JP3879847B2 - Coal ash granulated sand production method with suppressed hexavalent chromium elution - Google Patents

Coal ash granulated sand production method with suppressed hexavalent chromium elution Download PDF

Info

Publication number
JP3879847B2
JP3879847B2 JP2003029276A JP2003029276A JP3879847B2 JP 3879847 B2 JP3879847 B2 JP 3879847B2 JP 2003029276 A JP2003029276 A JP 2003029276A JP 2003029276 A JP2003029276 A JP 2003029276A JP 3879847 B2 JP3879847 B2 JP 3879847B2
Authority
JP
Japan
Prior art keywords
coal ash
mass
parts
hexavalent chromium
elution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003029276A
Other languages
Japanese (ja)
Other versions
JP2004148288A (en
Inventor
昭 大中
孝 本郷
紹悟 中尾
吉治 澤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2003029276A priority Critical patent/JP3879847B2/en
Publication of JP2004148288A publication Critical patent/JP2004148288A/en
Application granted granted Critical
Publication of JP3879847B2 publication Critical patent/JP3879847B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Processing Of Solid Wastes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、六価クロム溶出が抑制された石炭灰造粒砂の製造方法に係る。本発明の方法で製造された石炭灰造粒砂は、盛土材や埋め戻し材等の土木材料や、細骨材やコンクリート混和材等、土木用や建築用材料として使用される。
【0002】
【従来の技術】
石炭火力発電所から大量に発生する石炭灰は、埋立、地盤改良工事などに有効利用されている。ところが、石炭灰は一般的に有害な重金属を含有しており、その利用に当たっては、廃棄物処理法の規制を受け、石炭灰中の重金属溶出を抑制する処理を施す必要があることが多い。
また、石炭灰を土木材料として有効利用する際に、廃棄物処理法の埋立基準より数倍厳しい環境庁告示土壌環境基準を守ることが要求され、さらに、重金属溶出に対する規制は今後益々厳しくなることが予想される。
【0003】
石炭灰からの重金属溶出を抑制する処理方法としては、固化して内部に閉じ込めその溶出を物理的に抑制する方法と、石炭灰に無機系薬剤や有機系キレート剤を混練して難溶化させて重金属溶出を抑制する化学的方法が公知である。
【0004】
又、固化材であるセメントに難溶化剤を共存させて、難溶化させると同時に閉じ込める、物理的及び化学的方法を併用させた方法が在る。この方法は、前記の単純な物理的方法や化学的方法に比して重金属溶出抑制効果に優れているにも関わらず経済性にも優れたものであり、幾つかの技術が開示されているが、その多くは、廃棄対象物としての石炭灰に直接添加してこれらを固化し、埋め戻し地からの重金属溶出を抑制する技術に関わるものであり、石炭灰を造粒して土木材料として使用する場合における原料石炭灰由来の重金属溶出抑制に関する技術は少ない。
【0005】
特許文献1には、石炭灰造粒物からの重金属溶出が抑制された土木材料として、石炭灰を木酢液または竹酢液で処理したものが開示されている。
この方法は、グラウト状土木材料では良い成績を示すが、粒状物(すなわち造粒砂)における、溶出抑制効果は低い。
グラウト状土木材料の場合は、水分量が多く少量添加された重金属溶出抑制剤の均質混合が比較的容易なことやセメントによる固定化が十分になされた結果であると推察される。それに対し、造粒砂の場合は、微粒子状の石炭灰が残存することや加える水分量がグラウト状土木材料に比べて少ないため、液状の重金属溶出抑制剤を微量添加した場合の均質化が困難であり、添加する重金属抑制剤の添加量を低減させようとした場合には十分な添加効果が発現しないこともあるものと推察される。
また、木酢液添加量の増加による重金属溶出抑制効果の増加が認められず、このため、重金属含有量の多い石炭灰への適用に問題があるばかりでなく、石炭灰種の変化等の環境条件次第では基準値を満足しない事態が発生し、今後基準が厳しくなった際には対応可能性が懸念されるものである。
すなわち、石炭灰を粒状化して土木材料としての使用を確実に可能にするには、粒状物からの重金属溶出が更に抑制された材料の開発が要求されているのである。
【0006】
【特許文献1】
特開2001−157884号公報
【0007】
一方、石炭灰に含まれる重金属の中、毒性が強く、又両性であることから高pH領域でも除去の困難な六価クロムの溶出を抑制する方法として、多硫化カルシウムまたはチオ硫酸ナトリウムなどの、硫黄系還元剤を添加することが公知である。しかし、これ等の硫黄系還元剤の石炭灰への添加量は通常高々数質量%程度に過ぎず、市販の濃度20〜50質量%程度の水溶液を用いたとしても極めて微量であることから、石炭灰に均一に混合し、添加効果を十分に発現させることは困難であった。
【0008】
【発明が解決しようとする課題】
本発明は、六価クロム含有量が多い石炭灰を原料としても、土木材料として使用した際に、自身からの六価クロム溶出量が土壌環境基準値である0.05mg/l以下に抑制された石炭灰造粒砂製造方法の提供を目的とする。
