JP7132016B2 - 制御装置、制御方法及びコンピュータプログラム - Google Patents

制御装置、制御方法及びコンピュータプログラム Download PDF

Info

Publication number
JP7132016B2
JP7132016B2 JP2018141765A JP2018141765A JP7132016B2 JP 7132016 B2 JP7132016 B2 JP 7132016B2 JP 2018141765 A JP2018141765 A JP 2018141765A JP 2018141765 A JP2018141765 A JP 2018141765A JP 7132016 B2 JP7132016 B2 JP 7132016B2
Authority
JP
Japan
Prior art keywords
value
evaluation function
manipulated variable
bias
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018141765A
Other languages
English (en)
Other versions
JP2020017230A (ja
Inventor
祐太 大西
理 山中
卓巳 小原
諒 難波
由紀夫 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2018141765A priority Critical patent/JP7132016B2/ja
Priority to CN201980047135.4A priority patent/CN112400142B/zh
Priority to PCT/JP2019/029215 priority patent/WO2020022430A1/ja
Publication of JP2020017230A publication Critical patent/JP2020017230A/ja
Application granted granted Critical
Publication of JP7132016B2 publication Critical patent/JP7132016B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Description

本発明の実施形態は、制御装置、制御方法及びコンピュータプログラムに関する。
近年、プラント制御の方法として、極値制御と呼ばれる技術が注目されている。極値制御は、プラントを模擬する複雑なモデルを用いることなく、リアルタイムに操作量の最適値を探索することができる制御技術である。極値制御の概要は、制御対象となるプロセス(以下、「制御対象プロセス」という。)に与える操作量を強制的に変化させることにより生じる制御対象プロセスの制御量に基づいて、制御量に基づく評価量が最適値となる操作量を探索していくというものである。このような極値制御をプラント制御に適用する場合、極値制御に係る各種のパラメータ(以下、「制御パラメータ」という。)を設定する必要がある。従来、制御対象プロセスの特性に応じて適切に制御パラメータを設定するための指針がいくつか提案されている。しかし、評価関数値が局所的に最小または最大となるポイント(極値)が複数存在する系に対して、従来の指針に基づく制御パラメータの設定方法を採用した極値制御を適用させると、その系全体で評価関数値が最小又は最大となるポイント(最適値)となる操作量を適切に探索することが困難となる場合があった。
特開2017-224176号公報 特開平9-274506号公報 特開2012-141862号公報
本発明が解決しようとする課題は、制御対象の変化に応じて適切な操作量を設定することができる制御装置、制御方法及びコンピュータプログラムを提供することである。
実施形態の制御装置は、バイアス発生部と、極値制御部とを持つ。バイアス発生部は、摂動信号の振幅に対してバイアスを付加する。極値制御部は、バイアスが付加された前記摂動信号を制御対象プロセスに与えられる操作量に加え、前記操作量を所定の評価関数に与えることによって前記制御対象プロセスの最適化に関する指標を示す評価関数値を取得し、前記評価関数値に基づいて前記制御対象プロセスに与えられる前記操作量の最適値を探索する。
実施形態の極値制御の動作例を示すブロック線図。 実施形態の極値を複数持つ評価関数に対する極値制御を適用した位置具体例を示す図。 実施形態の第1ディザー信号にバイアスを付加するブロック線図。 実施形態の評価関数値の探索の第一の具体例を示す図。 実施形態の第1ディザー信号に振幅を設定するブロック線図。 実施形態の評価関数値の探索の第二の具体例を示す図。 実施形態の適用対象の水処理プラントの概略を示す図。 第1の実施形態の制御装置の機能構成の具体例を示す機能ブロック図。 第1の実施形態の制御装置に基づいた極値制御の一具体例を示す図。 第1の実施形態の極値制御における操作量及び評価関数値の経時変化の一具体例を示す図。 第2の実施形態の制御装置の機能構成の第一の具体例を示す機能ブロック図。 第2の実施形態の制御装置の機能構成の第二の具体例を示す機能ブロック図。 第2の実施形態の極値制御における操作量及び評価関数値の経時変化の一具体例を示す図。 第3の実施形態の制御装置の機能構成の具体例を示す機能ブロック図。
以下、実施形態の制御装置、制御方法及びコンピュータプログラムを、図面を参照して説明する。
(第1の実施形態)
[概略]
極値制御は、制御対象プロセスの操作量と、操作量の変化に応じた評価関数値の変化に基づいて、評価関数の最適値を適応的に探索する制御手法である。評価関数値は、制御対象プロセスの操作量に基づいて決定される。評価関数値は、制御対象プロセスの最適化に関する指標を示す値である。評価関数値と操作量との関係は、所定の評価関数によって表される。評価関数は、操作量に基づくものであれば任意の評価基準に基づいて設定されてよい。また評価関数値は操作量そのものであってもよい。一般に、極値制御における制御対象プロセスでは、この評価関数は操作量に対して未知の関数である。
一般に、極値制御では、ディザー信号を作用させることによって操作量を強制的に振動させ、操作量に応じて変化する評価関数値を観測する。そして、評価関数値が評価関数の最適値に近づくような方向に操作量を変化させていく。このような操作量の増減を繰り返すことによって、評価関数値を評価関数の最適値に近づけていこうとする手法が極値制御によるプロセス制御の概念である。なお、操作量に作用するディザー信号は正弦波で与えられる場合が多い。
図1は、実施形態の極値制御の動作例を示すブロック線図である。図1は、制御対象のプロセスであるプラント100と、プラント100の極値制御を実現する極値制御系200とを表す。極値制御系200は、おおよそ以下のような処理の流れを繰り返すことによってプラント100の極値制御を実現する。
