JP7133145B2 - シミュレーション方法およびシミュレーションプログラム - Google Patents

シミュレーション方法およびシミュレーションプログラム Download PDF

Info

Publication number
JP7133145B2
JP7133145B2 JP2018180716A JP2018180716A JP7133145B2 JP 7133145 B2 JP7133145 B2 JP 7133145B2 JP 2018180716 A JP2018180716 A JP 2018180716A JP 2018180716 A JP2018180716 A JP 2018180716A JP 7133145 B2 JP7133145 B2 JP 7133145B2
Authority
JP
Japan
Prior art keywords
power
power supply
equations
simulation method
simulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018180716A
Other languages
English (en)
Other versions
JP2020050539A (ja
Inventor
孝介 愛内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2018180716A priority Critical patent/JP7133145B2/ja
Publication of JP2020050539A publication Critical patent/JP2020050539A/ja
Application granted granted Critical
Publication of JP7133145B2 publication Critical patent/JP7133145B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Details (AREA)

Description

本発明は、ジュール熱の分布を求めるシミュレーション方法およびシミュレーションプログラムに関する。
交流電源により生じるジュール熱による加熱は多くの産業で利用される技術である。例えばガラス溶融工程においては、棒状電極や板状電極を溶融炉に設置し、溶融ガラス中に電流を流すことによってジュール熱を発生させ、ガラスを直接加熱する。高品位なガラス製品を生産するためには、溶融炉において溶融ガラスを適切な温度に加熱して、均質な溶融ガラスを生成することが求められる。そして、この要求を満たすには、電極の配置や電力条件等について最適な条件を選択することが求められ、これを予測するために数値シミュレーションが従来から使用されている。シミュレーションでは、対象とする領域をメッシュ、セル、コントロールボリューム等と呼ばれる微小領域に分割することで定まる計算点における電位を変数として、有限体積法、有限要素法、有限差分法等の方法により前記電位の関係を表す連立方程式を構築し、得られた電位の分布と対象領域を占める物質の導電率からジュール熱を求める。ガラス溶融工程では複数の電源が用いられることが多くあり、周波数の等しい複数の電源を考慮するシミュレーション方法が非特許文献1に記載されている。
P. Simons, K. Jochem, and K. Aiuchi, A power consistent mathematical formulation for Joulean heat release, Glass Technol.: Eur. J. Glass Sci. Technol. A, 49 (3), 109-118 (2008).
複数の電源が存在する場合、各電源において電流が保存される条件を課す必要がある。非特許文献1では、重ね合わせの理を適用することにより、各電源における電流保存条件を成立させる方法が記載されている。この方法では、(電源の数×2)の組の電位ポテンシャルの連立方程式を解く必要がある。ここで、前記の「×2」は交流の周期内において互いに1/4周期ずれた2つの時刻を表す。この方法により、周波数の等しい複数の電源を考慮したシミュレーションが可能になるが、電源が1つ追加されるごとに解かなければならない連立方程式が2組追加される。例えば電源の数が10個では解かなければならない連立方程式は20組となって、単一の電源の場合の2組に対して10倍となる。すなわち、電源の数が多くなるほど計算時間が長くなり、大規模な溶融炉を対象とする場合は特にその負荷が大きくなる。
そこで、本発明の課題は、電源の数が増えても解くべき連立方程式の数の増大を抑制でき、これによって従来よりも計算時間の短いシミュレーション方法およびシミュレーションプログラムを提供することにある。
