JP2011226250A - Quality control method for soil improvement body, measuring method and measuring rod - Google Patents

Quality control method for soil improvement body, measuring method and measuring rod Download PDF

Info

Publication number
JP2011226250A
JP2011226250A JP2011060283A JP2011060283A JP2011226250A JP 2011226250 A JP2011226250 A JP 2011226250A JP 2011060283 A JP2011060283 A JP 2011060283A JP 2011060283 A JP2011060283 A JP 2011060283A JP 2011226250 A JP2011226250 A JP 2011226250A
Authority
JP
Japan
Prior art keywords
improvement body
ground
ground improvement
measuring
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011060283A
Other languages
Japanese (ja)
Inventor
Hiroaki Tezuka
広明 手塚
Toshiaki Yasui
利彰 安井
Takahiro Yamauchi
崇寛 山内
Soichi Isono
宗一 磯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maeda Corp
Original Assignee
Maeda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maeda Corp filed Critical Maeda Corp
Priority to JP2011060283A priority Critical patent/JP2011226250A/en
Publication of JP2011226250A publication Critical patent/JP2011226250A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To check the shape of a soil improvement body represented by a diameter thereof in realtime during creation of the soil improvement body and control the quality of the soil improvement body.SOLUTION: The quality control method for a soil improvement body 5 which is created by injecting a hardening solution 6 at high pressure from an injecting rod 12 penetrating into the soil comprises: installing optical fiber measuring devices 21, 22 and 23 measuring at least one of temperature and distortion in advance in the soil in which the soil improvement body 5 is created; and continuously measuring at least one of temperature and distortion of the soil in which the soil improvement body 5 is created by the optical fiber measuring devices 21, 22 and 23 during creation of the soil improvement body 5, and tracking a history of the measurement result to check the shape of the soil improvement body 5 represented by a diameter thereof in realtime.

Description

本発明は、高圧噴射攪拌工法で造成する地盤改良体の品質管理方法と、高圧噴射攪拌工法または薬液注入工法で造成する地盤改良体の形状の測定方法と、薬液注入工法で造成する地盤改良体の形状の測定方法に用いる測定用ロッドに関する。   The present invention relates to a quality control method for a ground improvement body created by a high-pressure jet stirring method, a method for measuring the shape of a ground improvement body created by a high-pressure jet stirring method or a chemical injection method, and a ground improvement body created by a chemical injection method The present invention relates to a measuring rod used in a method for measuring the shape of the above.

従来、高圧噴射攪拌工法により造成した地盤改良体の、直径や半径に代表される改良形状は、改良体固化後に地表面の地盤を掘削してスケール等で直接測定する方法や、改良体固化後にチェックボーリングを行う方法等によって確認していた。   Conventionally, the improved shape represented by the diameter and radius of the ground improvement body created by the high-pressure jet agitation method is the method of excavating the ground on the ground surface after solidifying the improved body and directly measuring it with a scale, etc. It was confirmed by the method of performing check boring.

しかし、スケールで直接測定する方法は、地盤改良体を地中深くに造成した場合には行うことができない。またチェックボーリングを行う方法は、改良体と地盤との境界部にボーリング孔を設けた場合、改良体と地盤は強度差があるためボーリング孔が孔曲がりを起こし適切な改良径を調査することができない。   However, the direct measurement method using the scale cannot be performed when the ground improvement body is built deep in the ground. Also, the method of performing check boring is that when a drilling hole is provided at the boundary between the improved body and the ground, there is a difference in strength between the improved body and the ground. Can not.

このような問題に対し、例えば特許文献1には、地中に造成した円柱状の地盤改良体の直径を測定する方法であって、地盤改良体の中心点から所定距離離れた地表面から、地盤改良体の中心点を貫通する向きに傾斜して穿孔し、その際の掘削抵抗の変化により地盤改良体の直径を精度良く確認する方法が記載されている。   For such a problem, for example, Patent Document 1 discloses a method of measuring the diameter of a cylindrical ground improvement body formed in the ground, from the ground surface separated by a predetermined distance from the center point of the ground improvement body, A method is described in which drilling is performed while tilting in a direction penetrating through the center point of the ground improvement body, and the diameter of the ground improvement body is accurately confirmed by a change in excavation resistance at that time.

特開2003−213663号公報JP 2003-213663 A

しかしながら、上記特許文献1に記載の方法は、地盤改良体造成後に事後的に行うものであるため、固化後の改良体の強度や地盤の土質によっては、改良体を貫通する掘削孔を改良体の中心点を通過するように正確に穿孔するのは困難な場合がある。   However, since the method described in Patent Document 1 is performed after the ground improvement body is created, depending on the strength of the improvement body after solidification and the soil soil quality, the excavation hole penetrating the improvement body is improved. It may be difficult to drill accurately to pass through the center point of the.

本発明の課題は、地盤改良体の造成中にリアルタイムで地盤改良体の径に代表される形状を確認し、地盤改良体の品質を管理することである。   The subject of this invention is confirming the shape represented by the diameter of a ground improvement body in real time during creation of a ground improvement body, and managing the quality of a ground improvement body.

以上の課題を解決するため、請求項1に記載の発明は、地盤に貫入させた噴射ロッドから硬化材液を高圧噴射して造成する地盤改良体の品質管理方法であって、前記地盤改良体が造成される地盤に、予め、温度又はひずみの少なくとも一方を測定する光ファイバー測定器を設置する設置工程と、前記地盤改良体の造成中に、前記地盤改良体が造成される地盤の温度又はひずみの少なくとも一方を前記光ファイバー測定器により連続的に測定し、その測定結果の履歴を追跡することによりリアルタイムで前記地盤改良体の径に代表される形状を確認する管理工程と、を備えることを特徴とする。   In order to solve the above problems, the invention according to claim 1 is a quality control method of a ground improvement body formed by high-pressure injection of a hardening material liquid from an injection rod penetrating into the ground, the ground improvement body An optical fiber measuring device that measures at least one of temperature and strain is installed in advance on the ground on which the ground improvement is to be created, and the temperature or strain of the ground on which the ground improvement body is created during the creation of the ground improvement body And a management step of confirming the shape typified by the diameter of the ground improvement body in real time by continuously measuring at least one of the optical fiber measuring instrument and tracking the history of the measurement results. And

請求項2に記載の発明は、請求項1に記載の地盤改良体の品質管理方法であって、前記管理工程の前に、前記光ファイバー測定器により、前記地盤改良体が造成される地盤の温度を測定する工程を備えることを特徴とする。   Invention of Claim 2 is the quality control method of the ground improvement body of Claim 1, Comprising: The temperature of the ground where the said ground improvement body is created by the said optical fiber measuring device before the said management process. It is characterized by comprising the step of measuring.