極値制御系200から出力される操作量uがプラント100に入力される(ステップS101)。以下、簡単のため、ステップS101で入力された操作量uを第1の操作量と記載する。プラント100は、第1の操作量に対する応答として評価関数値yを出力する(ステップS102)。以下、簡単のため、ステップS102で入力された評価関数値yを第1の評価関数値と記載する。評価関数値yは極値制御系200に入力される。
極値制御系200は、第1の評価関数値に基づいて、評価関数値をより最適な値に近づけるような第2の操作量を決定する。極値制御系200は、第1の評価量に基づいて決定された第2の操作量を新たな操作量としてプラント100に出力する(ステップS103)。プラント100は、第2の操作量に対する応答として第2の評価関数値を出力する(ステップS104)。
このような処理の流れにより、第2の評価関数値は、第1の評価関数値よりも最適値に近い値となる。極値制御では、このような操作量に基づく評価関数値の算出と、評価関数値に基づく新たな操作量の決定とが繰り返し実行されることにより、評価関数値が最適値に収束していくようにプラント100の操作量が制御される。
なお、第1の評価関数値に基づいて第2の操作量を決定する機能は、極値制御系200の以下のような構成によって実現される。極値制御系200は、ハイパスフィルタ201(HPF:High-Pass Filter)、ディザー信号出力部202、乗算器203、ローパスフィルタ204(LPF:Low-Pass Filter)、積分器205、加算器206及び振幅設定部207を備える。図1において、sはラプラス演算子、ωはディザー信号の角周波数、aはディザー信号の振幅、kは積分器205の積分係数を表す。
ハイパスフィルタ201は、フィードバックされた評価関数値の信号を入力し、評価関数値の信号からその極小値に応じた一定値のバイアスを除去する。ハイパスフィルタ201は、バイアスが除去された評価関数値の信号を乗算器203に出力する。
ディザー信号出力部202は、乗算器203及び加算器206に対してディザー信号を出力する。ディザー信号出力部202は、加算器206に対してsinωtで表される第1ディザー信号を出力するディザー信号出力部202-1と、乗算器203に対してsinωt(tは時間を表す変数)で表される第2ディザー信号を出力するディザー信号出力部202-2とを備える。第1ディザー信号は、操作量に加える摂動信号に相当する。第1ディザー信号は、振幅設定部207によって振幅値としてaが乗算されて、加算器206に出力される。第2ディザー信号は、評価関数値からディザー信号の成分を抽出する役割を果たす。なお、sinωt(正弦波)はディザー信号の一例であり、ディザー信号は周期的な信号であれば、どのような形状を持つものでもよい。
乗算器203は、ハイパスフィルタ201から出力されるバイアスが除去された評価関数値の信号に対して、第2ディザー信号を乗算する。乗算器203は、第2ディザー信号が乗算された評価関数値の信号をローパスフィルタ204に出力する。
ローパスフィルタ204は、ディザー信号が乗算された評価関数値の信号から低周波成分を抽出する。ローパスフィルタ204は、評価関数値の信号の低周波成分を示す信号を積分器205に出力する。この評価関数値の信号の低周波成分は、ディザー信号の振動に応じて変化した評価関数値の信号の周波数成分を表すと考えられる。そのため、評価関数値の信号の低周波成分から、操作量の変化に対して評価関数値が増加したのか、又は減少したのかを判断することができる。
積分器205は、ローパスフィルタ204から出力される評価関数値の信号の低周波成分に基づいて、評価関数値を最適値に近づけるために動かすべき操作量の方向を推定する推定器として機能する。具体的には、積分器205は、評価関数値の信号の低周波成分を積分し、低周波成分の積分信号を出力する。ここで出力される積分信号は、現在の操作量に対して動かすべき方向(増加方向又は減少方向)を与える。
加算器206は、現在の操作量信号と、積分器205から出力される積分信号とに基づいてプラント100に対して次に入力すべき操作量信号を生成する。加算器206は、生成した操作量信号に対して、操作量信号を振動させるための第1ディザー信号(a×sinωt)を足し合わせてプラント100に出力する。
極値制御系200が備える機能の中で、操作量に振動を与える役割を果たす第1ディザー信号は、評価関数の最適値探索性能に影響を及ぼす機能である。特に、評価関数が特殊な場合、十分な最適値探索性能を発揮できない可能性がある。第1ディザー信号には正弦波が用いられることが一般的である。第1ディザー信号のパラメータである振幅aは、操作量の範囲内(例えば、プラント100の運転条件等による制約範囲内)で設定されてもよい。
図2は、実施形態の極値を複数持つ評価関数に対する極値制御を適用した位置具体例を示す図である。極値制御系200は、操作量の初期値Uαから徐々に操作量を大きくしていくように探索を行うと第1極値に収束する場合がある。また、極値制御系200は、操作量初期値Uβから徐々に操作量を小さくしていくように探索を行うと第2極値に収束する場合がある。すなわち、極値制御系200には、設定されたディザー信号で操作量をふった場合でも、評価関数値が第1極値よりも低減する第2極値付近の評価関数値の変化を捉えることができない場合があることが想定される。
このような課題を解決するため、実施形態の制御装置は以下に示す2つの機能を備える。1つは、第1ディザー信号にバイアスとなる信号を付加する機能である。もう1つは、第1ディザー信号の振幅aを経時的に変化させる機能である。このような機能を備えることにより、実施形態の制御装置は、操作量を適切な値に保つことができる。
[第1の機能の詳細]
図3は、実施形態の第1ディザー信号にバイアスを付加するブロック線図である。図3における極値制御系200aは、バイアス発生部208をさらに備える点で極値制御系200とは異なるが、それ以外の構成は同じである。以下、極値制御系200と異なる点について説明する。
バイアス発生部208は、第1ディザー信号の振幅に対して正負のバイアスを付加する。例えば、バイアス発生部208は、Rect関数等の矩形波信号を加算器206に出力することで第1ディザー信号に対してバイアスを付加してもよい。なお、バイアスの大きさは操作量の制約条件を守るように設定されてもよい。制約条件はユーザによってあらかじめ指定されてもよい。ユーザとは、例えばプラント100の運用者であってもよいし、どのような者であってもよい。バイアス発生部208は、バイアスが制約条件の限界値に到達する等の理由によって、極値の探索ができなくなった場合、第1ディザー信号へのバイアスの付加を停止するように駆動してもよい。バイアス発生部208は、バイアスを付加する方法を任意に変更されてもよい。バイアス発生部208は、プラントの制約条件を受け付けてもよい。例えば、バイアス発生部208は、正又は負の一方向のバイアスを付加するように制約条件を受け付けてもよい。バイアス発生部208は、付加するバイアス信号として矩形波に限らず任意の波形を用いてよく、周期的ではない不規則な信号を用いてもよい。バイアス発生部208は、プラントの特性によって突発的な操作量の変化がプラントに反映されるのに時間を要する場合は、変化を捉えられる時間と同期させてもよい。