前記課題を解決するために創案された本発明に係るシミュレーション方法は、コンピュータが、周波数の等しい複数の交流電源により電流を流すことで2次元又は3次元の領域に生じるジュール熱の分布を求めるシミュレーション方法において、前記領域を分割して形成された複数の分割領域について、前記コンピュータが、前記分割領域のそれぞれの計算点における電位と、前記交流電源のそれぞれに定義した計算点における電位とを変数とし、前記分割領域ごとに成立する電流保存条件を表す方程式に、前記交流電源ごとに成立する電流保存条件を表す方程式を加えて連立方程式を構成し、前記コンピュータが、2つ以下の時刻について前記連立方程式を解くことを特徴とする。
ここで、分割領域とは、有限体積法、有限要素法、有限差分法等を用いたシミュレーション方法で、メッシュ、セル、コントロールボリューム等と呼ばれる微小領域のことである(以下、同様)。
上記構成では、コンピュータが解くべき連立方程式は、分割領域ごとに成立する電流保存条件を表す方程式に、交流電源ごとに成立する電流保存条件を表す方程式を加えたものである。従って、連立方程式を構成する方程式の数は、分割領域の計算点の数と、交流電源の数の和となる。ガラス溶融炉内のシミュレーションでは、一般に数万~数百万の分割領域の計算点数が用いられており、この数に比べると追加する方程式の数(交流電源の数)は僅かであり、この方程式を追加することによる計算時間の増大はほぼ無視できる。
用いられる複数の交流電源が、単相電源であって、全ての電源の位相が揃っている場合は、例えば交流電圧がピークとなる時刻で代表される1つの時刻における電位を求めることにより、ジュール熱を計算することができる。この場合、前記1つの時刻について連立方程式を解く。
用いられる複数の交流電源が、電源ごとに位相が揃っていない単相電源を組み合わせる場合や、三相電源を含む場合、スコット結線で形成される単相電源を含む場合などでは、交流の周期内において互いに1/4周期ずれた2つの時刻について連立方程式を解く。
上記の構成において、前記交流電源が、単相電源又は三相電源を含んでもよい。
上記の構成において、前記交流電源が、スコット結線で形成された単相電源を含んでもよい。
上記の構成において、前記コンピュータが、前記交流電源のそれぞれから供給される実効電力又は皮相電力が事前に設定した値となるように、前記交流電源のそれぞれの電圧を調整してもよい。
この構成によれば、所定の実効電力または皮相電力が加えられた状態を効率良く計算することができる。また、本発明のシミュレーション方法においては、各電源から供給される電力として、実効電力か皮相電力のいずれかを選択する機能を有することがより好ましい。
上記の構成において、前記領域の一部が、ガラス溶融炉内であってもよい。
また、前記課題を解決するために創案された本発明に係るシミュレーションプログラムは、請求項1に記載のシミュレーション方法をコンピュータに実行させることを特徴とする。
この構成でも、冒頭で説明したシミュレーション方法と同様の作用及び効果を享受できる。
本発明によるシミュレーション方法およびシミュレーションプログラムでは、電源の数が増えても解くべき連立方程式の数の増大を抑制でき、これによって従来よりも短い計算時間でジュール熱の分布を求めることが可能となる。
図1は、三相星形結線の電源を含む複数の電源を用いる場合の概念図である。 図2は、電源の端子を接続する電極の境界フェイスおよび周辺のコントロールボリュームを表す垂直断面図である。 図3は、実施例1に使用した、3次元の解析領域の平面図である。 図4は、実施例1における電源の数と計算時間との関係を示した図である。
以下、本発明の実施形態に係るシミュレーション方法およびシミュレーションプログラムについて、説明する。
本実施形態に係るシミュレーション方法は、コンピュータが、周波数の等しい複数の交流電源により電流を流すことで2次元又は3次元の領域に生じるジュール熱の分布を求めるものである。前記領域を分割して形成された複数の分割領域について、前記コンピュータが、前記分割領域のそれぞれの計算点における電位と、前記交流電源のそれぞれに定義した計算点における電位とを変数とする。そして、前記分割領域ごとに成立する電流保存条件を表す方程式に、前記交流電源ごとに成立する電流保存条件を表す方程式を加えて連立方程式を構成する。そして、前記コンピュータが、2つ以下の時刻について前記連立方程式を解く。
また、本実施形態に係るシミュレーションプログラムは、上述したシミュレーション方法をコンピュータに実行させるものである。
ここでは三相電源を含む複数の電源を用いる場合を例として、本発明の実施形態を説明する。方程式を離散化する方法として、ここでは有限体積法を採用する。計算対象とする領域をコントロールボリュームに分割し、各コントロールボリュームにおける計算点の電位を、連立方程式の変数とする。
単一の交流起電力を生じる電源gがあるとする。任意の各位置において、gによって生じる電位は次式で表される。
Figure 0007133145000001
ここで、fは交流の周波数、tは時刻、αgは基準の位相に対するgのずれを表す角度、φg0はその位置におけるピーク電位である。交流起電力を生じる電源が複数ある場合、重ね合わせの理により、各位置による電位は次式で表される。
Figure 0007133145000002
電流密度についても数1および数2と同様の式が成立するため、以下の数3、数4が得られる。
Figure 0007133145000003
Figure 0007133145000004