請求項3に記載の発明は、請求項1又は2に記載の地盤改良体の品質管理方法であって、前記管理工程において、前記地盤改良体の造成中に、前記地盤改良体が造成される地盤の温度及びひずみの両方を前記光ファイバー測定器により連続的に測定することを特徴とする。   Invention of Claim 3 is the quality control method of the ground improvement body of Claim 1 or 2, Comprising: In the said management process, the said ground improvement body is created during creation of the said ground improvement body. Both the temperature and strain of the ground are continuously measured by the optical fiber measuring instrument.

請求項4に記載の発明は、地盤に挿入した噴射ロッドから硬化材液を高圧噴射して造成する地盤改良体の径に代表される形状の測定方法であって、前記地盤改良体を造成する地盤に、温度又はひずみの少なくとも一方を測定する光ファイバー測定器を挿入し、前記地盤改良体の造成中に、前記地盤改良体が造成される地盤の温度又はひずみの少なくとも一方を前記光ファイバー測定器により連続的に測定することによって、前記地盤改良体の径に代表される形状を測定することを特徴とする。   Invention of Claim 4 is a measuring method of the shape represented by the diameter of the ground improvement body which carries out high pressure injection of the hardening | curing material liquid from the injection rod inserted in the ground, and is formed, Comprising: The said ground improvement body is created. An optical fiber measuring instrument for measuring at least one of temperature and strain is inserted into the ground, and at least one of the temperature or strain of the ground on which the ground improvement body is created is created by the optical fiber measuring instrument during the creation of the ground improvement body. By continuously measuring, the shape typified by the diameter of the ground improvement body is measured.

請求項5に記載の発明は、地盤に薬液を注入して造成する地盤改良体の径に代表される形状の測定方法であって、前記地盤改良体を造成する地盤に、温度を測定する光ファイバー測定器を挿入し、前記地盤改良体の造成中に、前記地盤改良体が造成される地盤の温度を前記光ファイバー測定器により連続的に測定することによって、前記地盤改良体の径に代表される形状を測定することを特徴とする。   The invention according to claim 5 is a method of measuring a shape typified by a diameter of a ground improvement body formed by injecting a chemical solution into the ground, and an optical fiber for measuring temperature on the ground for forming the ground improvement body By inserting a measuring device and continuously measuring the temperature of the ground on which the ground improvement body is created during the creation of the ground improvement body, the diameter of the ground improvement body is represented by the optical fiber measuring device. The shape is measured.

請求項6に記載の発明は、地盤に挿入されて地中の温度を計測する測定用ロッドであって、周囲の地盤の温度を測定する光ファイバー測定器を備えることを特徴とする。   The invention described in claim 6 is a measuring rod that is inserted into the ground and measures the temperature of the ground, and is provided with an optical fiber measuring device that measures the temperature of the surrounding ground.

本発明によれば、地盤改良体の造成中に、光ファイバー測定器で地盤の温度、ひずみを連続的に測定することで、地盤改良体の径に代表される形状をリアルタイムで確認することができ、地盤改良体が適切な径に代表される形状で造成されるように品質を管理することが可能である。   According to the present invention, the shape represented by the diameter of the ground improvement body can be confirmed in real time by continuously measuring the temperature and strain of the ground with an optical fiber measuring instrument during the creation of the ground improvement body. It is possible to control the quality so that the ground improvement body is formed in a shape represented by an appropriate diameter.

本実施形態に係る地盤改良体の品質管理方法の施工状況を示す図である。It is a figure which shows the construction condition of the quality control method of the ground improvement body which concerns on this embodiment. 図1に示されたII-II線に沿った面の矢視断面図である。It is arrow sectional drawing of the surface along the II-II line | wire shown by FIG. 本実施形態の効果を説明する説明図である。It is explanatory drawing explaining the effect of this embodiment. 薬液注入による地盤改良体の熱電対による温度計測の問題を指摘する図である。It is a figure which points out the problem of the temperature measurement by the thermocouple of the ground improvement body by chemical | medical solution injection | pouring. 薬液注入による地盤改良体の光ファイバー測定器による温度計測を示す図である。It is a figure which shows the temperature measurement by the optical fiber measuring device of the ground improvement body by chemical | medical solution injection | pouring. 図5の光ファイバー測定器の具体的構成を示す拡大図である。It is an enlarged view which shows the specific structure of the optical fiber measuring device of FIG. 実施形態2を示すもので、薬液注入による地盤改良体の造成中の光ファイバー測定器による温度計測を示す図である。It is a figure which shows Embodiment 2 and shows the temperature measurement by the optical fiber measuring device in preparation of the ground improvement body by chemical | medical solution injection | pouring. 実施形態3を示すもので、測定用ロッドの先端部の構成を示す斜視図である。FIG. 9 is a perspective view illustrating a configuration of a distal end portion of a measuring rod according to a third embodiment.

以下に、本発明を実施するための形態について図面を用いて説明する。ただし、以下に述べる実施形態には、本発明を実施するために技術的に好ましい種々の限定が付されているが、発明の範囲を以下の実施形態及び図示例に限定するものではない。   EMBODIMENT OF THE INVENTION Below, the form for implementing this invention is demonstrated using drawing. However, although various technically preferable limitations for implementing the present invention are given to the embodiments described below, the scope of the invention is not limited to the following embodiments and illustrated examples.

(実施形態1)
図1は、本実施形態に係る地盤改良体の品質管理方法の施工状況を示す図であり、図2は、図1に示したII-II線に沿った面の矢視断面図であって地盤改良体5の断面を示して
いる。
(Embodiment 1)
FIG. 1 is a diagram showing a construction status of the quality control method for a ground improvement body according to the present embodiment, and FIG. 2 is a cross-sectional view taken along the line II-II shown in FIG. The cross section of the ground improvement body 5 is shown.

本実施形態に係る地盤改良体の品質管理方法は、高圧噴射攪拌工法により地盤改良体を造成するにあたり、その地盤改良体の径に代表される形状をリアルタイムで確認する方法である。図1及び図2を参照して、本実施形態に係る品質管理方法を行うための各装置について説明する。   The quality control method for the ground improvement body according to the present embodiment is a method for confirming the shape typified by the diameter of the ground improvement body in real time when creating the ground improvement body by the high-pressure jet stirring method. With reference to FIG.1 and FIG.2, each apparatus for performing the quality control method which concerns on this embodiment is demonstrated.