図2の評価関数に極値制御系200aを適用して、初期操作量Uαから探索をスタートさせる場合について説明する。図4は、実施形態の評価関数値の探索の第一の具体例を示す図である。図4(a)は、第1ディザー信号の時系列変化を表す。図4(b)は、操作量の時系列変化を表す。図4(c)は、評価関数値の時系列変化を表す。
図4(b)に示される通り、開始直後、操作量は第1極値の操作量Uへ一定の割合で近づく。その後、操作量は、Uに到達して安定化する。これは、探索が操作量Uαからスタートした際に、スタート時点の評価関数値よりもより評価関数値が低減する方向に操作量を変化させていく極値制御技術の働きによる挙動である。ただし、一旦操作量がUに到達した場合、その部分は局所的にみた“最適点”であるため、制御が安定化する。したがって、より評価関数値が低い第2極値の操作量へ到達することが難しい場合があった。
極値制御系200aは、バイアス発生部208を備えることで、第1ディザー信号に正又は負のバイアスを付加し、強制的にディザー信号を正又は負側にシフトできる。これにより、操作量の挙動は、負側又は正側にシフトするため、極値制御系200aは、探索範囲を広げることができる。これに伴い、極値制御系200aは、より評価関数値が低い領域を見つけることができる。極値制御系200aは、第1極値よりも評価関数値が低い第2極値となる操作量Uを探索できる。
[第2の機能の詳細]
図5は、実施形態の第1ディザー信号に振幅を設定するブロック線図である。図5における極値制御系200bは、振幅決定部209及び乗算器210をさらに備える点で極値制御系200とは異なるが、それ以外の構成は同じである。以下、極値制御系200と異なる点について説明する。
振幅決定部209は、第1ディザー信号に設定される振幅aを決定する。振幅決定部209は、第1ディザー信号の振幅aを経時的に変化させる。例えば、振幅決定部209は、第1ディザー信号の振幅が線形に増加するように振幅aを決定してもよい。また、振幅aは、操作量の値の上下限、変化率の上下限又はプラントの制約条件等を考慮して、上限値を予め設定されてもよい。振幅aの初期値又は増加関数は任意に設定されてもよい。
図2の評価関数に極値制御系200bを適用して、初期操作量Uαから探索をスタートさせる場合について説明する。図6は、実施形態の評価関数値の探索の第二の具体例を示す図である。図4(6)は、第1ディザー信号の振幅の時系列変化を表す。図6(b)は、操作量の時系列変化を表す。図6(c)は、評価関数値の時系列変化を表す。
図6(a)に示されるように、第1ディザー信号の振幅は徐々に大きくなり、極値制御系200bは、操作量の探索範囲を広げることができる。操作量の初期値をUαとした場合、極値制御系200bは、探索開始直後では、第1ディザー信号の振幅が小さいため、第1極値の操作量Uにて安定化する挙動を示す。しかし、操作量の変動幅がさらに大きくなり、第2極値の操作量Uへ到達する。このように、極値制御系200bは、評価関数値をさらに低減することができ、最適値の探索が可能となる。
なお、第1の機能と第2の機能とは、それぞれ組み合わされて極値制御系が構成されてもよい。組み合わされることで、極値制御系はより安定して最適値の探索が可能となる。
図7は、実施形態の適用対象の水処理プラント300の概略を示す図である。なお、制御対象プロセスは水処理プラント300に限定されず、最適化されるべき評価関数値を持つ任意のプロセスであってよい。以下、生物学的廃水処理プロセスを実現する水処理プラント300を例に、リアルタイム最適値探索制御装置の機能について詳細に説明する。水処理プラント300は、制御対象プロセスの一態様である。
図7における白抜き矢印は、処理対象の下水の流れを表す。図7における実線矢印は下水から分離された汚泥の流れを表す。水処理プラント300の概略について説明する。水処理プラント300は、流入渠・沈砂池等301、最初沈殿池302、生物反応槽303、最終沈殿池304、ろ過池305及び余剰汚泥貯留槽307の各貯留設備を備える。また、水処理プラント300は、汚泥処理ポンプ308、汚泥引き抜きポンプ321、ブロワ331、余剰汚泥引き抜きポンプ341及び返送汚泥ポンプ342を備える。汚泥引き抜きポンプ321は、各貯留設備間で被処理水又は汚泥を配送する。ブロワ331は、生物反応槽303内の下水を曝気する。余剰汚泥引き抜きポンプ341は、最終沈殿池304から過剰な汚泥を引き抜くポンプである。余剰汚泥引き抜きポンプ341によって引き抜かれた汚泥は、最初沈殿池302によって引き抜かれた汚泥とともに、余剰汚泥貯留槽307に貯められる。余剰汚泥貯留槽307に貯められた汚泥は、汚泥処理ポンプ308で運ばれて処理される。流入してきた下水は、図7の白抜き矢印に沿って流れ、流入渠・沈砂池等301、最初沈殿池302、生物反応槽303、最終沈殿池304、ろ過池305を経て放流される。
流入渠・沈砂池等301を流れた下水は、最初沈殿池302に蓄えられる。最初沈殿池302では、比較的比重の大きな不要物が重力によって沈降し沈殿する。最初沈殿池302に沈殿した汚泥は、汚泥引き抜きポンプ321によって引き抜かれ、余剰汚泥貯留槽307に送られる。一方で、上澄みの被処理水は生物反応槽303に送られる。
生物反応槽303では、下水に微生物が投入される。下水に投入された微生物は、ブロワ331による下水の曝気によって活性化され、下水中の有機物を分解するとともに、下水中のリンの除去、アンモニアの硝化、窒素の除去が行われる。微生物の働きによって、窒素成分及びリン成分が下水から分離される。生物反応槽303を経た被処理水は最終沈殿池304に送られる。
最終沈殿池304では、下水中の活性汚泥が重力によって沈降し沈殿する。最終沈殿池304に沈殿した活性汚泥は、余剰汚泥引き抜きポンプ341によって引き抜かれ、余剰汚泥貯留槽307に送られる。なお、ここで一部の活性汚泥は返送汚泥ポンプ342によって生物反応槽303に返送され、上記の生物反応槽における反応を促すために再利用される。一方で、上澄みの下水はろ過池305に送られる。
ろ過池305では、ろ過による小さな不要物の除去や消毒など、下水に対する最終段階の浄化処理が行われる。ろ過池305における浄化処理を経た下水は、処理済みの水として河川等に放流される。
余剰汚泥貯留槽307は、生物学的排水処理プロセスにおいて発生した不要な汚泥を一時貯留する施設である。余剰汚泥貯留槽307に貯留された汚泥は、汚泥処理ポンプ308によって汚泥処理工程に配送される。