ここで、ig0は単独のgの場合に生じる電流密度ベクトルのピークである。この時、iReおよびiImを以下のように定義する。
Figure 0007133145000005
Figure 0007133145000006
数5、数6を数4に代入すると次式を得る。
Figure 0007133145000007
数7より、iReはt=(n+1/4)/f(ただしnは任意の整数)の時刻における各位置の電流密度、iImはt=n/f(ただしnは任意の整数)の時刻における各位置の電流密度をそれぞれ表す。
解析領域内の任意の体積領域について、体積領域の表面積を通過する電流の合計は、電流保存条件により0となる。これを数7に適用すると次式が得られる。
Figure 0007133145000008
ここでΓは前記体積領域を囲む面であり、dΓは体積領域を囲む面のうちの微小領域に対し、外向きの法線方向で大きさが前記微小領域の面積のベクトル(以降面積ベクトルと呼ぶ)である。
全ての時刻tについて数8が成立するため、この条件を課すことにより、次の数9、数10が得られる。
Figure 0007133145000009
Figure 0007133145000010
ここで数5、6におけるig0は、領域を占める物質の導電率γを用いて次式で表される。
Figure 0007133145000011
数11を数5、数6に代入し、さらにこれらを数9、数10にそれぞれ代入して整理すると、数12、数13が得られる。
Figure 0007133145000012
Figure 0007133145000013
ここで、φRe、φImを以下のように定義する。
Figure 0007133145000014
Figure 0007133145000015
数14、数15をそれぞれ数12、数13に代入すると、φReおよびφImに関する以下の方程式が得られる。
Figure 0007133145000016
Figure 0007133145000017
また、数14および数15を数2に適用すると次式を得る。
Figure 0007133145000018
数18より、φReはt=(n+1/4)/f(ただしnは任意の整数)の時刻における各位置の電位、φImはt=n/f(ただしnは任意の整数)の時刻における各位置の電位をそれぞれ表す。したがって、φReとφImは2つの時刻における電位を表す。
ここで、数5、数6、数11、数14、数15を整理すると以下の関係が得られ、各時刻におけるiReおよびiImは、φReおよびφImから求めることができる。
Figure 0007133145000019
Figure 0007133145000020
解析領域を分割した全てのコントロールボリュームについて、数16および数17が成立するようにφReとφImの分布を決定することにより、全てのコントロールボリュームにおいて電流の保存を成立させることができる。しかしながら、複数の電源を用いる場合、全てのコントロールボリュームにおいて電流の保存が成立するだけでは不十分であり、これに加えて各電源において電流が保存される条件を課す必要がある。ここでは図1に示した概念図を用いて本発明の方法の一形態を説明する。
図1にはガラス溶融炉を模擬した3次元の解析領域の平面図1が示されている。解析領域には溶融ガラス2、溶融ガラスを囲む耐火物3、電極4a~4fからなる複数の電極4が含まれ、電極は底面から溶融ガラス内に所定の長さにて挿入されている。これらの領域は微小なコントロールボリュームに分割され、これにより前記計算点が定義される。この解析領域1に対して、ここでは複数の三相星形結線の電源を前記電極に接続する状態を考える。図1には第一の三相星形結線の電源5と第二の三相星形結線の電源6が示されているが、ここでこれらの電源および接続するための導線は前記3次元の解析領域には含まれない。前記三相星形結線の電源5は、中性点をP1として、端子R1の位相が0°、端子S1の位相が120°、端子T1の位相が240°となるよう構成されている。前記電源6についても中性点をP2として、端子R2、S2、T2が同様の関係になるよう構成されている。電極4a、4b、4cには電源5の端子R1、S1、T1をそれぞれ接続し、電極4d、4e、4fには電源6の端子R2、S2、T2をそれぞれ接続する。より具体的には、電極4aの場合、例えば電極の下端に位置する複数のコントロールボリュームの下側の境界フェイスに対して、端子R1が接続された状態を想定し、この扱いは他の電極でも同様である。
ここで、電源5を接続した電極4a、4b、4cに対して電流保存条件を課す方法の一形態を説明する。本発明を適用するため、ここでは電源5における中性点P1を計算点とし、前記2つの時刻における中性点P1の電位に対応する2つの変数をφP1_Re、φP1_Imとして定義する。この時、端子R1、S1、T1における2つの時刻の電位は、以下の式で表される。
Figure 0007133145000021
Figure 0007133145000022
Figure 0007133145000023
Figure 0007133145000024
Figure 0007133145000025
Figure 0007133145000026