地上には、地盤改良体の造成を行う造成装置1が設置されるとともに、地盤改良体の品質管理を行う管理装置2が設置されている。造成装置1は、本体部11と、該本体部11に支持された噴射ロッド12とを備えている。噴射ロッド12は鉛直方向に延在し、鉛直方向に移動可能かつその鉛直方向を軸として回転可能な状態で支持されている。噴射ロッド12の先端部の側面には噴射孔13が形成され、この噴射孔13から硬化材液6が噴射ロッド12の側方に向けて高圧噴射されるようになっている。硬化材液6はセメントミルク等の液状の硬化材である。高圧噴射された硬化材液6により地盤が切削され、切削された地盤と硬化材液6とが攪拌混合されることにより、円柱形状の地盤改良体5が造成される。なお、噴射孔13から高圧噴射される液体は硬化材液6に限られるものではなく、水等であってもよい。   On the ground, a creation device 1 for creating a ground improvement body is installed, and a management device 2 for performing quality control of the ground improvement body is installed. The generating device 1 includes a main body 11 and an injection rod 12 supported by the main body 11. The injection rod 12 extends in the vertical direction, is supported in a state that it can move in the vertical direction and can rotate about the vertical direction. An injection hole 13 is formed in the side surface of the tip of the injection rod 12, and the curable material liquid 6 is injected from the injection hole 13 toward the side of the injection rod 12 at a high pressure. The curing material liquid 6 is a liquid curing material such as cement milk. The ground is cut by the high-pressure jetted hardened material liquid 6, and the ground and the hardened material liquid 6 that have been cut are mixed by stirring, whereby the cylindrical ground improvement body 5 is formed. The liquid ejected from the ejection hole 13 at a high pressure is not limited to the curable material liquid 6, and may be water or the like.

管理装置2は、光ファイバー測定器21〜23、データロガー24及びモニター25等を備える。光ファイバー測定器21〜23は、その基端部側がデータロガー24に接続され、先端部側が地中に設置されている。光ファイバー測定器21〜23は、表面の何れの点においても温度、ひずみ等を感知することができるものであり、地中の複数個所を同時に測定することができる。図2に示すように、光ファイバー測定器21〜23の先端部側は、地盤改良体5の径方向に沿って並んで配置されている。すなわち光ファイバー測定器22が地盤改良体5の外周縁に配置されており、光ファイバー測定器21がそれよりも内側、光ファイバー測定器22がそれよりも外側に配置されている。データロガー24は、光ファイバー測定器21〜23による測定結果を記録・保存するものであり、モニター25はその測定結果の履歴を画面上に表示するものである。
なお、光ファイバー測定器21〜23の先端部側の配置は、地盤改良体5の径方向に沿った並びでなくともよく、互いにずれて配置されていてもよい。また、光ファイバー測定器が設けられている数は3つに限られるものではなく、1又は2つであってもよいし、4つ以上あってもよい。
The management apparatus 2 includes optical fiber measuring devices 21 to 23, a data logger 24, a monitor 25, and the like. As for the optical fiber measuring devices 21-23, the base end part side is connected to the data logger 24, and the front-end | tip part side is installed in the ground. The optical fiber measuring devices 21 to 23 can sense temperature, strain, etc. at any point on the surface, and can simultaneously measure a plurality of locations in the ground. As shown in FIG. 2, the tip end sides of the optical fiber measuring devices 21 to 23 are arranged side by side along the radial direction of the ground improvement body 5. That is, the optical fiber measuring device 22 is disposed on the outer peripheral edge of the ground improvement body 5, the optical fiber measuring device 21 is disposed on the inner side, and the optical fiber measuring device 22 is disposed on the outer side. The data logger 24 records and stores the measurement results of the optical fiber measuring devices 21 to 23, and the monitor 25 displays the history of the measurement results on the screen.
In addition, the arrangement | positioning by the side of the front-end | tip part of the optical fiber measuring devices 21-23 may not be arranged along the radial direction of the ground improvement body 5, and may mutually be arrange | positioned and shifted | deviated. Further, the number of optical fiber measuring devices provided is not limited to three, but may be one or two, or four or more.

続いて、本実施形態に係る地盤改良体の品質管理方法について説明する。
本実施形態においては、高圧噴射攪拌工法によって所定深度に円柱形状の地盤改良体5を造成する場合について説明する。また本実施形態の一例として、地盤改良体5が造成される地盤の温度を光ファイバー測定器21〜23により測定した場合について説明する。
Then, the quality control method of the ground improvement body which concerns on this embodiment is demonstrated.
In this embodiment, the case where the cylindrical ground improvement body 5 is created at a predetermined depth by the high-pressure jet stirring method will be described. Moreover, the case where the temperature of the ground in which the ground improvement body 5 is created is measured with the optical fiber measuring devices 21-23 as an example of this embodiment is demonstrated.

まず、地盤改良体5を造成しようとする地盤を掘削して、所定深度のボーリング孔を地盤改良体5の径方向に所定間隔で3つ設ける。ボーリング孔の掘削深度及び間隔は測定範囲・測定条件に応じて適宜決定されるものであり、例えば3つのボーリング孔の間隔は50cm程度である。このボーリング孔に光ファイバー測定器21〜23を挿入設置する。光ファイバー測定器21〜23の設置が完了したら地盤改良前の地盤の温度を測定する。そして、光ファイバー測定器21〜23による温度測定はそのまま継続し、以下に述べる地盤改良中も連続的に行う。   First, the ground on which the ground improvement body 5 is to be created is excavated, and three bore holes having a predetermined depth are provided at predetermined intervals in the radial direction of the ground improvement body 5. The drilling depth and interval of the boreholes are appropriately determined according to the measurement range and measurement conditions. For example, the interval between the three boreholes is about 50 cm. Optical fiber measuring devices 21 to 23 are inserted and installed in the boreholes. When the installation of the optical fiber measuring devices 21 to 23 is completed, the temperature of the ground before the ground improvement is measured. And the temperature measurement by the optical fiber measuring devices 21-23 is continued as it is, and is continuously performed during the ground improvement described below.

続いて、地盤改良体5を造成しようとする地盤の地表面上に造成装置1を設置する。そして噴射ロッド12を所定の深度に達するまで下降させて、噴射ロッド12を地中に設置する。なお、噴射ロッド12は、その下端位置が標準的には10〜20m程度、最大では100m程度の深度に達するまで下降させることが可能である。   Subsequently, the creation device 1 is installed on the ground surface of the ground where the ground improvement body 5 is to be created. And the injection rod 12 is lowered | hung until it reaches a predetermined depth, and the injection rod 12 is installed in the ground. The injection rod 12 can be lowered until the lower end position reaches a depth of typically about 10 to 20 m, and about 100 m at the maximum.

