JP7127163B2 - Evaluation method and evaluation system for completed form of solidified improved ground - Google Patents

Evaluation method and evaluation system for completed form of solidified improved ground Download PDF

Info

Publication number
JP7127163B2
JP7127163B2 JP2021002026A JP2021002026A JP7127163B2 JP 7127163 B2 JP7127163 B2 JP 7127163B2 JP 2021002026 A JP2021002026 A JP 2021002026A JP 2021002026 A JP2021002026 A JP 2021002026A JP 7127163 B2 JP7127163 B2 JP 7127163B2
Authority
JP
Japan
Prior art keywords
ground
image
improvement
solidified
cone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021002026A
Other languages
Japanese (ja)
Other versions
JP2022107219A (en
Inventor
健太 水野
Original Assignee
若築建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 若築建設株式会社 filed Critical 若築建設株式会社
Priority to JP2021002026A priority Critical patent/JP7127163B2/en
Publication of JP2022107219A publication Critical patent/JP2022107219A/en
Application granted granted Critical
Publication of JP7127163B2 publication Critical patent/JP7127163B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

本開示は、固化改良地盤の造成出来形の評価方法及び評価システムに関する。 TECHNICAL FIELD The present disclosure relates to an evaluation method and an evaluation system for the completed form of solidified improved ground.

深層混合処理工法における固化改良地盤の造成出来形を造成直後に確認できる効率的な調査方法が求められている。例えば特許文献1には、高圧噴射攪拌式の深層混合処理工法において、注入ロッドの貫入位置から径方向外側の改良端部の位置にカメラ付きコーンを貫入して、カメラの撮像画像に基づき改良地盤の造成径を確認する評価方法が記載されている。 There is a need for an efficient survey method that allows confirmation of the finished form of solidified improved ground in the deep layer mixing method immediately after preparation. For example, in Patent Document 1, in a high-pressure injection agitation type deep mixing treatment method, a cone with a camera is penetrated at the position of the improved end radially outward from the penetration position of the injection rod, and the improved ground is based on the captured image of the camera. An evaluation method for confirming the diameter of the land created is described.

特許第4886921号公報Japanese Patent No. 4886921

しかしながら特許文献1などに記載される従来の評価方法では、固化改良地盤の造成出来形の評価を高精度かつ効率的に行う点で改善の余地がある。 However, the conventional evaluation method described in Patent Literature 1 and the like has room for improvement in terms of highly accurate and efficient evaluation of the finished form of solidified improved ground.

本開示は、固化改良地盤の造成出来形の評価を高精度かつ効率的に行うことができる固化改良地盤の造成出来形の評価方法及び評価システムを提供することを目的とする。 An object of the present disclosure is to provide a method and an evaluation system for evaluating the finished form of solidified improved ground that can evaluate the finished form of improved solidified ground with high accuracy and efficiency.

本発明の実施形態の一観点に係る固化改良地盤の造成出来形の評価方法は、深層混合処理工法における固化改良地盤の造成出来形の評価方法であって、改良前地盤にコーンを貫入したときに前記コーンに設けられるカメラにより前記改良前地盤の着色前画像を撮像する事前貫入工程と、
前記事前貫入工程にて地盤に貫入された前記コーンを前記改良前地盤から引き上げるときに前記コーンに設けられる試薬散布部により試薬を散布して前記カメラにより前記改良前地盤の着色後画像を撮像する事前引き上げ工程と、前記固化改良地盤に前記コーンを貫入したときに前記カメラにより前記固化改良地盤の着色前画像を撮像する貫入工程と、前記固化改良地盤からの前記コーンの引き上げ時に前記試薬散布部から試薬を前記固化改良地盤に散布して前記カメラにより前記固化改良地盤の着色後画像を撮像する引き上げ工程と、前記改良前地盤の前記着色前画像及び前記着色後画像、並びに、前記固化改良地盤の前記着色前画像及び前記着色後画像を比較して出来形を評価する評価工程と、を含み、前記評価工程では、(1)前記固化改良地盤の前記着色前画像と前記着色後画像との比較により、前記固化改良地盤に前記試薬による着色反応があること、(2)前記改良前地盤の前記着色前画像と、前記固化改良地盤の前記着色前画像または前記着色後画像との比較により、地盤改良後に泥水状態であること、及び、(3)前記改良前地盤の前記着色前画像と前記着色後画像との比較により、前記改良前地盤に前記試薬による着色反応が無く、アルカリ性地盤ではないこと、の地盤画像に基づく判断基準の3つの条件をすべて満たすときに、地盤改良が問題なく行われていると判断する
A method for evaluating the finished form of solidified improved ground according to one aspect of the embodiment of the present invention is a method for evaluating the finished form of improved solidified ground in the deep mixing method, wherein when a cone is penetrated into the ground before improvement A pre-penetration step of capturing a pre-coloring image of the pre-improvement ground with a camera provided in the cone;
When the cone penetrated into the ground in the pre-penetration step is lifted from the pre-improvement ground, a reagent spraying unit provided on the cone scatters a reagent, and the camera captures a colored image of the pre-improvement ground. a pre-pulling step, a penetration step of capturing a pre-coloring image of the solidified improved ground with the camera when the cone is penetrated into the solidified improved ground, and a before when pulling up the cone from the solidified improved ground a lifting step of spraying a reagent from the reagent spraying unit onto the solidified and improved ground and taking an image of the solidified and improved ground after coloring with the camera; the before-coloring image and the after-coloring image of the ground before improvement; and an evaluation step of comparing the pre-coloring image and the post-coloring image of the solidified improved ground to evaluate the finished shape , wherein the evaluation step includes: (1) the pre-colored image of the solidified improved ground; (2) the pre-coloring image of the pre-improved ground and the pre-coloring image or the post-coloring image of the solidified and improved ground by comparison with the post-coloring image; (3) By comparing the pre-improvement ground with the pre-coloring image and the post-coloring image, the pre-improvement ground has a coloring reaction by the reagent. It is judged that the ground improvement is being carried out without any problem when all the three conditions of the judgment criteria based on the ground image, that is, that the ground is not alkaline and that the ground is not alkaline, are satisfied .

同様に、本発明の実施形態の一観点に係る固化改良地盤の造成出来形の評価システムは、深層混合処理工法における固化改良地盤の造成出来形の評価システムであって、カメラと試薬散布部とを有するコーンと、制御装置と、を備え、前記制御装置は、改良前地盤及び前記固化改良地盤に前記コーンを貫入し、引き抜く動作を制御するコーン制御部と、前記改良前地盤及び前記固化改良前地盤からの前記コーンの引き上げ時に試薬を前記改良前地盤及び前記固化改良地盤に散布するよう前記試薬散布部を制御する試薬制御部と、前記改良前地盤に前記コーンを貫入したときに前記改良前地盤の着色前画像を撮像し、前記改良前地盤から前記コーンを引き上げるときに前記試薬散布部から前記試薬を前記改良前地盤に散布した後に前記改良前地盤の着色後画像を撮像し、前記固化改良地盤に前記コーンを貫入したときに前記固化改良地盤の着色前画像を撮像し、前記固化改良地盤からの前記コーンの引き上げ時に前記試薬散布部から前記試薬を前記固化改良地盤に散布した後に前記固化改良地盤の着色後画像を撮像するよう、前記カメラを制御する撮像制御部と、前記改良前地盤の前記着色前画像及び前記着色後画像、並びに、前記固化改良地盤の前記着色前画像及び前記着色後画像を比較して出来形を評価する評価部と、を有し、前記評価部は、(1)前記固化改良地盤の前記着色前画像と前記着色後画像との比較により、前記固化改良地盤に前記試薬による着色反応があること、(2)前記改良前地盤の前記着色前画像と、前記固化改良地盤の前記着色前画像または前記着色後画像との比較により、地盤改良後に泥水状態であること、及び、(3)前記改良前地盤の前記着色前画像と前記着色後画像との比較により、前記改良前地盤に前記試薬による着色反応が無く、アルカリ性地盤ではないこと、の地盤画像に基づく判断基準の3つの条件をすべて満たすときに、地盤改良が問題なく行われていると判断する。

Similarly, a system for evaluating the completed shape of solidified improved ground according to one aspect of the embodiment of the present invention is a system for evaluating the completed shape of solidified improved ground in the deep mixing method, comprising a camera and a reagent spraying unit. and a control device, wherein the control device includes a cone control unit that controls the operation of penetrating and pulling out the cone from the pre-improvement ground and the solidified improved ground, and the pre-improved ground and the solidified improvement a reagent control unit that controls the reagent spraying unit to spray a reagent on the pre-improved ground and the solidified improved ground when the cone is pulled up from the pre- improved ground; and the improvement when the cone penetrates the pre-improved ground. A pre-coloring image of the pre-improvement ground is captured, and when the cone is pulled up from the pre-improvement ground, the reagent is sprayed on the pre-improvement ground from the reagent spraying unit, and then a post-coloring image of the pre-improvement ground is captured, When the cone penetrates into the solidified and improved ground, a pre-coloring image of the solidified and improved ground is captured, and when the cone is lifted from the solidified and improved ground, the reagent is sprayed from the reagent spraying unit to the solidified and improved ground. An imaging control unit that controls the camera to capture a post-coloring image of the solidification improved ground, the pre-coloring image and the post-coloring image of the pre-improvement ground, and the pre-coloring image and and an evaluation unit that compares the images after coloring and evaluates the finished shape , wherein the evaluation unit (1) compares the image before coloring and the image after coloring of the solidified improved ground, and evaluates the solidified (2) by comparing the pre-coloring image of the pre-improvement ground with the pre-coloring image or the post-coloring image of the solidified and improved ground, it is possible to determine the state of muddy water after ground improvement; and (3) a comparison of the pre-coloring image and the post-coloring image of the pre-improvement ground shows that the pre-improvement ground has no coloring reaction due to the reagent and is not an alkaline ground. It is judged that ground improvement is being carried out without problems when all three conditions of the judgment criteria based on are satisfied .

