JP7128495B1 - soil conditioner - Google Patents

soil conditioner Download PDF

Info

Publication number
JP7128495B1
JP7128495B1 JP2021044574A JP2021044574A JP7128495B1 JP 7128495 B1 JP7128495 B1 JP 7128495B1 JP 2021044574 A JP2021044574 A JP 2021044574A JP 2021044574 A JP2021044574 A JP 2021044574A JP 7128495 B1 JP7128495 B1 JP 7128495B1
Authority
JP
Japan
Prior art keywords
soil
fine particle
conditioner
calcium carbonate
soil conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021044574A
Other languages
Japanese (ja)
Other versions
JP2022143843A (en
Inventor
一生 森本
陽二郎 家永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hirosawa Machinery Co., Ltd.
Astec Co Ltd
Original Assignee
Hirosawa Machinery Co., Ltd.
Astec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hirosawa Machinery Co., Ltd., Astec Co Ltd filed Critical Hirosawa Machinery Co., Ltd.
Priority to JP2021044574A priority Critical patent/JP7128495B1/en
Application granted granted Critical
Publication of JP7128495B1 publication Critical patent/JP7128495B1/en
Publication of JP2022143843A publication Critical patent/JP2022143843A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/52Mechanical processing of waste for the recovery of materials, e.g. crushing, shredding, separation or disassembly

Landscapes

  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

【課題】土壌改質作業中の安全性及び改質した土壌の安定性を図りつつ、土壌を取り扱い易い性状に調製することで、これまでは再利用が困難であった微細粒子含有土壌の再利用を容易なものとする土壌改良剤を提供する。【解決手段】微細粒子含有土壌を改質する土壌改良剤であって、微細粒子含有土壌に配合し攪拌すると、80秒以内に、篩分け可能な粒状土壌を形成し、当該粒状土壌は、微細粒子含有土壌に対して、実質的にpHが変化せず、かつ温度が上昇しない。【選択図】なし[Problem] To recycle soil containing fine particles, which has been difficult to reuse until now, by preparing the soil into a property that is easy to handle while ensuring safety during soil modification work and stability of the modified soil. To provide a soil conditioner that is easy to use. [Solution] The soil conditioner for improving fine particle-containing soil forms sievable granular soil within 80 seconds when mixed with fine particle-containing soil and stirred, and the granular soil is fine Substantially no change in pH and no increase in temperature for particulate-containing soils. [Selection figure] None

Description

本発明は、粘土等の微細な粒子を含有する土壌(以下、「微細粒子含有土壌」と称する。)を改質して再利用可能とするための土壌改良剤に関する。 TECHNICAL FIELD The present invention relates to a soil conditioner for modifying soil containing fine particles such as clay (hereinafter referred to as "fine particle-containing soil") to make it reusable.

土木工事、建設工事、土壌除染作業等により発生した廃棄土壌には、粘土、砂、礫等の土壌成分の他、金属片、ガラス片、プラスチック片等の異物が含まれている。また、下水処理場等で発生した汚泥等の粘性土壌も、一般には廃棄土壌として処理されている。従って、廃棄土壌を再利用するためには、廃棄土壌中の異物を分別除去した上で、土壌の性状を改良する必要がある。ここで、廃棄土壌中の異物の分別除去は、一般に分級装置を用いた篩分けによって行われるが、廃棄土壌の性状に問題があると精度よく分別を行なうことが困難となる。例えば、廃棄土壌の粘性が大きい場合、分級装置のメッシュに土壌成分が付着し、閉塞を引き起こす虞がある。 Waste soil generated from civil engineering work, construction work, soil decontamination work, and the like contains soil components such as clay, sand, and gravel, as well as foreign substances such as metal pieces, glass pieces, and plastic pieces. Also, viscous soil such as sludge generated in sewage treatment plants and the like is generally treated as waste soil. Therefore, in order to reuse the waste soil, it is necessary to separate and remove foreign substances in the waste soil and then improve the properties of the soil. Here, the separate removal of foreign substances in the waste soil is generally performed by sieving using a classifier, but if the properties of the waste soil are problematic, it becomes difficult to perform accurate separation. For example, if the waste soil is highly viscous, the soil components may adhere to the mesh of the classifier, causing clogging.

そこで、廃棄土壌の性状を改質するために、様々な土壌改良剤が開発されている。例えば、無機凝結性化合物と水溶性高分子化合物とを含有する泥土の改質剤があった(例えば、特許文献1を参照)。特許文献1の泥土改質剤は、特に、アルカリ系の土木薬剤を用いた工事で発生するアルカリ性の泥土の改質を目的としており、含水率の高い泥土の流動性を抑えることで、運搬の容易化を図ろうとしたものである。 Therefore, various soil conditioners have been developed to improve the properties of waste soil. For example, there is a mud modifier containing an inorganic coagulant compound and a water-soluble polymer compound (see, for example, Patent Document 1). The mud modifier of Patent Document 1 is particularly aimed at modifying alkaline mud generated in construction using alkaline civil engineering chemicals, and by suppressing the fluidity of mud with a high water content, it is easy to transport. This is an attempt to make it easier.

また、アルギン酸ナトリウム粉末に無機鉱物粉末を配合した土壌改良剤があった(例えば、特許文献2を参照)。特許文献2の土壌改良剤は、処理した土壌を植物育成土壌として再利用することを目的としており、特に、高含水量の汚泥を処理する場合において、アルギン酸ナトリウム粉末により汚泥を凝集するとともに、無機鉱物粉末により中性化しようとするものである。 There is also a soil improver in which sodium alginate powder is blended with inorganic mineral powder (see, for example, Patent Document 2). The soil conditioner of Patent Document 2 is intended to reuse the treated soil as plant-growing soil. It is intended to be neutralized by mineral powder.