【0009】
【課題を解決するための手段】
本発明者は、石炭灰造粒砂に加工する過程で微量の六価クロム溶出抑制剤(多硫化カルシウムおよび/またはチオ硫酸ナトリウム)を混合し、一定粒度に造粒することで、石炭灰との均一混合が可能であり、六価クロム含有量の多い石炭灰の造粒物でも埋立て基準以下に抑制することが可能なことを見出し、本発明を完成した。
すなわち本発明は、石炭灰75〜98質量部、セメント2〜25質量部に、多硫化カルシウム及びチオ硫酸ナトリウムから選ばれる一種または二種より成る六価クロム溶出抑制剤0.003〜0.5質量部を添加し、平均粒径0.3〜1.5mmに造粒することを特徴とする、六価クロム溶出が抑制された石炭灰造粒砂の製造方法に関する。
さらに本発明者は、石炭灰造粒砂に加工する過程で微量の六価クロム溶出抑制剤(多硫化カルシウムおよび/またはチオ硫酸ナトリウム)を水と共に混合し、一定粒度に造粒することで、石炭灰との均一混合が容易であり、六価クロム含有量の多い石炭灰の造粒物でも埋立て基準以下に抑制することが可能なことを見出し、本発明を完成した。
すなわち本発明は、石炭灰75〜98質量部、セメント2〜25質量部に、多硫化カルシウム及びチオ硫酸ナトリウムから選ばれる一種または二種より成る六価クロム溶出抑制剤0.003〜0.5質量部を15〜45質量部の水で希釈して添加し、平均粒径0.3〜1.5mmに造粒することを特徴とする、六価クロム溶出が抑制された石炭灰造粒砂の製造方法に関する。
以下に本発明を詳細に説明する。
【0010】
【発明の実施の形態】
本発明の方法で製造される六価クロム溶出の抑制された造粒砂は、石炭灰とセメントの混合物に六価クロム溶出抑制剤を添加して成る。
本発明造粒砂製造原料の対象となる石炭灰としては、石炭火力発電所から大量に発生するフライアッシュが挙げられる。
【0011】
一方、セメントは、特に限定されるものではなく、普通ポルトランドセメント、早強ポルトランドセメント、高炉セメントのセメント類や、潜在水硬性を有する高炉スラグを使用することが出来る。
【0012】
石炭灰とセメントの好ましい配合割合は、石炭灰75〜98質量部、セメント2〜25質量部である。造粒助材を配合する場合における好ましい配合割合は、石炭灰50〜95質量部、セメント2〜25質量部、造粒助材3〜25質量部である。
【0013】
本発明では、六価クロム溶出抑制剤は、多硫化カルシウム及びチオ硫酸ナトリウムから選ばれる一種または二種を使用する。これら六価クロム溶出抑制剤の添加量は、石炭灰とセメントの合量またはこれに更に造粒助剤を加えた合量100質量部に対して0.003〜0.5質量部の範囲内で、石炭灰性状に合わせて選択する。少な過ぎると六価クロム溶出抑制効果が不充分であり、多過ぎても、六価クロム溶出抑制効果は頭打ちに成り経済的に好ましくないだけでなく、造粒砂の強度低下にも繋がる。
【0014】
多硫化カルシウム及びチオ硫酸ナトリウムは、市販品が何等問題なく使用できる。何れも、所要量の水を加えて水溶液またはケン濁液に予め希釈したものを添加するか、所要量の水と同時に添加することで一層の効果を見出すことも可能である。本発明においては、後者も希釈と呼ぶことにする。尚、殺菌剤・殺虫剤として液状の石灰硫黄合剤を結晶化した後粉末化した固形石灰硫黄合剤または11〜36%濃度の水溶液として市販されている石灰硫黄合剤が使用できる。
【0015】
石炭灰、セメント及び六価クロム溶出抑制剤は水を加えて造粒されるが、造粒の際、造粒助材の一般的に使用される量を配合してもよい。造粒助材としては、工場排水処理後の微粒子状固体物質を含有する残渣、セメントキルンダスト、天然の粘土等の平均粒子径が5μm以下である無機質微粒子が使用可能である。
【0016】
造粒の際の水の添加量は、石炭灰の粉末度等によって異なるが、石炭灰、セメント及び造粒助材より成る固形分100質量部に対して、25〜45質量部とするのが好ましい。
造粒物の粒度は、使用目的に応じて変えることが可能であるが、平均粒径0.3〜1.5mmのものが好ましい。なお、平均粒径は、重量基準径で定義した。
【0017】
造粒は、通常の造粒装置を用いて行うことが出来るが、混合操作も兼ねることのできる装置を用いる方が望ましい。この様な装置としては、転動造粒機、アイリッヒミキサー、ヘンシェルミキサー、レーディゲミキサー、円錐型スクリュー混合機、モルタルミキサー等を挙げることが出来る。
【0018】
造粒装置で造粒された造粒物は、一定期間養生を行うことによりセメントの固化反応が進み、土木材料等として使用された際に六価クロムの溶出が抑制された造粒砂となる。
【0019】
【実施例】
以下に、具体的例を示し、本発明を更に詳細に説明するが、原料配合割合は、石炭灰85質量部、セメント5質量部及び造粒助剤10質量部の一定条件とした。造粒助剤としては、セメントキルンダストを用いた。造粒装置は、バッチ式のモルタルミキサーまたは円錐型スクリューミキサーを用いて行った。石炭灰、セメント、及び造粒助剤は、予め造粒装置に仕込み十分に予備混合した後に、溶出抑制剤及び水を所定量加えた。溶出抑制剤及び水の添加割合は、石炭灰、セメント及び造粒助材合量100質量部に対するものである。また、溶出試験は、環境庁告示46号土壌環境基準で定める方法に従った。評価は、六価クロム溶出量0.05mg/lを基準とし、それ以下に溶出を抑制するものを合格とし○印を付した。
【0020】
実施例1〜3および比較例1〜9
公知の硫黄系還元剤および木酢液について、溶出抑制剤としての効果を検討した。使用した石炭灰(石炭灰A)の六価クロム含有量は、3.8mg/kgであった。原料として使用した石炭灰および溶出抑制剤を添加しない造粒物を比較対象とした。溶出抑制剤は、液状または粉末の状態で市販されているものをその状態のまま使用したが、何れも28質量部の水により溶液またはケン濁液として添加した。なお、溶出抑制剤の添加率は、水溶液のものについては、含有する固体質量濃度に換算した値を示した。また、造粒装置には、バッチ式のモルタルミキサーを用いた。結果を表1に示す。
六価クロム溶出量0.05mg/lを基準としそれ以下を合格としたが、多硫化カルシウムまたはチオ硫酸ナトリウムの添加により、六価クロムの溶出量が土壌環境基準値以下となり、優れた溶出抑制効果が確認された。なお、木酢液については、添加率を0.1〜1.0%の範囲で変化させたが溶出量の低減効果は認められなかった。
【0021】
【表1】