次に、噴射ロッド12を回転させながら、所定位置に達するまで上方に所定長さずつ引き上げていき、同時に噴射孔13から硬化材液6を高圧噴射させる。高圧噴射された硬化材液6はその噴流エネルギーで噴射ロッド12の周囲の地盤を切削し、切削された地盤と硬化材液6とが攪拌混合される。これにより、噴射ロッド12を引き上げた位置までの間に地盤改良体5が造成される。このようにして造成される地盤改良体5の径は適宜変更可能であるが、例えば直径2〜8mである。   Next, while rotating the injection rod 12, it is pulled upward by a predetermined length until it reaches a predetermined position, and at the same time, the curable material liquid 6 is injected from the injection hole 13 at a high pressure. The hardened material liquid 6 sprayed at a high pressure cuts the ground around the jet rod 12 with the jet energy, and the ground thus cut and the hardened material liquid 6 are stirred and mixed. Thereby, the ground improvement body 5 is created until the position where the injection rod 12 is pulled up. The diameter of the ground improvement body 5 thus created can be changed as appropriate, and is, for example, 2 to 8 m in diameter.

ここで、上述の通り光ファイバー測定器21〜23による温度測定は、地盤改良体5の造成前から継続して行われ、地盤改良体5の造成中にも連続的に行われる。
光ファイバー測定器21〜23は、硬化材液6による噴流エネルギーが地盤を切削する際に発生する熱エネルギーを測定する。図2に示すように、光ファイバー測定器21,22は地盤改良体5の内側に配置されているため、光ファイバー測定器21,22は地盤改良体5(硬化材液6及び硬化材液6により切削された地盤)の温度を連続的に感知する。一方、光ファイバー測定器23は地盤改良体5の外側に配置されているため、光ファイバー測定器23は地盤改良体5(硬化材液6及び硬化材液6により切削された地盤)の周囲の地盤の温度を連続的に感知する。データロガー24は、光ファイバー測定器21〜23による測定結果を記録・保存する。モニター25は、データロガー24が記録した測定結果の履歴を画面上に表示する。また、モニター25が演算処理機能を備えている場合には、測定結果の履歴を表示すると同時に、光ファイバー測定器21〜23による測定結果に基づき地盤改良体5の径を推定し、これを画面上に表示するものとしてもよい。施工者は、モニター25に表示された測定結果の履歴を追跡することにより、地盤改良体5が適切な径で造成されているか否かを地盤改良体5の造成中にリアルタイムで確認することができる。これにより地盤改良体5の品質を適切に管理することができ、地盤改良体5が目的の径で造成されていない場合には施工者が早期に対応することができる。
なお、本実施形態において、光ファイバー測定器21〜23により測定する温度は、切削時に生じる熱エネルギーに限られるものではなく、硬化材液6の水和熱等をも測定可能である。
Here, as described above, the temperature measurement by the optical fiber measuring devices 21 to 23 is continuously performed before the ground improvement body 5 is formed, and is continuously performed during the formation of the ground improvement body 5.
The optical fiber measuring devices 21 to 23 measure thermal energy generated when the jet energy generated by the hardening material liquid 6 cuts the ground. As shown in FIG. 2, since the optical fiber measuring devices 21 and 22 are arranged inside the ground improvement body 5, the optical fiber measurement devices 21 and 22 are cut by the ground improvement body 5 (the hardening material liquid 6 and the hardening material liquid 6. The temperature of the ground is continuously detected. On the other hand, since the optical fiber measuring device 23 is disposed outside the ground improvement body 5, the optical fiber measurement device 23 is formed on the ground around the ground improvement body 5 (the ground cut by the hardened material liquid 6 and the hardened material liquid 6). Sensing temperature continuously. The data logger 24 records and stores the measurement results obtained by the optical fiber measuring devices 21 to 23. The monitor 25 displays a history of measurement results recorded by the data logger 24 on the screen. Further, when the monitor 25 has an arithmetic processing function, the history of the measurement results is displayed, and at the same time, the diameter of the ground improvement body 5 is estimated based on the measurement results by the optical fiber measuring devices 21 to 23, and this is displayed on the screen. It is good also as what is displayed on. The installer can confirm in real time during the formation of the ground improvement body 5 whether or not the ground improvement body 5 is formed with an appropriate diameter by tracking the history of the measurement results displayed on the monitor 25. it can. Thereby, the quality of the ground improvement body 5 can be managed appropriately, and when the ground improvement body 5 is not formed with the target diameter, the builder can cope early.
In the present embodiment, the temperature measured by the optical fiber measuring devices 21 to 23 is not limited to the thermal energy generated at the time of cutting, and the hydration heat of the curable material liquid 6 can also be measured.

本実施形態の作用効果について説明する。
本実施形態によれば、光ファイバー測定器21〜23が、硬化材液6が地盤を切削する際に生じる熱エネルギーを連続的に測定しその測定結果の履歴を追跡することにより、地盤改良体5が適切な径で造成されているかどうかをリアルタイムで確認することができる。地盤改良体5の径に代表される形状をリアルタイムで確認することができるので、地盤改良体5の品質を適切に管理することができる。
The effect of this embodiment is demonstrated.
According to this embodiment, the optical fiber measuring devices 21 to 23 continuously measure the thermal energy generated when the hardened material liquid 6 cuts the ground and track the history of the measurement results, thereby improving the ground improvement body 5. It is possible to confirm in real time whether or not is constructed with an appropriate diameter. Since the shape represented by the diameter of the ground improvement body 5 can be confirmed in real time, the quality of the ground improvement body 5 can be managed appropriately.

また、本実施形態では温度測定手段として光ファイバー測定器を用いているため、次のような作用効果を奏する。図3を参照してその作用効果について説明する。
図3(a)は温度測定手段として熱電対3を用いた場合、図3(b)は温度測定手段として光ファイバー測定器4を用いた場合について示す図である。熱電対3は、一般的に二種のケーブル31,32が被覆材34に覆われて構成され、ケーブル31,32が接触した接触部33において温度を感知できるようになっている。これに対し、光ファイバー測定器4は表面の何れの点においても温度を感知することが可能であるため、光ファイバー測定器1本で複数の点における温度を測定することができる。
In the present embodiment, since an optical fiber measuring instrument is used as the temperature measuring means, the following operational effects are obtained. The function and effect will be described with reference to FIG.
FIG. 3A shows a case where the thermocouple 3 is used as the temperature measuring means, and FIG. 3B shows a case where the optical fiber measuring device 4 is used as the temperature measuring means. The thermocouple 3 is generally configured by covering two types of cables 31 and 32 with a covering material 34 so that the temperature can be sensed at a contact portion 33 where the cables 31 and 32 are in contact with each other. On the other hand, since the optical fiber measuring device 4 can sense the temperature at any point on the surface, the temperature at a plurality of points can be measured with one optical fiber measuring device.