特開平10-165998号公報JP-A-10-165998 特開2002―371279号公報JP-A-2002-371279

廃棄土壌の改質にあたっては、土壌改質作業中に急激な温度上昇が生じない安全性や、改質した土壌のpH変化(アルカリ化)が生じない安定性が求められる。また、改質した土壌の再利用を容易なものとするためには、篩分け等が可能な取り扱い易い性状(粘性が抑えられ、パラパラとした触感)に調製することも必要とされている。 In the modification of waste soil, it is required to have safety such that a sudden temperature rise does not occur during soil modification work and stability that pH change (alkalization) does not occur in the modified soil. In addition, in order to facilitate the reuse of the modified soil, it is also necessary to prepare the soil in an easy-to-handle property that can be sieved (viscosity is suppressed and the texture is flaky).

この点に関し、特許文献1の泥土改質剤は、泥土の流動性の低減を目的としたものであるが、単に運搬の容易性を図っているに過ぎず、改質した土壌の再利用を想定したものではない。また、アルカリ性の高い土木薬剤で処理した土壌を処理対象としているため、得られた改質土壌のpHも必然的に高いものとなり、このようなアルカリ性の土壌を再利用できる場面は限られる。 Regarding this point, the mud modifier of Patent Document 1 is intended to reduce the fluidity of mud, but it is merely intended to facilitate transportation, and the modified soil can be reused. Not what we assumed. In addition, since the soil treated with a highly alkaline civil engineering chemical is targeted for treatment, the pH of the resulting modified soil is inevitably high, and the situations where such alkaline soil can be reused are limited.

特許文献2の土壌改良剤は、主成分としてアルギン酸ナトリウム粉末を使用することにより、植物育成土壌としての再利用を図るものであるが、アルギン酸ナトリウムは吸水すると粘稠な液体に変化するため、取り扱いが容易であるとは言い難い。また、アルギン酸ナトリウム粉末に配合する無機鉱物粉末として、特許文献2には、スラグ、石膏、石炭灰が挙げられているが、スラグ、石炭灰については改質後の土壌に不純物が混入するという点で問題があり、石膏については発熱による安全性の点で問題があり、改善の余地がある。 The soil improver of Patent Document 2 uses sodium alginate powder as the main component, and is intended to be reused as plant-growing soil. is not easy. In addition, Patent Document 2 mentions slag, gypsum, and coal ash as inorganic mineral powders to be mixed with sodium alginate powder. There is a problem with gypsum, and gypsum has a problem in terms of safety due to heat generation, and there is room for improvement.

本発明は、上記問題点に鑑みてなされたものであり、土壌改質作業中の安全性及び改質した土壌の安定性を図りつつ、土壌を取り扱い易い性状に調製することで、これまでは再利用が困難であった微細粒子含有土壌の再利用を容易なものとする土壌改良剤を提供することを目的とする。 The present invention has been made in view of the above problems. An object of the present invention is to provide a soil conditioner that facilitates the reuse of soil containing fine particles, which has been difficult to reuse.

上記課題を解決するための本発明にかかる土壌改良剤の特徴構成は、
微細粒子含有土壌を改質する土壌改良剤であって、
前記微細粒子含有土壌に配合して攪拌すると、80秒以内に、篩分け可能な粒状土壌を形成し、当該粒状土壌は、前記微細粒子含有土壌に対して、実質的にpHが変化せず、かつ温度が上昇しないことにある。
The characteristic configuration of the soil conditioner according to the present invention for solving the above problems is
A soil conditioner for improving soil containing fine particles,
When mixed with the fine particle-containing soil and stirred, within 80 seconds, a sievable granular soil is formed, the granular soil having a substantially unchanged pH relative to the fine particle-containing soil, And the temperature does not rise.

本構成の土壌改良剤によれば、取り扱いが難しい粘性が大きい粘土等を含む微細粒子含有土壌であっても、本構成の土壌改良剤を微細粒子含有土壌に配合して攪拌するだけで、当該微細粒子含有土壌を迅速に篩分け可能な粒状土壌にすることができる。この粒状土壌は、改質前の微細粒子含有土壌に対して、実質的にpHが変化せず、かつ温度が上昇しないため、安全性・安定性が高く、取り扱いが容易なものとなる。 According to the soil conditioner of this configuration, even if the fine particle-containing soil containing clay or the like that is difficult to handle is highly viscous, the soil conditioner of this configuration can be easily mixed with the fine particle-containing soil and stirred. Soil containing fine particles can be made into granular soil that can be rapidly sieved. This granular soil does not substantially change in pH and does not rise in temperature compared to the fine particle-containing soil before modification, so that it is highly safe and stable and easy to handle.

本発明にかかる土壌改良剤において、
前記粒状土壌は、重量ベースで、85%以上が目開き9.5mmの篩を通過することが好ましい。
In the soil conditioner according to the present invention,
It is preferable that 85% or more of the granular soil, on a weight basis, pass through a sieve with an opening of 9.5 mm.

本構成の土壌改良剤によれば、改質後に得られる粒状土壌を、重量ベースで、85%以上が目開き9.5mmの篩を通過するように調製することにより、取り扱いがさらに容易なものとなる。 According to the soil conditioner of this configuration, the granular soil obtained after modification is prepared so that 85% or more on a weight basis passes through a sieve with an opening of 9.5 mm, making it easier to handle. becomes.

さらに、上記課題を解決するための本発明にかかる他の土壌改良剤の特徴構成は、
微細粒子含有土壌を改質する土壌改良剤であって、
高吸水性ポリマーと、
結晶性炭酸カルシウムと、
を含有することにある。
Furthermore, the characteristic configuration of another soil conditioner according to the present invention for solving the above problems is
A soil conditioner for improving soil containing fine particles,
a superabsorbent polymer;
crystalline calcium carbonate;
is to contain

本構成の土壌改良剤によれば、高吸水性ポリマーが微細粒子含有土壌に含まれる水分を吸収して微細粒子含有土壌を巻き込みながら膨潤状態となったところに、結晶性炭酸カルシウムが作用することで、結晶性炭酸カルシウムを核として微細粒子が集合し、土壌の粒状化が促進される。ここで、結晶性炭酸カルシウムは、弱酸性を示し、水分に触れても発熱しない。従って、改質した土壌は、実質的にpHが変化せず、かつ温度が上昇しないため、安全性・安定性が高く、取り扱いが容易なものとなる。 According to the soil conditioner of this configuration, the crystalline calcium carbonate acts on the point where the superabsorbent polymer absorbs water contained in the fine particle-containing soil and becomes swollen while entraining the fine particle-containing soil. Then, fine particles aggregate with crystalline calcium carbonate as a nucleus, promoting soil granulation. Here, crystalline calcium carbonate exhibits weak acidity and does not generate heat even in contact with water. Therefore, since the modified soil does not substantially change in pH and does not rise in temperature, it is highly safe and stable and easy to handle.