このような生物学的廃水処理プロセスでは、操作量は返送汚泥の曝気風量であり、制御量は放流水に含まれる窒素及びリンの濃度(以下、それぞれ「放流窒素濃度」及び「放流リン濃度」という。)である。放流窒素濃度及び放流リン濃度は、ろ過池消毒設備を経た後計測される。なお、制御量を、放流水に含まれる窒素及びリンの量(以下、それぞれ「放流窒素量」及び「放流リン量」という。)としてもよい。この場合、放流窒素量及び放流リン量は、それぞれ放流窒素濃度及び放流リン濃度に放流量を乗算することにより得られる。
図7に記載される評価関数は、操作量に対する未知の値を、制御量の関数として定義したものである。図7の場合、評価関数は、放流窒素濃度及び放流リン濃度と評価量との関係を表す関数である。評価関数は、操作量(曝気風量)上限での制御量と、操作量下限での制御量との間で極値をとるように設定される。評価関数を設定する方法の一例として、評価量を排水賦課金の考え方に基づく水質コストと、返送汚泥ポンプ342の電力コストと、ブロワ331の電力コストの総和(以下、「総コスト」という。)として表す方法がある。
返送汚泥ポンプ342及びブロワ331の電力コストは、返送汚泥流量と返送汚泥ポンプ342とブロワ331の定格電力などから算出できる。また、返送率又はブロワ331を変えることによって大きく変化するものは窒素濃度及びリン濃度であることが知られている。このため、水質コストは、放流窒素をTN、放流リンをTPとして、以下の数式(1)で表される。
Figure 0007132016000001
なお、曝気風量を増加させると窒素の除去率が高まるため、TNに関する水質コストが減少する。一方で、曝気風量を減少させるとリンの除去率が高まるため、TPに関する水質コストが減少する。このような場合、水質コストに基づいて評価関数が設定されても良い。ただし、リンと窒素とのようにトレードオフの関係を持たない水質同士のコストを指標とする場合、評価量に運転コスト(電力コスト)を加味した総コストとして表すことによって、評価関数が、操作量(曝気風量)上限での制御量と操作量下限での制御量との間で極値をとるように設定する。
また、評価関数には放流水質制約を満たすような制約条件を組み入れてもよい。例えば、放流水質の規制値を設け、規制値を超えた際に総コストが増大するような関数を組み込む。このような評価関数を用いた場合、規制値を超えると評価量が急上昇する。そのため、評価量を規制値以内に抑えるように極値制御が機能することが期待できる。
操作量に加える摂動信号に相当する第1ディザー信号の周期及び評価関数値からディザー信号の成分を抽出する役割を果たす第2ディザー信号の周期は、プラントの時定数より十分遅く設定する。これにより、ディザー信号に伴う操作量の変化によって、評価関数の変化を捉えることができる。
以上、水処理プラント300における極値制御の適用例について説明したが、極値制御の対象となるプロセスは、生物学的排水処理プロセスに限定されるものではない。極値制御は、最適化されるべき評価量を持つ任意のプロセスに適用可能である。
図8は、第1の実施形態の制御装置1の機能構成の具体例を示す機能ブロック図である。制御装置1は、バスで接続されたCPU(Central Processing Unit)やメモリや補助記憶装置などを備え、制御プログラムを実行する。制御装置1は、制御プログラムの実行によって、極値制御部20、バイアス発生部208及びバイアス調整部211を備える装置として機能する。なお、制御装置1の各機能の全て又は一部は、ASIC(Application Specific Integrated Circuit)やPLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されてもよい。制御プログラムは、コンピュータ読み取り可能な記録媒体に記録されてもよい。コンピュータ読み取り可能な記録媒体とは、例えばフレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置である。制御プログラムは、電気通信回線を介して送信されてもよい。
制御装置1の極値制御部20は、入力された評価関数値に基づいて、評価関数値をより最適値に近づける操作量を出力する。このような極値制御部20の機能は、図3に示した極値制御系200aと同様の構成を含むことで実現される。そのため、図3と同様の符号を付すことにより、極値制御系200aと同等の構成についての説明を省略する。
バイアス調整部211は、バイアス発生部208によって付加されるバイアスを制御する。例えば、バイアス調整部211は、バイアスが付加された操作量信号の大きさが曝気風量の上限値未満となるようにバイアスの大きさを設定する。バイアス調整部211は、ディザー信号に対するバイアスの発生タイミング又はバイアスの付加を停止させる指示をバイアス発生部208に出力する。バイアス調整部211は、評価関数値を入力として、評価関数値の周期平均を計算して、計算結果の履歴を残しておき、バイアスの前後で周期平均値の比較を行う。バイアス調整部211は、バイアスを与えても、評価関数値の周期平均値に変化がなくなれば、第1ディザー信号に対するバイアスの付加を停止させる指示を出力する。バイアス調整部211は、水処理プラント300が不安定な状況にある場合、第1ディザー信号に対するバイアスの付加を停止する指示を出力する。水処理プラント300が不安定な状況とは、例えば、短時間で評価関数値が大きく変移したり、不連続に遷移したり、する状況であってもよい。バイアス調整部211の評価関数値の周期平均の記録タイミングは任意に設定されてもよい。記録タイミングは、水処理プラント300を安定的に動かすことを前提とし、ディザー信号の周波数と同期させてもよい。
バイアス調整部211は、バイアス発生部208に対して、矩形波に限らず任意の波形でバイアスを与えるように指示してもよい。バイアス調整部211は、例えば、水処理プラント300の安定的な動作を確保することを前提に、確率信号のような非周期信号又は他の制御対象における制御量と同期した信号でバイアスを与えるように指示してもよい。例えば図7に示すような水処理プラント300の場合、ブロワ331によってコントロールされる曝気風量、汚泥引抜きポンプ321によって引き抜かれる汚泥の量、返送汚泥ポンプ342によって返送される汚泥の量、下水の流入量、流入する下水の水質、等の様々な情報によって水処理に掛る電力及び放流水の水質が変わるため、総コストの最適値も変化する場合がある。このような状況においても、制御装置1は適用できる。
バイアス調整部211は、操作量が最適値へ収束した後に評価関数値の周期平均値が増加する挙動が発生した場合には、再度バイアスの付加を開始する指示を出力する。なお、バイアス調整部211は、操作量が最適地へ収束した場合、すなわち、評価関数値が一定値となることを確認した場合、バイアスの付加を停止させる指示を出力する。バイアス調整部211は、評価関数値の増加又は減少を確認したが、バイアス付加によって評価関数値の低減傾向が認められない場合、評価関数値が全対的に一様に増加している状況であり、最適値が変わっていないと判断し、バイアスの付加を停止させる指示を出力する。一方、バイアスの付加は、操作量の変動が大きいため、水質に悪影響を及ぼす場合がある。したがって、バイアス調整部211は、操作量の大幅な変更によって水質が悪化した場合、元の水質に戻すためにバイアスの付加を停止させる場合がある。バイアス調整部211は、このような状況をなるべく避けるために、付加するバイアスの関数として徐々に絶対値が増大していくような矩形波を用いるような指示を出力してもよい。
