JP2022107219A - Evaluation method and evaluation system of construction finished shape of solidified and improved ground - Google Patents

Evaluation method and evaluation system of construction finished shape of solidified and improved ground Download PDF

Info

Publication number
JP2022107219A
JP2022107219A JP2021002026A JP2021002026A JP2022107219A JP 2022107219 A JP2022107219 A JP 2022107219A JP 2021002026 A JP2021002026 A JP 2021002026A JP 2021002026 A JP2021002026 A JP 2021002026A JP 2022107219 A JP2022107219 A JP 2022107219A
Authority
JP
Japan
Prior art keywords
ground
improved ground
cone
solidified
reagent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021002026A
Other languages
Japanese (ja)
Other versions
JP7127163B2 (en
Inventor
健太 水野
Kenta Mizuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wakachiku Construction Co Ltd
Original Assignee
Wakachiku Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wakachiku Construction Co Ltd filed Critical Wakachiku Construction Co Ltd
Priority to JP2021002026A priority Critical patent/JP7127163B2/en
Publication of JP2022107219A publication Critical patent/JP2022107219A/en
Application granted granted Critical
Publication of JP7127163B2 publication Critical patent/JP7127163B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide an evaluation method and an evaluation system of a construction finished shape of a solidified and improved ground which can highly accurately and efficiently evaluate the construction finished shape of the solidified and improved ground.SOLUTION: An evaluation method of a construction finished shape of a solidified and improved ground includes: a penetration step (procedure 3) of imaging an image before coloring (video after construction P3) of the solidified and improved ground by a camera provided on a cone when the cone penetrates through the solidified and improved ground; and a pulling-up step (procedure 4) of spraying a reagent to the solidified and improved ground from a reagent spray part provided on the cone when the cone is pulled up from the solidified and improved ground, and imaging an image after coloring (video after construction P4) of the solidified and improved ground by the camera.SELECTED DRAWING: Figure 2

Description

本開示は、固化改良地盤の造成出来形の評価方法及び評価システムに関する。 The present disclosure relates to an evaluation method and an evaluation system for the formed form of solidified improved ground.

深層混合処理工法における固化改良地盤の造成出来形を造成直後に確認できる効率的な調査方法が求められている。例えば特許文献1には、高圧噴射攪拌式の深層混合処理工法において、注入ロッドの貫入位置から径方向外側の改良端部の位置にカメラ付きコーンを貫入して、カメラの撮像画像に基づき改良地盤の造成径を確認する評価方法が記載されている。 There is a need for an efficient survey method that can confirm the formation of solidified improved ground in the deep mixing treatment method immediately after construction. For example, in Patent Document 1, in a high-pressure injection stirring type deep mixing process method, a cone with a camera is penetrated from the penetration position of the injection rod to the position of the improved end portion on the outer side in the radial direction, and the improved ground is based on the image captured by the camera. The evaluation method for confirming the created diameter of the above is described.

特許第4886921号公報Japanese Patent No. 4886921

しかしながら特許文献1などに記載される従来の評価方法では、固化改良地盤の造成出来形の評価を高精度かつ効率的に行う点で改善の余地がある。 However, the conventional evaluation method described in Patent Document 1 and the like has room for improvement in that the evaluation of the formed form of the solidified improved ground is performed with high accuracy and efficiency.

本開示は、固化改良地盤の造成出来形の評価を高精度かつ効率的に行うことができる固化改良地盤の造成出来形の評価方法及び評価システムを提供することを目的とする。 It is an object of the present disclosure to provide an evaluation method and an evaluation system for the formed form of solidified improved ground, which can evaluate the formed formed form of solidified improved ground with high accuracy and efficiency.

本発明の実施形態の一観点に係る固化改良地盤の造成出来形の評価方法は、深層混合処理工法における固化改良地盤の造成出来形の評価方法であって、前記固化改良地盤にコーンを貫入したときに前記コーンに設けられるカメラにより前記固化改良地盤の着色前画像を撮像する貫入工程と、前記固化改良地盤からの前記コーンの引き上げ時に前記コーンに設けられる試薬散布部から試薬を前記固化改良地盤に散布して前記カメラにより前記固化改良地盤の着色後画像を撮像する引き上げ工程と、を含む。 The method for evaluating the formed form of the solidified improved ground according to one aspect of the embodiment of the present invention is the method for evaluating the formed formed form of the solidified improved ground in the deep mixing treatment method, in which a cone is penetrated into the solidified improved ground. Occasionally, a penetration step of capturing a pre-colored image of the solidified improved ground by a camera provided on the cone and a reagent spraying portion provided on the cone when the cone is pulled up from the solidified improved ground are used to obtain the solidified ground. Includes a pulling step of spraying on the ground and taking an image of the solidified improved ground after coloring with the camera.

同様に、本発明の実施形態の一観点に係る固化改良地盤の造成出来形の評価システムは、深層混合処理工法における固化改良地盤の造成出来形の評価システムであって、カメラと試薬散布部とを有するコーンと、制御装置と、を備え、前記制御装置は、改良地盤に前記コーンを貫入し、引き抜く動作を制御するコーン制御部と、前記コーンの引き上げ時に試薬を前記固化改良地盤に散布するよう前記試薬散布部を制御する試薬制御部と、前記改良地盤に前記コーンを貫入したときに前記固化改良地盤の着色前画像を撮像し、前記コーンの引き上げ時に前記試薬散布部から試薬を前記固化改良地盤に散布した後に前記固化改良地盤の着色後画像を撮像するよう、前記カメラを制御する撮像制御部と、を有する。 Similarly, the evaluation system for the formed form of the solidified improved ground according to one aspect of the embodiment of the present invention is an evaluation system for the formed form of the solidified improved ground in the deep mixing treatment method, and includes a camera and a reagent spraying portion. The control device includes a cone control unit that controls an operation of penetrating and pulling out the cone into the improved ground, and sprays a reagent onto the solidified improved ground when the cone is pulled up. The reagent control unit that controls the reagent spraying unit and the pre-colored image of the solidification improved ground when the cone is penetrated into the improved ground are imaged, and the reagent is solidified from the reagent spraying unit when the cone is pulled up. It has an imaging control unit that controls the camera so as to capture an image after coloring of the solidified improved ground after spraying on the improved ground.

本開示によれば、固化改良地盤の造成出来形の評価を高精度かつ効率的に行うことができる固化改良地盤の造成出来形の評価方法及び評価システムを提供することができる。 According to the present disclosure, it is possible to provide an evaluation method and an evaluation system for the formed form of the solidified improved ground, which can evaluate the formed formed form of the solidified improved ground with high accuracy and efficiency.

実施形態に係る固化改良地盤の造成出来形の評価システムの概略構成を示す図The figure which shows the schematic structure of the evaluation system of the formation completion form of the solidification improvement ground which concerns on embodiment. 実施形態における固化改良地盤の造成出来形の評価方法の手順を示す図The figure which shows the procedure of the evaluation method of the formation completion form of solidification improvement ground in an embodiment. 本実施形態における試薬散布前後の改良地盤の撮像方法を説明する模式図Schematic diagram for explaining the method of imaging the improved ground before and after spraying the reagent in this embodiment. 地盤改良前後の三成分の計測データの一例を示す図Diagram showing an example of measurement data of three components before and after ground improvement 手順1~4の各段階の地盤画像の一例を示す図The figure which shows an example of the ground image of each stage of steps 1 to 4. 機械攪拌式の深層混合処理工法の概略を説明する模式図Schematic diagram illustrating the outline of the mechanical stirring type deep mixing process method 機械撹拌式の深層混合処理工法における撹拌不足時の造成後映像の一例を示す図The figure which shows an example of the post-creation image at the time of insufficient stirring in the mechanical stirring type deep-layer mixing processing method.

以下、添付図面を参照しながら実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。 Hereinafter, embodiments will be described with reference to the accompanying drawings. In order to facilitate understanding of the description, the same components are designated by the same reference numerals as much as possible in each drawing, and duplicate description is omitted.