また、図3(a)に示すように、地盤改良体5の造成中に熱電対3が切断されてしまった場合、上述の通り熱電対3は接触部33で温度を感知しているため、切断箇所が接触部33よりも基端部側であると、ケーブル31,32の接触箇所がなくなり温度を測定することができなくなる。一方、図3(b)に示すように、地盤改良体5の造成中に光ファイバー測定器4が切断されてしまったとしても、その切断箇所よりも基端部側においては継続して温度を測定することが可能である。   Further, as shown in FIG. 3A, when the thermocouple 3 is cut during the formation of the ground improvement body 5, the thermocouple 3 senses the temperature at the contact portion 33 as described above. If the cut part is closer to the base end side than the contact part 33, the contact part of the cables 31 and 32 disappears and the temperature cannot be measured. On the other hand, as shown in FIG. 3 (b), even if the optical fiber measuring instrument 4 is cut during the formation of the ground improvement body 5, the temperature is continuously measured on the base end side from the cut portion. Is possible.

このように、本実施形態によれば温度測定手段として光ファイバー測定器を用いているので、複数の点の温度を同時に測定することができる。また、光ファイバー測定器が切断されてしまった場合においても、その切断箇所よりも基端部側においては継続して温度を測定することができる。   Thus, according to this embodiment, since the optical fiber measuring instrument is used as the temperature measuring means, the temperature at a plurality of points can be measured simultaneously. Further, even when the optical fiber measuring instrument has been cut, the temperature can be continuously measured on the base end side from the cut portion.

本実施形態においては、光ファイバー測定器21〜23が地盤の温度を測定するものとしたが、温度の代わりに地盤のひずみを測定するものとしてもよい。その場合には、光ファイバー測定器21〜23は、硬化材液6が地盤を切削する際に生じる地盤のひずみを連続的に感知する。温度を測定する場合には、地盤の切削で生じた熱エネルギーが光ファイバー測定器23に到達するまでに時間を要することにより、測定結果に僅かなタイムラグを生じる場合があるが、ひずみを測定する場合にはそのようなタイムラグが生じにくく、より実時間に沿った径に代表される形状の確認を行うことができる。
更に、光ファイバー測定器21〜23により、地盤の温度及び地盤のひずみの両方を測定するものとしてもよい。かかる場合には、どちらか一方を測定する場合に比べて測定結果の精度を更に向上させることができる。
In this embodiment, although the optical fiber measuring devices 21-23 shall measure the temperature of a ground, it is good also as what measures the distortion | strain of a ground instead of temperature. In that case, the optical fiber measuring devices 21 to 23 continuously sense the ground strain generated when the hardening material liquid 6 cuts the ground. When measuring temperature, it takes time for the thermal energy generated by cutting the ground to reach the optical fiber measuring instrument 23, which may cause a slight time lag in the measurement result. Such a time lag is unlikely to occur, and the shape represented by the diameter along the real time can be confirmed.
Furthermore, it is good also as what measures both the temperature of a ground and the distortion | strain of a ground with the optical fiber measuring devices 21-23. In such a case, the accuracy of the measurement result can be further improved compared to the case where either one is measured.

なお、本発明による地盤改良体の品質管理方法は、地盤改良体が円柱形状でない場合、例えば壁状、扇形、格子状その他の形状であっても適用可能である。   In addition, the quality control method of the ground improvement body by this invention is applicable, for example, even if it is a wall shape, a fan shape, a grid | lattice shape, etc., when a ground improvement body is not cylindrical shape.

(熱電対を用いた温度計測による、薬液注入による地盤改良体の造成範囲計測の問題)
薬液注入工法で造成する地盤改良体の造成範囲を計測する場合、従来、薬液の温度と地盤との温度差を比較し、地盤よりも高い温度で注入された薬液の温度を検知することで薬液の注入を確認する技術があり、それには熱電対という、電気抵抗の変化を用いて温度を測定することができる素子を用いている。
(Problem of measuring the range of ground improvement body by chemical injection by temperature measurement using thermocouple)
Conventionally, when measuring the construction range of the ground improvement body created by the chemical injection method, the temperature of the chemical injected at a higher temperature than the ground is detected by comparing the temperature difference between the chemical and the ground. There is a technique for confirming the injection of heat, which uses a thermocouple element that can measure the temperature by using a change in electrical resistance.

図4は薬液注入による地盤改良体の熱電対による温度計測の問題を指摘するもので、40は薬液注入して造成する地盤改良体、41は測定装置、42は測定ロッド、43は熱電対、44は配線である。   FIG. 4 points out the problem of temperature measurement by the thermocouple of the ground improvement body by chemical injection, 40 is a ground improvement body created by injecting chemical liquid, 41 is a measuring device, 42 is a measuring rod, 43 is a thermocouple, Reference numeral 44 denotes wiring.

図示のように、薬液注入して造成する地盤改良体40の薬液注入範囲に対応する熱電対43を備える測定ロッド42を予め地中に設置しておく。   As shown in the figure, a measuring rod 42 including a thermocouple 43 corresponding to the chemical solution injection range of the ground improvement body 40 formed by injecting the chemical solution is previously installed in the ground.

しかし、熱電対43による薬液の温度計測では、熱電対43は素子ひとつで一箇所しか測定できない。
このため、広範囲にわたり測定するためには、図示のように、非常に多くの熱電対43を設置しなくてはならない。
従って、図示のように、配線44が非常に多く煩雑になるといった問題がある。
However, in the temperature measurement of the chemical solution by the thermocouple 43, the thermocouple 43 can measure only one place with one element.
For this reason, in order to measure over a wide range, as shown in the figure, a great number of thermocouples 43 must be installed.
Therefore, as shown in the figure, there is a problem that the wiring 44 is very many and complicated.

(光ファイバー測定器を用いた温度計測による、薬液注入による地盤改良体の造成範囲計測)
本発明は、光ファイバーを用いて薬液注入範囲の測定を行うものである。
すなわち、連続した光ファイバーを地中に配置し、地盤よりも高い温度で注入された薬液の温度を計測することで薬液の注入範囲を測定する。
(Measurement range measurement of ground improvement by chemical injection by temperature measurement using optical fiber measuring instrument)
The present invention performs measurement of a chemical solution injection range using an optical fiber.
That is, a continuous injection optical fiber is placed in the ground, and the temperature of the chemical solution injected at a temperature higher than the ground is measured to measure the injection range of the chemical solution.