Figure 0003879847
【0022】
実施例4〜9、比較例10〜13
ここでは、優れた六価クロム溶出抑制効果が確認されたチオ硫酸ナトリウム及び多硫化カルシウムについて、その添加量を変えて溶出抑制効果を調べた。石炭灰は、六価クロム含有量の比較的多いもの(石炭灰B:六価クロム含有量4.4mg/kg)と比較的少ないもの(石炭灰C:六価クロム含有量0.3mg/kg)を使用した。造粒装置は、バッチ式のモルタルミキサーを用いた。溶出抑制剤は予め水を加えて希釈したものを用いた。石炭灰B、Cに対する水の添加量は、夫々30質量部、32質量部である。
結果を表2に示す。
0.003部以上のチオ硫酸ナトリウム又は多硫化カルシウムの添加で、基準値以下に溶出が抑制されることが確認される。
【0023】
【表2】
Figure 0003879847
【0024】
実施例10〜12、比較例14〜16
ここでは、多硫化カルシウムについて、その添加量を変えて溶出抑制効果を調べた。石炭灰は、六価クロム含有量が多いもの(石炭灰D:六価クロム含有量5.4mg/kg)を使用した。造粒装置は、バッチ式のモルタルミキサーを用いた。多硫化カルシウムの添加は、市販水溶液(多硫化カルシウム濃度27.5質量%)を所要量の水で予め希釈して加えたものと、固体のままで添加し十分に予備混合した後に水を加える方法、および市販の水溶液のままで添加し十分に予備混合した後に水を加える方法の三種を行なった。水の添加量は30質量部である。
結果を表3に示す。
多硫化カルシウムの添加割合を適正な範囲で設定することで、基準値以下に溶出が抑制されることが確認される。添加方法による抑制効果の差異は、少ないことも分かった。
【0025】
【表3】
Figure 0003879847
【0026】
実施例13、比較例17、18
石炭灰B、高炉セメントB種、多硫化カルシウム0.03質量部を使用したものについて、溶出抑制剤添加方法の効果を調べた。多硫化カルシウムの添加は、市販水溶液(多硫化カルシウム濃度27.5質量%)を所要量の水で予め希釈して加えたものと、固体のままで添加し十分に予備混合した後に水を加える方法、および市販の水溶液のままで添加し十分に予備混合した後に水を加える方法の三種を行なった。水の添加量は30質量部である。造粒装置には、バッチ式のモルタルミキサーを用いた。結果を表4に示す。
必要とする溶出抑制剤の添加量が比較的少量の場合には、多硫化カルシウムを固体で添加した場合および市販の水溶液のままで添加した場合の溶出抑制効果は低い。すなわち、溶出溶性剤は、所要量の水で希釈して添加することが望ましい。
【0027】
【表4】
Figure 0003879847
【0028】
実施例14〜16、比較例19
石炭灰E(六価クロム含有量2.8mg/kg)、高炉セメントB種に多硫化カルシウム0.03質量部を32質量部の水と共に添加したものについて造粒粒度を変えて造粒砂を製造し、造粒粒度の効果を調べた。造粒装置は、バッチ式の円錐型スクリューミキサーを用いた。溶出抑制剤と水の添加は、造粒装置への供給配管にラインミキサーを設置して両者を均質に混合しながら同時に供給する方法で行なった。結果を表5に示す。
造粒砂の粒度は0.3mm以上にする必要が在る。
【0029】
【表5】
Figure 0003879847
【0030】
【発明の効果】
本発明の方法で製造された造粒砂では、六価クロム含有量の多い石炭灰を原料としても、六価クロムの溶出量が環境基準値以下まで抑制されている。石炭灰の土木材料等としての再利用が可能となり、有効利用法の開発と云う、石炭灰に付随する課題解決の一助となる上、枯渇しつつある天然の砂や土の代替として利用を進めることは環境保護の面からも重要な技術である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing coal ash granulated sand in which elution of hexavalent chromium is suppressed. Coal ash granulated sand produced by the method of the present invention is used as civil engineering materials such as embankment materials and backfill materials, fine aggregates, concrete admixtures, etc.
[0002]
[Prior art]
Coal ash generated in large quantities from coal-fired power plants is effectively used for landfill and ground improvement works. However, coal ash generally contains harmful heavy metals, and in use, coal ash is often required to be subjected to treatment to suppress elution of heavy metals in coal ash under the regulations of the Waste Disposal Law.
In addition, when using coal ash as a civil engineering material, it is required to comply with the soil environment standards announced by the Environment Agency that are several times stricter than the landfill standards of the Waste Management Law. Is expected.
[0003]
As a treatment method to suppress elution of heavy metals from coal ash, it is solidified and confined inside, and the elution is physically suppressed, and the coal ash is kneaded with an inorganic chemical or organic chelating agent to make it hardly soluble. Chemical methods for suppressing elution of heavy metals are known.
[0004]
In addition, there is a method using a combination of physical and chemical methods in which a poorly soluble agent coexists in cement as a solidifying material to make it hardly soluble and confined at the same time. This method is excellent in economic efficiency in spite of being excellent in the heavy metal elution suppression effect as compared with the simple physical method and chemical method described above, and several techniques have been disclosed. However, most of them are related to technology that directly adds to coal ash as waste to be solidified and suppresses elution of heavy metals from the backfill. There are few techniques for suppressing elution of heavy metals derived from raw coal ash when used.
[0005]
Patent Document 1 discloses a material obtained by treating coal ash with a wood vinegar solution or a bamboo vinegar solution as a civil engineering material in which heavy metal elution from the coal ash granulated material is suppressed.
Although this method shows good results for grout-like civil engineering materials, the elution suppression effect on granular materials (that is, granulated sand) is low.
In the case of a grout-like civil engineering material, it is presumed that this is a result of relatively easy homogenous mixing of a heavy metal elution inhibitor added with a large amount of water and a small amount of immobilization with cement. On the other hand, in the case of granulated sand, it is difficult to homogenize when a small amount of liquid heavy metal elution inhibitor is added because fine coal ash remains and the amount of water added is smaller than that of grouted civil engineering materials. Thus, it is speculated that when the amount of the heavy metal inhibitor to be added is reduced, a sufficient addition effect may not be exhibited.