図1を参照して、実施形態に係る、深層混合処理工法における固化改良地盤の造成出来形の評価システム1(以下では単に「評価システム1」とも表記する)の構成について説明する。図1は、実施形態に係る固化改良地盤11の造成出来形の評価システム1の概略構成を示す図である。 With reference to FIG. 1, the configuration of the evaluation system 1 (hereinafter, also simply referred to as “evaluation system 1”) of the formed solidified ground in the deep mixing treatment method according to the embodiment will be described. FIG. 1 is a diagram showing a schematic configuration of an evaluation system 1 for a completed form of solidified improved ground 11 according to an embodiment.

図1に示すように、評価システム1は、コーン2と、制御装置6とを備える。評価システム1は、深層混合処理工法における固化改良地盤11の所定位置にデータ取得用のコーン2を貫入して必要なデータを取得し、取得したデータに基づき固化改良地盤11の造成出来形を評価する。ここで「出来形」とは、工事の目標物のできあがった部分や、工事施工が完了した部分のことを言い、本実施形態では固化改良地盤11のことを指す。 As shown in FIG. 1, the evaluation system 1 includes a cone 2 and a control device 6. The evaluation system 1 penetrates the cone 2 for data acquisition into a predetermined position of the solidified improved ground 11 in the deep mixing treatment method to acquire necessary data, and evaluates the formed form of the solidified improved ground 11 based on the acquired data. do. Here, the “finished form” refers to a portion where the target object of the construction is completed or a portion where the construction work is completed, and in the present embodiment, it refers to the solidified improved ground 11.

図1では、深層混合処理工法のうち高圧噴射攪拌式の場合を例示する。高圧噴射攪拌式では、地盤10において改良したい範囲の中心にロッド貫入穴12を開け、ロッド貫入穴12に貫入された注入ロッド(図示せず)から水平方向、かつ、ロッド貫入孔12を中心とする径方向外側に向けてセメントスラリーを超高圧、大流量で噴射して、周囲の土砂を切削しながら混合撹拌することで固化改良地盤11を生成する。したがって、この固化改良地盤11は、理想的にはロッド貫入孔12を軸心とする略円柱状に形成される。 FIG. 1 illustrates the case of the high-pressure injection stirring method among the deep-layer mixing treatment methods. In the high-pressure injection stirring type, a rod penetration hole 12 is formed in the center of the range to be improved in the ground 10, and the injection rod (not shown) penetrated into the rod penetration hole 12 is horizontal and centered on the rod penetration hole 12. A solidified improved ground 11 is generated by injecting a cement slurry toward the outer side in the radial direction at an ultra-high pressure and a large flow rate, and mixing and stirring while cutting the surrounding earth and sand. Therefore, the solidified improved ground 11 is ideally formed in a substantially columnar shape centered on the rod penetration hole 12.

このような改良地盤11の所望の略円柱形状の軸心から外周面までの距離を、本実施形態では「設計改良径」とよび、図1ではその位置を符号13で示す。なお、一般的な高圧噴射攪拌式の工法では、この設計改良径の条件を満たす改良地盤11をより確実に形成できるように、実際に形成される改良地盤11は設計改良径より径方向外側まではみ出るように形成される場合が多い。すなわち、所定の設計改良径よりも大径で造成出来形が形成される。このため図1の例では、設計改良径の位置13は、改良地盤11の外周側端部よりも軸心(ロッド貫入孔12)側に入った位置となっている。 The distance from the axial center of the desired substantially cylindrical shape of the improved ground 11 to the outer peripheral surface is referred to as a "design improvement diameter" in the present embodiment, and the position thereof is indicated by reference numeral 13 in FIG. In the general high-pressure injection stirring method, the actually formed improved ground 11 extends from the design improved diameter to the outside in the radial direction so that the improved ground 11 satisfying the condition of the design improved diameter can be formed more reliably. It is often formed so as to protrude. That is, the created shape is formed with a diameter larger than the predetermined design improvement diameter. Therefore, in the example of FIG. 1, the position 13 of the design improvement diameter is a position closer to the axis (rod penetration hole 12) side than the outer peripheral side end portion of the improved ground 11.

高圧噴射攪拌式では、ロッド貫入穴12の位置から径方向外側に所定の設計改良径をとる位置13、すなわち所望の円柱形状の外周の位置にまで固化改良地盤11が存在するか否かを判定することで、固化改良地盤11の造成出来形を評価することができる。例えば、設計改良径の位置13に固化改良地盤11が生成されている場合、固化改良地盤11が所望の範囲の全域に問題なく生成されており、出来形が満足できるものであると評価できる。一方、設計改良径の位置13にて固化改良地盤11が生成されていない、または、一部のみに生成されている場合、固化改良地盤11が所望の範囲の全域に行き渡っておらず、出来形に問題があると評価できる。 In the high-pressure injection stirring type, it is determined whether or not the solidification improved ground 11 exists from the position of the rod penetration hole 12 to the position 13 where a predetermined design improvement diameter is taken outward in the radial direction, that is, the position of the outer circumference of the desired cylindrical shape. By doing so, it is possible to evaluate the formed shape of the solidified improved ground 11. For example, when the solidified improved ground 11 is generated at the position 13 of the design improved diameter, it can be evaluated that the solidified improved ground 11 is generated in the entire desired range without any problem and the finished shape is satisfactory. On the other hand, when the solidified improved ground 11 is not generated or is generated only partially at the position 13 of the design improved diameter, the solidified improved ground 11 does not spread over the entire desired range, and the finished product. Can be evaluated as having a problem.

本実施形態の評価システム1では、高圧噴射攪拌式の深層混合処理工法の出来形を評価する場合には、図1に示すように、ロッド貫入孔12から径方向外側に所定の設計改良径だけ離れた位置13(以下では「コーン貫入位置13」ともいう)にて、コーン2を地盤10に貫入して評価用のデータを取得する。 In the evaluation system 1 of the present embodiment, when evaluating the finished shape of the high-pressure injection stirring type deep mixing treatment method, as shown in FIG. 1, only a predetermined design improvement diameter is radially outward from the rod penetration hole 12. At a distant position 13 (hereinafter, also referred to as “cone penetration position 13”), the cone 2 is penetrated into the ground 10 to acquire evaluation data.

コーン2は、例えば図1に示すように略円柱形状に形成され、先端部が尖って地盤10に貫入しやすく形成されている。コーン2は、カメラ3と、試薬散布部4と、駆動装置5とを有する。コーン2は、例えば、既存の三成分静的コーンに、カメラ3及び試薬散布部4の機能を追加することで実現できる。三成分静的コーンとは、地盤性状を調査するための三成分コーン貫入試験(Cone Penetration Test:CPT)に用いられる装置であり、地盤に貫入中の各位置において地盤性状に関する三成分(貫入抵抗、周面摩擦、間隙水圧)を計測する装置である。 As shown in FIG. 1, for example, the cone 2 is formed in a substantially cylindrical shape, and the tip portion is sharpened so as to easily penetrate into the ground 10. The cone 2 has a camera 3, a reagent spraying unit 4, and a driving device 5. The cone 2 can be realized, for example, by adding the functions of the camera 3 and the reagent spraying unit 4 to the existing three-component static cone. A three-component static cone is a device used for a three-component cone penetration test (CPT) for investigating ground properties, and is a device related to ground properties at each position during penetration into the ground (penetration resistance). , Peripheral friction, pore water pressure).

カメラ3は、コーン2の貫入中に固化改良地盤11(または改良前地盤10)を撮像する。 The camera 3 images the solidified improved ground 11 (or the unimproved ground 10) during the penetration of the cone 2.