本発明にかかる土壌改良剤において、
前記高吸水性ポリマーと前記結晶性炭酸カルシウムとの配合比率が、重量比で、10/90~40/60に設定されていることが好ましい。
In the soil conditioner according to the present invention,
It is preferable that the weight ratio of the superabsorbent polymer and the crystalline calcium carbonate is set to 10/90 to 40/60.

本構成の土壌改良剤によれば、高吸水性ポリマーと前記結晶性炭酸カルシウムとの配合比率が、上記の適切な範囲に設定されているため、微細粒子含有土壌の粒状化がより促進されるとともに、安全性・安定性が高く、取り扱いが容易な粒状土壌を得ることができる。 According to the soil conditioner of this configuration, the blending ratio of the superabsorbent polymer and the crystalline calcium carbonate is set within the above-mentioned appropriate range, so granulation of the fine particle-containing soil is further promoted. At the same time, granular soil that is highly safe and stable and easy to handle can be obtained.

本発明にかかる土壌改良剤において、
前記微細粒子含有土壌を植物育成土壌に改質することが好ましい。
In the soil conditioner according to the present invention,
It is preferable to modify the fine particle-containing soil into plant-growing soil.

本構成の土壌改良剤によれば、微細粒子含有土壌を植物育成土壌に改質することで、農業分野での再利用が可能となる。 According to the soil conditioner of this configuration, by modifying fine particle-containing soil into plant-growing soil, it can be reused in the agricultural field.

図1は、実施例にかかる土壌改良剤を配合した微細粒子含有土壌が、攪拌に伴って粒状化していく様子を経時的に示した写真である。FIG. 1 is a photograph showing over time how soil containing fine particles mixed with a soil improver according to an example becomes granulated as it is agitated.

本発明の土壌改良剤について説明する。ただし、本発明は、以下で説明する実施形態や実施例に記載される構成に限定されるものではない。 The soil improver of the present invention will be explained. However, the present invention is not limited to the configurations described in the embodiments and examples described below.

本発明の土壌改良剤は、土木工事、建設工事、土壌除染作業等により発生した微細粒子含有土壌や、下水処理場等で発生した汚泥等を含む微細粒子含有土壌を改質することにより、これらを、植物育成土壌等として再利用するものである。ここで、本明細書において、微細粒子含有土壌とは、平均粒径が概ね2mm以下の粒子を含む土壌を意味し、主に、砂(平均粒径が概ね2~0.6mm)、シルト(平均粒径が概ね0.6~0.004mm)、粘土(平均粒径が概ね0.004mm以下)等を含む土壌が挙げられる。ただし、礫等の比較的粒径が大きい粒子を含む土壌であっても、微細粒子を含むものであれば、微細粒子含有土壌として取り扱うものとする。特に粘土を多く含む微細粒子含有土壌は、水分を含むと粘性が大きくなり、分級装置による篩分けが困難になることから、これまでは再利用されることなく廃棄されることも多かった。しかしながら、微細粒子含有土壌には、鉄分、マンガン、亜鉛等のミネラルや、腐葉土、排泄物等の栄養分が豊富に含まれている場合もあるため、微細粒子含有土壌を植物育成土壌等に再利用できれば、廃棄コストを低減できるだけでなく、新たな価値を創造することができる。そこで、本発明者らは、微細粒子含有土壌の再利用を可能とするためには、微細粒子含有土壌の性状を改善することが必要であるとの認識に立ち、本発明の土壌改良剤を創作するに至った。 The soil conditioner of the present invention improves fine particle-containing soil generated by civil engineering work, construction work, soil decontamination work, etc., and fine particle-containing soil including sludge generated in sewage treatment plants, etc. These are reused as plant growing soil and the like. Here, in this specification, fine particle-containing soil means soil containing particles having an average particle size of approximately 2 mm or less, and mainly includes sand (average particle size is approximately 2 to 0.6 mm), silt ( 0.6 to 0.004 mm in average particle size), soil containing clay (approximately 0.004 mm or less in average particle size), and the like. However, even if the soil contains particles with a relatively large particle size, such as gravel, if it contains fine particles, it is treated as soil containing fine particles. In particular, soil containing fine particles, which contains a large amount of clay, becomes more viscous when it absorbs water, making it difficult to sieve with a classifier, so it has often been discarded without being reused. However, in some cases, fine particle-containing soil is rich in minerals such as iron, manganese, and zinc, as well as nutrients such as leaf mulch and excrement. If possible, not only can disposal costs be reduced, but new value can be created. Therefore, the present inventors have recognized that it is necessary to improve the properties of the fine particle-containing soil in order to enable the reuse of the fine particle-containing soil, and the soil conditioner of the present invention is used. came to create.

本発明の土壌改良剤は、高吸水性ポリマーと、結晶性炭酸カルシウムとを含む。高吸水性ポリマーとしては、例えば、ポリアクリル酸系ポリマー、ポリメタクリル酸系ポリマー、ポリ酢酸ビニル系ポリマー、ポリビニルアルコール系ポリマー、カルボキシメチルセルロース系ポリマー等が挙げられる。これらのうち、好ましい高吸水性ポリマーは、ポリアクリル酸系ポリマーとして代表的なポリアクリル酸ナトリウムである。結晶性炭酸カルシウムとしては、工業薬品として市販されているものを使用できるが、結晶性炭酸カルシウムが主成分である大理石を粉砕したものを使用してもよい。 The soil conditioner of the present invention contains a superabsorbent polymer and crystalline calcium carbonate. Examples of superabsorbent polymers include polyacrylic acid-based polymers, polymethacrylic acid-based polymers, polyvinyl acetate-based polymers, polyvinyl alcohol-based polymers, carboxymethylcellulose-based polymers, and the like. Among these, a preferred superabsorbent polymer is sodium polyacrylate, which is a typical polyacrylic acid-based polymer. As the crystalline calcium carbonate, commercially available industrial chemicals can be used, but crushed marble containing crystalline calcium carbonate as a main component may also be used.