制御装置1は、徐々に絶対値が増大していくような矩形波を用いることで、水質の規制値が超えない範囲で、水処理プラント300を運用することが可能となる。バイアス調整部211は、矩形波の値の履歴を取得しておくこともできる。なお、バイアスの絶対値の調整は、評価関数値。放流水質又は制御項目の運転状況等の傾向に基づいて、行われてもよい。バイアス調整部211は、極値制御以外の要因で水質の悪化が引き起こされた場合にも、バイアス付加の停止を行う指示を出力する。
図9は、第1の実施形態の制御装置1に基づいた極値制御の一具体例を示す図である。図9では、操作量は曝気風量を表す。図9では、評価関数値は総コストを表す。図9のグラフは、操作量(曝気風量)と評価関数値(総コスト)との関係を表す。図10は、第1の実施形態の極値制御における操作量及び評価関数値の経時変化の一具体例を示す図である。図10(a)は、従来の手法で極値制御を行った場合の操作量及び評価関数値の経時変化を示す。図10(b)は、制御装置1で極値制御を行った場合の操作量及び評価関数値の経時変化を示す。
図9では、操作量の初期値が0付近にある場合、従来の手法で極値制御を行った場合、図10(a)に示されるように操作量が0に収束し安定化する。これに対して、図8の構成を持つ制御装置1で極値制御を行った場合、第1ディザー信号に正のバイアスが付加されるため、操作量が最適な操作量付近へ近づき、その点から評価関数値がより低減する操作量(操作量の最適値)へ収束していく挙動が得られる。さらに、操作量にはバイアスが付加されるため、操作量は増加する方向にシフトするが、それに伴い評価関数値も増加するため、極値制御の働きにより操作量が戻るように遷移する。このとき、バイアス調整部211は、バイアスを付加する前後で、評価関数値の周期平均を比較し、次にバイアスを付加させる必要が無いと判断し、バイアスの付加を停止させる指示を出力する。このように、第1の実施形態における極値制御を適用すると、図9に示すような特殊な形状を持つ評価関数に対しても、最適な操作量(制御パラメータ)を探索することができる。
このように構成された第1の実施形態の制御装置1は、バイアス発生部208を備えることにより、第1ディザー信号に対して正負のバイアスを付加する。第1ディザー信号にバイアスが付加されることで、より最適な操作量へ収束させることができるため、特殊な形状を持つ評価関数に対しても、最適な操作量(制御パラメータ)を探索することができる。また、バイアス調整部211を備えることによって、バイアスが付加される前後で、評価関数値の周期平均を比較し、次にバイアスを付加させる必要が無いと判断した場合、バイアスの付加を停止させることができる。したがって、制御対象の変化に応じて適切な操作量を設定及び維持することが可能になる。
(第2の実施形態)
図11は、第2の実施形態の制御装置1aの機能構成の第一の具体例を示す機能ブロック図である。制御装置1aは、バスで接続されたCPUやメモリや補助記憶装置などを備え、制御プログラムを実行する。制御装置1aは、制御プログラムの実行によって、極値制御部20a、振幅決定部209a及び振幅調整部212を備える装置として機能する。
極値制御部20aは、入力された評価関数値に基づいて、評価関数値をより最適値に近づける操作量を出力する。このような極値制御部20aの機能は、図5に示した極値制御系200bと同様の構成を含むことで実現される。そのため、図5と同様の符号を付すことにより、極値制御系200bと同等の構成についての説明を省略する。
振幅決定部209aは、第1ディザー信号に設定される振幅aを時間に基づいて決定する。例えば、振幅決定部209aは、第1ディザー信号の振幅aを時間的に増加させる。振幅決定部209aは、第1ディザー信号の振幅aとして、振幅の初期値aから変化率aで時間的に線形増加する関数として構成されてもよい。制御装置1aは、振幅決定部209aを備えることで、振幅aは時間の経過とともに徐々に増加し、操作量の探索範囲を広げることができる。振幅決定部209aは、線形増加関数に限らず、単調増加関数であれば任意の関数で振幅aを決定してもよい。
振幅調整部212は、評価関数値に基づいて、第1ディザー信号の振幅を調整する信号を出力する。例えば、振幅調整部212は、入力された操作量に基づいて、第1ディザー信号の振幅aの増加を停止させ、第1ディザー信号の振幅aが一定値の信号とする指示を出力してもよい。振幅調整部212は、積分器205の出力として第1ディザー信号(a×sinωt)を足し合わせた操作量信号が操作量の上限値に到達した場合、振幅aの値を増加させず一定値を取るようにする信号を出力してもよい。このように構成されることで、振幅調整部212は、第1ディザー信号の振幅を増加させる過程で、許容できる操作量の上限値を超えてしまうことで、プラントの応答が不安定となるのを防ぐことができる。
図12は、第2の実施形態の制御装置1bの機能構成の第二の具体例を示す機能ブロック図である。制御装置1bは、バスで接続されたCPUやメモリや補助記憶装置などを備え、制御プログラムを実行する。制御装置1bは、制御プログラムの実行によって、極値制御部20b、振幅決定部209a及び振幅調整部212bを備える装置として機能する。以下、第一の具体例と異なる点について説明する。
制御装置1bは、入力された評価関数値に基づいて、評価関数値をより最適値に近づける操作量を出力する。このような制御装置1bの機能は、図5に示した極値制御系200bと同様の構成を含むことで実現される。そのため、図5と同様の符号を付すことにより、極値制御系200bと同等の構成についての説明を省略する。
振幅調整部212bは、水処理プラント300の応答に基づいて、第1ディザー信号の振幅aの増加を停止させる信号を出力してもよい。振幅調整部212bは、入力された評価関数値に基づいて、その周期平均を演算する。振幅調整部212bは、周期平均値の傾向を履歴として記録する。振幅調整部212bは、周期平均値の遷移に不連続な異常が見受けられた場合、第1ディザー信号の振幅aの増加を停止する指示を出力する。このように構成されることで、振幅調整部212bは、水処理プラント300が安定的に動作する状況下で振幅aを調整できる。また、図12の構成では、振幅調整部212bは、水処理プラント300が安定に動作している状況下で、記録している評価関数値の平均値の傾向から、評価関数値が低減する傾向が見られなくなることを判断した際に、第1ディザー信号の振幅aの増加を停止させる信号を出力してもよい。