本開示によれば、固化改良地盤の造成出来形の評価を高精度かつ効率的に行うことができる固化改良地盤の造成出来形の評価方法及び評価システムを提供することができる。 Advantageous Effects of Invention According to the present disclosure, it is possible to provide a method and an evaluation system for evaluating the finished form of improved solidified ground that can evaluate the finished form of improved solidified ground with high accuracy and efficiency.

実施形態に係る固化改良地盤の造成出来形の評価システムの概略構成を示す図FIG. 1 is a diagram showing a schematic configuration of an evaluation system for a completed form of solidified improved ground according to an embodiment. 実施形態における固化改良地盤の造成出来形の評価方法の手順を示す図The figure which shows the procedure of the evaluation method of the completed form of solidification improvement ground in embodiment. 本実施形態における試薬散布前後の改良地盤の撮像方法を説明する模式図Schematic diagram for explaining the imaging method of the improved ground before and after the reagent spraying in the present embodiment 地盤改良前後の三成分の計測データの一例を示す図Diagram showing an example of measurement data of three components before and after ground improvement 手順1~4の各段階の地盤画像の一例を示す図Figure showing an example of the ground image at each stage of steps 1 to 4 機械攪拌式の深層混合処理工法の概略を説明する模式図Schematic diagram explaining the outline of the mechanical agitation type deep mixing treatment method 機械撹拌式の深層混合処理工法における撹拌不足時の造成後映像の一例を示す図A diagram showing an example of a post-development image when agitation is insufficient in the mechanical agitation deep mixing method.

以下、添付図面を参照しながら実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。 Embodiments will be described below with reference to the accompanying drawings. In order to facilitate understanding of the description, the same constituent elements in each drawing are denoted by the same reference numerals as much as possible, and overlapping descriptions are omitted.

図1を参照して、実施形態に係る、深層混合処理工法における固化改良地盤の造成出来形の評価システム1(以下では単に「評価システム1」とも表記する)の構成について説明する。図1は、実施形態に係る固化改良地盤11の造成出来形の評価システム1の概略構成を示す図である。 With reference to FIG. 1, the configuration of an evaluation system 1 (hereinafter also simply referred to as "evaluation system 1") for the completed formation of solidified improved ground in the deep mixing method according to the embodiment will be described. FIG. 1 is a diagram showing a schematic configuration of an evaluation system 1 for a completed form of solidified improved ground 11 according to an embodiment.

図1に示すように、評価システム1は、コーン2と、制御装置6とを備える。評価システム1は、深層混合処理工法における固化改良地盤11の所定位置にデータ取得用のコーン2を貫入して必要なデータを取得し、取得したデータに基づき固化改良地盤11の造成出来形を評価する。ここで「出来形」とは、工事の目標物のできあがった部分や、工事施工が完了した部分のことを言い、本実施形態では固化改良地盤11のことを指す。 As shown in FIG. 1, evaluation system 1 comprises cone 2 and controller 6 . The evaluation system 1 acquires necessary data by penetrating the cone 2 for data acquisition into a predetermined position of the solidified improved ground 11 in the deep mixing method, and evaluates the completed form of the solidified improved ground 11 based on the acquired data. do. Here, the "finished form" refers to a completed portion of a construction target or a completed portion of construction work, and in this embodiment, refers to the solidified improved ground 11 .

図1では、深層混合処理工法のうち高圧噴射攪拌式の場合を例示する。高圧噴射攪拌式では、地盤10において改良したい範囲の中心にロッド貫入穴12を開け、ロッド貫入穴12に貫入された注入ロッド(図示せず)から水平方向、かつ、ロッド貫入孔12を中心とする径方向外側に向けてセメントスラリーを超高圧、大流量で噴射して、周囲の土砂を切削しながら混合撹拌することで固化改良地盤11を生成する。したがって、この固化改良地盤11は、理想的にはロッド貫入孔12を軸心とする略円柱状に形成される。 FIG. 1 exemplifies the case of the high-pressure injection agitation type among the deep mixing treatment methods. In the high-pressure injection agitation type, a rod penetration hole 12 is opened in the center of the range to be improved in the ground 10, and the injection rod (not shown) penetrated into the rod penetration hole 12 is horizontally and centered on the rod penetration hole 12. Cement slurry is jetted radially outward at an ultrahigh pressure and a large flow rate, and mixed and stirred while cutting the surrounding earth and sand to generate the solidified improved ground 11 . Therefore, the solidified improved ground 11 is ideally formed in a substantially columnar shape with the rod penetration hole 12 as the axis.

このような改良地盤11の所望の略円柱形状の軸心から外周面までの距離を、本実施形態では「設計改良径」とよび、図1ではその位置を符号13で示す。なお、一般的な高圧噴射攪拌式の工法では、この設計改良径の条件を満たす改良地盤11をより確実に形成できるように、実際に形成される改良地盤11は設計改良径より径方向外側まではみ出るように形成される場合が多い。すなわち、所定の設計改良径よりも大径で造成出来形が形成される。このため図1の例では、設計改良径の位置13は、改良地盤11の外周側端部よりも軸心(ロッド貫入孔12)側に入った位置となっている。 In this embodiment, the distance from the axis of the desired substantially cylindrical shape of the improved ground 11 to the outer peripheral surface is called the "design improved diameter", and the position is indicated by reference numeral 13 in FIG. In addition, in the general high-pressure injection stirring type construction method, the improved ground 11 that is actually formed extends radially outward from the design improvement diameter so that the improved ground 11 that satisfies the design improvement diameter can be formed more reliably. It is often formed to protrude. In other words, the created shape is formed with a diameter larger than the predetermined designed improved diameter. For this reason, in the example of FIG. 1, the design improvement diameter position 13 is positioned closer to the axis (rod penetration hole 12 ) than the outer peripheral end of the improved ground 11 .

高圧噴射攪拌式では、ロッド貫入穴12の位置から径方向外側に所定の設計改良径をとる位置13、すなわち所望の円柱形状の外周の位置にまで固化改良地盤11が存在するか否かを判定することで、固化改良地盤11の造成出来形を評価することができる。例えば、設計改良径の位置13に固化改良地盤11が生成されている場合、固化改良地盤11が所望の範囲の全域に問題なく生成されており、出来形が満足できるものであると評価できる。一方、設計改良径の位置13にて固化改良地盤11が生成されていない、または、一部のみに生成されている場合、固化改良地盤11が所望の範囲の全域に行き渡っておらず、出来形に問題があると評価できる。 In the high-pressure injection agitation method, it is determined whether or not the solidified improved ground 11 exists up to the position 13 where a predetermined design improvement diameter is taken radially outward from the position of the rod penetration hole 12, that is, the position of the outer circumference of the desired cylindrical shape. By doing so, the finished form of the solidified improved ground 11 can be evaluated. For example, when the solidified improved ground 11 is generated at the position 13 of the design improvement diameter, the improved solidified ground 11 is generated without any problem in the entire desired range, and the finished shape is satisfactory. On the other hand, if the solidified improved ground 11 is not generated at the position 13 of the design improvement diameter, or if it is generated only in part, the solidified improved ground 11 is not spread over the entire desired range, and the finished shape can be evaluated as having problems.

本実施形態の評価システム1では、高圧噴射攪拌式の深層混合処理工法の出来形を評価する場合には、図1に示すように、ロッド貫入孔12から径方向外側に所定の設計改良径だけ離れた位置13(以下では「コーン貫入位置13」ともいう)にて、コーン2を地盤10に貫入して評価用のデータを取得する。 In the evaluation system 1 of the present embodiment, when evaluating the finished form of the high-pressure jet stirring type deep mixing treatment method, as shown in FIG. At a remote position 13 (hereinafter also referred to as "cone penetration position 13"), the cone 2 is penetrated into the ground 10 to acquire data for evaluation.

コーン2は、例えば図1に示すように略円柱形状に形成され、先端部が尖って地盤10に貫入しやすく形成されている。コーン2は、カメラ3と、試薬散布部4と、駆動装置5とを有する。コーン2は、例えば、既存の三成分静的コーンに、カメラ3及び試薬散布部4の機能を追加することで実現できる。三成分静的コーンとは、地盤性状を調査するための三成分コーン貫入試験(Cone Penetration Test:CPT)に用いられる装置であり、地盤に貫入中の各位置において地盤性状に関する三成分(貫入抵抗、周面摩擦、間隙水圧)を計測する装置である。 The cone 2 is formed, for example, in a substantially columnar shape as shown in FIG. The cone 2 has a camera 3 , a reagent spraying section 4 and a driving device 5 . The cone 2 can be realized, for example, by adding the functions of the camera 3 and the reagent spraying section 4 to the existing three-component static cone. A three-component static cone is a device used for a three-component cone penetration test (Cone Penetration Test: CPT) for investigating ground properties, and three components related to ground properties (penetration resistance , surface friction, and pore water pressure).

カメラ3は、コーン2の貫入中に固化改良地盤11(または改良前地盤10)を撮像する。 The camera 3 images the consolidated improved ground 11 (or the pre-improved ground 10) during the penetration of the cone 2.