試薬散布部4は、コーン2の貫入中に固化改良地盤11(または改良前地盤10)へ試薬7(図3参照)を散布する。試薬7は、アルカリ性の物質を変色させる機能を有するものであり、例えばフェノールフタレイン水溶液である。試薬散布部4は、例えばコーン2の外部に試薬7を貯留するタンクを有し、ノズルなどの散布装置を用いて、コーン2の周面に開口される開口部からタンクに貯留されている試薬7を外部に散布する。試薬7を貯留するタンクは、例えば地表の駆動装置5や制御装置4の近傍に配置され、試薬7を供給可能なチューブなどを介してコーン2内部の試薬散布部4と接続されている。なお、試薬7を貯留するタンクがコーン2の内部に設けられる構成でもよい。 The reagent spraying unit 4 sprays the reagent 7 (see FIG. 3) on the solidified improved ground 11 (or the ground before improvement 10) during the penetration of the cone 2. Reagent 7 has a function of discoloring an alkaline substance, and is, for example, an aqueous solution of phenolphthalein. The reagent spraying unit 4 has, for example, a tank for storing the reagent 7 outside the cone 2, and the reagent stored in the tank through an opening opened on the peripheral surface of the cone 2 using a spraying device such as a nozzle. 7 is sprayed to the outside. The tank for storing the reagent 7 is arranged in the vicinity of the drive device 5 or the control device 4 on the ground surface, and is connected to the reagent spraying portion 4 inside the cone 2 via a tube or the like capable of supplying the reagent 7. The tank for storing the reagent 7 may be provided inside the cone 2.

駆動装置5は、コーン2を上下方向に移動させ、コーン2が改良地盤11に貫入される動作、または、地盤11に貫入されたコーン2を上方に引き抜く動作を実施する。駆動装置5は例えば地表のコーン貫入位置13の直上に設置される。 The drive device 5 moves the cone 2 in the vertical direction to perform an operation of the cone 2 penetrating into the improved ground 11 or an operation of pulling out the cone 2 penetrating into the ground 11 upward. The drive device 5 is installed, for example, directly above the cone penetration position 13 on the ground surface.

なお、特に本実施形態では、試薬散布部4は、コーン2の貫入方向(図1では下方)に対してカメラ3よりも後方(図1では上方)に配置される。この構成により、コーン2の引き抜き時に試薬散布部4から試薬7を散布すれば、試薬7によって着色された後の改良地盤11の画像をカメラ3により撮像できる。一方、先にコーン2を地盤10に貫入する際に、試薬散布部4を作動させずにカメラ3で撮像すれば、試薬7によって着色される前の改良地盤11の画像を撮像できる。したがって、貫入時に着色前の画像を撮像し、引き抜き時に着色後の画像を撮像できるので、同一のコーン貫入位置13にコーン2を貫入して引き抜くだけで、試薬による着色前後の同一位置の地盤の画像を撮像することができる。このように、コーン2の貫入と引き抜きという一往復の動作だけで2種類の画像を取得でき、効率的に評価を行うことができる。 In particular, in the present embodiment, the reagent spraying portion 4 is arranged behind the camera 3 (upper in FIG. 1) with respect to the penetration direction of the cone 2 (lower in FIG. 1). With this configuration, if the reagent 7 is sprayed from the reagent spraying portion 4 when the cone 2 is pulled out, the image of the improved ground 11 after being colored by the reagent 7 can be captured by the camera 3. On the other hand, when the cone 2 is first penetrated into the ground 10, if the image is taken by the camera 3 without operating the reagent spraying portion 4, the image of the improved ground 11 before being colored by the reagent 7 can be taken. Therefore, since the image before coloring can be captured at the time of penetration and the image after coloring can be captured at the time of pulling out, the cone 2 can be penetrated into the same cone penetration position 13 and pulled out, and the ground at the same position before and after coloring with the reagent can be imaged. Images can be captured. In this way, two types of images can be acquired only by one round-trip operation of penetrating and pulling out the cone 2, and evaluation can be performed efficiently.

制御装置6は、コーン2に設けられているカメラ3、試薬散布部4、駆動装置5の動作を制御する。また、制御装置6は、カメラ3から取得した画像などの各情報に基づき、固化改良地盤11の出来形を評価する。制御装置6は、これらの機能に関し、コーン制御部61、試薬制御部62、撮像制御部63、評価部64を有する。 The control device 6 controls the operations of the camera 3, the reagent spraying unit 4, and the driving device 5 provided on the cone 2. Further, the control device 6 evaluates the finished shape of the solidified improved ground 11 based on each information such as an image acquired from the camera 3. The control device 6 has a cone control unit 61, a reagent control unit 62, an imaging control unit 63, and an evaluation unit 64 with respect to these functions.

コーン制御部61は、駆動装置5を制御して、改良地盤11にコーン2を貫入し、引き抜く動作を制御する。 The cone control unit 61 controls the drive device 5 to control the operation of penetrating the cone 2 into the improved ground 11 and pulling it out.

試薬制御部62は、試薬散布部4による改良地盤11(または改良前地盤10)への試薬の散布タイミングを制御する。より詳細には、試薬制御部62は、コーン2の引き上げ時に、試薬を改良地盤11(または改良前地盤10)に散布してセメントミルクを含む部分を変色させるよう試薬散布部4を制御する。 The reagent control unit 62 controls the timing of spraying the reagent to the improved ground 11 (or the ground before improvement 10) by the reagent spraying unit 4. More specifically, the reagent control unit 62 controls the reagent spraying unit 4 so as to discolor the portion containing cement milk by spraying the reagent on the improved ground 11 (or the ground before improvement 10) when the cone 2 is pulled up.

撮像制御部63は、カメラ3による改良地盤11(または改良前地盤10)の撮像タイミングを制御する。より詳細には、撮像制御部63は、改良地盤11にコーン2を貫入したときに、固化改良地盤11の着色前画像(以下では「造成後映像P3」ともいう)を撮像し、改良地盤11からのコーン2の引き上げ時に、試薬散布部4から試薬を改良地盤11に散布して変色させた後の固化改良地盤11の着色後画像(以下では「造成後映像P4」ともいう)を撮像するよう、カメラ3を制御する。また、撮像制御部63は、改良前地盤10にコーン2を貫入したときに、改良前地盤10の着色前画像(以下では「改良前映像P1」ともいう)を撮像し、改良前地盤10からのコーン2の引き上げ時に、試薬散布部4から試薬を改良地盤11に散布した後の改良前地盤10の着色後画像(以下では「改良前映像P2」ともいう)を撮像するよう、カメラ3を制御する。 The image pickup control unit 63 controls the image pickup timing of the improved ground 11 (or the ground before improvement 10) by the camera 3. More specifically, when the cone 2 is penetrated into the improved ground 11, the imaging control unit 63 takes an image of the solidified improved ground 11 before coloring (hereinafter, also referred to as “post-creation image P3”), and the improved ground 11 When the cone 2 is pulled up from the ground, the solidified ground 11 is imaged after the reagent is sprayed from the reagent spraying portion 4 onto the improved ground 11 to discolor it (hereinafter, also referred to as “post-creation image P4”). The camera 3 is controlled so as to. Further, when the cone 2 is penetrated into the pre-improvement ground 10, the image pickup control unit 63 captures a pre-colored image of the pre-improvement ground 10 (hereinafter, also referred to as “pre-improvement image P1”) from the pre-improvement ground 10. When the cone 2 is pulled up, the camera 3 is moved so as to capture a post-colored image (hereinafter, also referred to as “pre-improvement image P2”) of the pre-improvement ground 10 after spraying the reagent from the reagent spraying portion 4 onto the improved ground 11. Control.