振幅調整部212bは、制御の途中で振幅決定部209aに設定された振幅aを決定する関数を任意に変更してもよい。例えば、水処理プラント300は、下水処理制御において操作量の変化に対して厳しい水質規制がある場合、水質規制を越えない範囲での運転を行う。この時、ブロワ331に対する曝気風量の操作値を変更すると、水質の悪化が著しくなる可能性がある。振幅調整部212bは、このような場合に対応できるように、水質の応答を取得しつつ、第1ディザー信号の振幅aの関数を少しずつ変更させてもよい。振幅調整部212bは、第1ディザー信号の振幅a以外のその他のパラメータの設定指針に振幅aの値が影響している場合、その他のパラメータに振幅aの変更情報が反映されるようにする。例えば、振幅調整部212bは、積分ゲインKIの調整に第1ディザー信号の振幅情報が必要となる場合には、振幅aの変更情報を積分器205に反映させる。
図9で表される評価関数に対して第2の実施形態の構成をもつ極値制御を適用した場合の効果について説明する。図13は、第2の実施形態の極値制御における操作量及び評価関数値の経時変化の一具体例を示す図である。図13に示すように第1ディザー信号の振幅aの増加に合わせて、操作量の振動幅が拡大していくことがわかる。操作量の振動幅の拡大に伴い、評価関数値の変動幅も大きくなり、評価関数値が低減する方向を特定することが可能となる。振幅調整部212bは、評価関数値の周期平均の履歴を取得し、評価関数値の平均周期の履歴の値が変化しなくなったことを判断して、第1ディザー信号の振幅の増加を停止させ、振幅aの値が一定値信号となる指示を出力する。操作量が、最適値へ収束した後は操作量や評価関数値の振動幅は一定となる。
このように構成された第2の実施形態の制御装置1aは、振幅決定部209aを備えることによって、第1ディザー信号に付加される振幅の値を決定できる。振幅の値は、時間の経過とともに増加するため、操作量の探索範囲を広げることができる。また、振幅調整部212を備えることによって、操作量信号が操作量の上限値に到達した場合、振幅aの値を増加させず一定値を取るようにする信号を出力することで、振幅の値が大きくなりすぎて、操作量の探索範囲が広がりすぎることを防ぐことができる。したがって、プラントの応答が不安定となることを防ぐことができ、プラントの変化に応じて適切な操作量を設定及び維持することでプラントを安定稼働させることが可能になる。また、第2の実施形態の制御装置1bは、振幅調整部212bを備えることによって、第1ディザー信号に付加される振幅が決定される関数を任意に変更できる。このように構成されることで、プラントからの評価関数値に基づいて、関数を少しずつ変更させることができる。したがって、プラントに所定の規制が設けられている場合であっても、当該規制を超えないようにしつつ、より簡単にプラントを運用することができる。
(第3の実施形態)
第3の形態は、第1の実施形態及び第2の実施形態を組み合わせた実施形態である。第3の実施形態を採用することで、第1の実施形態及び第2の実施形態よりも、より広範囲の操作量変動に伴う評価関数値の変動を習得することができ、素早い最適値の探索が可能となる。
図14は、第3の実施形態の制御装置1cの機能構成の具体例を示す機能ブロック図である。制御装置1cは、バスで接続されたCPUやメモリや補助記憶装置などを備え、制御プログラムを実行する。制御装置1cは、制御プログラムの実行によって、極値制御部20c、バイアス発生部208、振幅決定部209a及び振幅調整部212cを備える装置として機能する。以下、第1の実施形態及び第2の実施形態と異なる点について説明する。
振幅調整部212cは、評価関数値の周期平均値の履歴に基づいて水処理プラント300の状態を判断する。例えば、振幅調整部212cは、操作量が上限値に到達した場合又は評価関数値が異常となった場合、バイアス発生部208に対して第1ディザー信号に対するバイアス付加の停止の指示を出力したり、振幅決定部209aに対して第1ディザー信号の振幅設定の変更の指示を出力する。
このように構成された制御装置1cは、振幅調整部212を備えることによって、評価関数値の周期平均値の履歴に基づいてプラントの状態を判断できる。振幅調整部212は、プラントの状態に応じて、第1ディザー信号に対するバイアス付加の停止を指示したり、第1ディザー信号の振幅の変更を指示したりできる。したがって、制御対象の変化に応じて適切な制御パラメータを設定することができ、より簡単かつ安定してプラントを運用することができる。
上記実施形態における制御装置1は、表示部と入力部とを備えるように構成されてもよい。この場合、表示部は、バイアス発生部又は振幅決定部の駆動波形を出力してもよいし、操作量に付加される摂動信号を表示してもよいし、操作量又は評価関数値の時系列変化を表示してもよい。入力部は、摂動信号の波形を定める設定値を受け付ける。極値制御部は、受け付けた設定値(例えば、振幅)に基づいて摂動信号の波形を制御するように構成されてもよい。具体的には極値制御部は、受け付けた設定値をバイアス発生部又は振幅決定部に出力することで、受け付けた設定値を摂動信号の波形を制御する。
表示部は、CRT(Cathode Ray Tube)ディスプレイ、液晶ディスプレイ、有機EL(Electro Luminescence)ディスプレイ等の出力装置である。表示部は、出力装置を制御装置1に接続するためのインタフェースであってもよい。この場合、表示部は、映像データから映像信号を生成し自身に接続されている映像出力装置に映像信号を出力する。
入力部は、タッチパネル、マウス及びキーボード等の入力装置を用いて構成される。入力部は、入力装置を制御装置1に接続するためのインタフェースであってもよい。この場合、入力部は、入力装置において入力された入力信号から入力データ(例えば、制御装置1に対する指示を示す指示情報)を生成し、制御装置1に入力する。
上記各実施形態では、極値制御部、バイアス発生部、振幅決定部及び振幅調整部はソフトウェア機能部であるものとしたが、LSI等のハードウェア機能部であってもよい。
以上説明した少なくともひとつの実施形態によれば、極値制御部、バイアス発生部、振幅決定部及び振幅調整部を持つことにより、制御対象の変化に応じて適切な制御パラメータを設定することができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
1…制御装置、1a…制御装置、1b…制御装置、1c…制御装置、20…極値制御部、20a…極値制御部、20b…極値制御部、20c…極値制御部、100…プラント、200…極値制御系、200a…極値制御系、200b…極値制御系、201…ハイパスフィルタ、202…ディザー信号出力部、203…乗算器、204…ローパスフィルタ、205…積分器、206…加算器、207…振幅設定部、208…バイアス発生部、209…振幅決定部、209a…振幅決定部、210…乗算器、211…バイアス調整部、212…振幅調整部、212b…振幅調整部、212c…振幅調整部、300…水処理プラント