ここで、V1は第一の三相星形結線の電源5における相電圧のピーク値を表す。αR、αS、αTはそれぞれ0°、120°、240°である。
数16および数17は各コントロールボリュームにおいて成立する式であるが、電極端子が接続されるコントロールボリュームにおいてこれらの式を適用する方法を以下に示す。ここで、数16および数17は、有限体積法により離散化した表現として、次の数27および数28となる。
Figure 0007133145000027
Figure 0007133145000028
ここで、ΔΓは前記各コントロールボリュームを囲むフェイスΓの面積ベクトルである。
図2は、電源の端子を接続する電極の境界フェイスおよび周辺のコントロールボリュームを表す垂直断面図である。最下部に電源の端子を接続する電極の境界フェイスがある。図2には前記境界フェイスの中心点8と、この境界フェイスに隣接するコントロールボリュームの中心点9が示されている。連立方程式の変数となる電位は、このコントロールボリューム中心点(計算点)において定義される。なお、電源の端子を接続する電極の境界フェイスは一つ以上存在するが、ここではその一つに注目して示している。この境界フェイスに隣接するコントロールボリュームについて成立する数27および数28を、連立方程式を構成する変数を用いて表現する必要がある。この時、数27および数28における各フェイスΓの寄与を表現するのに、電源の端子を接続するフェイス以外の場合は、従来の方法を用いれば良く、例えばフェイスの両側にコントロールボリュームが存在するフェイスの場合は前記両側のコントロールボリュームの中心点におけるφReまたはφImとγおよび中心点間距離等のコントロールボリューム形状に関わる定数を用いて、数27または数28内のγ▽φRe・ΔΓまたはγ▽φIm・ΔΓを表すことができる。
数27および数28においてフェイスΓが電源の端子を接続するフェイスである場合として、ここでは端子R1が接続され、このフェイスをΓ_R1_iと呼ぶこととする。ここでのiは端子R1に接続される複数のフェイスのうちのi番目であることを意味している。数27および数28内のΓ_R1_iの寄与を表す(γ▽φRe・ΔΓ)Γ_R1_iおよび(γ▽φIm・ΔΓ)Γ_R1_iは、以下の数29および数30で表される。
Figure 0007133145000029
Figure 0007133145000030
ここで、ΔΓiはフェイスΓ_R1_iの面積である。Δdiはコントロールボリューム中心点9からフェイスΓ_R1_iまでの距離であり、直交格子の場合は前記コントロールボリューム中心点9からフェイス中心点8までの距離に等しい。φR1_i_nb_ReおよびφR1_i_nb_Imはコントロールボリューム中心点9における電位を表す。数29および数30に数21および数22をそれぞれ代入すると、次の数31、数32になる。
Figure 0007133145000031
Figure 0007133145000032
数31および数32を数27および数28にそれぞれ代入することにより、追加された変数φP1_ReおよびφP1_Imを含む変数φReおよびφImの組み合わせにより、端子R1が接続されたコントロールボリュームにおける方程式を得ることができる。端子S1、T1等の他の端子が接続されたコントロールボリュームについても、同様の操作によりそれぞれのコントロールボリュームで成立する方程式を得ることができる。
ここで、数31および数32の左辺は、それぞれの時刻においてフェイスΓ_R1_iを通過する電流に-1を乗じたものを表している。
このように、数27と数28により、コントロールボリュームごとに成立する電流保存条件を表す方程式が得られる。
これに対し、各電源における電流保存条件を成立させるには、電源の各端子に接続された全てのフェイスを通過する電流の合計が0になる必要がある。これにより、本発明において、新たに加える電流保存条件を表す方程式は、例えば電源5について以下の式となる。
Figure 0007133145000033
Figure 0007133145000034
ここで、i_R1、i_S1、i_T1はそれぞれ端子R1、S1、T1に接続されたフェイスに隣接するコントロールボリュームiについて積算することを意味する。数33または数34は、それぞれ各時刻における連立方程式(コントロールボリュームごとに成立する電流保存条件を表す方程式で構成された連立方程式)に追加され、新たな連立方程式を構成する。この新たな連立方程式を解くことにより、電源における電流保存条件を満たす各時刻の電位分布を得ることができる。
さらに電源を追加する場合も、同様の扱いにより、各電源における電流保存条件を成立させることが可能である。なお、上記の説明において、三相星形結線における中性点を計算点としたが、本発明はこれに限定されるものではない。例えば電源5において、端子R1またはS1またはT1を計算点として、端子間の電位差の関係を用いて新たな方程式を構築することも可能である。また、本発明の方法は、三相三角結線の電源や、単相電源、三相電源からスコット結線により形成された単相電源にも適用することができる。
また、本発明の方法によれば、連立方程式の係数行列を対称行列とすることができる。このため、ICCG法などの対称行列専用の効率の良い連立方程式解法を適用することができる。