評価部64は、カメラ3により撮像された固化改良地盤11の着色前画像(造成後映像P3)及び着色後画像(造成後映像P4)などの情報に基づき、改良地盤11の出来形を評価する。また、評価部64は、改良前地盤10の着色前画像(改良前映像P1)または着色後画像(改良前映像P2)も利用して、改良地盤11の出来形を評価することもできる。さらに、評価部64は、改良前地盤10と改良地盤11の三成分(貫入抵抗、周面摩擦、間隙水圧)データを比較して、改良地盤11の出来形を評価することもできる。 The evaluation unit 64 evaluates the finished shape of the improved ground 11 based on the information such as the pre-colored image (post-creation image P3) and the post-colored image (post-creation image P4) of the solidified improved ground 11 captured by the camera 3. .. Further, the evaluation unit 64 can also evaluate the finished shape of the improved ground 11 by using the pre-colored image (pre-improved image P1) or the post-colored image (pre-improved image P2) of the pre-improved ground 10. Further, the evaluation unit 64 can also evaluate the finished shape of the improved ground 11 by comparing the data of the three components (penetration resistance, peripheral friction, pore water pressure) of the improved ground 10 and the improved ground 11.

制御装置6は、物理的には、CPU(Central Processing Unit)、主記憶装置であるRAM(Random Access Memory)およびROM(Read Only Memory)、入力デバイスであるキーボード及びマウス等の入力装置、ディスプレイ等の出力装置、ネットワークカード等のデータ送受信デバイスである通信モジュール、補助記憶装置、などを含むコンピュータシステムとして構成することができる。 The control device 6 is physically a CPU (Central Processing Unit), a main storage device such as a RAM (Random Access Memory) and a ROM (Read Only Memory), an input device such as a keyboard and a mouse as an input device, a display, and the like. It can be configured as a computer system including an output device, a communication module which is a data transmission / reception device such as a network card, an auxiliary storage device, and the like.

図1に示す制御装置6の各機能は、CPU、RAM等のハードウェア上に所定のコンピュータソフトウェアを読み込ませることにより、CPUの制御のもとで通信モジュール、入力装置、出力装置を動作させるとともに、RAMや補助記憶装置におけるデータの読み出し及び書き込みを行うことで実現される。すなわち、本実施形態に係る評価システム1の改良地盤の評価作業のための制御プログラムをコンピュータ上で実行させることで、制御装置6は、図1のコーン制御部61と、試薬制御部62と、撮像制御部63と、評価部64として機能する。 Each function of the control device 6 shown in FIG. 1 operates a communication module, an input device, and an output device under the control of the CPU by loading predetermined computer software on hardware such as a CPU and RAM. , It is realized by reading and writing data in a RAM or an auxiliary storage device. That is, by executing the control program for the evaluation work of the improved ground of the evaluation system 1 according to the present embodiment on the computer, the control device 6 includes the cone control unit 61, the reagent control unit 62, and the reagent control unit 62 in FIG. It functions as an image pickup control unit 63 and an evaluation unit 64.

なお、制御装置6は、図1に示す機能の一部のみを実施する構成でもよい。例えば評価部64の機能は制御装置6自体が備えず、外部装置が撮像画像に基づき出来形の評価を行う構成でもよい。 The control device 6 may be configured to perform only a part of the functions shown in FIG. For example, the function of the evaluation unit 64 may not be provided by the control device 6 itself, and an external device may be configured to evaluate the finished product based on the captured image.

図2を参照して、実施形態に係る、深層混合処理工法における固化改良地盤11の造成出来形の評価方法について説明する。図2は、実施形態における固化改良地盤11の造成出来形の評価方法の手順を示す図である。 With reference to FIG. 2, a method for evaluating the formed shape of the solidified improved ground 11 in the deep mixing treatment method according to the embodiment will be described. FIG. 2 is a diagram showing a procedure of an evaluation method of a formed form of the solidified improved ground 11 in the embodiment.

図2に示すように、本実施形態の評価方法は7段階の手順で行われる。以下手順1~手順7の内容を説明する。 As shown in FIG. 2, the evaluation method of the present embodiment is performed in a seven-step procedure. The contents of steps 1 to 7 will be described below.

手順1(事前貫入工程):改良前地盤10の貫入試験を実施する。この試験は、深層混合処理工法の施工前に行う。コーン2の貫入位置は、図1に示したように深層混合処理工法の高圧噴射攪拌式が正常に実施された場合の改良地盤11の設計改良径の位置13に相当する位置である。駆動装置5によりコーン2を地盤10に貫入しながら、改良前地盤10の三成分データ(貫入抵抗、周面摩擦、間隙水圧)と、カメラ3により撮像される原地盤(改良前地盤)10の映像データ(改良前映像P1)とを連続的に取得する。なお手順1では試薬散布部4による試薬の噴霧は行われない。手順1の処理は、制御装置6のコーン制御部61と撮像制御部63とにより実施される。 Step 1 (pre-penetration step): Perform an intrusion test of the ground 10 before improvement. This test is performed before the construction of the deep mixing treatment method. As shown in FIG. 1, the penetration position of the cone 2 is a position corresponding to the position 13 of the design improvement diameter of the improved ground 11 when the high-pressure injection stirring method of the deep mixing treatment method is normally carried out. While the cone 2 is penetrated into the ground 10 by the drive device 5, the three component data (penetration resistance, peripheral friction, pore water pressure) of the improved ground 10 and the original ground (pre-improved ground) 10 imaged by the camera 3 The video data (video P1 before improvement) is continuously acquired. In step 1, the reagent is not sprayed by the reagent spraying unit 4. The process of step 1 is carried out by the cone control unit 61 and the imaging control unit 63 of the control device 6.

手順2(事前引き上げ工程):引き続き、改良前地盤10の貫入試験において、貫入したコーン2を低速で引上げる。このとき、コーン2の試薬散布部4から試薬を連続的に噴霧し、試薬散布部4より下方に設置されるカメラ3により撮像される試薬散布後の原地盤(改良前地盤)10の映像データ(改良前映像P2)を連続的に取得する。手順2の処理は、制御装置6のコーン制御部61と、試薬制御部62と、撮像制御部63とにより実施される。 Step 2 (preliminary pulling step): Subsequently, in the penetration test of the ground 10 before improvement, the penetrated cone 2 is pulled up at a low speed. At this time, the reagent is continuously sprayed from the reagent spraying portion 4 of the cone 2, and the image data of the original ground (pre-improved ground) 10 after the reagent is sprayed, which is imaged by the camera 3 installed below the reagent spraying portion 4. (Video P2 before improvement) is continuously acquired. The process of step 2 is carried out by the cone control unit 61 of the control device 6, the reagent control unit 62, and the imaging control unit 63.

手順3(貫入工程):改良地盤11の貫入試験を実施する。この試験は、深層混合処理工法の施工直後(改良地盤11の硬化前、例えば造成終了後概ね3時間以内)に実施される。コーン2の貫入位置は、手順1と同一の設計改良径の位置13の位置が好ましい。コーン2を地盤10に貫入しながら、改良地盤11の三成分データ(貫入抵抗、周面摩擦、間隙水圧)と、カメラ3により撮像される着色前改良地盤11(セメントミルクと原地盤の撹拌状態)の映像データ(造成後映像P3)と、を連続的に取得する。なお手順3では試薬散布部4による試薬の噴霧は行われない。手順3の処理は、制御装置6のコーン制御部61と撮像制御部63とにより実施される。 Step 3 (Penetration step): Perform a penetration test of the improved ground 11. This test is carried out immediately after the construction of the deep mixing treatment method (before the improvement ground 11 is hardened, for example, within about 3 hours after the completion of the construction). The penetration position of the cone 2 is preferably the position 13 having the same design improvement diameter as in step 1. While penetrating the cone 2 into the ground 10, the three component data (penetration resistance, peripheral friction, pore water pressure) of the improved ground 11 and the pre-colored improved ground 11 (stirring state of cement milk and the original ground) imaged by the camera 3 ) Video data (post-creation video P3) and the video data are continuously acquired. In step 3, the reagent is not sprayed by the reagent spraying unit 4. The process of step 3 is carried out by the cone control unit 61 and the imaging control unit 63 of the control device 6.