微細粒子含有土壌に、高吸水性ポリマー及び結晶性炭酸カルシウムを含む本発明の土壌改良剤を配合し、これを攪拌すると、80秒以内に、篩分け可能な粒状土壌を形成することができる。ここで、粒状土壌の形成時間である「80秒」は、土壌の攪拌をバッチ処理として行なった場合、その前後の作業を滞らせず行うに十分迅速な時間であり、工業的又は商業的に見て実用性が高いものである。 When the soil conditioner of the present invention containing superabsorbent polymer and crystalline calcium carbonate is blended with fine particle-containing soil and stirred, sievable granular soil can be formed within 80 seconds. Here, "80 seconds", which is the formation time of the granular soil, is a sufficiently quick time to perform the work before and after the agitation of the soil as a batch process without delay, and is industrially or commercially available. It looks highly practical.

本発明の土壌改良剤を使用することにより微細粒子含有土壌が迅速に粒状化される現象は、その詳細については未だ明らかではないが、高吸水性ポリマーが微細粒子含有土壌に含まれる水分を吸収して微細粒子含有土壌を巻き込みながら膨潤状態となったところに、結晶性炭酸カルシウムが作用することで、結晶性炭酸カルシウムを核として微細粒子が集合し、土壌の粒状化が促進されるためと考えられる。 The phenomenon of rapid granulation of fine particle-containing soil by using the soil conditioner of the present invention has not yet been clarified, but the superabsorbent polymer absorbs the water contained in the fine particle-containing soil. As a result of the action of crystalline calcium carbonate on the swollen state involving the fine particle-containing soil, the fine particles are aggregated with the crystalline calcium carbonate as a core, and the granulation of the soil is promoted. Conceivable.

なお、結晶性炭酸カルシウムは、弱酸性を示し、水分に触れても発熱しないという性質を有する。そのため、改質によって得られた粒状土壌は、改質前の微細粒子含有土壌に対して、実質的にpHが変化せず、かつ温度上昇も起こらない。従って、本発明の土壌改良剤は、安全性・安定性が高く、取り扱いが容易なものと言える。 It should be noted that crystalline calcium carbonate exhibits weak acidity and has the property of not generating heat even in contact with water. Therefore, the granular soil obtained by the modification does not substantially change in pH and does not rise in temperature with respect to the fine particle-containing soil before modification. Therefore, it can be said that the soil conditioner of the present invention has high safety and stability and is easy to handle.

本発明の土壌改良剤において、高吸水性ポリマーと結晶性炭酸カルシウムとの配合比率は、重量比で、10/90~40/60に設定されていることが好ましい。高吸水性ポリマーと結晶性炭酸カルシウムとの配合比率が10/90~40/60に設定されていれば、微細粒子含有土壌の粒状化がより促進されるとともに、安全性・安定性が高く、取り扱いが容易な粒状土壌を得ることができる。 In the soil conditioner of the present invention, the blending ratio of the superabsorbent polymer and the crystalline calcium carbonate is preferably set to 10/90 to 40/60 by weight. If the blending ratio of the superabsorbent polymer and the crystalline calcium carbonate is set to 10/90 to 40/60, granulation of fine particle-containing soil is further promoted, and safety and stability are high. A granular soil that is easy to handle can be obtained.

本発明の土壌改良剤を用いて微細粒子含有土壌を改質するにあたっては、当該微細粒子含有土壌を、重量ベースで、その85%以上が目開き9.5mmの篩を通過する粒度にまで粒状化させることが好ましい。これにより、得られた粒状土壌の取り扱いがより容易なものとなり、特に植物育成土壌として好適に再利用可能となる。 In improving the fine particle-containing soil using the soil conditioner of the present invention, the fine particle-containing soil is granulated to a particle size in which 85% or more of it passes through a sieve with an opening of 9.5 mm on a weight basis. It is preferable to convert This makes it easier to handle the obtained granular soil, and makes it particularly suitable for reuse as plant-growing soil.

本発明の土壌改良剤には、必要に応じて、その他の成分を配合することも可能である。その他の成分としては、消泡剤、pH調整剤、溶剤、増粘剤、安定化剤、着色剤、消臭剤、抗菌剤、酸化防止剤等が挙げられる。 The soil improver of the present invention can also contain other components, if necessary. Other components include antifoaming agents, pH adjusters, solvents, thickeners, stabilizers, colorants, deodorants, antibacterial agents, antioxidants, and the like.

<粒状化試験(1)>
本発明の土壌改良剤の性能を確認するため、模擬土壌に各種薬剤を配合した以下の実施例1、及び比較例1~8にかかる粒状化試験を実施した。また、コントロールとして、薬剤を配合しない模擬土壌についても同様の試験を実施した。なお、模擬土壌には、赤土と黒土との混合土を使用した。赤土及び黒土の主成分は、砂(平均粒径が概ね2~0.6mm)、シルト(平均粒径が概ね0.6~0.004mm)、粘土(平均粒径が概ね0.004mm以下)であり、微細粒子含有土壌に相当する。また、使用した各種薬剤は、以下の製品である。
・ポリアクリル酸ナトリウム(高吸水性ポリマー):株式会社日本触媒製
・結晶性炭酸カルシウム :日東粉化工業株式会社製
・非晶性炭酸カルシウム :薬仙石灰株式会社製
・生石灰 :樫野石灰工業株式会社製
・消石灰 :薬仙石灰株式会社製
<Granulation Test (1)>
In order to confirm the performance of the soil conditioner of the present invention, a granulation test was conducted in Example 1 and Comparative Examples 1 to 8 below, in which various chemicals were blended in simulated soil. As a control, a similar test was also conducted on simulated soil containing no chemicals. Mixed soil of red soil and black soil was used as the simulated soil. The main components of red clay and black soil are sand (average particle size is approximately 2 to 0.6 mm), silt (average particle size is approximately 0.6 to 0.004 mm), and clay (average particle size is approximately 0.004 mm or less). , which corresponds to soil containing fine particles. In addition, the various drugs used are the following products.
・Sodium polyacrylate (super absorbent polymer): manufactured by Nippon Shokubai Co., Ltd. ・Crystalline calcium carbonate: manufactured by Nitto Funka Kogyo Co., Ltd. ・Amorphous calcium carbonate: manufactured by Yakusen Lime Co., Ltd. ・Quicklime: Kashino Lime Industry Co., Ltd. Company-made Slaked lime: Yakusen lime Co., Ltd.