得られた2つの時刻における電位分布から、各コントロールボリュームにおけるジュール熱Qは、交流周期の時間平均のジュール熱として次式で表される。
Figure 0007133145000035
ここで、iReおよびiimは、既に得られているφReおよびφImを用いて、数19および数20により計算できる。これを数35に適用すれば、各位置におけるジュール熱が得られる。
上記の方法では、各電源におけるピーク電圧(例えば電源5におけるV1)を事前に設定し、この条件におけるジュール熱の分布が得られる。
以上のように構成された本実施形態のシミュレーション方法では、コンピュータが解くべき連立方程式は、分割領域ごとに成立する電流保存条件を表す方程式(数27と数28)に、交流電源ごとに成立する電流保存条件を表す方程式(数33と数34)を加えたものである。従って、連立方程式を構成する方程式の数は、分割領域の計算点の数と、交流電源の数の和となる。ガラス溶融炉内のシミュレーションでは一般に数万~数百万の分割領域の計算点数が用いられており、この数に比べると追加する方程式の数(交流電源の数)は僅かであり、この方程式を追加することによる計算時間の増大はほぼ無視できる。
次に本発明の別の実施形態として、各電源から供給される実効電力または皮相電力が事前に設定した値となる状態を求める方法について説明する。このためには、上述した電位分布計算の実施後、各電源から供給される実効電力または皮相電力を計算する。供給される実効電力または皮相電力が事前に設定した値より小さければ、各電源におけるピーク電圧を上昇させる調整を行い、逆に大きければ、各電源におけるピーク電圧を低下させる調整を行う。この調整を、十分誤差が小さくなるまで繰り返し実行すればよい。
各電源に供給される実効電力および皮相電力の計算は、例えば前記三相星形結線の電源5の場合は次のように計算できる。まず、数7を以下のように変形する。
Figure 0007133145000036
ただし、βは次式で表される。
Figure 0007133145000037
数36より、実効電流は次式により求めることができる。
Figure 0007133145000038
各端子R1、S1、T1における実効電流を数38で求め、各端子の相電圧の実効値であるV1/(√2)をこれに乗じることにより、各端子の皮相電力が得られ、全端子について合計すれば、電源5の皮相電力が得られる。
また、電流と電圧の位相差は数37と各端子の相電圧の位相との差により求めることができる。この位相差をδとすると、皮相電力にcosδを乗じたものが実効電力となり、これを全端子について合計すれば、電源5の実効電力が得られる。
図3は3次元の解析領域の平面図であり、縦4m、横11m、紙面奥行き方向を表す高さ1mの寸法となっている。領域内には電極11が縦方向に3本、横方向に10本並び、1m間隔の等間隔で合計30本設置されている。ここで、電極は高さ方向全体を占める円柱形状であって、導電率が3×106S/mの導体である。電極を除く領域は1300℃のソーダ石灰ガラスに相当する溶融ガラス10で満たされ、この溶融ガラスの導電率は16S/mである。
この時、電極(Ra、Sa、Ta)の3本を1番目の組とし、同様に2番目、3番目、・・・、10番目の組を電極(Rb、Sb、Tb)、(Rc、Sc、Tc)、・・・、(Rj、Sj、Tj)とする。各組にそれぞれ独立した三相星形結線の電源を割り当て、各電源における3つの端子に1本ずつ電極を接続することを考える。このとき電源の数は10個となるが、10個の電源のうち1つだけ有効にした場合、2つ有効にした場合、5つ有効にした場合、10個全て有効にした場合それぞれについて、本発明を適用してジュール熱の計算を行い、計算時間を比較した。いずれのケースでも一つの三相星形結線の電源の電力は10kWである。ここでは、解析領域を51.7万のコントロールボリュームに分割して有限体積法による離散化を行った。連立方程式の解法には並列計算に対応したICCG法を用い、20並列により計算を実施した。計算時間は3回の平均により評価した。
評価結果を図4と表1に示す。図4は、有効にした電源の数と計算時間の関係を示したものである。また、表1は、図4の数値を示す。
Figure 0007133145000039
電源の数によって若干計算時間にばらつきがあるのは、電源の数によって電位分布やジュール熱の分布が異なるため、連立方程式計算における収束に要する反復回数に差が生じることが影響したものと考えられるが、この結果より電源の数を増やしても概ね計算時間は変わらないことが分かる。従来法によれば電源の数を増やすごとに解くべき連立方程式の組が増えるため、計算時間は電源の数に概ね比例して増大することになるが、本発明では電源の数を増やしても計算時間はほぼ変わらず、多数の電源が用いられる場合でも効率良く計算を行うことができると言える。
1 ガラス溶融炉を模擬した3次元の解析領域の平面図
2 溶融ガラス
3 耐火物
4 電極
4a~4f 各電極
5 第一の三相星形結線の電源
6 第二の三相星形結線の電源
7 コントロールボリューム
8 電源の端子を接続する電極の境界フェイス中心点
9 境界に接するコントロールボリュームの中心点
10 溶融ガラス
11 電極