手順4(引き上げ工程):引き続き、改良地盤11の貫入試験において、貫入したコーン2を低速で引上げる。このとき、手順2と同様に、コーン2の試薬散布部4から試薬を連続的に噴霧し、試薬散布部4より下方に設置されるカメラ3により撮像される試薬散布後の改良地盤(着色されたセメント成分)の映像データ(造成後映像P4)を連続的に取得する。手順4の処理は、制御装置6のコーン制御部61と、試薬制御部62と、撮像制御部63とにより実施される。 Step 4 (Pulling step): Subsequently, in the penetration test of the improved ground 11, the penetrated cone 2 is pulled up at a low speed. At this time, similarly to the procedure 2, the reagent is continuously sprayed from the reagent spraying portion 4 of the cone 2, and the improved ground (colored) after the reagent is sprayed, which is imaged by the camera 3 installed below the reagent spraying portion 4. Video data (video P4 after construction) of the reagent component) is continuously acquired. The process of step 4 is carried out by the cone control unit 61 of the control device 6, the reagent control unit 62, and the imaging control unit 63.

図3は、本実施形態における試薬散布前後の改良地盤11の撮像方法を説明する模式図である。図3(A)は貫入時の撮像を示し、図3(B)は引き上げ時の撮像を示す。図3(A)に示すように、貫入時にはコーン2が下方に移動しながらカメラ3で改良地盤11の各深度位置の画像を撮像する。このとき試薬散布部4は作動しておらず試薬は散布されていない。図3(A)は、上述の手順3に対応し、撮影対象を改良地盤11から改良前地盤10に置き換えれば手順1にも対応する。図3(A)に示す方法によって、試薬散布前の未着色の地盤を撮像することができる。 FIG. 3 is a schematic view illustrating an image pickup method of the improved ground 11 before and after spraying the reagent in the present embodiment. FIG. 3 (A) shows an image taken at the time of penetration, and FIG. 3 (B) shows an image taken at the time of pulling up. As shown in FIG. 3A, the camera 3 captures an image of each depth position of the improved ground 11 while the cone 2 moves downward at the time of penetration. At this time, the reagent spraying unit 4 is not operating and the reagent is not sprayed. FIG. 3A corresponds to the above-mentioned procedure 3, and if the imaging target is replaced from the improved ground 11 to the improved ground 10, the procedure 1 is also supported. By the method shown in FIG. 3A, the uncolored ground before spraying the reagent can be imaged.

一方、図3(B)に示すように、引き上げ時にはコーン2が上方に移動しながら、試薬散布部4から試薬7が改良地盤11の表面に噴霧される。試薬散布部4はカメラ3の上方に配置されるため、カメラ3が対向する改良地盤11の表面にはすべて試薬7が散布された状態となる。図3(B)は、上述の手順4に対応し、撮影対象を改良地盤11から改良前地盤10に置き換えれば手順2にも対応する。図3(B)に示す方法によって、試薬散布後の着色後の地盤を撮像することができる。 On the other hand, as shown in FIG. 3B, the reagent 7 is sprayed from the reagent spraying portion 4 onto the surface of the improved ground 11 while the cone 2 moves upward during pulling. Since the reagent spraying portion 4 is arranged above the camera 3, the reagent 7 is sprayed on the surface of the improved ground 11 on which the camera 3 faces. FIG. 3B corresponds to the above-mentioned procedure 4, and corresponds to the procedure 2 if the imaging target is replaced from the improved ground 11 to the improved ground 10. By the method shown in FIG. 3B, the ground after coloring after spraying the reagent can be imaged.

図2に戻り手順5以降の説明を続ける。 Returning to FIG. 2, the description of procedure 5 and subsequent steps will be continued.

手順5:第1のデータ分析が行われる。手順1にて取得した改良前地盤10の三成分データ(図2中の「三成分[1]」)と、手順3にて取得した改良地盤11の三成分データ(図2中の「三成分[3]」)とを比較する。具体的には、三成分[1]と[3]の貫入抵抗同士を比較し、周面摩擦同士を比較し、間隙水圧同士を比較する。手順5の処理は、制御装置6の評価部64により実施される。 Step 5: A first data analysis is performed. The three-component data of the improved ground 10 acquired in step 1 (“three components [1]” in FIG. 2) and the three-component data of the improved ground 11 acquired in step 3 (“three components” in FIG. 2). Compare with [3] ”). Specifically, the intrusive resistances of the three components [1] and [3] are compared, the peripheral frictions are compared, and the pore water pressures are compared. The process of step 5 is carried out by the evaluation unit 64 of the control device 6.

手順6:第2のデータ分析が行われる。手順1、手順2、手順3、手順4にてそれぞれ取得した計4段階の画像P1~P4を比較する。具体的には、造成後映像P3と造成後映像P4とを比較し、改良前映像P1と、造成後映像P3またはP4とを比較し、改良前映像P1と改良前映像P2とを比較する。手順6の処理は、制御装置6の評価部64により実施される。 Step 6: A second data analysis is performed. A total of four stages of images P1 to P4 acquired in steps 1, 2, 2, 3, and 4 are compared. Specifically, the post-creation video P3 and the post-creation video P4 are compared, the pre-improvement video P1 is compared with the post-creation video P3 or P4, and the pre-improvement video P1 and the pre-improvement video P2 are compared. The process of step 6 is carried out by the evaluation unit 64 of the control device 6.

手順7(評価工程):手順5の第1のデータ分析の結果と、手順6の第2のデータ分析の結果とに基づき、改良地盤11の出来形の評価が行われる。 Step 7 (evaluation step): Based on the result of the first data analysis in step 5 and the result of the second data analysis in step 6, the finished shape of the improved ground 11 is evaluated.

地盤改良が所定の設計改良径13の範囲まで問題なく行われていると判断するための三成分に基づく判断基準(判断基準1)は、本実施形態では下記の3つの条件をすべて満たすことである。下記の(1-1)、(1-2)、(1-3)の3条件は、改良地盤11が高濃度泥水状であることの特徴を示す。
(1-1)貫入抵抗値qcについて、qc_改良後がqc_改良前よりも低下し、かつ概ね一様な深度分布傾向を示していること。
(1-2)周面摩擦fsについて、砂質土と粘性土で明確な違いがあるfs_改良前と比較し、fs_改良後はqt_改良後と相似形の深度分布を示していること。
(1-3)間隙水圧uについて、u_改良後が泥水圧分布を示していること。
In this embodiment, the judgment criteria (judgment criteria 1) based on the three components for judging that the ground improvement has been carried out without any problem up to the range of the predetermined design improvement diameter 13 is that all of the following three conditions are satisfied. be. The following three conditions (1-1), (1-2), and (1-3) show the characteristic that the improved ground 11 is in a high-concentration muddy water state.
(1-1) Regarding the penetration resistance value qc, after qc_ improvement, it is lower than before qc_ improvement, and it shows a generally uniform depth distribution tendency.
(1-2) Regarding the peripheral friction fs, there is a clear difference between sandy soil and cohesive soil. Compared with before fs_improvement, after fs_improvement, the depth distribution is similar to that after qt_improvement. thing.
(1-3) Regarding the pore water pressure u, the mud water pressure distribution is shown after u_ improvement.

図4は、地盤改良前後の三成分の計測データの一例を示す図である。図4(A)の横軸は貫入抵抗qc(MN/m)を示し、図4(B)の横軸は周面摩擦fs(kN/m)を示し、図4(C)の横軸は間隙水圧u(kN/m)を示す。各図の縦軸は標高(m)、すなわちコーン2を挿入する孔の深度を示す。また、各図では、地盤改良前のグラフが点線で示され、地盤改良後のグラフが太い実線で示される。 FIG. 4 is a diagram showing an example of measurement data of three components before and after ground improvement. The horizontal axis of FIG. 4 (A) shows the penetration resistance qc (MN / m 2 ), the horizontal axis of FIG. 4 (B) shows the peripheral friction fs (kN / m 2 ), and the horizontal axis of FIG. 4 (C). The axis shows the pore water pressure u (kN / m 2 ). The vertical axis of each figure indicates the altitude (m), that is, the depth of the hole into which the cone 2 is inserted. Further, in each figure, the graph before the ground improvement is shown by a dotted line, and the graph after the ground improvement is shown by a thick solid line.

