and application thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004253224A (en) 2003-02-19 2004-09-09 Junji Nakamura Method of holding catalyst on fibrous carbon, fuel cell electrode utilizing the same, and fuel cell
JP2005044664A (en) 2003-07-23 2005-02-17 Toyota Central Res & Dev Lab Inc Electrode catalyst and its manufacturing method
JP2011239604A (en) 2010-05-12 2011-11-24 Alps Electric Co Ltd Method for manufacturing polymer actuator element
JP2017206773A (en) 2012-06-12 2017-11-24 アクアハイドレックス プロプライエタリー リミテッドAquahydrex Pty Ltd Gas permeable electrode and method of manufacturing
CN103114301A (en) 2013-03-04 2013-05-22 北京师范大学 Preparation process of nanometer Fe3O4-V2O5-Au-doped polythiophene-membrane-modified active carbon fiber electrode
WO2019065258A1 (en) 2017-09-27 2019-04-04 積水化学工業株式会社 Carbon dioxide reduction device, and porous electrode

Also Published As

Publication number Publication date
CN113337833B (en) 2024-08-06
JP2021127518A (en) 2021-09-02
CN113337833A (en) 2021-09-03

Similar Documents

Publication Publication Date Title
CN111229232A (en) Foam nickel-based porous NiFe hydrotalcite nanosheet and preparation and application thereof
CN107904614A (en) A kind of Ni3S2@Ni Fe LDH analysis oxygen electro catalytic electrodes and preparation method and application
CN108130552B (en) Polyaniline cuprous oxide composite material and preparation method and application thereof
CN114369854B (en) Efficient electrodeposition preparation method and application of metal organic framework film
CN113136597B (en) Copper-tin composite material and preparation method and application thereof
CN113174600A (en) Porous nickel screen electrolytic water catalytic material and preparation method thereof
Mehdinia et al. Nanostructured polyaniline-coated anode for improving microbial fuel cell power output
CN112695339B (en) Hydrogen evolution catalytic electrode, preparation method and application thereof
CN112723490A (en) Carbon nanotube modified lead dioxide electrode and preparation method and application thereof
Tang et al. Facile synthesis of polypyrrole functionalized nickel foam with catalytic activity comparable to Pt for the poly-generation of hydrogen and electricity
CN110820011B (en) Ni for electrolyzing water3S2Electrode material and preparation method thereof
JP7133661B2 (en) Polythiophene-based compound/carbon fiber cloth electrode for generating water-splitting oxygen and method for producing the same
CN111777059B (en) Activation method of carbon nano tube carrier, carbon nano tube carrier and application thereof
CN104928713B (en) The preparation method and its usage of the Ni-based production hydrogen electrode of conducting polymer cladding
CN110230072B (en) Preparation method and application of N-NiZnCu LDH/rGO nanosheet array material on foamed nickel
CN109994744B (en) Nickel-cobalt binary catalyst for promoting direct oxidation of sodium borohydride
CN109402654B (en) MoS with substrate protection function2/Ni3Se2Composite hydrogen evolution electrocatalyst and preparation method thereof
CN103343378A (en) Preparation method and application of carbon nanotube doped Nafion membrane modified high-stability catalytic electrode
Zos’ ko et al. Electrochemical Reductive Doping of TiO2-Nanotubes to Increase the Efficiency of Photoelectrochemical Water Splitting
CN113265678B (en) Electrode material with hydrogen evolution/oxygen evolution double functions and preparation method and application thereof
CN115011993A (en) Bismuth-based electrocatalyst with hierarchical structure, preparation thereof and application thereof in electroreduction of carbon dioxide
CN111186883B (en) Novel preparation technology of lead dioxide electrode modified by titanium tetroxide nanotube
WO2014033756A2 (en) A method of preparing palladium dendrites on carbon based substrates
CN113718283A (en) Carbon-based anode material for producing chlorine by electrolysis and application thereof
CN113584517A (en) Preparation method of non-noble metal Ni-Mo-P-B efficient electro-catalytic hydrogen evolution electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220829

R150 Certificate of patent or registration of utility model

Ref document number: 7133661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150