Claims (6)

  1. コンピュータが、周波数の等しい複数の交流電源により電流を流すことで2次元又は3次元の領域に生じるジュール熱の分布を求めるシミュレーション方法において、
    前記領域を分割して形成された複数の分割領域について、前記コンピュータが、前記分割領域のそれぞれの計算点における電位と、前記交流電源のそれぞれに定義した計算点における電位とを変数とし、前記分割領域ごとに成立する電流保存条件を表す方程式に、前記交流電源ごとに成立する電流保存条件を表す方程式を加えて連立方程式を構成し、
    前記コンピュータが、2つ以下の時刻について前記連立方程式を解くことを特徴とするシミュレーション方法。
  2. 前記交流電源が、単相電源又は三相電源を含むことを特徴とする請求項1に記載のシミュレーション方法。
  3. 前記交流電源が、スコット結線で形成された単相電源を含むことを特徴とする請求項1に記載のシミュレーション方法。
  4. 前記コンピュータが、前記交流電源のそれぞれから供給される実効電力又は皮相電力が事前に設定した値となるように、前記交流電源のそれぞれの電圧を調整することを特徴とする請求項1~3の何れか1項に記載のシミュレーション方法。
  5. 前記領域の一部が、ガラス溶融炉内であることを特徴とする請求項1~4の何れか1項に記載のシミュレーション方法。
  6. 請求項1に記載のシミュレーション方法をコンピュータに実行させることを特徴とするシミュレーションプログラム。
JP2018180716A 2018-09-26 2018-09-26 シミュレーション方法およびシミュレーションプログラム Active JP7133145B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018180716A JP7133145B2 (ja) 2018-09-26 2018-09-26 シミュレーション方法およびシミュレーションプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018180716A JP7133145B2 (ja) 2018-09-26 2018-09-26 シミュレーション方法およびシミュレーションプログラム