〔実施例1〕
模擬土壌1kg(含水率約40重量%)に対して、ポリアクリル酸ナトリウムと結晶性炭酸カルシウムとの配合比率を重量比で20/80に設定した薬剤(本発明の土壌改良剤)を30g配合し、ホバートミキサーで100秒間攪拌した。そして、攪拌終了直後の土壌(以下、「処理土壌」と称する。)について、pH、及び温度を測定した。さらに、処理土壌の篩掛け(篩サイズ:目開き9.5mm、目開き4.75mm)を行なって、粒状化状態を確認した。
[Example 1]
30 g of the agent (soil conditioner of the present invention) in which the mixing ratio of sodium polyacrylate and crystalline calcium carbonate was set to 20/80 by weight per 1 kg of simulated soil (water content of about 40% by weight). and agitated in a Hobart mixer for 100 seconds. Then, the pH and temperature of the soil (hereinafter referred to as "treated soil") immediately after the stirring was completed were measured. Further, the treated soil was sieved (sieve size: mesh opening 9.5 mm, mesh opening 4.75 mm) to confirm the granulation state.

〔比較例1〕
模擬土壌1kg(含水率約40重量%)に対して、ポリアクリル酸ナトリウムと非晶性炭酸カルシウムとの配合比率を重量比で20/80に設定した薬剤を30g配合し、実施例1と同様の攪拌を行なった。そして、得られた処理土壌について、実施例1と同様の測定、及び確認を行なった。
[Comparative Example 1]
30 g of a drug in which the mixing ratio of sodium polyacrylate and amorphous calcium carbonate was set to 20/80 by weight was blended with 1 kg of simulated soil (water content of about 40% by weight), as in Example 1. was stirred. Then, the same measurement and confirmation as in Example 1 were performed on the obtained treated soil.

〔比較例2〕
模擬土壌1kg(含水率約40重量%)に対して、ポリアクリル酸ナトリウムと生石灰との配合比率を重量比で20/80に設定した薬剤を30g配合し、実施例1と同様の攪拌を行なった。そして、得られた処理土壌について、実施例1と同様の測定、及び確認を行なった。
[Comparative Example 2]
30 g of a chemical in which the mixing ratio of sodium polyacrylate and quicklime was set to 20/80 by weight was blended with 1 kg of simulated soil (water content of about 40% by weight), and the mixture was stirred in the same manner as in Example 1. rice field. Then, the same measurement and confirmation as in Example 1 were performed on the obtained treated soil.

〔比較例3〕
模擬土壌1kg(含水率約40重量%)に対して、ポリアクリル酸ナトリウムと消石灰との配合比率を重量比で20/80に設定した薬剤を30g配合し、実施例1と同様の攪拌を行なった。そして、得られた処理土壌について、実施例1と同様の測定、及び確認を行なった。
[Comparative Example 3]
To 1 kg of simulated soil (water content of about 40% by weight), 30 g of an agent in which the mixing ratio of sodium polyacrylate and slaked lime was set to 20/80 by weight was blended, and the mixture was stirred in the same manner as in Example 1. rice field. Then, the same measurement and confirmation as in Example 1 were performed on the obtained treated soil.

〔比較例4〕
模擬土壌1kg(含水率約40重量%)に対して、薬剤としてポリアクリル酸ナトリウムを6g配合し、実施例1と同様の攪拌を行なった。そして、得られた処理土壌について、実施例1と同様の測定、及び確認を行なった。
[Comparative Example 4]
6 g of sodium polyacrylate was added as a chemical agent to 1 kg of simulated soil (water content: about 40% by weight), and the mixture was stirred in the same manner as in Example 1. Then, the same measurement and confirmation as in Example 1 were performed on the obtained treated soil.

〔比較例5〕
模擬土壌1kg(含水率約40重量%)に対して、薬剤として結晶性炭酸カルシウムを80g配合し、実施例1と同様の攪拌を行なった。そして、得られた処理土壌について、実施例1と同様の測定、及び確認を行なった。
[Comparative Example 5]
80 g of crystalline calcium carbonate was added as a chemical agent to 1 kg of simulated soil (water content: about 40% by weight), and the mixture was stirred in the same manner as in Example 1. Then, the same measurement and confirmation as in Example 1 were performed on the obtained treated soil.

〔比較例6〕
模擬土壌1kg(含水率約40重量%)に対して、薬剤として非晶性炭酸カルシウムを80g配合し、実施例1と同様の攪拌を行なった。そして、得られた処理土壌について、実施例1と同様の測定、及び確認を行なった。
[Comparative Example 6]
80 g of amorphous calcium carbonate was added as a chemical agent to 1 kg of simulated soil (water content: about 40% by weight), and the mixture was stirred in the same manner as in Example 1. Then, the same measurement and confirmation as in Example 1 were performed on the obtained treated soil.

〔比較例7〕
模擬土壌1kg(含水率約40重量%)に対して、薬剤として生石灰を80g配合し、実施例1と同様の攪拌を行なった。そして、得られた処理土壌について、実施例1と同様の測定、及び確認を行なった。
[Comparative Example 7]
80 g of quicklime was added as a chemical agent to 1 kg of simulated soil (water content: about 40% by weight), and the mixture was stirred in the same manner as in Example 1. Then, the same measurement and confirmation as in Example 1 were performed on the obtained treated soil.