試薬散布部4は、コーン2の貫入中に固化改良地盤11(または改良前地盤10)へ試薬7(図3参照)を散布する。試薬7は、アルカリ性の物質を変色させる機能を有するものであり、例えばフェノールフタレイン水溶液である。試薬散布部4は、例えばコーン2の外部に試薬7を貯留するタンクを有し、ノズルなどの散布装置を用いて、コーン2の周面に開口される開口部からタンクに貯留されている試薬7を外部に散布する。試薬7を貯留するタンクは、例えば地表の駆動装置5や制御装置4の近傍に配置され、試薬7を供給可能なチューブなどを介してコーン2内部の試薬散布部4と接続されている。なお、試薬7を貯留するタンクがコーン2の内部に設けられる構成でもよい。 The reagent spraying unit 4 sprays a reagent 7 (see FIG. 3) onto the solidified improved ground 11 (or the pre-improved ground 10) while the cone 2 is penetrating. The reagent 7 has a function of discoloring an alkaline substance, and is, for example, an aqueous solution of phenolphthalein. The reagent spraying unit 4 has, for example, a tank for storing the reagent 7 outside the cone 2. Using a spraying device such as a nozzle, the reagent stored in the tank is sprayed through an opening formed on the peripheral surface of the cone 2. 7 is scattered outside. A tank storing the reagent 7 is arranged, for example, near the driving device 5 or the control device 4 on the ground surface, and is connected to the reagent spraying section 4 inside the cone 2 via a tube capable of supplying the reagent 7 or the like. A configuration in which a tank for storing the reagent 7 is provided inside the cone 2 may be employed.

駆動装置5は、コーン2を上下方向に移動させ、コーン2が改良地盤11に貫入される動作、または、地盤11に貫入されたコーン2を上方に引き抜く動作を実施する。駆動装置5は例えば地表のコーン貫入位置13の直上に設置される。 The driving device 5 vertically moves the cone 2 to penetrate the improved ground 11 or pulls up the cone 2 that has penetrated the ground 11 . The drive device 5 is installed, for example, directly above the cone penetration location 13 on the ground surface.

なお、特に本実施形態では、試薬散布部4は、コーン2の貫入方向(図1では下方)に対してカメラ3よりも後方(図1では上方)に配置される。この構成により、コーン2の引き抜き時に試薬散布部4から試薬7を散布すれば、試薬7によって着色された後の改良地盤11の画像をカメラ3により撮像できる。一方、先にコーン2を地盤10に貫入する際に、試薬散布部4を作動させずにカメラ3で撮像すれば、試薬7によって着色される前の改良地盤11の画像を撮像できる。したがって、貫入時に着色前の画像を撮像し、引き抜き時に着色後の画像を撮像できるので、同一のコーン貫入位置13にコーン2を貫入して引き抜くだけで、試薬による着色前後の同一位置の地盤の画像を撮像することができる。このように、コーン2の貫入と引き抜きという一往復の動作だけで2種類の画像を取得でき、効率的に評価を行うことができる。 Note that, particularly in this embodiment, the reagent spraying unit 4 is arranged behind the camera 3 (upward in FIG. 1) with respect to the penetrating direction of the cone 2 (downward in FIG. 1). With this configuration, if the reagent 7 is sprayed from the reagent spraying section 4 when the cone 2 is pulled out, the image of the improved ground 11 colored with the reagent 7 can be captured by the camera 3 . On the other hand, when the cone 2 penetrates the ground 10 first, if the camera 3 takes an image without operating the reagent spraying unit 4, an image of the improved ground 11 before being colored with the reagent 7 can be captured. Therefore, an image before coloring can be captured during penetration, and an image after coloring can be captured during extraction. Therefore, by simply penetrating the cone 2 into the same cone penetration position 13 and pulling it out, the ground at the same position before and after coloring with the reagent can be captured. Images can be captured. In this way, two types of images can be acquired by only one reciprocating motion of inserting and pulling out the cone 2, and evaluation can be performed efficiently.

制御装置6は、コーン2に設けられているカメラ3、試薬散布部4、駆動装置5の動作を制御する。また、制御装置6は、カメラ3から取得した画像などの各情報に基づき、固化改良地盤11の出来形を評価する。制御装置6は、これらの機能に関し、コーン制御部61、試薬制御部62、撮像制御部63、評価部64を有する。 A control device 6 controls operations of the camera 3 , the reagent spraying section 4 and the driving device 5 provided on the cone 2 . In addition, the control device 6 evaluates the finished shape of the solidified improved ground 11 based on various information such as images acquired from the camera 3 . The control device 6 has a cone control section 61, a reagent control section 62, an imaging control section 63, and an evaluation section 64 for these functions.

コーン制御部61は、駆動装置5を制御して、改良地盤11にコーン2を貫入し、引き抜く動作を制御する。 The cone control unit 61 controls the driving device 5 to control the operation of penetrating and pulling out the cone 2 from the improved ground 11 .

試薬制御部62は、試薬散布部4による改良地盤11(または改良前地盤10)への試薬の散布タイミングを制御する。より詳細には、試薬制御部62は、コーン2の引き上げ時に、試薬を改良地盤11(または改良前地盤10)に散布してセメントミルクを含む部分を変色させるよう試薬散布部4を制御する。 The reagent control unit 62 controls the timing of spraying the reagent to the improved ground 11 (or the pre-improved ground 10) by the reagent spraying unit 4. FIG. More specifically, the reagent control unit 62 controls the reagent spraying unit 4 so that when the cone 2 is pulled up, the reagent is sprayed on the improved ground 11 (or the pre-improved ground 10) to discolor the portion containing cement milk.

撮像制御部63は、カメラ3による改良地盤11(または改良前地盤10)の撮像タイミングを制御する。より詳細には、撮像制御部63は、改良地盤11にコーン2を貫入したときに、固化改良地盤11の着色前画像(以下では「造成後映像P3」ともいう)を撮像し、改良地盤11からのコーン2の引き上げ時に、試薬散布部4から試薬を改良地盤11に散布して変色させた後の固化改良地盤11の着色後画像(以下では「造成後映像P4」ともいう)を撮像するよう、カメラ3を制御する。また、撮像制御部63は、改良前地盤10にコーン2を貫入したときに、改良前地盤10の着色前画像(以下では「改良前映像P1」ともいう)を撮像し、改良前地盤10からのコーン2の引き上げ時に、試薬散布部4から試薬を改良地盤11に散布した後の改良前地盤10の着色後画像(以下では「改良前映像P2」ともいう)を撮像するよう、カメラ3を制御する。 The imaging control unit 63 controls the imaging timing of the improved ground 11 (or the pre-improved ground 10 ) by the camera 3 . More specifically, when the cone 2 penetrates the improved ground 11, the imaging control unit 63 captures a pre-colored image of the solidified improved ground 11 (hereinafter also referred to as a “post-development image P3”), and captures the improved ground 11. When the cone 2 is pulled up from the pit, a post-coloring image of the solidified improved ground 11 after discoloration by dispersing the reagent from the reagent spraying unit 4 onto the improved ground 11 (hereinafter also referred to as "post-development image P4") is captured. to control camera 3. In addition, when the cone 2 penetrates the ground 10 before improvement, the imaging control unit 63 captures a pre-coloring image of the ground 10 before improvement (hereinafter also referred to as “pre-improvement image P1”), and from the ground 10 before improvement When the cone 2 is pulled up, the camera 3 is set so as to capture a post-coloring image (hereinafter also referred to as "pre-improvement image P2") of the pre-improvement ground 10 after the reagent has been sprayed on the improved ground 11 from the reagent spraying unit 4. Control.

評価部64は、カメラ3により撮像された固化改良地盤11の着色前画像(造成後映像P3)及び着色後画像(造成後映像P4)などの情報に基づき、改良地盤11の出来形を評価する。また、評価部64は、改良前地盤10の着色前画像(改良前映像P1)または着色後画像(改良前映像P2)も利用して、改良地盤11の出来形を評価することもできる。さらに、評価部64は、改良前地盤10と改良地盤11の三成分(貫入抵抗、周面摩擦、間隙水圧)データを比較して、改良地盤11の出来形を評価することもできる。 The evaluation unit 64 evaluates the finished shape of the improved ground 11 based on the information such as the image before coloring (image after creation P3) and the image after coloring (image after creation P4) of the solidified improved ground 11 captured by the camera 3. . The evaluation unit 64 can also use the pre-coloring image (pre-improvement image P1) or the post-coloring image (pre-improvement image P2) of the pre-improvement ground 10 to evaluate the finished shape of the improved ground 11. Furthermore, the evaluation unit 64 can compare the three component data (penetration resistance, circumferential friction, pore water pressure) of the pre-improved ground 10 and the improved ground 11 to evaluate the finished shape of the improved ground 11.

制御装置6は、物理的には、CPU(Central Processing Unit)、主記憶装置であるRAM(Random Access Memory)およびROM(Read Only Memory)、入力デバイスであるキーボード及びマウス等の入力装置、ディスプレイ等の出力装置、ネットワークカード等のデータ送受信デバイスである通信モジュール、補助記憶装置、などを含むコンピュータシステムとして構成することができる。 The control device 6 physically includes a CPU (Central Processing Unit), RAM (Random Access Memory) and ROM (Read Only Memory) as main storage devices, input devices such as a keyboard and a mouse as input devices, a display, and the like. It can be configured as a computer system including an output device, a communication module which is a data transmission/reception device such as a network card, an auxiliary storage device, and the like.

図1に示す制御装置6の各機能は、CPU、RAM等のハードウェア上に所定のコンピュータソフトウェアを読み込ませることにより、CPUの制御のもとで通信モジュール、入力装置、出力装置を動作させるとともに、RAMや補助記憶装置におけるデータの読み出し及び書き込みを行うことで実現される。すなわち、本実施形態に係る評価システム1の改良地盤の評価作業のための制御プログラムをコンピュータ上で実行させることで、制御装置6は、図1のコーン制御部61と、試薬制御部62と、撮像制御部63と、評価部64として機能する。 Each function of the control device 6 shown in FIG. 1 operates a communication module, an input device, and an output device under the control of the CPU by loading predetermined computer software onto hardware such as the CPU and RAM. , by reading and writing data in a RAM or an auxiliary storage device. That is, by executing a control program for evaluation work of improved ground of the evaluation system 1 according to the present embodiment on a computer, the control device 6 includes the cone control unit 61 in FIG. 1, the reagent control unit 62, It functions as an imaging control unit 63 and an evaluation unit 64 .