図5は薬液注入による地盤改良体の光ファイバー測定器による温度計測を示すもので、50は薬液注入して造成する地盤改良体、51は測定装置、52は測定ロッド、53は光ファイバー測定器、54は光ファイバーである。   FIG. 5 shows temperature measurement using an optical fiber measuring instrument for ground improvement by chemical injection, 50 is a ground improvement formed by chemical injection, 51 is a measuring device, 52 is a measuring rod, 53 is an optical fiber measuring instrument, 54 Is an optical fiber.

図示のように、薬液注入して造成する地盤改良体50の薬液注入範囲に対応する光ファイバー測定器53を備える測定ロッド52を予め地中に設置しておく。   As shown in the figure, a measuring rod 52 including an optical fiber measuring device 53 corresponding to the chemical solution injection range of the ground improvement body 50 formed by injecting the chemical solution is previously installed in the ground.

この光ファイバー測定器53により、光ファイバー54は測定箇所1箇所につき1本または2本で済むため、配線を簡略化することができる。   With this optical fiber measuring instrument 53, only one or two optical fibers 54 are required for each measurement point, so that wiring can be simplified.

図6は光ファイバー測定器53の具体的構成を拡大して示すもので、薬液注入して造成する地盤改良体50の薬液注入範囲に対応させて、測定ロッド52に対し2本の光ファイバー54が切れ目なく巻き付けられている。
なお、1本の光ファイバー54を切れ目なく巻き付けてもよい。
FIG. 6 is an enlarged view of a specific configuration of the optical fiber measuring device 53. Two optical fibers 54 are cut off from the measuring rod 52 in correspondence with the chemical solution injection range of the ground improvement body 50 formed by injecting the chemical solution. Wrapped without any problems.
One optical fiber 54 may be wound without a break.

(実施形態2)
図7は薬液注入による地盤改良体の造成中の光ファイバー測定器による温度計測を示すもので、60は薬液注入ロッド、70は薬液注入して造成する地盤改良体、72は測定ロッド、73は光ファイバー測定器である。
(Embodiment 2)
FIG. 7 shows temperature measurement by an optical fiber measuring instrument during the construction of a ground improvement body by chemical injection, 60 is a chemical injection rod, 70 is a ground improvement body formed by chemical injection, 72 is a measurement rod, and 73 is an optical fiber. It is a measuring instrument.

図示のように、地盤に挿入した薬液注入ロッド60から薬液注入して地盤改良体70を造成する工程において、その薬液注入範囲に対応して予め地中に設置しておいた測定ロッド72の光ファイバー測定器73により、造成中の地盤改良体70の温度を連続的に測定して、地上の図示しない測定装置によって地盤改良体70の径に代表される形状を測定する。   As shown in the figure, in the step of creating the ground improvement body 70 by injecting the chemical solution from the chemical injection rod 60 inserted into the ground, the optical fiber of the measuring rod 72 previously installed in the ground corresponding to the chemical injection range. The temperature of the ground improvement body 70 under construction is continuously measured by the measuring device 73, and the shape represented by the diameter of the ground improvement body 70 is measured by a measuring device (not shown) on the ground.

従って、薬液注入による造成中の地盤改良体70の出来形を直接計測して、確実に施工管理することができる。   Accordingly, it is possible to directly measure the finished shape of the ground improvement body 70 being created by the chemical solution injection, and to reliably perform the construction management.

(実施形態3)
図8は測定用ロッド80の先端部の構成を示すもので、81は薬液吐出孔、82はカメラ、83は光ファイバー測定器、84は光ファイバーである。
(Embodiment 3)
FIG. 8 shows the configuration of the tip of the measuring rod 80, 81 is a chemical solution discharge hole, 82 is a camera, 83 is an optical fiber measuring instrument, and 84 is an optical fiber.

図示のように、中空の測定用ロッド80の先端には、周囲に開口して薬液(例えばフェノール液)を吐出する薬液吐出孔81が形成されて、カメラ82が内蔵されるとともに、光ファイバー84を切れ目なく巻き付けた光ファイバー測定器83が内蔵されている。   As shown in the figure, at the tip of the hollow measuring rod 80, a chemical solution discharge hole 81 that opens to the periphery and discharges a chemical solution (for example, a phenol solution) is formed. An optical fiber measuring device 83 wound in a continuous manner is incorporated.

ここで、カメラ82の配線及び光ファイバー84は、測定用ロッド80の内部を通して、図示しない地上のモニターを含む測定装置に接続される。   Here, the wiring of the camera 82 and the optical fiber 84 are connected to a measuring device including a ground monitor (not shown) through the inside of the measuring rod 80.

このように、測定用ロッド80に光ファイバー測定器83を備えることで、地盤への薬液注入中に、注入範囲を連続的に計測して、地盤改良体の出来形を測定することができる。
また、測定用ロッド80にカメラ82を備えることで、地盤への薬液注入状況をモニターで見て確認することができる。
Thus, by providing the measuring rod 80 with the optical fiber measuring device 83, the injection range can be continuously measured during the injection of the chemical solution into the ground, and the finished shape of the ground improvement body can be measured.
Further, by providing the measuring rod 80 with the camera 82, it is possible to check the state of the chemical liquid injection into the ground with a monitor.

(変形例)
以上の図4、図5及び図7においては、球状の地盤改良体としたが、本発明はこれに限定されるものではなく、図1及び図2のような円柱形状の他、壁状その他の形状にも適用可能である。
(Modification)
In FIGS. 4, 5 and 7, the spherical ground improvement body is used. However, the present invention is not limited to this, and in addition to the cylindrical shape as shown in FIGS. It can be applied to other shapes.