Claims (7)

  1. 摂動信号の振幅に対してバイアスを付加するバイアス発生部と、
    バイアスが付加された前記摂動信号を制御対象プロセスに与えられる操作量に加え、前記操作量を所定の評価関数に与えることによって前記制御対象プロセスの最適化に関する指標を示す評価関数値を取得し、前記評価関数値に基づいて前記制御対象プロセスに与えられる前記操作量の最適値を探索する極値制御部と、
    を備える、制御装置。
  2. 前記評価関数値に応じて、前記バイアス発生部が行う前記バイアスの付加を停止させるバイアス調整部をさらに備える請求項1に記載の制御装置。
  3. 前記制御対象プロセスの状態又は制御量に応じて、前記摂動信号に付加される前記バイアスの値を前記バイアス発生部に変更させるバイアス調整部をさらに備える請求項1に記載の制御装置。
  4. 摂動信号に対してバイアスを付加するバイアス発生部と、
    摂動信号の振幅を時間に基づいて決定する振幅決定部と、
    前記振幅が決定され、前記バイアスが付加された摂動信号を制御対象プロセスに与えられる操作量に加え、前記操作量を所定の評価関数に与えることによって前記制御対象プロセスの最適化に関する指標を示す評価関数値を取得し、前記評価関数値に基づいて前記制御対象プロセスに与えられる前記操作量の最適値を探索する極値制御部と、
    を備える、制御装置。
  5. 前記操作量に付加される摂動信号を表示する表示部と、
    ユーザから前記摂動信号の波形を定める設定値を受け付ける入力部と、
    をさらに備え、
    前記極値制御部は、前記設定値に基づいて前記摂動信号の波形を制御する請求項1からのいずれか一項に記載の制御装置。
  6. 制御装置が、摂動信号の振幅に対してバイアスを付加するバイアス発生ステップと、
    制御装置が、バイアスが付加された前記摂動信号を制御対象プロセスに与えられる操作量に加え、前記操作量を所定の評価関数に与えることによって前記制御対象プロセスの最適化に関する指標を示す評価関数値を取得し、前記評価関数値に基づいて前記制御対象プロセスに与えられる前記操作量の最適値を探索する極値制御ステップと、
    を有する、制御方法。
  7. 請求項1からのいずれか一項に記載の制御装置としてコンピュータを機能させるためのコンピュータプログラム。
JP2018141765A 2018-07-27 2018-07-27 制御装置、制御方法及びコンピュータプログラム Active JP7132016B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018141765A JP7132016B2 (ja) 2018-07-27 2018-07-27 制御装置、制御方法及びコンピュータプログラム
CN201980047135.4A CN112400142B (zh) 2018-07-27 2019-07-25 控制装置、控制方法以及计算机存储介质
PCT/JP2019/029215 WO2020022430A1 (ja) 2018-07-27 2019-07-25 制御装置、制御方法及びコンピュータプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018141765A JP7132016B2 (ja) 2018-07-27 2018-07-27 制御装置、制御方法及びコンピュータプログラム