〔比較例8〕
模擬土壌1kg(含水率約40重量%)に対して、薬剤として消石灰を80g配合し、実施例1と同様の攪拌を行なった。そして、得られた処理土壌について、実施例1と同様の測定、及び確認を行なった。
[Comparative Example 8]
80 g of slaked lime was added as a chemical agent to 1 kg of simulated soil (water content: about 40% by weight), and the mixture was stirred in the same manner as in Example 1. Then, the same measurement and confirmation as in Example 1 were performed on the obtained treated soil.

〔コントロール〕
模擬土壌1kg(含水率約40重量%)に対して、薬剤を配合せず、実施例1と同様の攪拌を行なった。そして、得られた処理土壌について、実施例1と同様の測定、及び確認を行なった。
〔Control〕
The same agitation as in Example 1 was performed with respect to 1 kg of the simulated soil (water content of about 40% by weight) without adding any chemicals. Then, the same measurement and confirmation as in Example 1 were performed on the obtained treated soil.

粒状化試験(1)における実施例1、比較例1~8、及びコントロールの試験結果を以下の表1に示す。なお、評価については、処理土壌のpH、温度、及び粒状化状態を総合的に見て、良好なものからA~Cの三段階で行なった。 The test results of Example 1, Comparative Examples 1 to 8, and the control in granulation test (1) are shown in Table 1 below. The evaluation was made on a three-grade scale from A to C, from the best to the best, comprehensively considering the pH, temperature and granulation state of the treated soil.

Figure 0007128495000001
Figure 0007128495000001

ポリアクリル酸ナトリウムと結晶性炭酸カルシウムとを配合した実施例1は、処理土壌のpH、及び温度が、薬剤を使用していないコントロールから殆ど変化しておらず、安全性・安定性が高いものであった。また、処理土壌は、重量ベースで97%が目開き9.5mmの篩を通過できるものとなり、さらに77%が目開き4.75mmの篩を通過できるものとなり、取り扱いの容易な理想的な粒状土壌を形成していた。 In Example 1, which contains sodium polyacrylate and crystalline calcium carbonate, the pH and temperature of the treated soil are almost unchanged from the control in which the chemical is not used, and the safety and stability are high. Met. In addition, 97% of the treated soil on a weight basis can pass through a sieve with an opening of 9.5 mm, and further 77% can pass through a sieve with an opening of 4.75 mm. formed the soil.

これに対し、ポリアクリル酸ナトリウムと非晶性炭酸カルシウムとを配合した比較例1は、処理土壌のpH、及び温度については概ね変化がないものの、目開き9.5mmの篩の通過率、及び目開き4.75mmの篩の通過率が実施例1よりやや劣るものとなった。実際に、比較例1の処理土壌は、粒状化が不十分で若干のべたつきが認められ、実施例1に比べると取り扱い難いものであった。 On the other hand, in Comparative Example 1, in which sodium polyacrylate and amorphous calcium carbonate were blended, there was almost no change in the pH and temperature of the treated soil. The passage rate of the sieve with an opening of 4.75 mm was slightly inferior to that of Example 1. In fact, the treated soil of Comparative Example 1 was insufficiently granulated and slightly sticky, making it difficult to handle compared to Example 1.

ポリアクリル酸ナトリウムと生石灰とを配合した比較例2は、pH、及び温度の上昇が見られ、安全性・安定性に問題があった。また、目開き9.5mmの篩の通過率、及び目開き4.75mmの篩の通過率は、実施例1より劣るものとなった。 Comparative Example 2, in which sodium polyacrylate and quicklime were blended, showed an increase in pH and temperature, and had problems in safety and stability. In addition, the passing rate of the sieve with a mesh size of 9.5 mm and the passing rate of the sieve with a mesh size of 4.75 mm were inferior to those of Example 1.

ポリアクリル酸ナトリウムと消石灰とを配合した比較例3は、pH、及び温度の上昇が見られ、安全性・安定性に問題があった。また、目開き9.5mmの篩の通過率、及び目開き4.75mmの篩の通過率は、実施例1よりかなり劣るものとなった。 Comparative Example 3, in which sodium polyacrylate and slaked lime were blended, showed an increase in pH and temperature, and had problems in safety and stability. In addition, the passing rate of the sieve with a mesh size of 9.5 mm and the passing rate of the sieve with a mesh size of 4.75 mm were considerably inferior to those of Example 1.

ポリアクリル酸ナトリウムのみを配合した比較例4、及び各種カルシウム化合物のみを配合した比較例5~8については、何れも土壌の粒状化が十分に達成されず、取り扱い難いものであった。加えて、比較例7及び8については、pH、及び温度の上昇が見られ、安全性・安定性に問題があった。 Regarding Comparative Example 4 containing only sodium polyacrylate and Comparative Examples 5 to 8 containing only various calcium compounds, the soil was not sufficiently granulated and was difficult to handle. In addition, in Comparative Examples 7 and 8, an increase in pH and temperature was observed, and there were problems with safety and stability.

<粒状化試験(2)>
次に、本発明の土壌改良剤において、ポリアクリル酸ナトリウムと結晶性炭酸カルシウムとの配合比率を変更した薬剤を用いて粒状化試験を実施した。
<Granulation test (2)>
Next, in the soil improver of the present invention, a granulation test was carried out using an agent in which the compounding ratio of sodium polyacrylate and crystalline calcium carbonate was changed.

〔実施例2〕
模擬土壌1kg(含水率約40重量%)に対して、ポリアクリル酸ナトリウムと結晶性炭酸カルシウムとの配合比率を重量比で10/90に設定した薬剤(本発明の土壌改良剤)を30g配合し、ホバートミキサーで100秒間攪拌した。そして、攪拌終了直後の土壌(以下、「処理土壌」と称する。)について、pH、及び温度を測定した。さらに、処理土壌の篩掛け(篩サイズ:目開き9.5mm、目開き4.75mm)を行なって、粒状化状態を確認した。
[Example 2]
30 g of the agent (soil conditioner of the present invention) in which the mixing ratio of sodium polyacrylate and crystalline calcium carbonate is set to 10/90 by weight per 1 kg of simulated soil (water content of about 40% by weight). and agitated in a Hobart mixer for 100 seconds. Then, the pH and temperature of the soil (hereinafter referred to as "treated soil") immediately after the stirring was completed were measured. Further, the treated soil was sieved (sieve size: mesh opening 9.5 mm, mesh opening 4.75 mm) to confirm the granulation state.