なお、制御装置6は、図1に示す機能の一部のみを実施する構成でもよい。例えば評価部64の機能は制御装置6自体が備えず、外部装置が撮像画像に基づき出来形の評価を行う構成でもよい。 Note that the control device 6 may be configured to perform only part of the functions shown in FIG. For example, the function of the evaluation unit 64 may not be provided in the control device 6 itself, and an external device may evaluate the finished form based on the captured image.

図2を参照して、実施形態に係る、深層混合処理工法における固化改良地盤11の造成出来形の評価方法について説明する。図2は、実施形態における固化改良地盤11の造成出来形の評価方法の手順を示す図である。 With reference to FIG. 2, a description will be given of a method for evaluating the completed shape of the solidified improved ground 11 in the deep mixing method according to the embodiment. FIG. 2 is a diagram showing the procedure of the method for evaluating the finished form of the solidified improved ground 11 in the embodiment.

図2に示すように、本実施形態の評価方法は7段階の手順で行われる。以下手順1~手順7の内容を説明する。 As shown in FIG. 2, the evaluation method of this embodiment is performed in seven steps. The contents of steps 1 to 7 will be described below.

手順1(事前貫入工程):改良前地盤10の貫入試験を実施する。この試験は、深層混合処理工法の施工前に行う。コーン2の貫入位置は、図1に示したように深層混合処理工法の高圧噴射攪拌式が正常に実施された場合の改良地盤11の設計改良径の位置13に相当する位置である。駆動装置5によりコーン2を地盤10に貫入しながら、改良前地盤10の三成分データ(貫入抵抗、周面摩擦、間隙水圧)と、カメラ3により撮像される原地盤(改良前地盤)10の映像データ(改良前映像P1)とを連続的に取得する。なお手順1では試薬散布部4による試薬の噴霧は行われない。手順1の処理は、制御装置6のコーン制御部61と撮像制御部63とにより実施される。 Procedure 1 (pre-penetration step): Conduct a penetration test on the ground 10 before improvement. This test is conducted before the deep mixing method. The penetration position of the cone 2 is a position corresponding to the design improvement diameter position 13 of the improved ground 11 when the high-pressure injection stirring method of the deep mixing method is normally performed as shown in FIG. While penetrating the cone 2 into the ground 10 by the driving device 5, the three component data (penetration resistance, circumferential friction, pore water pressure) of the ground 10 before improvement and the original ground (pre-improvement ground) 10 imaged by the camera 3 Video data (pre-improved video P1) is continuously acquired. In procedure 1, the reagent spraying unit 4 does not spray the reagent. The processing of Procedure 1 is performed by the cone control section 61 and the imaging control section 63 of the control device 6 .

手順2(事前引き上げ工程):引き続き、改良前地盤10の貫入試験において、貫入したコーン2を低速で引上げる。このとき、コーン2の試薬散布部4から試薬を連続的に噴霧し、試薬散布部4より下方に設置されるカメラ3により撮像される試薬散布後の原地盤(改良前地盤)10の映像データ(改良前映像P2)を連続的に取得する。手順2の処理は、制御装置6のコーン制御部61と、試薬制御部62と、撮像制御部63とにより実施される。 Procedure 2 (preliminary pulling process): Subsequently, in the penetration test of the pre-improvement ground 10, the penetrated cone 2 is pulled up at a low speed. At this time, the reagent is continuously sprayed from the reagent spraying part 4 of the cone 2, and image data of the original ground (pre-improved ground) 10 after the reagent spraying is imaged by the camera 3 installed below the reagent spraying part 4. (Pre-improvement image P2) is continuously acquired. The processing of procedure 2 is performed by the cone control unit 61 , the reagent control unit 62 and the imaging control unit 63 of the control device 6 .

手順3(貫入工程):改良地盤11の貫入試験を実施する。この試験は、深層混合処理工法の施工直後(改良地盤11の硬化前、例えば造成終了後概ね3時間以内)に実施される。コーン2の貫入位置は、手順1と同一の設計改良径の位置13の位置が好ましい。コーン2を地盤10に貫入しながら、改良地盤11の三成分データ(貫入抵抗、周面摩擦、間隙水圧)と、カメラ3により撮像される着色前改良地盤11(セメントミルクと原地盤の撹拌状態)の映像データ(造成後映像P3)と、を連続的に取得する。なお手順3では試薬散布部4による試薬の噴霧は行われない。手順3の処理は、制御装置6のコーン制御部61と撮像制御部63とにより実施される。 Procedure 3 (penetration step): A penetration test of the improved ground 11 is carried out. This test is performed immediately after execution of the deep layer mixing method (before hardening of the improved ground 11, for example, within approximately 3 hours after completion of preparation). The penetrating position of the cone 2 is preferably the position 13 of the same design improvement diameter as the procedure 1. While penetrating the cone 2 into the ground 10, the three component data of the improved ground 11 (penetration resistance, circumferential friction, pore water pressure) and the improved ground 11 before coloring captured by the camera 3 (stirring state of cement milk and original ground ) (post-creation image P3) are continuously acquired. In step 3, the reagent spraying unit 4 does not spray the reagent. The processing of Procedure 3 is performed by the cone control section 61 and the imaging control section 63 of the control device 6 .

手順4(引き上げ工程):引き続き、改良地盤11の貫入試験において、貫入したコーン2を低速で引上げる。このとき、手順2と同様に、コーン2の試薬散布部4から試薬を連続的に噴霧し、試薬散布部4より下方に設置されるカメラ3により撮像される試薬散布後の改良地盤(着色されたセメント成分)の映像データ(造成後映像P4)を連続的に取得する。手順4の処理は、制御装置6のコーン制御部61と、試薬制御部62と、撮像制御部63とにより実施される。 Procedure 4 (pulling up process): Subsequently, in the penetration test of the improved ground 11, the penetrated cone 2 is pulled up at a low speed. At this time, as in procedure 2, the reagent is continuously sprayed from the reagent spraying part 4 of the cone 2, and the improved ground (colored The image data (post-creation image P4) of the cement component) is continuously acquired. The processing of procedure 4 is performed by the cone control unit 61 , the reagent control unit 62 and the imaging control unit 63 of the control device 6 .

図3は、本実施形態における試薬散布前後の改良地盤11の撮像方法を説明する模式図である。図3(A)は貫入時の撮像を示し、図3(B)は引き上げ時の撮像を示す。図3(A)に示すように、貫入時にはコーン2が下方に移動しながらカメラ3で改良地盤11の各深度位置の画像を撮像する。このとき試薬散布部4は作動しておらず試薬は散布されていない。図3(A)は、上述の手順3に対応し、撮影対象を改良地盤11から改良前地盤10に置き換えれば手順1にも対応する。図3(A)に示す方法によって、試薬散布前の未着色の地盤を撮像することができる。 3A and 3B are schematic diagrams illustrating a method of imaging the improved ground 11 before and after the reagent is sprayed according to this embodiment. FIG. 3(A) shows an image captured during penetration, and FIG. 3(B) shows an image captured during withdrawal. As shown in FIG. 3A, during penetration, the camera 3 captures images of the improved ground 11 at each depth position while the cone 2 moves downward. At this time, the reagent spraying unit 4 is not operating and the reagent is not sprayed. FIG. 3A corresponds to the procedure 3 described above, and also corresponds to the procedure 1 if the imaging target is changed from the improved ground 11 to the pre-improved ground 10 . By the method shown in FIG. 3A, it is possible to image the uncolored ground before spraying the reagent.

一方、図3(B)に示すように、引き上げ時にはコーン2が上方に移動しながら、試薬散布部4から試薬7が改良地盤11の表面に噴霧される。試薬散布部4はカメラ3の上方に配置されるため、カメラ3が対向する改良地盤11の表面にはすべて試薬7が散布された状態となる。図3(B)は、上述の手順4に対応し、撮影対象を改良地盤11から改良前地盤10に置き換えれば手順2にも対応する。図3(B)に示す方法によって、試薬散布後の着色後の地盤を撮像することができる。 On the other hand, as shown in FIG. 3(B), the reagent 7 is sprayed onto the surface of the improved ground 11 from the reagent spraying section 4 while the cone 2 is moving upward during pulling up. Since the reagent spraying unit 4 is arranged above the camera 3 , the reagent 7 is spread all over the surface of the improved ground 11 facing the camera 3 . FIG. 3B corresponds to the procedure 4 described above, and also corresponds to the procedure 2 if the imaging target is changed from the improved ground 11 to the pre-improved ground 10 . By the method shown in FIG. 3(B), it is possible to image the colored ground after spraying the reagent.

図2に戻り手順5以降の説明を続ける。 Returning to FIG. 2, the description from step 5 onwards will be continued.

手順5:第1のデータ分析が行われる。手順1にて取得した改良前地盤10の三成分データ(図2中の「三成分[1]」)と、手順3にて取得した改良地盤11の三成分データ(図2中の「三成分[3]」)とを比較する。具体的には、三成分[1]と[3]の貫入抵抗同士を比較し、周面摩擦同士を比較し、間隙水圧同士を比較する。手順5の処理は、制御装置6の評価部64により実施される。 Step 5: A first data analysis is performed. The three component data of the ground 10 before improvement acquired in procedure 1 (“three components [1]” in FIG. 2) and the three component data of the improved ground 11 acquired in procedure 3 (“three components [3]”). Specifically, the penetration resistances of the three components [1] and [3] are compared, the circumferential frictions are compared, and the pore water pressures are compared. The processing of procedure 5 is performed by the evaluation unit 64 of the control device 6 .