図4の例では、図4(A)より、貫入抵抗値qcについて、qc_改良後(太い実線)がqc_改良前(点線)よりも低下し、かつ概ね一様な深度分布傾向を示していることがわかる。また、図4(B)より、周面摩擦fsについて、砂質土と粘性土で明確な違いがあるfs_改良前(点線)と比較し、fs_改良後(太い実線)は、(A)のqt_改良後と相似形の深度分布を示していることがわかる。さらに、図4(C)より、間隙水圧uについて、u_改良後(太い実線)が泥水圧分布を示していること、すなわち略線形の深度分布傾向を示すことがわかる。したがって、図4の例では、上記の三成分に基づく判断基準(判断基準1)を満たすと評価できる。 In the example of FIG. 4, from FIG. 4 (A), with respect to the penetration resistance value qc, after qc_ improvement (thick solid line) is lower than before qc_ improvement (dotted line), and a substantially uniform depth distribution tendency is shown. You can see that. Further, from FIG. 4B, the peripheral friction fs is compared with that before fs_improvement (dotted line), where there is a clear difference between sandy soil and cohesive soil, and after fs_improvement (thick solid line), (A). It can be seen that the depth distribution is similar to that after qt_ improvement of). Further, from FIG. 4C, it can be seen that the pore water pressure u shows the mud water pressure distribution after u_ improvement (thick solid line), that is, it shows a substantially linear depth distribution tendency. Therefore, in the example of FIG. 4, it can be evaluated that the judgment criteria (judgment criteria 1) based on the above three components are satisfied.

また、手順7において、地盤改良が所定の設計改良径13の範囲まで問題なく行われていると判断するための地盤画像P1~P4に基づく判断基準(判断基準2)は、下記の(2-1)、(2-2)、(2-3)の3つの条件をすべて満たすことである。
(2-1)造成後映像P3と造成後映像P4との比較により、改良地盤11に試薬7による着色反応があること。
(2-2)改良前映像P1と、造成後映像P3またはP4との比較により、造成後(地盤改良後)に泥水状態であること。
(2-3)改良前映像P1と改良前映像P2との比較により、改良前地盤10に試薬7による着色反応が無く、アルカリ性地盤ではないこと。
Further, in step 7, the judgment criteria (judgment criteria 2) based on the ground images P1 to P4 for judging that the ground improvement is performed within the range of the predetermined design improvement diameter 13 without any problem are as follows (2-). All three conditions 1), (2-2), and (2-3) are satisfied.
(2-1) By comparing the post-creation image P3 and the post-creation image P4, the improved ground 11 has a coloring reaction by the reagent 7.
(2-2) By comparing the pre-improvement video P1 with the post-creation video P3 or P4, it is in a muddy state after construction (after ground improvement).
(2-3) By comparing the pre-improvement image P1 and the pre-improvement image P2, the pre-improvement ground 10 does not have a coloring reaction due to the reagent 7, and the ground is not alkaline.

図5は、手順1~4の各段階の地盤画像の一例を示す図である。図5(A)は改良前映像P1の一例である。改良前映像P1は地盤改良前の元の地盤10、すなわちセメントミルクが混合されていない地盤が写されているので、図5(A)に示すように、全体的に茶色などの暗い色となる。また、画像中の黒色の部分は地盤10内に存在する空隙である。なお、改良前地盤10がアルカリ性ではない場合には、改良前映像P2も図5(A)と同様の画像となる。 FIG. 5 is a diagram showing an example of the ground image of each stage of steps 1 to 4. FIG. 5A is an example of the video P1 before improvement. Since the image P1 before improvement shows the original ground 10 before ground improvement, that is, the ground where cement milk is not mixed, the color becomes dark as a whole, such as brown, as shown in FIG. 5 (A). .. Further, the black portion in the image is a void existing in the ground 10. If the ground 10 before improvement is not alkaline, the image P2 before improvement also has the same image as in FIG. 5 (A).

図5(B)は造成後映像P3の一例である。造成後映像P3は、改良地盤11、すなわち改良前地盤10にセメントミルクが撹拌されたものが写されているので、図5(B)に示すように、全体的に灰色や灰白色などの明るい色となる。また、地盤が撹拌されたことにより、図5(A)の改良前地盤10と比較して空隙の数が減少している。 FIG. 5B is an example of the post-creation video P3. The post-creation image P3 shows the improved ground 11, that is, the ground before improvement 10 in which cement milk is agitated. Therefore, as shown in FIG. 5 (B), a bright color such as gray or grayish white as a whole is shown. It becomes. Further, because the ground is agitated, the number of voids is reduced as compared with the ground before improvement 10 in FIG. 5 (A).

図5(C)は造成後映像P4の一例である。造成後映像P4は、改良地盤11に試薬7が塗布されて変色した部分Aが写されているので、図5(C)に示すように、図5(B)と比較して赤色などの変色部分Aが含まれる画像となる。 FIG. 5C is an example of the post-creation video P4. In the post-creation image P4, the portion A discolored by applying the reagent 7 to the improved ground 11 is shown. Therefore, as shown in FIG. 5 (C), the discoloration such as red as compared with FIG. The image includes the portion A.

図5の例では、図5(B)の造成後映像P3と図5(C)の造成後映像P4との比較により、造成後画像P4に試薬による変色領域Aが含まれるため、改良地盤11に試薬による着色反応があり、条件(2-1)を満たすことが示される。着色反応が有ることを確認できると、改良地盤11が撮像位置でセメントミルクを混合していることを判別できる。このように造成後映像P3、P4を比較することによって、着色反応の有無に着目して改良地盤11のセメントミルクの部分をより明確に識別することが可能となり、改良地盤11の出来形の評価を精度良くできる。 In the example of FIG. 5, by comparing the post-creation image P3 of FIG. 5 (B) with the post-creation image P4 of FIG. Has a coloring reaction with a reagent, and it is shown that the condition (2-1) is satisfied. If it can be confirmed that there is a coloring reaction, it can be determined that the improved ground 11 is mixed with cement milk at the imaging position. By comparing the images P3 and P4 after the formation in this way, it becomes possible to more clearly identify the cement milk portion of the improved ground 11 by paying attention to the presence or absence of the coloring reaction, and the evaluation of the finished shape of the improved ground 11 can be made. Can be done with high accuracy.

また、図5の例では、図5(A)の改良前映像P1と、図5(B)の造成後映像P3または図5(C)の造成後画像P4との比較により、造成後画像P3、P4の改良地盤11の灰白色や、変色領域Aの赤色が元の改良前地盤10には無く、地盤改良の撹拌によって発生したものと判定できるので、造成後(地盤改良後)に泥水状態であることが示される。このように改良前映像P1と造成後画像P3、P4とを比較することによって、改良前地盤10との相対的な変化を識別することが可能となり、改良地盤11による改質部分の抽出を精度よくできる。これにより、地盤画像に基づく改良地盤11の出来形の評価をさらに精度良くできる。 Further, in the example of FIG. 5, the post-creation image P3 is compared with the pre-improvement image P1 of FIG. 5 (A) and the post-creation image P3 of FIG. 5 (B) or the post-creation image P4 of FIG. 5 (C). , The grayish white color of the improved ground 11 of P4 and the red color of the discolored area A are not present in the original ground 10 before the improvement, and it can be determined that the ground was generated by the agitation of the ground improvement. It is shown that there is. By comparing the pre-improvement image P1 with the post-creation images P3 and P4 in this way, it is possible to identify the relative change with the pre-improvement ground 10, and the extraction of the modified portion by the improved ground 11 is accurate. I can do it well. As a result, the evaluation of the finished shape of the improved ground 11 based on the ground image can be made more accurate.