In addition, the increase in the heavy metal elution suppression effect due to the increase in the amount of pyroligneous acid added was not recognized, and this caused problems in application to coal ash with a high heavy metal content, as well as environmental conditions such as changes in coal ash species. Depending on the situation, there will be a situation where the standard value will not be satisfied.
That is, in order to granulate coal ash and ensure its use as a civil engineering material, development of a material in which elution of heavy metals from the granular material is further suppressed is required.
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-157884
On the other hand, among the heavy metals contained in coal ash, as a method for suppressing elution of hexavalent chromium that is highly toxic and amphoteric and difficult to remove even in a high pH region, such as calcium polysulfide or sodium thiosulfate, It is known to add sulfur-based reducing agents. However, the amount of these sulfur-based reducing agents added to the coal ash is usually only about several mass% at most, and even if a commercially available aqueous solution having a concentration of about 20 to 50 mass% is used, it is extremely small. It was difficult to mix uniformly with coal ash and to fully exhibit the effect of addition.
[0008]
[Problems to be solved by the invention]
In the present invention, even when coal ash having a high hexavalent chromium content is used as a raw material, the amount of elution of hexavalent chromium from itself is suppressed to 0.05 mg / l or less, which is the soil environment standard value, when used as a civil engineering material. The purpose is to provide a method for producing coal ash granulated sand.
[0009]
[Means for Solving the Problems]
The present inventor mixed a small amount of hexavalent chromium elution inhibitor (calcium polysulfide and / or sodium thiosulfate) in the process of processing into coal ash granulated sand, and granulated to a certain particle size, The present invention was completed by discovering that it is possible to uniformly mix and pulverize coal ash granules having a high hexavalent chromium content to below the landfill standard.
That is, the present invention relates to a hexavalent chromium elution inhibitor 0.003-0.5 composed of one or two kinds selected from calcium polysulfide and sodium thiosulfate in 75-98 parts by mass of coal ash and 2-25 parts by mass of cement. The present invention relates to a method for producing coal ash granulated sand in which elution of hexavalent chromium is suppressed, wherein mass parts are added and granulated to an average particle size of 0.3 to 1.5 mm.
Furthermore, the present inventor mixed a small amount of hexavalent chromium elution inhibitor (calcium polysulfide and / or sodium thiosulfate) with water in the process of processing into coal ash granulated sand, and granulated to a constant particle size. The present inventors have found that uniform mixing with coal ash is easy, and that even a granulated product of coal ash having a high hexavalent chromium content can be suppressed below the landfill standard.
That is, the present invention relates to a hexavalent chromium elution inhibitor 0.003-0.5 composed of one or two kinds selected from calcium polysulfide and sodium thiosulfate in 75-98 parts by mass of coal ash and 2-25 parts by mass of cement. Coal ash granulated sand in which elution of hexavalent chromium is suppressed, wherein mass parts are diluted with 15 to 45 parts by mass of water and granulated to an average particle size of 0.3 to 1.5 mm. It relates to the manufacturing method.
The present invention is described in detail below.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The granulated sand with suppressed elution of hexavalent chromium produced by the method of the present invention is obtained by adding a hexavalent chromium elution inhibitor to a mixture of coal ash and cement.
Examples of the coal ash that is a target of the granulated sand production raw material of the present invention include fly ash generated in large quantities from a coal-fired power plant.
[0011]
On the other hand, the cement is not particularly limited, and ordinary Portland cement, early-strength Portland cement, cement of blast furnace cement, and blast furnace slag having latent hydraulic properties can be used.
[0012]
The preferable blending ratio of coal ash and cement is 75 to 98 parts by mass of coal ash and 2 to 25 parts by mass of cement. A preferable blending ratio when blending the granulation aid is 50 to 95 parts by mass of coal ash, 2 to 25 parts by mass of cement, and 3 to 25 parts by mass of the granulation aid.
[0013]