手順6:第2のデータ分析が行われる。手順1、手順2、手順3、手順4にてそれぞれ取得した計4段階の画像P1~P4を比較する。具体的には、造成後映像P3と造成後映像P4とを比較し、改良前映像P1と、造成後映像P3またはP4とを比較し、改良前映像P1と改良前映像P2とを比較する。手順6の処理は、制御装置6の評価部64により実施される。 Step 6: A second data analysis is performed. A total of four images P1 to P4 acquired in Procedure 1, Procedure 2, Procedure 3, and Procedure 4 are compared. Specifically, the post-creation image P3 and the post-creation image P4 are compared, the pre-improvement image P1 is compared with the post-creation image P3 or P4, and the pre-improvement image P1 and the pre-improvement image P2 are compared. The processing of procedure 6 is performed by the evaluation unit 64 of the control device 6 .

手順7(評価工程):手順5の第1のデータ分析の結果と、手順6の第2のデータ分析の結果とに基づき、改良地盤11の出来形の評価が行われる。 Procedure 7 (evaluation step): Based on the result of the first data analysis of procedure 5 and the result of the second data analysis of procedure 6, the finished shape of the improved ground 11 is evaluated.

地盤改良が所定の設計改良径13の範囲まで問題なく行われていると判断するための三成分に基づく判断基準(判断基準1)は、本実施形態では下記の3つの条件をすべて満たすことである。下記の(1-1)、(1-2)、(1-3)の3条件は、改良地盤11が高濃度泥水状であることの特徴を示す。
(1-1)貫入抵抗値qcについて、qc_改良後がqc_改良前よりも低下し、かつ概ね一様な深度分布傾向を示していること。
(1-2)周面摩擦fsについて、砂質土と粘性土で明確な違いがあるfs_改良前と比較し、fs_改良後はqt_改良後と相似形の深度分布を示していること。
(1-3)間隙水圧uについて、u_改良後が泥水圧分布を示していること。
Judgment criteria (criterion 1) based on three components for determining that the ground improvement is performed without problems up to the range of the predetermined design improvement diameter 13, in this embodiment, by satisfying all the following three conditions be. The following three conditions (1-1), (1-2), and (1-3) show characteristics that the improved ground 11 is highly concentrated muddy water.
(1-1) The penetration resistance value qc after qc_improvement is lower than that before qc_improvement, and shows a substantially uniform depth distribution tendency.
(1-2) Regarding circumferential friction fs, compared with before fs_improvement, where there is a clear difference between sandy soil and cohesive soil, after fs_improvement shows a similar depth distribution to that after qt_improvement. thing.
(1-3) Regarding the pore water pressure u, u_after improvement shows the mud water pressure distribution.

図4は、地盤改良前後の三成分の計測データの一例を示す図である。図4(A)の横軸は貫入抵抗qc(MN/m)を示し、図4(B)の横軸は周面摩擦fs(kN/m)を示し、図4(C)の横軸は間隙水圧u(kN/m)を示す。各図の縦軸は標高(m)、すなわちコーン2を挿入する孔の深度を示す。また、各図では、地盤改良前のグラフが点線で示され、地盤改良後のグラフが太い実線で示される。 FIG. 4 is a diagram showing an example of measurement data of three components before and after ground improvement. The horizontal axis of FIG. 4(A) indicates penetration resistance qc (MN/m 2 ), the horizontal axis of FIG. 4(B) indicates circumferential friction fs (kN/m 2 ), and the horizontal axis of FIG. The axis indicates the pore water pressure u (kN/m 2 ). The vertical axis of each figure indicates the altitude (m), ie, the depth of the hole into which the cone 2 is inserted. Also, in each figure, the graph before ground improvement is indicated by a dotted line, and the graph after ground improvement is indicated by a thick solid line.

図4の例では、図4(A)より、貫入抵抗値qcについて、qc_改良後(太い実線)がqc_改良前(点線)よりも低下し、かつ概ね一様な深度分布傾向を示していることがわかる。また、図4(B)より、周面摩擦fsについて、砂質土と粘性土で明確な違いがあるfs_改良前(点線)と比較し、fs_改良後(太い実線)は、(A)のqt_改良後と相似形の深度分布を示していることがわかる。さらに、図4(C)より、間隙水圧uについて、u_改良後(太い実線)が泥水圧分布を示していること、すなわち略線形の深度分布傾向を示すことがわかる。したがって、図4の例では、上記の三成分に基づく判断基準(判断基準1)を満たすと評価できる。 In the example of FIG. 4, from FIG. 4A, the penetration resistance value qc after qc_ improvement (thick solid line) is lower than qc_ before improvement (dotted line), and shows a generally uniform depth distribution tendency. It can be seen that In addition, from FIG. 4(B), regarding the circumferential friction fs, compared with fs_before improvement (dotted line), where there is a clear difference between sandy soil and cohesive soil, after fs_improvement (thick solid line), (A ) shows a similar depth distribution to that after qt_improvement. Further, from FIG. 4(C), it can be seen that the pore water pressure u after u_improvement (thick solid line) shows a muddy water pressure distribution, that is, shows a substantially linear depth distribution tendency. Therefore, in the example of FIG. 4, it can be evaluated that the criterion (criterion 1) based on the above three components is satisfied.

また、手順7において、地盤改良が所定の設計改良径13の範囲まで問題なく行われていると判断するための地盤画像P1~P4に基づく判断基準(判断基準2)は、下記の(2-1)、(2-2)、(2-3)の3つの条件をすべて満たすことである。
(2-1)造成後映像P3と造成後映像P4との比較により、改良地盤11に試薬7による着色反応があること。
(2-2)改良前映像P1と、造成後映像P3またはP4との比較により、造成後(地盤改良後)に泥水状態であること。
(2-3)改良前映像P1と改良前映像P2との比較により、改良前地盤10に試薬7による着色反応が無く、アルカリ性地盤ではないこと。
Further, in procedure 7, the judgment criteria (judgment criteria 2) based on the ground images P1 to P4 for judging that the ground improvement is performed without problems up to the range of the predetermined design improvement diameter 13 are as follows (2- All three conditions 1), (2-2), and (2-3) must be satisfied.
(2-1) A comparison between the post-development image P3 and the post-development image P4 shows that the improved ground 11 has a coloring reaction due to the reagent 7 .
(2-2) A comparison of the pre-improvement image P1 and the post-development image P3 or P4 shows that the ground is in a muddy state after land development (after ground improvement).
(2-3) By comparing the pre-improvement image P1 and the pre-improvement image P2, the pre-improvement ground 10 has no coloring reaction due to the reagent 7 and is not an alkaline ground.

図5は、手順1~4の各段階の地盤画像の一例を示す図である。図5(A)は改良前映像P1の一例である。改良前映像P1は地盤改良前の元の地盤10、すなわちセメントミルクが混合されていない地盤が写されているので、図5(A)に示すように、全体的に茶色などの暗い色となる。また、画像中の黒色の部分は地盤10内に存在する空隙である。なお、改良前地盤10がアルカリ性ではない場合には、改良前映像P2も図5(A)と同様の画像となる。 FIG. 5 is a diagram showing an example of a ground image at each stage of procedures 1-4. FIG. 5A is an example of the pre-improvement video P1. Since the pre-improvement image P1 shows the original ground 10 before ground improvement, that is, the ground to which cement milk is not mixed, as shown in FIG. . Also, black portions in the image are voids present in the ground 10 . Note that when the pre-improvement ground 10 is not alkaline, the pre-improvement image P2 also becomes the same image as in FIG. 5(A).

図5(B)は造成後映像P3の一例である。造成後映像P3は、改良地盤11、すなわち改良前地盤10にセメントミルクが撹拌されたものが写されているので、図5(B)に示すように、全体的に灰色や灰白色などの明るい色となる。また、地盤が撹拌されたことにより、図5(A)の改良前地盤10と比較して空隙の数が減少している。 FIG. 5B is an example of the post-creation image P3. Since the post-construction image P3 shows the improved ground 11, that is, the pre-improved ground 10 mixed with cement milk, the image P3 has a bright color such as gray or grayish white as a whole, as shown in FIG. 5(B). becomes. Also, due to the agitation of the ground, the number of voids is reduced compared to the pre-improved ground 10 of FIG. 5(A).

図5(C)は造成後映像P4の一例である。造成後映像P4は、改良地盤11に試薬7が塗布されて変色した部分Aが写されているので、図5(C)に示すように、図5(B)と比較して赤色などの変色部分Aが含まれる画像となる。 FIG. 5C is an example of the post-creation image P4. Since the post-construction image P4 shows the portion A that has been discolored due to the application of the reagent 7 to the improved ground 11, as shown in FIG. An image including part A is obtained.

図5の例では、図5(B)の造成後映像P3と図5(C)の造成後映像P4との比較により、造成後画像P4に試薬による変色領域Aが含まれるため、改良地盤11に試薬による着色反応があり、条件(2-1)を満たすことが示される。着色反応が有ることを確認できると、改良地盤11が撮像位置でセメントミルクを混合していることを判別できる。このように造成後映像P3、P4を比較することによって、着色反応の有無に着目して改良地盤11のセメントミルクの部分をより明確に識別することが可能となり、改良地盤11の出来形の評価を精度良くできる。 In the example of FIG. 5, by comparing the post-development image P3 of FIG. 5B and the post-development image P4 of FIG. shows that there is a coloring reaction with the reagent, satisfying the condition (2-1). If it can be confirmed that there is a coloring reaction, it can be determined that the improved ground 11 is mixed with cement milk at the imaging position. By comparing the post-development images P3 and P4 in this way, it is possible to more clearly identify the cement milk portion of the improved ground 11 by focusing on the presence or absence of a coloring reaction, and to evaluate the completed shape of the improved ground 11. can be performed with high accuracy.