さらに、図5(A)の改良前映像P1と改良前映像P2との比較により、改良前映像P1と改良前映像P2との間に有意差が無い場合には、改良前地盤10に試薬による着色反応が無く、アルカリ性地盤ではないことが示される。このように改良前映像P1と改良前映像P2とを比較することによって、改良前地盤10の地質のアルカリ性有無を判別可能となり、改良地盤11による改質部分の抽出精度をさらに向上できる。これにより、地盤画像に基づく改良地盤11の出来形の評価の精度をさらに改善できる。 Further, by comparing the pre-improvement video P1 and the pre-improvement video P2 in FIG. 5 (A), if there is no significant difference between the pre-improvement video P1 and the pre-improvement video P2, the pre-improvement ground 10 is subjected to a reagent. There is no coloring reaction, indicating that the ground is not alkaline. By comparing the pre-improvement video P1 and the pre-improvement video P2 in this way, it is possible to determine whether or not the geology of the pre-improvement ground 10 is alkaline, and the extraction accuracy of the modified portion by the improved ground 11 can be further improved. As a result, the accuracy of evaluation of the finished shape of the improved ground 11 based on the ground image can be further improved.

以上より、図5の例では、地盤画像に基づく判断基準(判断基準2)を満たすと評価できる。 From the above, in the example of FIG. 5, it can be evaluated that the judgment criteria (judgment criteria 2) based on the ground image are satisfied.

図2に戻り、手順7では、上記の判断基準1、2の両方を満たすときに、出来形を満足すると判断することができる。手順7の処理は、制御装置6の評価部64により実施される。 Returning to FIG. 2, in step 7, it can be determined that the finished product is satisfied when both of the above criteria 1 and 2 are satisfied. The process of step 7 is carried out by the evaluation unit 64 of the control device 6.

なお、手順6の画像比較と、手順7の判断基準2は、一部のみを実施する構成でもよい。少なくとも手順6にて造成後映像P3と造成後映像P4との比較を行い、手順7にて条件(2-1)を満たすことを確認すればよい。または、手順6にてさらに改良前映像P1と、造成後映像P3またはP4との比較を行い、手順7にて条件(2-2)を満たすことも確認する構成、すなわち改良前映像P2による評価を省略する構成でもよい。 The image comparison in step 6 and the judgment criterion 2 in step 7 may be configured to carry out only a part. At least in step 6, the post-creation image P3 and the post-creation image P4 may be compared, and it may be confirmed in step 7 that the condition (2-1) is satisfied. Alternatively, the pre-improvement video P1 is further compared with the post-creation video P3 or P4 in step 6, and the condition (2-2) is also confirmed in step 7, that is, the evaluation by the pre-improvement video P2. May be omitted.

なお、上記実施形態では高圧噴射撹拌式の深層混合処理工法の場合を例示して説明したが、本実施形態の評価システム1及び評価方法は、機械撹拌式の深層混合処理工法にも適用できる。 In the above embodiment, the case of the high-pressure injection stirring type deep layer mixing treatment method has been described as an example, but the evaluation system 1 and the evaluation method of the present embodiment can also be applied to the mechanical stirring type deep layer mixing treatment method.

図6は、機械攪拌式の深層混合処理工法の概略を説明する模式図である。図6では、作業領域を平面視で示している。図6に示すように、機械攪拌式では、撹拌翼14の回転によって原位置土と改良材とを混合撹拌し、地中に円柱状の改良地盤11を造成する工法である。なお、図6では、2つの撹拌翼14を用いる二軸式が例示されている。 FIG. 6 is a schematic view illustrating an outline of a mechanical stirring type deep mixing treatment method. In FIG. 6, the work area is shown in a plan view. As shown in FIG. 6, the mechanical stirring type is a construction method in which the in-situ soil and the improving material are mixed and stirred by the rotation of the stirring blade 14 to create a columnar improved ground 11 in the ground. Note that FIG. 6 illustrates a biaxial type using two stirring blades 14.

図6に示す機械撹拌式の深層混合処理工法においても、地盤改良前後の作業領域(図中に符号11で示す部分)にコーン2を貫入して必要なデータを取得し、取得したデータに基づき固化改良地盤11の造成出来形を評価することができる。 Also in the mechanical stirring type deep mixing treatment method shown in FIG. 6, the cone 2 is penetrated into the work area (the part indicated by reference numeral 11 in the figure) before and after the ground improvement to acquire necessary data, and based on the acquired data. It is possible to evaluate the formed shape of the solidified improved ground 11.

なお、図6に示す機械撹拌式の深層混合処理工法では、物理的な要素である撹拌翼14によって撹拌が行われるため、高圧噴射攪拌式とは異なり、改良地盤11の外縁位置までは確実に撹拌が行われる。このため、機械撹拌式では、固化改良地盤11の造成出来形を評価するためのコーン2の貫入位置が、高圧噴射攪拌式の場合の設計改良径の位置13とは異なる。例えば図6に示すように、撹拌翼14の回転中心から改良地盤11の外縁との間の設計改良径の中間位置13A(改良中間部)にて、固化改良地盤11が存在するか否かを判定することで、固化改良地盤11の全体の品質を評価でき、これにより固化改良地盤11の造成出来形を評価することができる。 In the mechanical stirring type deep mixing treatment method shown in FIG. 6, since stirring is performed by the stirring blade 14 which is a physical element, unlike the high pressure injection stirring method, the outer edge position of the improved ground 11 is surely reached. Stirring is done. Therefore, in the mechanical stirring type, the penetration position of the cone 2 for evaluating the formed shape of the solidification improved ground 11 is different from the position 13 of the design improvement diameter in the case of the high pressure injection stirring type. For example, as shown in FIG. 6, whether or not the solidified improved ground 11 exists at the intermediate position 13A (improved intermediate portion) of the design improved diameter between the center of rotation of the stirring blade 14 and the outer edge of the improved ground 11. By making a determination, the overall quality of the solidified improved ground 11 can be evaluated, and thereby the formed shape of the solidified improved ground 11 can be evaluated.

また、機械撹拌式の深層混合処理工法では、土壌撹拌後の改良地盤11の性状が高圧噴射攪拌式と相違する可能性がある。このため、評価部64による上記の条件(2-1)における造成後映像P3と造成後映像P4との比較の着眼点を変更してもよい。 Further, in the mechanical stirring type deep mixing treatment method, the properties of the improved ground 11 after soil stirring may be different from those of the high pressure injection stirring method. Therefore, the point of view for comparison between the post-creation image P3 and the post-creation image P4 under the above condition (2-1) by the evaluation unit 64 may be changed.

高圧噴射攪拌式の場合は、撹拌不足があると、改良地盤11の設計改良径の位置13では撹拌自体が行われないため、造成後映像P4にはセメントミルクが含まれず、試薬7による変色も発生しない。すなわち、造成後映像P4は造成後映像P3とほとんど差異が無くなると考えられる。 In the case of the high-pressure injection stirring type, if there is insufficient stirring, the stirring itself is not performed at the position 13 of the design improvement diameter of the improved ground 11, so the post-creation image P4 does not contain cement milk and discoloration due to the reagent 7 is also possible. Does not occur. That is, it is considered that the post-creation video P4 has almost no difference from the post-creation video P3.

一方、機械撹拌式の場合は、少なくとも撹拌翼14の範囲内では撹拌が行われるので、撹拌不足があっても、コーン貫入位置13Aでは造成後映像P4に変色領域Aが含まれると考えられる。すなわち、機械攪拌式では撹拌不足がある場合でも、高圧噴射攪拌式とは異なり、造成後映像P4と造成後映像P3との間に差異が生じる場合が考えられる。このため機械攪拌式では、造成後映像P3と造成後映像P4との比較手法を高圧噴射攪拌式のものとは異ならせるのが好ましい。 On the other hand, in the case of the mechanical stirring type, stirring is performed at least within the range of the stirring blade 14, so that it is considered that the discolored region A is included in the post-construction image P4 at the cone penetration position 13A even if the stirring is insufficient. That is, even if there is insufficient stirring in the mechanical stirring type, it is conceivable that a difference may occur between the post-creation image P4 and the post-creation image P3, unlike the high-pressure injection stirring type. Therefore, in the mechanical stirring type, it is preferable that the comparison method between the post-creation image P3 and the post-creation image P4 is different from that of the high-pressure injection stirring type.