Publications (2)

Publication Number Publication Date
JP2020050539A JP2020050539A (ja) 2020-04-02
JP7133145B2 true JP7133145B2 (ja) 2022-09-08

Family

ID=69995739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018180716A Active JP7133145B2 (ja) 2018-09-26 2018-09-26 シミュレーション方法およびシミュレーションプログラム

Country Status (1)

Country Link
JP (1) JP7133145B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3166988A1 (en) 2020-03-23 2021-09-30 Ricoh Company, Ltd. Information processing apparatus and method of processing information

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014009133A (ja) 2012-06-29 2014-01-20 Avanstrate Inc ガラス基板の製造方法およびガラス基板の製造装置
JP2016124750A (ja) 2014-12-29 2016-07-11 AvanStrate株式会社 ガラス基板の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291423A (ja) * 1985-06-17 1986-12-22 Ishikawajima Harima Heavy Ind Co Ltd 導電性物質の加熱方法および装置
JP2640889B2 (ja) * 1992-03-10 1997-08-13 新日本製鐵株式会社 多相交流回路における電磁場解析法
GB9206928D0 (en) * 1992-03-30 1992-05-13 Pilkington Plc Glass melting
JPH11263626A (ja) * 1998-03-17 1999-09-28 Asahi Glass Co Ltd 硝子の電気加熱方法およびそれを実施するための溶解炉

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014009133A (ja) 2012-06-29 2014-01-20 Avanstrate Inc ガラス基板の製造方法およびガラス基板の製造装置
JP2016124750A (ja) 2014-12-29 2016-07-11 AvanStrate株式会社 ガラス基板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Philip Simons et al.,A power consistent mathematical formulation for Joulean heat release,Glass Technology European Journal of Glass Science and Technology A,2008年,Volume 49 Number 3,pp.109-118

Also Published As

Publication number Publication date
JP2020050539A (ja) 2020-04-02

Similar Documents

Publication Publication Date Title
Sathiyamoorthy et al. Natural convection flow under magnetic field in a square cavity for uniformly (or) linearly heated adjacent walls
Yang et al. Radial integration BEM for transient heat conduction problems
Bamigbola et al. Mathematical modeling of electric power flow and the minimization of power losses on transmission lines
Rahmat et al. Numerical simulation of wall bounded and electrically excited Rayleigh–Taylor instability using incompressible smoothed particle hydrodynamics
Tou et al. Three-dimensional numerical simulation of natural convection in an inclined liquid-filled enclosure with an array of discrete heaters
JP7133145B2 (ja) シミュレーション方法およびシミュレーションプログラム
Yoshikawa et al. Dielectrophoretic Rayleigh-Bénard convection under microgravity conditions
Hossan et al. Hybrid immersed interface-immersed boundary methods for AC dielectrophoresis
Wang et al. Microstructures and dynamics of tetraalkylphosphonium chloride ionic liquids
Thakoor et al. RBF-FD schemes for option valuation under models with price-dependent and stochastic volatility
Vizman et al. Numerical parameter studies of 3D melt flow and interface shape for directional solidification of silicon in a traveling magnetic field
Cabrera et al. Difference schemes for numerical solutions of lagging models of heat conduction
Medina et al. An efficient dissipative particle dynamics-based algorithm for simulating electrolyte solutions
Ovando-Chacon et al. Numerical study of the heater length effect on the heating of a solid circular obstruction centered in an open cavity
Aounallah et al. Numerical shape optimization of a confined cavity in natural convection regime
Sarakorn 2-D magnetotelluric modeling using finite element method incorporating unstructured quadrilateral elements
Beaume Adaptive Stokes preconditioning for steady incompressible flows
Victoria et al. Topology design of three-dimensional continuum structures using isosurfaces
Qiao Numerical investigations of the dynamical behaviors and instabilities for the Gierer-Meinhardt system
Nonino et al. Convective heat transfer in ribbed square channels
Mao et al. Three-dimensional numerical simulation for magnetohydrodynamic duct flows in a staggered grid system
Dobnikar et al. Poisson–Boltzmann Brownian dynamics of charged colloids in suspension
Tofighi et al. The effect of normal electric field on the evolution of immiscible Rayleigh-Taylor instability
Boukhattem et al. Numerical simulation of heat transfers in a room in the presence of a thin horizontal heated plate
Alotto et al. Topological equations

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220811

R150 Certificate of patent or registration of utility model

Ref document number: 7133145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150