また、図5の例では、図5(A)の改良前映像P1と、図5(B)の造成後映像P3または図5(C)の造成後画像P4との比較により、造成後画像P3、P4の改良地盤11の灰白色や、変色領域Aの赤色が元の改良前地盤10には無く、地盤改良の撹拌によって発生したものと判定できるので、造成後(地盤改良後)に泥水状態であることが示される。このように改良前映像P1と造成後画像P3、P4とを比較することによって、改良前地盤10との相対的な変化を識別することが可能となり、改良地盤11による改質部分の抽出を精度よくできる。これにより、地盤画像に基づく改良地盤11の出来形の評価をさらに精度良くできる。 Further, in the example of FIG. 5, by comparing the pre-improvement image P1 in FIG. 5(A) with the post-creation image P3 in FIG. , The grayish white of the improved ground 11 of P4 and the red color of the discolored area A are not in the original pre-improvement ground 10, and can be determined to have occurred due to the agitation of the ground improvement. It is shown that there is By comparing the pre-improvement image P1 and the post-development images P3 and P4 in this way, it is possible to identify relative changes with the pre-improvement ground 10, and extract the improved portion by the improved ground 11 with accuracy. I can do it well. As a result, it is possible to more accurately evaluate the finished shape of the improved ground 11 based on the ground image.

さらに、図5(A)の改良前映像P1と改良前映像P2との比較により、改良前映像P1と改良前映像P2との間に有意差が無い場合には、改良前地盤10に試薬による着色反応が無く、アルカリ性地盤ではないことが示される。このように改良前映像P1と改良前映像P2とを比較することによって、改良前地盤10の地質のアルカリ性有無を判別可能となり、改良地盤11による改質部分の抽出精度をさらに向上できる。これにより、地盤画像に基づく改良地盤11の出来形の評価の精度をさらに改善できる。 Furthermore, by comparing the pre-improvement image P1 and the pre-improvement image P2 in FIG. There is no coloring reaction, indicating that it is not an alkaline soil. By comparing the pre-improvement image P1 and the pre-improvement image P2 in this way, it is possible to determine whether the ground 10 before improvement is alkaline or not, and the extraction accuracy of the portion modified by the improved ground 11 can be further improved. As a result, the accuracy of evaluation of the finished shape of the improved ground 11 based on the ground image can be further improved.

以上より、図5の例では、地盤画像に基づく判断基準(判断基準2)を満たすと評価できる。 From the above, it can be evaluated that the example of FIG. 5 satisfies the criterion (criterion 2) based on the ground image.

図2に戻り、手順7では、上記の判断基準1、2の両方を満たすときに、出来形を満足すると判断することができる。手順7の処理は、制御装置6の評価部64により実施される。 Returning to FIG. 2, in step 7, it can be determined that the finished form is satisfied when both the criteria 1 and 2 are satisfied. The processing of procedure 7 is performed by the evaluation unit 64 of the control device 6 .

なお、手順6の画像比較と、手順7の判断基準2は、一部のみを実施する構成でもよい。少なくとも手順6にて造成後映像P3と造成後映像P4との比較を行い、手順7にて条件(2-1)を満たすことを確認すればよい。または、手順6にてさらに改良前映像P1と、造成後映像P3またはP4との比較を行い、手順7にて条件(2-2)を満たすことも確認する構成、すなわち改良前映像P2による評価を省略する構成でもよい。 It should be noted that the image comparison in procedure 6 and the determination criterion 2 in procedure 7 may be implemented only partially. At least in step 6, the post-creation image P3 and post-creation image P4 are compared, and in step 7 it is confirmed that the condition (2-1) is satisfied. Alternatively, in step 6, the pre-improvement image P1 is further compared with the post-creation image P3 or P4, and in step 7, it is confirmed that the condition (2-2) is satisfied, that is, the evaluation by the pre-improvement image P2. may be omitted.

なお、上記実施形態では高圧噴射撹拌式の深層混合処理工法の場合を例示して説明したが、本実施形態の評価システム1及び評価方法は、機械撹拌式の深層混合処理工法にも適用できる。 In the above embodiment, the case of the high-pressure injection stirring deep mixing method was described as an example, but the evaluation system 1 and the evaluation method of the present embodiment can also be applied to a mechanical stirring deep mixing method.

図6は、機械攪拌式の深層混合処理工法の概略を説明する模式図である。図6では、作業領域を平面視で示している。図6に示すように、機械攪拌式では、撹拌翼14の回転によって原位置土と改良材とを混合撹拌し、地中に円柱状の改良地盤11を造成する工法である。なお、図6では、2つの撹拌翼14を用いる二軸式が例示されている。 FIG. 6 is a schematic diagram for explaining the outline of the mechanical stirring type deep mixing treatment method. FIG. 6 shows the work area in plan view. As shown in FIG. 6, in the mechanical agitation method, the in-situ soil and the improvement material are mixed and agitated by the rotation of the agitating blade 14 to create a cylindrical improved ground 11 in the ground. In addition, in FIG. 6, a biaxial type using two stirring blades 14 is illustrated.

図6に示す機械撹拌式の深層混合処理工法においても、地盤改良前後の作業領域(図中に符号11で示す部分)にコーン2を貫入して必要なデータを取得し、取得したデータに基づき固化改良地盤11の造成出来形を評価することができる。 In the mechanical agitation type deep mixing treatment method shown in FIG. It is possible to evaluate the completed form of the solidified improved ground 11 .

なお、図6に示す機械撹拌式の深層混合処理工法では、物理的な要素である撹拌翼14によって撹拌が行われるため、高圧噴射攪拌式とは異なり、改良地盤11の外縁位置までは確実に撹拌が行われる。このため、機械撹拌式では、固化改良地盤11の造成出来形を評価するためのコーン2の貫入位置が、高圧噴射攪拌式の場合の設計改良径の位置13とは異なる。例えば図6に示すように、撹拌翼14の回転中心から改良地盤11の外縁との間の設計改良径の中間位置13A(改良中間部)にて、固化改良地盤11が存在するか否かを判定することで、固化改良地盤11の全体の品質を評価でき、これにより固化改良地盤11の造成出来形を評価することができる。 In the mechanical stirring deep mixing method shown in FIG. 6, stirring is performed by the stirring blade 14, which is a physical element. Agitation is performed. For this reason, in the mechanical agitation type, the penetration position of the cone 2 for evaluating the finished form of the solidified improved ground 11 is different from the position 13 of the design improvement diameter in the case of the high pressure injection agitation type. For example, as shown in FIG. 6, it is determined whether or not the solidified improved ground 11 exists at an intermediate position 13A (improved intermediate portion) of the design improved diameter between the rotation center of the stirring blade 14 and the outer edge of the improved ground 11. By judging, the overall quality of the improved solidified ground 11 can be evaluated, and thus the completed form of the improved solidified ground 11 can be evaluated.

また、機械撹拌式の深層混合処理工法では、土壌撹拌後の改良地盤11の性状が高圧噴射攪拌式と相違する可能性がある。このため、評価部64による上記の条件(2-1)における造成後映像P3と造成後映像P4との比較の着眼点を変更してもよい。 Further, in the deep mixing treatment method of the mechanical stirring type, the property of the improved ground 11 after soil stirring may differ from that of the high-pressure injection stirring method. For this reason, the focus of comparison between the created image P3 and the created image P4 under the above condition (2-1) by the evaluation unit 64 may be changed.

高圧噴射攪拌式の場合は、撹拌不足があると、改良地盤11の設計改良径の位置13では撹拌自体が行われないため、造成後映像P4にはセメントミルクが含まれず、試薬7による変色も発生しない。すなわち、造成後映像P4は造成後映像P3とほとんど差異が無くなると考えられる。 In the case of the high-pressure injection stirring type, if there is insufficient stirring, the stirring itself is not performed at the position 13 of the design improvement diameter of the improved ground 11, so the post-development image P4 does not contain cement milk, and there is no discoloration due to the reagent 7. does not occur. That is, it is considered that the after-creation image P4 is almost the same as the after-creation image P3.

一方、機械撹拌式の場合は、少なくとも撹拌翼14の範囲内では撹拌が行われるので、撹拌不足があっても、コーン貫入位置13Aでは造成後映像P4に変色領域Aが含まれると考えられる。すなわち、機械攪拌式では撹拌不足がある場合でも、高圧噴射攪拌式とは異なり、造成後映像P4と造成後映像P3との間に差異が生じる場合が考えられる。このため機械攪拌式では、造成後映像P3と造成後映像P4との比較手法を高圧噴射攪拌式のものとは異ならせるのが好ましい。 On the other hand, in the case of the mechanical stirring type, stirring is performed at least within the range of the stirring blade 14, so even if there is insufficient stirring, it is considered that the discolored area A is included in the post-creation image P4 at the cone penetration position 13A. That is, even if there is insufficient agitation in the mechanical agitation method, unlike the high-pressure injection agitation method, a difference may occur between the post-creation image P4 and the post-creation image P3. For this reason, in the mechanical agitation method, it is preferable to use a different method for comparing the post-creation image P3 and the post-creation image P4 than in the high-pressure jet agitation method.

図7は、機械撹拌式の深層混合処理工法における撹拌不足時の造成後映像P4の一例を示す図である。機械攪拌式の場合、撹拌不足があると、土壌内に粘土ダマBが生じ、造成後映像P4では粘土ダマBの部分では着色反応を示さないと考えられる。また、上述のように撹拌自体は行われるため、良好に撹拌が行われた部分は試薬7塗布によって変色され、造成後映像P4では変色領域Aも含まれる。一方、撹拌がきちんと行なわれた場合には、着色反応の無い粘土ダマBの部分は縮小すると考えられる。 FIG. 7 is a diagram showing an example of a post-development image P4 when stirring is insufficient in the mechanical stirring deep layer mixing method. In the case of the mechanical agitation type, if the agitation is insufficient, clay lumps B are generated in the soil, and it is considered that the clay lumps B do not exhibit a coloring reaction in the post-development image P4. Further, since the stirring itself is performed as described above, the well-stirred portion is discolored by the application of the reagent 7, and the discolored area A is also included in the post-creation image P4. On the other hand, when the stirring is properly performed, it is considered that the portion of the clay lumps B, which does not undergo coloring reaction, shrinks.