In the present invention, the hexavalent chromium elution inhibitor is one or two selected from calcium polysulfide and sodium thiosulfate. The addition amount of these hexavalent chromium elution inhibitors is within the range of 0.003 to 0.5 parts by mass with respect to 100 parts by mass of the total amount of coal ash and cement or the total amount of granulation aid added thereto. Therefore, select according to the coal ash properties. If the amount is too small, the hexavalent chromium elution suppression effect is insufficient. If the amount is too large, the hexavalent chromium elution suppression effect reaches a peak and is not economically preferable, but also leads to a decrease in strength of the granulated sand.
[0014]
Commercially available products can be used for calcium polysulfide and sodium thiosulfate without any problems. In any case, it is also possible to find a further effect by adding a required amount of water and adding an aqueous solution or a pre-diluted aqueous suspension, or adding it simultaneously with the required amount of water. In the present invention, the latter is also called dilution. In addition, the lime sulfur mixture marketed as a solid lime sulfur mixture which crystallized and liquidized the liquid lime sulfur mixture as an antibacterial agent and an insecticide, or an aqueous solution of 11 to 36% concentration can be used.
[0015]
Coal ash, cement, and hexavalent chromium elution inhibitor are granulated by adding water, but the amount of granulation aid generally used may be blended during granulation. As the granulation aid, inorganic fine particles having an average particle diameter of 5 μm or less, such as residues containing fine particulate solid substances after factory waste water treatment, cement kiln dust, natural clay, and the like can be used.
[0016]
The amount of water added during granulation varies depending on the fineness of coal ash and the like, but it is 25 to 45 parts by mass with respect to 100 parts by mass of solids composed of coal ash, cement and granulation aid. preferable.
The particle size of the granulated product can be changed according to the purpose of use, but those having an average particle size of 0.3 to 1.5 mm are preferred. In addition, the average particle diameter was defined by the weight standard diameter.
[0017]
Granulation can be performed using an ordinary granulator, but it is desirable to use an apparatus that can also serve as a mixing operation. Examples of such an apparatus include a rolling granulator, an Eirich mixer, a Henschel mixer, a Roedige mixer, a conical screw mixer, and a mortar mixer.
[0018]
The granulated product granulated by the granulator is agglomerated sand that has been cured for a certain period of time, and the cement solidification reaction has progressed, and when it is used as a civil engineering material, etc., elution of hexavalent chromium is suppressed. .
[0019]
【Example】
Hereinafter, the present invention will be described in more detail by showing specific examples. The raw material blending ratio was set to a constant condition of 85 parts by mass of coal ash, 5 parts by mass of cement, and 10 parts by mass of a granulation aid. Cement kiln dust was used as a granulation aid. The granulator was used using a batch mortar mixer or a conical screw mixer. The coal ash, cement, and granulation aid were previously charged in a granulator and sufficiently premixed, and then a predetermined amount of an elution inhibitor and water were added. The addition ratio of the elution inhibitor and water is based on 100 parts by mass of coal ash, cement, and granulation aid. In addition, the dissolution test was carried out in accordance with the method stipulated in the Environmental Agency Notification No. 46 soil environment standard. The evaluation was based on an elution amount of hexavalent chromium of 0.05 mg / l, and below that the elution was suppressed and marked with ○.
[0020]
Examples 1-3 and Comparative Examples 1-9
About the well-known sulfur type reducing agent and wood vinegar liquid, the effect as an elution inhibitor was examined. The hexavalent chromium content of the used coal ash (coal ash A) was 3.8 mg / kg. Coal ash used as a raw material and a granulated product to which no elution inhibitor was added were used for comparison. As the elution inhibitor, a commercially available liquid or powder was used as it was, but all were added as a solution or a suspension with 28 parts by mass of water. In addition, the addition rate of the elution inhibitor showed the value converted into the solid mass concentration to contain about the thing of aqueous solution. Moreover, the batch type mortar mixer was used for the granulator. The results are shown in Table 1.