1 造成装置
2 管理装置
5 高圧噴射して造成する地盤改良体
6 硬化材液
12 噴射ロッド
21 光ファイバー測定器
22 光ファイバー測定器
23 光ファイバー測定器
50 薬液注入して造成する地盤改良体
51 測定装置
52 測定ロッド
53 光ファイバー測定器
54 光ファイバー
60 薬液注入ロッド
70 薬液注入して造成する地盤改良体
72 測定ロッド
73 光ファイバー測定器
80 測定用ロッド
81 薬液吐出孔
82 カメラ
83 光ファイバー測定器
84 光ファイバー
DESCRIPTION OF SYMBOLS 1 Formation apparatus 2 Management apparatus 5 Ground improvement body created by high-pressure jet 6 Hardening material liquid 12 Injection rod 21 Optical fiber measuring device 22 Optical fiber measurement device 23 Optical fiber measurement device 50 Ground improvement body 51 formed by injecting chemical solution Measurement device 52 Measurement Rod 53 Optical fiber measuring device 54 Optical fiber 60 Chemical solution injection rod 70 Ground improvement body 72 formed by injecting chemical solution Measuring rod 73 Optical fiber measuring device 80 Measuring rod 81 Chemical solution discharge hole 82 Camera 83 Optical fiber measuring device 84 Optical fiber

Claims (6)

地盤に貫入させた噴射ロッドから硬化材液を高圧噴射して造成する地盤改良体の品質管理方法であって、
前記地盤改良体が造成される地盤に、予め、温度又はひずみの少なくとも一方を測定する光ファイバー測定器を設置する設置工程と、
前記地盤改良体の造成中に、前記地盤改良体が造成される地盤の温度又はひずみの少なくとも一方を前記光ファイバー測定器により連続的に測定し、その測定結果の履歴を追跡することによりリアルタイムで前記地盤改良体の径に代表される形状を確認する管理工程と、を備えることを特徴とする地盤改良体の品質管理方法。
It is a quality control method for a ground improvement body that is created by high-pressure jetting of a hardening material liquid from a jet rod penetrating into the ground,
In the ground where the ground improvement body is created, an installation step of installing an optical fiber measuring instrument that measures at least one of temperature and strain in advance,
During the creation of the ground improvement body, at least one of the temperature or strain of the ground on which the ground improvement body is created is continuously measured by the optical fiber measuring instrument, and the history of the measurement results is tracked in real time. A quality control method for a ground improvement body, comprising: a management step for confirming a shape represented by the diameter of the ground improvement body.
前記管理工程の前に、前記光ファイバー測定器により、前記地盤改良体が造成される地盤の温度を測定する工程を備えることを特徴とする請求項1に記載の地盤改良体の品質管理方法。   The quality control method for a ground improvement body according to claim 1, further comprising a step of measuring the temperature of the ground on which the ground improvement body is created by the optical fiber measuring instrument before the management step. 前記管理工程において、前記地盤改良体の造成中に、前記地盤改良体が造成される地盤の温度及びひずみの両方を前記光ファイバー測定器により連続的に測定することを特徴とする請求項1又は2に記載の地盤改良体の品質管理方法。   3. In the management step, during the creation of the ground improvement body, both the temperature and strain of the ground on which the ground improvement body is created are continuously measured by the optical fiber measuring instrument. Quality control method for ground improvement bodies as described in 1. 地盤に挿入した噴射ロッドから硬化材液を高圧噴射して造成する地盤改良体の径に代表される形状の測定方法であって、
前記地盤改良体を造成する地盤に、温度又はひずみの少なくとも一方を測定する光ファイバー測定器を挿入し、
前記地盤改良体の造成中に、前記地盤改良体が造成される地盤の温度又はひずみの少なくとも一方を前記光ファイバー測定器により連続的に測定することによって、前記地盤改良体の径に代表される形状を測定することを特徴とする地盤改良体の測定方法。
A method for measuring a shape typified by the diameter of a ground improvement body formed by high-pressure jetting of a hardening material liquid from a jet rod inserted into the ground,
Inserting an optical fiber measuring instrument for measuring at least one of temperature and strain into the ground for forming the ground improvement body,
During the formation of the ground improvement body, the shape represented by the diameter of the ground improvement body is obtained by continuously measuring at least one of the temperature or strain of the ground on which the ground improvement body is formed by the optical fiber measuring instrument. A method for measuring a ground improvement body, characterized by measuring
地盤に薬液を注入して造成する地盤改良体の径に代表される形状の測定方法であって、
前記地盤改良体を造成する地盤に、温度を測定する光ファイバー測定器を挿入し、
前記地盤改良体の造成中に、前記地盤改良体が造成される地盤の温度を前記光ファイバー測定器により連続的に測定することによって、前記地盤改良体の径に代表される形状を測定することを特徴とする地盤改良体の測定方法。
A method of measuring a shape represented by the diameter of a ground improvement body created by injecting a chemical into the ground,
Inserting an optical fiber measuring instrument for measuring temperature into the ground for creating the ground improvement body,
During the creation of the ground improvement body, by continuously measuring the temperature of the ground on which the ground improvement body is created by the optical fiber measuring instrument, measuring the shape typified by the diameter of the ground improvement body. A method for measuring a ground improvement body as a feature.
周囲の地盤の温度を測定する光ファイバー測定器を備えることを特徴とする測定用ロッド。   A measuring rod comprising an optical fiber measuring device for measuring the temperature of surrounding ground.
JP2011060283A 2010-04-01 2011-03-18 Quality control method for soil improvement body, measuring method and measuring rod Pending JP2011226250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011060283A JP2011226250A (en) 2010-04-01 2011-03-18 Quality control method for soil improvement body, measuring method and measuring rod

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010084930 2010-04-01
JP2010084930 2010-04-01
JP2011060283A JP2011226250A (en) 2010-04-01 2011-03-18 Quality control method for soil improvement body, measuring method and measuring rod

Publications (1)

Publication Number Publication Date
JP2011226250A true JP2011226250A (en) 2011-11-10

Family

ID=45041901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011060283A Pending JP2011226250A (en) 2010-04-01 2011-03-18 Quality control method for soil improvement body, measuring method and measuring rod

Country Status (1)

Country Link
JP (1) JP2011226250A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014237941A (en) * 2013-06-07 2014-12-18 ケミカルグラウト株式会社 Method and device for soil improvement management
CN104612131A (en) * 2014-12-22 2015-05-13 中国矿业大学 Rock and earth mass grouting method
JP2015151687A (en) * 2014-02-10 2015-08-24 三信建設工業株式会社 Method for setting construction specification and improvement body strength in high-pressure injection stirring method
JP2016020565A (en) * 2014-07-12 2016-02-04 前田建設工業株式会社 Formation method of ground improvement body
JP2016128752A (en) * 2015-01-09 2016-07-14 前田建設工業株式会社 Optical fiber thermometer, and method and device for controlling quality of ground improving body
JP2016128628A (en) * 2015-01-09 2016-07-14 前田建設工業株式会社 Optical fiber temperature gauge, quality management method of ground improvement body and quantity management device
US20160222619A1 (en) * 2013-09-03 2016-08-04 Keller Holding Gmbh Process and assembly for determining the radius of a ground element which can be produced by jet grouting
JP2017002464A (en) * 2015-06-04 2017-01-05 小野田ケミコ株式会社 Method and device for checking improvement radius of improvement body
JP2017155589A (en) * 2017-06-19 2017-09-07 ケミカルグラウト株式会社 Ground improvement management method and device
JP2019073941A (en) * 2017-10-18 2019-05-16 株式会社不動テトラ Management method of construction of soil improvement body
WO2019114998A1 (en) * 2017-12-15 2019-06-20 Redrock Ventures B.V. Method for control of expansive grouting technique
JP2019167704A (en) * 2018-03-22 2019-10-03 鹿島建設株式会社 Grout material injection device and injection method
US10760236B2 (en) 2017-12-15 2020-09-01 Redrock Ventures B.V. System and method for real-time displacement control using expansive grouting techniques
JP2022107219A (en) * 2021-01-08 2022-07-21 若築建設株式会社 Evaluation method and evaluation system of construction finished shape of solidified and improved ground
JP7310085B2 (en) 2019-12-23 2023-07-19 株式会社竹中工務店 SOIL IMPROVEMENT JUDGMENT PIPE AND SOIL IMPROVEMENT DETERMINATION METHOD