〔実施例3〕
模擬土壌1kg(含水率約40重量%)に対して、ポリアクリル酸ナトリウムと結晶性炭酸カルシウムとの配合比率を重量比で40/60に設定した薬剤(本発明の土壌改良剤)を30g配合し、実施例2と同様の攪拌を行なった。そして、得られた処理土壌について、実施例2と同様の測定、及び確認を行なった。
[Example 3]
30 g of the agent (soil improver of the present invention) in which the mixing ratio of sodium polyacrylate and crystalline calcium carbonate was set to 40/60 by weight per 1 kg of simulated soil (water content of about 40% by weight). and stirred in the same manner as in Example 2. Then, the same measurement and confirmation as in Example 2 were performed on the obtained treated soil.

粒状化試験(2)における実施例2、及び3の試験結果を以下の表2に示す。なお、表2には、先の粒状化試験(1)における実施例1、及びコントロールの試験結果も併せて示してある。評価については、粒状化試験(1)と同様に、処理土壌のpH、温度、及び粒状化状態を総合的に見て、良好なものからA~Cの三段階で行なった。 The test results of Examples 2 and 3 in granulation test (2) are shown in Table 2 below. Table 2 also shows the test results of Example 1 and the control in the previous granulation test (1). As in the granulation test (1), the pH, temperature, and granulation state of the treated soil were comprehensively examined, and the evaluation was performed on a three-grade scale from A to C from the best.

Figure 0007128495000002
Figure 0007128495000002

ポリアクリル酸ナトリウムと結晶性炭酸カルシウムとの配合比率を重量比で10/90とした実施例2、配合比率を重量比で40/60とした実施例3は、配合比率を重量比で20/80とした実施例1と同様に、処理土壌のpH、及び温度が、薬剤を使用していないコントロールから殆ど変化しておらず、安全性・安定性が高いものであった。また、処理土壌の目開き9.5mmの篩通過率、及び目開き4.75mmの篩通過率は何れも高いものとなり、取り扱いの容易な理想的な粒状土壌を形成していた。 Example 2 in which the mixing ratio of sodium polyacrylate and crystalline calcium carbonate was 10/90 by weight, and Example 3 in which the mixing ratio was 40/60 by weight were 20/20 by weight. As in Example 1, which was 80, the pH and temperature of the treated soil were almost unchanged from the control in which no chemicals were used, indicating high safety and stability. In addition, the sieve passage rate of the treated soil with an opening of 9.5 mm and the sieve passage rate with an opening of 4.75 mm were both high, forming an ideal granular soil that was easy to handle.

<粒状化試験(3)>
次に、本発明の土壌改良剤を配合した微細粒子含有土壌が、攪拌に伴って粒状化していく様子を経時的に観察し、粒状土壌を形成する時間を確認した。この粒状化試験(3)では、ポリアクリル酸ナトリウムと結晶性炭酸カルシウムとの配合比率を重量比で20/80とした土壌改良剤(実施例1相当品)を使用し、ホバートミキサーによる攪拌時間を0~100秒とし、10秒毎の土壌の状態を目視により観察した。
<Granulation test (3)>
Next, the granulation of the fine particle-containing soil mixed with the soil conditioner of the present invention was observed over time as it was agitated, and the time required to form granular soil was confirmed. In this granulation test (3), a soil conditioner (equivalent to Example 1) with a mixing ratio of sodium polyacrylate and crystalline calcium carbonate of 20/80 by weight was used, and the stirring time with a Hobart mixer was was set to 0 to 100 seconds, and the condition of the soil was visually observed every 10 seconds.

図1に、土壌改良剤を配合した微細粒子含有土壌が、攪拌に伴って粒状化していく様子を経時的に示した写真を示す。なお、土壌の粒状化状態の評価については、良好なものからA~Dの四段階で行なった。 FIG. 1 is a photograph showing over time how fine particle-containing soil mixed with a soil conditioner is granulated with agitation. The granulated state of the soil was evaluated on a four-grade scale from A to D from the best.

図1より、攪拌を開始してから40秒後に粒状土壌が形成され始め、70~80秒後には粒状土壌が略完全に形成され、その後は形成された粒状土壌の形状が安定して維持されることが確認された。このように、本発明の土壌改良剤を使用すれば、微細粒子含有土壌を、80秒以内に、篩分け可能で取り扱いの容易な粒状土壌に改質することが可能となることが明らかとなった。 From FIG. 1, the granular soil begins to form 40 seconds after the start of stirring, the granular soil is almost completely formed after 70 to 80 seconds, and thereafter the shape of the formed granular soil is maintained stably. It was confirmed that As described above, it has become clear that by using the soil conditioner of the present invention, fine particle-containing soil can be reformed into granular soil that can be sieved and easily handled within 80 seconds. rice field.

本発明の土壌改良剤は、土木工事、建設工事、土壌除染作業等により発生した廃棄土壌や、下水処理場等で発生した汚泥等の粘性土壌の改質に利用することができる。また、改質後に得られる粒状土壌は、植物育成土壌として好適に利用することができる。 The soil conditioner of the present invention can be used to improve waste soil generated by civil engineering work, construction work, soil decontamination work, etc., and viscous soil such as sludge generated in sewage treatment plants and the like. In addition, the granular soil obtained after modification can be suitably used as plant-growing soil.