Hexavalent chromium elution amount was 0.05mg / l as standard, but less than that passed, but by adding calcium polysulfide or sodium thiosulfate, hexavalent chromium elution amount became below soil environment standard value and excellent elution suppression The effect was confirmed. In addition, about the wood vinegar liquid, although the addition rate was changed in 0.1 to 1.0% of range, the reduction effect of the elution amount was not recognized.
[0021]
[Table 1]
Figure 0003879847
[0022]
Examples 4-9, Comparative Examples 10-13
Here, regarding the sodium thiosulfate and calcium polysulfide, which were confirmed to have an excellent hexavalent chromium elution inhibitory effect, the elution inhibitory effect was examined by changing the addition amount. Coal ash has relatively high hexavalent chromium content (coal ash B: hexavalent chromium content 4.4 mg / kg) and relatively low (coal ash C: hexavalent chromium content 0.3 mg / kg) )It was used. As the granulator, a batch type mortar mixer was used. The elution inhibitor used was previously diluted with water. The amounts of water added to the coal ash B and C are 30 parts by mass and 32 parts by mass, respectively.
The results are shown in Table 2.
It is confirmed that the addition of 0.003 part or more of sodium thiosulfate or calcium polysulfide suppresses elution below the reference value.
[0023]
[Table 2]
Figure 0003879847
[0024]
Examples 10-12, Comparative Examples 14-16
Here, about the polysulfide calcium, the addition amount was changed and the elution inhibitory effect was investigated. Coal ash having a high hexavalent chromium content (coal ash D: hexavalent chromium content 5.4 mg / kg) was used. As the granulator, a batch type mortar mixer was used. Calcium polysulfide is added in the form of a commercially available aqueous solution (calcium polysulfide concentration: 27.5% by mass) diluted in advance with the required amount of water, and added as a solid and after sufficient premixing, water is added. There were three methods: a method and a method of adding water after adding it in a commercially available aqueous solution and thoroughly premixing. The amount of water added is 30 parts by mass.
The results are shown in Table 3.
It is confirmed that elution is suppressed below the reference value by setting the addition ratio of calcium polysulfide within an appropriate range. It was also found that the difference in the suppression effect due to the addition method was small.
[0025]
[Table 3]
Figure 0003879847
[0026]
Example 13, Comparative Examples 17 and 18
About what used coal ash B, blast furnace cement B type, and 0.03 mass part of calcium polysulfide, the effect of the elution inhibitor addition method was investigated. Calcium polysulfide is added in the form of a commercially available aqueous solution (calcium polysulfide concentration: 27.5% by mass) diluted in advance with the required amount of water, and added as a solid and after sufficient premixing, water is added. There were three methods: a method and a method of adding water after adding it in a commercially available aqueous solution and thoroughly premixing. The amount of water added is 30 parts by mass. A batch-type mortar mixer was used for the granulator. The results are shown in Table 4.
When the required amount of the dissolution inhibitor is relatively small, the dissolution suppression effect is low when calcium polysulfide is added as a solid or when it is added as a commercially available aqueous solution. That is, it is desirable that the dissolution agent be diluted with a required amount of water and added.
[0027]
[Table 4]
Figure 0003879847
[0028]
Examples 14-16, Comparative Example 19
Coal ash E (hexavalent chromium content 2.8 mg / kg), blast furnace cement B type with 0.03 parts by mass of calcium polysulfide added with 32 parts by mass of water Manufactured and examined the effect of granulation particle size. As the granulator, a batch type conical screw mixer was used. The elution inhibitor and water were added by a method in which a line mixer was installed in the supply pipe to the granulator and both were supplied simultaneously while being homogeneously mixed. The results are shown in Table 5.
The particle size of the granulated sand needs to be 0.3 mm or more.
[0029]
[Table 5]
Figure 0003879847
[0030]
【The invention's effect】
In the granulated sand produced by the method of the present invention, even when coal ash having a high hexavalent chromium content is used as a raw material, the elution amount of hexavalent chromium is suppressed to an environmental standard value or less. Coal ash can be reused as civil engineering materials, helping to solve the problems associated with coal ash, such as the development of effective utilization methods, and promoting the use of natural sand and soil that are depleting. This is an important technology from the viewpoint of environmental protection.