Publications (2)

Publication Number Publication Date
JP2020017230A JP2020017230A (ja) 2020-01-30
JP7132016B2 true JP7132016B2 (ja) 2022-09-06

Family

ID=69181551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018141765A Active JP7132016B2 (ja) 2018-07-27 2018-07-27 制御装置、制御方法及びコンピュータプログラム

Country Status (3)

Country Link
JP (1) JP7132016B2 (ja)
CN (1) CN112400142B (ja)
WO (1) WO2020022430A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022028390A (ja) * 2020-08-03 2022-02-16 株式会社東芝 最適値探索制御装置、最適値探索制御方法、コンピュータプログラム、および、最適値探索制御システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009048353A (ja) 2007-08-17 2009-03-05 Mitsubishi Electric Corp 組み合わせ最適化システム
CN101977038A (zh) 2010-11-12 2011-02-16 上海华岭集成电路技术股份有限公司 信号波形的控制方法
JP2012106198A (ja) 2010-11-18 2012-06-07 Toshiba Corp 生物学的廃水処理装置
JP2015102876A (ja) 2013-11-20 2015-06-04 国立大学法人金沢大学 最大電力追従制御装置及び最大電力追従制御方法
US20160084514A1 (en) 2014-09-24 2016-03-24 Johnson Controls Technology Company Extremum-seeking control for airside economizers

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3261717B2 (ja) * 1991-02-20 2002-03-04 株式会社日立製作所 インバータの制御方法及び制御装置
CN101578584A (zh) * 2005-09-19 2009-11-11 克利夫兰州立大学 控制器、观测器及其应用
CN101349893B (zh) * 2007-07-18 2011-03-16 太极光控制软件(北京)有限公司 自适应模型预测控制装置
JP6191449B2 (ja) * 2013-12-26 2017-09-06 富士通オプティカルコンポーネンツ株式会社 光送信機、及び、光変調器の制御装置
JP6523854B2 (ja) * 2015-07-29 2019-06-05 株式会社東芝 最適制御装置、最適制御方法、コンピュータプログラム及び最適制御システム
GB2556315A (en) * 2016-03-23 2018-05-30 Univ Coventry Control system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009048353A (ja) 2007-08-17 2009-03-05 Mitsubishi Electric Corp 組み合わせ最適化システム
CN101977038A (zh) 2010-11-12 2011-02-16 上海华岭集成电路技术股份有限公司 信号波形的控制方法
JP2012106198A (ja) 2010-11-18 2012-06-07 Toshiba Corp 生物学的廃水処理装置
JP2015102876A (ja) 2013-11-20 2015-06-04 国立大学法人金沢大学 最大電力追従制御装置及び最大電力追従制御方法
US20160084514A1 (en) 2014-09-24 2016-03-24 Johnson Controls Technology Company Extremum-seeking control for airside economizers

Also Published As

Publication number Publication date
WO2020022430A1 (ja) 2020-01-30
JP2020017230A (ja) 2020-01-30
CN112400142A (zh) 2021-02-23
CN112400142B (zh) 2022-10-14

Similar Documents

Publication Publication Date Title
Khalil Universal integral controllers for minimum-phase nonlinear systems
JP6523854B2 (ja) 最適制御装置、最適制御方法、コンピュータプログラム及び最適制御システム
US20200134448A1 (en) Quantizing neural networks with batch normalization
WO2020241657A1 (ja) 最適制御装置、最適制御方法及びコンピュータプログラム
JP7132016B2 (ja) 制御装置、制御方法及びコンピュータプログラム
Kroll et al. Modelling real-time control of WWTP influent flow under data scarcity
CN110932585A (zh) 减小变流器开关频率处超高次谐波幅值的调制方法和装置
CN104953814B (zh) 一种控制pfc电路的方法和装置
Du et al. Generalized H2 output feedback controller design for uncertain discrete-time switched systems via switched Lyapunov functions
Roy et al. Level control of two tank system by fractional order integral state feedback controller tuned by PSO with experimental validation
JP6744145B2 (ja) 制御装置、制御方法及びコンピュータプログラム
Longo et al. A parallel formulation for predictive control with nonuniform hold constraints
CN109784705B (zh) 预测产油量的方法、装置及存储介质
JP6290115B2 (ja) 制御システム、制御装置、制御方法及びコンピュータプログラム
JP7154774B2 (ja) 最適制御装置、制御方法及びコンピュータプログラム
RU2758854C1 (ru) Способ определения концентрации веществ в системе биологической очистки сточных вод
WO2013136503A1 (ja) 水処理プラント運用システム及び送水量計画方法
JP2018187587A (ja) 曝気風量制御装置及び曝気風量制御方法
Liberzon A hybrid control framework for systems with quantization
JP2020144468A (ja) 最適制御装置、最適制御方法及びコンピュータプログラム
CN110970924A (zh) 电网发电机组的清洁能源消纳方法、装置
Allan et al. On the inherent robustness of optimal and suboptimal MPC
Lee et al. Numerical solution of optimal control problems with discrete-valued system parameters
Lin et al. A direct method of static output feedback design for TS fuzzy systems
Khmelnitsky et al. A stochastic optimal control policy for a manufacturing system on a finite time horizon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220825

R150 Certificate of patent or registration of utility model

Ref document number: 7132016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150