Claims (5)

微細粒子含有土壌として、土木工事、建設工事、又は土壌除染作業により発生した廃棄土壌、或いは下水処理場で発生した粘性土壌を改質する土壌改良剤であって、
高吸水性ポリマーと、
結晶性炭酸カルシウムと、
を含有し、
前記高吸水性ポリマーと前記結晶性炭酸カルシウムとの配合比率が、重量比で、10/90~40/60に設定されている土壌改良剤。
A soil conditioner that improves waste soil generated from civil engineering work, construction work, or soil decontamination work, or cohesive soil generated at a sewage treatment plant, as fine particle-containing soil,
a superabsorbent polymer;
crystalline calcium carbonate;
contains
A soil conditioner, wherein the blending ratio of the superabsorbent polymer and the crystalline calcium carbonate is set to 10/90 to 40/60 by weight .
前記高吸水性ポリマーは、ポリアクリル酸ナトリウムである請求項1に記載の土壌改良剤。 The soil conditioner according to claim 1, wherein the superabsorbent polymer is sodium polyacrylate. 前記微細粒子含有土壌を植物育成土壌に改質する請求項1又は2に記載の土壌改良剤。 The soil conditioner according to claim 1 or 2 , wherein the fine particle-containing soil is modified into a plant-growing soil. 前記微細粒子含有土壌に配合すると、重量ベースで、当該微細粒子含有土壌の85%以上が目開き9.5mmの篩を通過する粒度にまで粒状化される請求項1~3の何れか一項に記載の土壌改良剤。 4. Any one of claims 1 to 3, wherein when blended with the fine particle-containing soil, 85% or more of the fine particle-containing soil is granulated on a weight basis to a particle size that can pass through a sieve with an opening of 9.5 mm. The soil conditioner as described in . 前記粒状化された土壌は、粒状化される前の前記微細粒子含有土壌に対して、pHが上昇せず、かつ温度が上昇しない請求項4に記載の土壌改良剤。 5. The soil conditioner according to claim 4, wherein the granulated soil does not increase in pH and temperature compared to the fine particle-containing soil before granulation.
JP2021044574A 2021-03-18 2021-03-18 soil conditioner Active JP7128495B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021044574A JP7128495B1 (en) 2021-03-18 2021-03-18 soil conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021044574A JP7128495B1 (en) 2021-03-18 2021-03-18 soil conditioner

Publications (2)

Publication Number Publication Date
JP7128495B1 true JP7128495B1 (en) 2022-08-31
JP2022143843A JP2022143843A (en) 2022-10-03

Family

ID=83112414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021044574A Active JP7128495B1 (en) 2021-03-18 2021-03-18 soil conditioner

Country Status (1)

Country Link
JP (1) JP7128495B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005278516A (en) 2004-03-30 2005-10-13 Denki Kagaku Kogyo Kk Crop growth promoting material, crop growth promoting method using the same, and the crop
US20100275664A1 (en) 2007-11-08 2010-11-04 Volker Windhoevel Soil improver and use thereof
JP2012224801A (en) 2011-04-22 2012-11-15 Taisei Corp Neutralizing material for acidic soil, and method for treating acidic soil
US20160207843A1 (en) 2013-10-04 2016-07-21 Omya International Ag Micronized earth alkali carbonate-containing material for regulating the ph of a soil
WO2020202092A1 (en) 2019-04-04 2020-10-08 Upl Ltd Super absorbent polymer and a method of increasing sugar content in plants

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61113684A (en) * 1984-11-06 1986-05-31 Akio Fukuda Soil modifier
JP2974215B2 (en) * 1988-09-14 1999-11-10 白石カルシウム株式会社 Soil conditioner and soil conditioner method
JP3736702B2 (en) * 1996-12-16 2006-01-18 栗田工業株式会社 Alkaline mud modifier

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005278516A (en) 2004-03-30 2005-10-13 Denki Kagaku Kogyo Kk Crop growth promoting material, crop growth promoting method using the same, and the crop
US20100275664A1 (en) 2007-11-08 2010-11-04 Volker Windhoevel Soil improver and use thereof
JP2012224801A (en) 2011-04-22 2012-11-15 Taisei Corp Neutralizing material for acidic soil, and method for treating acidic soil
US20160207843A1 (en) 2013-10-04 2016-07-21 Omya International Ag Micronized earth alkali carbonate-containing material for regulating the ph of a soil
JP2016540062A (en) 2013-10-04 2016-12-22 オムヤ インターナショナル アーゲー Micronized alkaline earth carbonate-containing material for adjusting soil pH
WO2020202092A1 (en) 2019-04-04 2020-10-08 Upl Ltd Super absorbent polymer and a method of increasing sugar content in plants

Also Published As

Publication number Publication date
JP2022143843A (en) 2022-10-03

Similar Documents

Publication Publication Date Title
JP7067943B2 (en) Additives for soil granulation
JP2007308322A (en) Method of manufacturing fertilizer using waste, and fertilizer
US20210395158A1 (en) Compacted polyhalite and a process for the production thereof
JP2008106088A (en) Powder solidifying material for soft mud soil and method for producing the same
JP6779069B2 (en) Method for solidifying modified materials such as soft soil and residual soil
JP7128495B1 (en) soil conditioner
JP6363281B1 (en) One-pack type neutral solidifying agent
JP4506184B2 (en) High water content mud treatment method, high water content mud treatment agent, and granulated treated soil production method from high water content mud soil
JP3879847B2 (en) Coal ash granulated sand production method with suppressed hexavalent chromium elution
JP3422554B2 (en) Solidifying agent for treating hydrous slurry excavated soil and method for treating hydrous slurry excavated soil
GB2295146A (en) Agricultural product from waste
EP0102243B1 (en) Process for enhancing or fertilizing the soil using organic waste derived granulate
JP2004358456A (en) Modification/solidification method of sludge water, and using method of modified/solidified soil
JPH09239207A (en) Special solid fine powdery flocculant composition and water treatment method
JPH10279940A (en) Solidifier for water-containing soil and solidification
JP5117930B2 (en) Neutral solidification method of mud and new stone-kow-based solidification improver
JP6331514B2 (en) Slightly acidic solidification method for soil
JP4467908B2 (en) Polymer solidifying agent
JP3825131B2 (en) Coal ash solidification material and solidification method
JP7105595B2 (en) Method for producing additive material for soil granulation and method for modifying soil
JP3089952B2 (en) Production method of recycled soil
JPH08299994A (en) Surplus soil caking agent and surplus soil caking method
KR102091869B1 (en) Process for preparing granular oxamide
JP2010229204A (en) Elution reducing material and process for elution reduction
JP2007245027A (en) Method of processing sun-dried water purification sludge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220810

R150 Certificate of patent or registration of utility model

Ref document number: 7128495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150