したがって、機械撹拌式では、例えば図7に示す造成後映像P4における変色領域Aの占有率に基づき出来形を評価する構成とすることができる。例えば、造成後映像P4の変色領域Aの占有率が所定値以上の場合に、固化改良地盤11の全体で撹拌が良好に行われていると判断することができ、この場合に、地盤画像に基づく判断基準(判断基準2)を満たすと評価する構成とすることができる。 Therefore, in the mechanical stirring method, for example, it is possible to adopt a configuration in which the finished shape is evaluated based on the occupancy rate of the discolored area A in the post-creation image P4 shown in FIG. For example, when the occupancy rate of the discolored area A in the post-construction image P4 is equal to or greater than a predetermined value, it can be determined that the entire solidified improved ground 11 is well stirred. It is possible to adopt a configuration in which it is evaluated that the criteria (criteria 2) are satisfied.

本実施形態に係る固化改良地盤11の造成出来形の評価方法は、固化改良地盤11にコーン2を貫入したときにコーン2に設けられるカメラ3により固化改良地盤11の着色前画像(造成後映像P3)を撮像する貫入工程(手順3)と、固化改良地盤11からのコーン2の引き上げ時にコーン2に設けられる試薬散布部4から試薬7を固化改良地盤11に散布してカメラ3により固化改良地盤11の着色後画像(造成後映像P4)を撮像する引き上げ工程(手順4)と、を含む。 The method for evaluating the completed form of the improved solidified ground 11 according to the present embodiment is a pre-colored image (post-developed image) of the improved solidified ground 11 captured by the camera 3 provided on the cone 2 when the cone 2 is penetrated into the improved ground 11. P3) is imaged in a penetrating step (procedure 3), and when the cone 2 is pulled up from the solidified and improved ground 11, the reagent 7 is sprayed on the solidified and improved ground 11 from the reagent spraying unit 4 provided in the cone 2, and the solidification is improved by the camera 3. and a lifting step (procedure 4) of capturing the post-coloring image (post-development image P4) of the ground 11 .

この構成により、コーン2の貫入時に着色前画像を撮像し、貫入したコーン2を引き抜く時に着色後画像を撮像できるので、同一のコーン貫入位置13、13Aにコーン2を貫入して引き抜くだけで、試薬7による着色前後の同一位置の地盤の画像を撮像することができる。このように、コーン2の貫入と引き抜きという一往復の動作だけで2種類の画像を取得でき、効率的に評価を行うことができる。また、上述のように、固化改良地盤11の着色前後の地盤の画像、すなわち造成後映像P3と造成後映像P4とを比較することによって、着色反応の有無に着目して改良地盤11のセメントミルクの部分をより明確に識別することが可能となり、改良地盤11の出来形の評価を精度良くできる。したがって、本実施形態に係る固化改良地盤11の造成出来形の評価方法は、固化改良地盤11の造成出来形の評価を高精度かつ効率的に行うことができる。 With this configuration, an image before coloring can be taken when the cone 2 penetrates, and an image after coloring can be taken when the penetrated cone 2 is pulled out. Images of the ground at the same position before and after coloring with the reagent 7 can be captured. In this way, two types of images can be acquired by only one reciprocating motion of inserting and pulling out the cone 2, and evaluation can be performed efficiently. In addition, as described above, by comparing the images of the ground before and after coloring of the solidified improved ground 11, that is, the after-creation image P3 and the after-creation image P4, the cement milk of the improved ground 11 is focused on the presence or absence of the coloring reaction. can be identified more clearly, and the finished shape of the improved ground 11 can be evaluated with high accuracy. Therefore, the method for evaluating the finished form of the solidified improved ground 11 according to the present embodiment can evaluate the finished form of the improved solidified ground 11 with high accuracy and efficiency.

以上、具体例を参照しつつ本実施形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素およびその配置、条件、形状などは、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。 The present embodiment has been described above with reference to specific examples. However, the present disclosure is not limited to these specific examples. Design modifications to these specific examples by those skilled in the art are also included in the scope of the present disclosure as long as they have the features of the present disclosure. Each element included in each specific example described above and its arrangement, conditions, shape, etc. are not limited to those illustrated and can be changed as appropriate. As long as there is no technical contradiction, the combination of the elements included in the specific examples described above can be changed as appropriate.

1 評価システム
2 コーン
3 カメラ
4 試薬散布部
5 駆動装置
6 制御装置
61 コーン制御部
62 試薬制御部
63 撮像制御部
64 評価部
7 試薬
10 改良前地盤
11 固化改良地盤
13、13A コーン貫入位置
P1 改良前映像(改良前地盤の着色前画像)
P2 改良前映像(改良前地盤の着色後画像)
P3 造成後映像(固化改良地盤の着色前画像)
P4 造成後映像(固化改良地盤の着色後画像)
手順1 事前貫入工程
手順2 事前引き上げ工程
手順3 貫入工程
手順4 引き上げ工程
手順7 評価工程
1 evaluation system 2 cone 3 camera 4 reagent spraying unit 5 driving device 6 control device 61 cone control unit 62 reagent control unit 63 imaging control unit 64 evaluation unit 7 reagent 10 pre-improvement ground 11 solidification improved ground 13, 13A cone penetration position P1 improvement Before image (image before coloring of the ground before improvement)
P2 Image before improvement (image after coloring the ground before improvement)
P3 Post-development image (image of solidified and improved ground before coloring)
P4 Post-development image (improved solidification ground image after coloring)
Procedure 1 Pre-penetration process Procedure 2 Pre-lifting process Procedure 3 Penetration process Procedure 4 Pulling process Procedure 7 Evaluation process

Claims (5)