Claims (4)

石炭灰75〜98質量部、セメント2〜25質量部に、多硫化カルシウム及びチオ硫酸ナトリウムから選ばれる一種または二種より成る六価クロム溶出抑制剤0.003〜0.5質量部を添加し、平均粒径0.3〜1.5mmに造粒することを特徴とする、六価クロム溶出が抑制された石炭灰造粒砂の製造方法。Add 0.003-0.5 parts by mass of hexavalent chromium elution inhibitor composed of one or two kinds selected from calcium polysulfide and sodium thiosulfate to 75-98 parts by mass of coal ash and 2-25 parts by mass of cement. A method for producing coal ash granulated sand in which elution of hexavalent chromium is suppressed, characterized by granulating to an average particle size of 0.3 to 1.5 mm. 石炭灰50〜95質量部、セメント2〜25質量部、造粒助材0〜45質量部に、多硫化カルシウム及びチオ硫酸ナトリウムから選ばれる一種または二種より成る六価クロム溶出抑制剤0.003〜0.5質量部を添加し、平均粒径0.3〜1.5mmに造粒することを特徴とする、六価クロム溶出が抑制された石炭灰造粒砂の製造方法。A hexavalent chromium elution inhibitor composed of one or two kinds selected from calcium polysulfide and sodium thiosulfate is added to 50 to 95 parts by mass of coal ash, 2 to 25 parts by mass of cement, and 0 to 45 parts by mass of granulation aid. A method for producing coal ash granulated sand in which elution of hexavalent chromium is suppressed, characterized by adding 003 to 0.5 parts by mass and granulating to an average particle size of 0.3 to 1.5 mm. 石炭灰75〜98質量部、セメント2〜25質量部に、多硫化カルシウム及びチオ硫酸ナトリウムから選ばれる一種または二種より成る六価クロム溶出抑制剤0.003〜0.5質量部を15〜45質量部の水で希釈して添加し、平均粒径0.3〜1.5mmに造粒することを特徴とする、六価クロム溶出が抑制された石炭灰造粒砂の製造方法。15 to 98 parts by mass of hexavalent chromium elution inhibitor composed of one or two kinds selected from calcium polysulfide and sodium thiosulfate are added to 75 to 98 parts by mass of coal ash and 2 to 25 parts by mass of cement. A method for producing a coal ash granulated sand in which elution of hexavalent chromium is suppressed, which is diluted with 45 parts by mass of water and granulated to an average particle size of 0.3 to 1.5 mm. 石炭灰50〜95質量部、セメント2〜25質量部、造粒助材0〜45質量部に、多硫化カルシウム及びチオ硫酸ナトリウムから選ばれる一種または二種より成る六価クロム溶出抑制剤0.003〜0.5質量部を15〜45質量部の水で希釈して添加し、平均粒径0.3〜1.5mmに造粒することを特徴とする、六価クロム溶出が抑制された石炭灰造粒砂の製造方法。A hexavalent chromium elution inhibitor composed of one or two kinds selected from calcium polysulfide and sodium thiosulfate is added to 50 to 95 parts by mass of coal ash, 2 to 25 parts by mass of cement, and 0 to 45 parts by mass of granulation aid. 003-0.5 parts by mass diluted with 15-45 parts by mass of water and granulated to an average particle size of 0.3-1.5 mm, hexavalent chromium elution was suppressed Method for producing coal ash granulated sand.
JP2003029276A 2002-09-05 2003-02-06 Coal ash granulated sand production method with suppressed hexavalent chromium elution Expired - Lifetime JP3879847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003029276A JP3879847B2 (en) 2002-09-05 2003-02-06 Coal ash granulated sand production method with suppressed hexavalent chromium elution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002259921 2002-09-05
JP2003029276A JP3879847B2 (en) 2002-09-05 2003-02-06 Coal ash granulated sand production method with suppressed hexavalent chromium elution