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61274013A (en) * 1985-05-30 1986-12-04 Ohbayashigumi Ltd Measurement of improving range of ground in chemical grout injection work
JPH05239825A (en) * 1992-02-27 1993-09-17 Kajima Corp Schedule control method of foundation improvement construction utlizing jet
JP2003232043A (en) * 2002-02-06 2003-08-19 Oki Electric Ind Co Ltd Detector for abnormal soil, detection system for abnormal soil, and its detection method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61274013A (en) * 1985-05-30 1986-12-04 Ohbayashigumi Ltd Measurement of improving range of ground in chemical grout injection work
JPH05239825A (en) * 1992-02-27 1993-09-17 Kajima Corp Schedule control method of foundation improvement construction utlizing jet
JP2003232043A (en) * 2002-02-06 2003-08-19 Oki Electric Ind Co Ltd Detector for abnormal soil, detection system for abnormal soil, and its detection method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014237941A (en) * 2013-06-07 2014-12-18 ケミカルグラウト株式会社 Method and device for soil improvement management
US10053831B2 (en) * 2013-09-03 2018-08-21 Keller Holding Gmbh Process and assembly for determining the radius of a ground element which can be produced by jet grouting
US20160222619A1 (en) * 2013-09-03 2016-08-04 Keller Holding Gmbh Process and assembly for determining the radius of a ground element which can be produced by jet grouting
JP2015151687A (en) * 2014-02-10 2015-08-24 三信建設工業株式会社 Method for setting construction specification and improvement body strength in high-pressure injection stirring method
JP2016020565A (en) * 2014-07-12 2016-02-04 前田建設工業株式会社 Formation method of ground improvement body
CN104612131A (en) * 2014-12-22 2015-05-13 中国矿业大学 Rock and earth mass grouting method
JP2016128752A (en) * 2015-01-09 2016-07-14 前田建設工業株式会社 Optical fiber thermometer, and method and device for controlling quality of ground improving body
JP2016128628A (en) * 2015-01-09 2016-07-14 前田建設工業株式会社 Optical fiber temperature gauge, quality management method of ground improvement body and quantity management device
JP2017002464A (en) * 2015-06-04 2017-01-05 小野田ケミコ株式会社 Method and device for checking improvement radius of improvement body
JP2017155589A (en) * 2017-06-19 2017-09-07 ケミカルグラウト株式会社 Ground improvement management method and device
JP2019073941A (en) * 2017-10-18 2019-05-16 株式会社不動テトラ Management method of construction of soil improvement body
WO2019114998A1 (en) * 2017-12-15 2019-06-20 Redrock Ventures B.V. Method for control of expansive grouting technique
US10760236B2 (en) 2017-12-15 2020-09-01 Redrock Ventures B.V. System and method for real-time displacement control using expansive grouting techniques
CN111684043A (en) * 2017-12-15 2020-09-18 红石冒险有限公司 System and method for real-time displacement control by expansion grouting technology
JP2019167704A (en) * 2018-03-22 2019-10-03 鹿島建設株式会社 Grout material injection device and injection method
JP7310085B2 (en) 2019-12-23 2023-07-19 株式会社竹中工務店 SOIL IMPROVEMENT JUDGMENT PIPE AND SOIL IMPROVEMENT DETERMINATION METHOD
JP2022107219A (en) * 2021-01-08 2022-07-21 若築建設株式会社 Evaluation method and evaluation system of construction finished shape of solidified and improved ground
JP7127163B2 (en) 2021-01-08 2022-08-29 若築建設株式会社 Evaluation method and evaluation system for completed form of solidified improved ground

Similar Documents

Publication Publication Date Title
JP2011226250A (en) Quality control method for soil improvement body, measuring method and measuring rod
EP3102937B1 (en) Method of monitoring subsurface concrete structures
AU2013396723B2 (en) Arrangement for controlling percussive drilling process
JP5071858B2 (en) Ready-made pile construction management equipment
JP7311244B2 (en) Ground evaluation system and ground evaluation method
EP2987948B1 (en) Drill rod tallying system and method
JP4886921B2 (en) Effective diameter confirmation method of ground improvement body
US10053831B2 (en) Process and assembly for determining the radius of a ground element which can be produced by jet grouting
JP6874378B2 (en) Support layer arrival judgment method and judgment support system
JP6911356B2 (en) Support layer arrival judgment method and judgment support system
KR20160035642A (en) Device for measuring thermal resistivity of soil
JP2009109394A (en) Method of installing monitoring instrument into rock bed
KR20150107992A (en) The Measurement Apparatus and Method Measuring the Depth of the Ground that has been Drilled Using a Mandrel Perforating Apparatus
KR101378732B1 (en) Composition of a square shape using high pressure jet grouting techniques Retaining Wall Composition Method
JP6976806B2 (en) Construction management method of ground improvement body
JP2017002464A (en) Method and device for checking improvement radius of improvement body
JP2007010473A (en) Position measuring method of base rock injection material
JP6451929B2 (en) Method of embedding measuring equipment
KR100643716B1 (en) The judgmentt methods of the grouting-result using the heating device and the temperature-monitoring equipments
JP3235927B2 (en) Super high pressure injection type ground improvement method
JP7389712B2 (en) Filling detection device and filling detection system
KR20180086998A (en) Ground improvement system by high pressure jet grouting
JP6873462B2 (en) Outer edge confirmation device for ground improvement body
CN106592654A (en) Monitoring method for perpendicularity of steel pipe pile
JPH05149820A (en) Detecting method of water leakage in retaining wall

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150331