深層混合処理工法における固化改良地盤の造成出来形の評価方法であって、
改良前地盤にコーンを貫入したときに前記コーンに設けられるカメラにより前記改良前地盤の着色前画像を撮像する事前貫入工程と、
前記事前貫入工程にて地盤に貫入された前記コーンを前記改良前地盤から引き上げるときに前記コーンに設けられる試薬散布部により試薬を散布して前記カメラにより前記改良前地盤の着色後画像を撮像する事前引き上げ工程と、
前記固化改良地盤に前記コーンを貫入したときに前記カメラにより前記固化改良地盤の着色前画像を撮像する貫入工程と、
前記固化改良地盤からの前記コーンの引き上げ時に前記試薬散布部から試薬を前記固化改良地盤に散布して前記カメラにより前記固化改良地盤の着色後画像を撮像する引き上げ工程と、
前記改良前地盤の前記着色前画像及び前記着色後画像、並びに、前記固化改良地盤の前記着色前画像及び前記着色後画像を比較して出来形を評価する評価工程と、
を含み、
前記評価工程では、
(1)前記固化改良地盤の前記着色前画像と前記着色後画像との比較により、前記固化改良地盤に前記試薬による着色反応があること、
(2)前記改良前地盤の前記着色前画像と、前記固化改良地盤の前記着色前画像または前記着色後画像との比較により、地盤改良後に泥水状態であること、及び、
(3)前記改良前地盤の前記着色前画像と前記着色後画像との比較により、前記改良前地盤に前記試薬による着色反応が無く、アルカリ性地盤ではないこと、
の地盤画像に基づく判断基準の3つの条件をすべて満たすときに、地盤改良が問題なく行われていると判断する、
評価方法。
A method for evaluating the completed form of solidified improved ground in the deep mixing method,
A pre-penetration step of capturing a pre-colored image of the pre-improvement ground with a camera provided on the cone when the cone is penetrated into the pre-improvement ground;
When the cone penetrated into the ground in the pre-penetration step is lifted from the pre-improvement ground, a reagent spraying unit provided on the cone scatters a reagent, and the camera captures a colored image of the pre-improvement ground. a pre-lifting step to
A penetration step of capturing a pre-colored image of the solidified and improved ground with the camera when the cone is penetrated into the solidified and improved ground;
A pulling-up step of scattering a reagent from the reagent spraying unit onto the solidified and improved ground when pulling up the cone from the solidified and improved ground, and capturing a colored image of the solidified and improved ground with the camera;
an evaluation step of comparing the pre-coloring image and the post-coloring image of the ground before improvement, and the pre-coloring image and the post-coloring image of the solidified improved ground to evaluate the finished shape;
including
In the evaluation step,
(1) By comparing the pre-coloring image and the post-coloring image of the solidified and improved ground, it is found that the solidified and improved ground has a coloring reaction due to the reagent;
(2) By comparing the pre-coloring image of the pre-improvement ground with the pre-coloring image or the post-coloring image of the solidified improved ground, it is in a muddy state after ground improvement, and
(3) By comparing the pre-coloring image of the pre-improvement ground with the post-coloring image, the pre-improvement ground has no coloring reaction due to the reagent and is not an alkaline ground.
Judging that the ground improvement is being carried out without problems when all three conditions of the judgment criteria based on the ground image are satisfied,
Evaluation method.
前記事前貫入工程において、地盤性状に関する三成分を計測し、
前記貫入工程において、前記三成分を計測し、
前記三成分は、貫入抵抗、周面摩擦、間隙水圧を含み、
前記評価工程では、前記地盤画像に基づく判断基準に加えてさらに、
(1)前記貫入抵抗について、前記固化改良地盤の計測値が前記改良前地盤の計測値よりも低下し、かつ概ね一様な深度分布傾向を示していること、
(2)前記周面摩擦について、砂質土と粘性土で明確な違いがある前記改良前地盤の計測値と比較し、前記固化改良地盤の計測値は、前記固化改良地盤の前記貫入抵抗と相似形の深度分布を示していること、及び、
(3)前記間隙水圧について、前記固化改良地盤の計測値が泥水圧分布を示していること、
の前記三成分に基づく判断基準の3つの条件をすべて満たすときに、地盤改良が問題なく行われていると判断する、
請求項1に記載の評価方法。
In the pre-penetration step, three components related to ground properties are measured ,
In the penetration step, measuring the three components,
The three components include penetration resistance, skin friction, and pore water pressure,
In the evaluation step, in addition to the judgment criteria based on the ground image,
(1) Regarding the penetration resistance, the measured value of the solidified improved ground is lower than the measured value of the ground before improvement, and shows a generally uniform depth distribution tendency.
(2) Regarding the circumferential friction, compared with the measured value of the ground before improvement, which has a clear difference between sandy soil and cohesive soil, the measured value of the solidified improved ground is the same as the penetration resistance of the solidified improved ground. showing a similar depth distribution, and
(3) Regarding the pore water pressure, the measured value of the solidified improved ground indicates a mud water pressure distribution;
Judging that the ground improvement is being performed without problems when all three conditions of the criteria based on the three components of are satisfied,
The evaluation method according to claim 1.
前記深層混合処理工法が高圧噴射攪拌式であり、
前記造成出来形は、所定の設計改良径よりも大径で形成され、
前記コーンの貫入位置は前記設計改良径の位置である、
請求項1または2に記載の評価方法。
The deep mixing treatment method is a high-pressure jet stirring method,
The created shape is formed with a diameter larger than a predetermined design improvement diameter,
The penetration position of the cone is the position of the design improvement diameter,
The evaluation method according to claim 1 or 2 .
前記深層混合処理工法が機械攪拌式であり、
前記コーンの貫入位置は改良中間部である、
請求項1または2に記載の評価方法。
The deep mixing treatment method is a mechanical stirring type,
The penetration position of the cone is the modified middle part,
The evaluation method according to claim 1 or 2 .
深層混合処理工法における固化改良地盤の造成出来形の評価システムであって、
カメラと試薬散布部とを有するコーンと、
制御装置と、を備え、
前記制御装置は、
改良前地盤及び前記固化改良地盤に前記コーンを貫入し、引き抜く動作を制御するコーン制御部と、
前記改良前地盤及び前記固化改良地盤からの前記コーンの引き上げ時に試薬を前記改良前地盤及び前記固化改良地盤に散布するよう前記試薬散布部を制御する試薬制御部と、
前記改良前地盤に前記コーンを貫入したときに前記改良前地盤の着色前画像を撮像し、前記改良前地盤から前記コーンを引き上げるときに前記試薬散布部から前記試薬を前記改良前地盤に散布した後に前記改良前地盤の着色後画像を撮像し、前記固化改良地盤に前記コーンを貫入したときに前記固化改良地盤の着色前画像を撮像し、前記固化改良地盤からの前記コーンの引き上げ時に前記試薬散布部から前記試薬を前記固化改良地盤に散布した後に前記固化改良地盤の着色後画像を撮像するよう、前記カメラを制御する撮像制御部と、
前記改良前地盤の前記着色前画像及び前記着色後画像、並びに、前記固化改良地盤の前記着色前画像及び前記着色後画像を比較して出来形を評価する評価部と、
を有し、
前記評価部は、
(1)前記固化改良地盤の前記着色前画像と前記着色後画像との比較により、前記固化改良地盤に前記試薬による着色反応があること、
(2)前記改良前地盤の前記着色前画像と、前記固化改良地盤の前記着色前画像または前記着色後画像との比較により、地盤改良後に泥水状態であること、及び、
(3)前記改良前地盤の前記着色前画像と前記着色後画像との比較により、前記改良前地盤に前記試薬による着色反応が無く、アルカリ性地盤ではないこと、
の地盤画像に基づく判断基準の3つの条件をすべて満たすときに、地盤改良が問題なく行われていると判断する、
評価システム。
An evaluation system for the completed form of solidified improved ground in the deep mixing method,
a cone having a camera and a reagent applicator;
a controller;
The control device is
a cone control unit that controls the operation of penetrating and pulling out the cone from the pre-improvement ground and the solidified improved ground;
a reagent control unit that controls the reagent spraying unit to spray a reagent onto the pre-improved ground and the solidified improved ground when the cone is pulled up from the pre-improved ground and the solidified improved ground;
A pre-coloring image of the pre-improvement ground is captured when the cone is penetrated into the pre-improvement ground, and the reagent is sprayed on the pre-improvement ground from the reagent spraying unit when the cone is pulled up from the pre-improvement ground. Later, the image after coloring of the ground before improvement is taken, the image before coloring of the solidified improved ground is taken when the cone is penetrated into the solidified improved ground, and the reagent is taken when the cone is pulled up from the solidified improved ground. an imaging control unit that controls the camera to capture a colored image of the solidified and improved ground after the reagent is sprayed from the spraying unit onto the solidified and improved ground;
an evaluation unit that compares the pre-coloring image and the post-coloring image of the pre-improvement ground and the pre-coloring image and the post-coloring image of the solidified improved ground to evaluate the finished form;
has
The evaluation unit
(1) By comparing the pre-coloring image and the post-coloring image of the solidified and improved ground, it is found that the solidified and improved ground has a coloring reaction due to the reagent;
(2) By comparing the pre-coloring image of the pre-improvement ground with the pre-coloring image or the post-coloring image of the solidified improved ground, it is in a muddy state after ground improvement, and
(3) By comparing the pre-coloring image of the pre-improvement ground with the post-coloring image, the pre-improvement ground has no coloring reaction due to the reagent and is not an alkaline ground.
Judging that the ground improvement is being carried out without problems when all three conditions of the judgment criteria based on the ground image are satisfied ,
rating system.
JP2021002026A 2021-01-08 2021-01-08 Evaluation method and evaluation system for completed form of solidified improved ground Active JP7127163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021002026A JP7127163B2 (en) 2021-01-08 2021-01-08 Evaluation method and evaluation system for completed form of solidified improved ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021002026A JP7127163B2 (en) 2021-01-08 2021-01-08 Evaluation method and evaluation system for completed form of solidified improved ground

Publications (2)

Publication Number Publication Date
JP2022107219A JP2022107219A (en) 2022-07-21
JP7127163B2 true JP7127163B2 (en) 2022-08-29

Family

ID=82457541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021002026A Active JP7127163B2 (en) 2021-01-08 2021-01-08 Evaluation method and evaluation system for completed form of solidified improved ground

Country Status (1)

Country Link
JP (1) JP7127163B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010255318A (en) 2009-04-24 2010-11-11 Maeda Corp Method for estimating strength of soil improving body
JP2011226250A (en) 2010-04-01 2011-11-10 Maeda Corp Quality control method for soil improvement body, measuring method and measuring rod
JP4886921B2 (en) 2007-10-24 2012-02-29 前田建設工業株式会社 Effective diameter confirmation method of ground improvement body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4886921B2 (en) 2007-10-24 2012-02-29 前田建設工業株式会社 Effective diameter confirmation method of ground improvement body
JP2010255318A (en) 2009-04-24 2010-11-11 Maeda Corp Method for estimating strength of soil improving body
JP2011226250A (en) 2010-04-01 2011-11-10 Maeda Corp Quality control method for soil improvement body, measuring method and measuring rod

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
手塚 広明, 山内 崇寛, 川西 敦士,高圧噴射撹拌工法で改良された地盤の品質管理手法,地盤工学ジャーナル,Vol.8,No.2,日本,2013年,p.251-263,https://doi.org/10.3208/jgs.8.251

Also Published As

Publication number Publication date
JP2022107219A (en) 2022-07-21

Similar Documents

Publication Publication Date Title
US10641088B2 (en) Method and device for determining karst development degree of reservoir, computer readable storage medium and device
JP4886921B2 (en) Effective diameter confirmation method of ground improvement body
EP2458367B1 (en) Device and method for recognising solid substances in a liquid phase
EP1277067B1 (en) Method for the recording of an object space
US20030202689A1 (en) Ray-based image analysis for biological specimens
JP7127163B2 (en) Evaluation method and evaluation system for completed form of solidified improved ground
DE102007010532B3 (en) Soil substance density determining method for e.g. hardening survey in earthwork, involves determining wet and dry density of substance from pit capacity, mass of substance and humidity ratio
EP3885694A1 (en) Method and device for controlled filling and inspection of blast holes
US20220215521A1 (en) Transmission image-based non-destructive inspecting method, method of providing non-destructive inspection function, and device therefor
CN108956420A (en) A kind of concrete pore feature extracting method and system
JP5231319B2 (en) Strength estimation method of ground improvement body
JP2007085137A (en) Ground improvement work evaluation device
CN102966088A (en) Discontinuous combined pile for reinforcing hard soil interlayer-containing soft soil foundation and construction method of discontinuous combined pile
US20180322622A1 (en) Non-destructive inspection methods and systems
CN111007793A (en) Digital construction system and method for cement soil mixing pile
JP6960371B2 (en) Ground improvement method
CN114269463A (en) System for controlling an emulsification process
CN110174063A (en) A kind of neutral pen ink height detecting system and detection method based on machine vision
JP2000251059A (en) Ground surface image monitoring device
Bezuijen et al. Laboratory testing of grout properties and their influence on backfill grouting
JP7112820B2 (en) SOIL IMPROVEMENT SYSTEM AND QUALITY CONTROL METHOD
CN113190836A (en) Web attack behavior detection method and system based on local command execution
JP7300928B2 (en) Work support device
US20240052605A1 (en) Controlling of a dumping of a load of an earth moving machine
CN105297786B (en) Using the method for ultrasonic phased array technology detection of pier foundation post jacking quality

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220817

R150 Certificate of patent or registration of utility model

Ref document number: 7127163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150