Publications (2)

Publication Number Publication Date
JP2004148288A JP2004148288A (en) 2004-05-27
JP3879847B2 true JP3879847B2 (en) 2007-02-14

Family

ID=32472974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003029276A Expired - Lifetime JP3879847B2 (en) 2002-09-05 2003-02-06 Coal ash granulated sand production method with suppressed hexavalent chromium elution

Country Status (1)

Country Link
JP (1) JP3879847B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4835359B2 (en) * 2005-09-30 2011-12-14 宇部興産株式会社 Coal ash granulated sand and method for producing coal ash granulated sand
JP2008110888A (en) * 2006-10-30 2008-05-15 Ube Ind Ltd Coal ash granule and its manufacturing process
JP2008143740A (en) * 2006-12-08 2008-06-26 Ube Ind Ltd Coal ash granule
JP2008170103A (en) * 2007-01-12 2008-07-24 Chugoku Electric Power Co Inc:The Elution preventing agent for inhibiting elution of harmful trace element, elution inhibiting method and pulverized coal combustion method
JP5036467B2 (en) * 2007-09-21 2012-09-26 中国電力株式会社 Coal-fired power generation system and hexavalent chromium elution reduction method
JP5506076B2 (en) * 2009-03-23 2014-05-28 大王製紙株式会社 Soil improving material and method for producing the same
JP7157685B2 (en) * 2019-03-14 2022-10-20 Ube三菱セメント株式会社 Fly ash mixed material

Also Published As

Publication number Publication date
JP2004148288A (en) 2004-05-27

Similar Documents

Publication Publication Date Title
JP2007308322A (en) Method of manufacturing fertilizer using waste, and fertilizer
JP3879847B2 (en) Coal ash granulated sand production method with suppressed hexavalent chromium elution
JP4694434B2 (en) By-product processing method
JP2005313147A (en) Method for processing incineration ash
JPH10156315A (en) Treating agent for heavy metal-containing waste and stabilizing treatment of heavy metal-containing waste
JP2006290713A (en) Method of reforming slag particle group as artificial sand, and artificial sand
JP6441086B2 (en) Effective use of coal ash
JP3213054B2 (en) Treatment method for incinerated ash containing heavy metals
JP2005041750A (en) Industrial waste regenerated aggregate and method of producing the same
JPH10146577A (en) Treating agent for heavy metal-containing waste and stabilizing treating method of heavy metal-containing waste
JP5877049B2 (en) Anti-elution agent for harmful substances
JP5077777B2 (en) Elution reduction material and elution reduction treatment method
JP3772552B2 (en) Solidified material for heavy metal contaminated soil and method for producing the same
JP5171350B2 (en) Solid waste treatment method
JPH11165147A (en) Method for stabilizing heavy metal-containing waste treating agent and heavy metal-containing waste
JP7128495B1 (en) soil conditioner
JP7436216B2 (en) earthwork materials
JP3077644B2 (en) Detoxification and solidification of incinerated ash with a special solidifying agent
CN115140960B (en) Anti-caking agent, premix, soil body curing agent, and preparation and application thereof
JP4277590B2 (en) Solidification method of sludge
JP2010053327A (en) Solidifying material for oil-contaminated soil, high organic volcanic ash, and oil-containing waste fluid
JP5117930B2 (en) Neutral solidification method of mud and new stone-kow-based solidification improver
JPH1190391A (en) Treating agent for heavy metal-containing waste and stabilizing treatment of heavy metal-containing waste
JP2009034611A (en) Method for treating fluorine-containing incinerator ash
JP3774135B2 (en) Method for reducing hexavalent chromium using calcium silicide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061031

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3879847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term