図7は、機械撹拌式の深層混合処理工法における撹拌不足時の造成後映像P4の一例を示す図である。機械攪拌式の場合、撹拌不足があると、土壌内に粘土ダマBが生じ、造成後映像P4では粘土ダマBの部分では着色反応を示さないと考えられる。また、上述のように撹拌自体は行われるため、良好に撹拌が行われた部分は試薬7塗布によって変色され、造成後映像P4では変色領域Aも含まれる。一方、撹拌がきちんと行なわれた場合には、着色反応の無い粘土ダマBの部分は縮小すると考えられる。 FIG. 7 is a diagram showing an example of the post-creation image P4 when the stirring is insufficient in the mechanical stirring type deep mixing treatment method. In the case of the mechanical stirring type, if there is insufficient stirring, clay lump B is generated in the soil, and it is considered that the clay lump B portion does not show a coloring reaction in the post-creation image P4. Further, since the stirring itself is performed as described above, the portion where the stirring is performed well is discolored by applying the reagent 7, and the discolored region A is also included in the post-creation image P4. On the other hand, if the stirring is performed properly, it is considered that the portion of the clay lump B having no coloring reaction is reduced.

したがって、機械撹拌式では、例えば図7に示す造成後映像P4における変色領域Aの占有率に基づき出来形を評価する構成とすることができる。例えば、造成後映像P4の変色領域Aの占有率が所定値以上の場合に、固化改良地盤11の全体で撹拌が良好に行われていると判断することができ、この場合に、地盤画像に基づく判断基準(判断基準2)を満たすと評価する構成とすることができる。 Therefore, in the mechanical stirring type, for example, the finished shape can be evaluated based on the occupancy rate of the discolored region A in the post-creation image P4 shown in FIG. For example, when the occupancy rate of the discolored region A of the created image P4 is equal to or greater than a predetermined value, it can be determined that the entire solidified improved ground 11 is well agitated. It can be configured to be evaluated as satisfying the based judgment criteria (judgment criteria 2).

本実施形態に係る固化改良地盤11の造成出来形の評価方法は、固化改良地盤11にコーン2を貫入したときにコーン2に設けられるカメラ3により固化改良地盤11の着色前画像(造成後映像P3)を撮像する貫入工程(手順3)と、固化改良地盤11からのコーン2の引き上げ時にコーン2に設けられる試薬散布部4から試薬7を固化改良地盤11に散布してカメラ3により固化改良地盤11の着色後画像(造成後映像P4)を撮像する引き上げ工程(手順4)と、を含む。 The method for evaluating the formed shape of the solidified improved ground 11 according to the present embodiment is an image before coloring of the solidified improved ground 11 by a camera 3 provided on the cone 2 when the cone 2 is penetrated into the solidified improved ground 11 (post-creation image). In the penetration step (procedure 3) for imaging P3), the reagent 7 is sprayed on the solidification improved ground 11 from the reagent spraying portion 4 provided on the cone 2 when the cone 2 is pulled up from the solidification improvement ground 11, and the solidification is improved by the camera 3. It includes a pulling step (procedure 4) of capturing a post-colored image of the ground 11 (post-creation image P4).

この構成により、コーン2の貫入時に着色前画像を撮像し、貫入したコーン2を引き抜く時に着色後画像を撮像できるので、同一のコーン貫入位置13、13Aにコーン2を貫入して引き抜くだけで、試薬7による着色前後の同一位置の地盤の画像を撮像することができる。このように、コーン2の貫入と引き抜きという一往復の動作だけで2種類の画像を取得でき、効率的に評価を行うことができる。また、上述のように、固化改良地盤11の着色前後の地盤の画像、すなわち造成後映像P3と造成後映像P4とを比較することによって、着色反応の有無に着目して改良地盤11のセメントミルクの部分をより明確に識別することが可能となり、改良地盤11の出来形の評価を精度良くできる。したがって、本実施形態に係る固化改良地盤11の造成出来形の評価方法は、固化改良地盤11の造成出来形の評価を高精度かつ効率的に行うことができる。 With this configuration, the pre-colored image can be captured when the cone 2 is penetrated, and the post-colored image can be captured when the penetrated cone 2 is pulled out. Images of the ground at the same position before and after coloring with the reagent 7 can be taken. In this way, two types of images can be acquired only by one round-trip operation of penetrating and pulling out the cone 2, and evaluation can be performed efficiently. Further, as described above, by comparing the images of the ground before and after coloring of the solidified improved ground 11, that is, the post-creation image P3 and the post-creation image P4, the cement milk of the improved ground 11 is focused on the presence or absence of a coloring reaction. It becomes possible to identify the part of the ground 11 more clearly, and it is possible to accurately evaluate the finished shape of the improved ground 11. Therefore, the method for evaluating the formed form of the solidified improved ground 11 according to the present embodiment can evaluate the formed formed form of the solidified improved ground 11 with high accuracy and efficiency.

以上、具体例を参照しつつ本実施形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素およびその配置、条件、形状などは、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。 The present embodiment has been described above with reference to specific examples. However, the present disclosure is not limited to these specific examples. Those skilled in the art with appropriate design changes to these specific examples are also included in the scope of the present disclosure as long as they have the features of the present disclosure. Each element included in each of the above-mentioned specific examples, its arrangement, conditions, shape, and the like are not limited to those illustrated, and can be changed as appropriate. The combination of each element included in each of the above-mentioned specific examples can be appropriately changed as long as there is no technical contradiction.

1 評価システム
2 コーン
3 カメラ
4 試薬散布部
5 駆動装置
6 制御装置
61 コーン制御部
62 試薬制御部
63 撮像制御部
64 評価部
7 試薬
10 改良前地盤
11 固化改良地盤
13、13A コーン貫入位置
P1 改良前映像(改良前地盤の着色前画像)
P2 改良前映像(改良前地盤の着色後画像)
P3 造成後映像(固化改良地盤の着色前画像)
P4 造成後映像(固化改良地盤の着色後画像)
手順1 事前貫入工程
手順2 事前引き上げ工程
手順3 貫入工程
手順4 引き上げ工程
手順7 評価工程
1 Evaluation system 2 Cone 3 Camera 4 Reagent spraying unit 5 Driver 6 Control device 61 Cone control unit 62 Reagent control unit 63 Imaging control unit 64 Evaluation unit 7 Reagent 10 Pre-improvement ground 11 Solidification improved ground 13, 13A Cone penetration position P1 Improvement Previous image (image before coloring of ground before improvement)
P2 Image before improvement (Image after coloring the ground before improvement)
Image after P3 construction (image before coloring of solidified improved ground)
Image after P4 construction (image after coloring of solidified improved ground)
Step 1 Pre-penetration process Step 2 Pre-pulling process Step 3 Penetration process Step 4 Pulling process Step 7 Evaluation process

Claims (10)

深層混合処理工法における固化改良地盤の造成出来形の評価方法であって、
前記固化改良地盤にコーンを貫入したときに前記コーンに設けられるカメラにより前記固化改良地盤の着色前画像を撮像する貫入工程と、
前記固化改良地盤からの前記コーンの引き上げ時に前記コーンに設けられる試薬散布部から試薬を前記固化改良地盤に散布して前記カメラにより前記固化改良地盤の着色後画像を撮像する引き上げ工程と、
を含む評価方法。
It is a method of evaluating the formed form of solidified improved ground in the deep mixing treatment method.
A penetration step of capturing a pre-colored image of the solidified improved ground with a camera provided on the cone when the cone is penetrated into the solidified improved ground.
When the cone is pulled up from the solidified improved ground, a reagent is sprayed on the solidified improved ground from a reagent spraying portion provided on the cone, and the camera captures a colored image of the solidified improved ground.
Evaluation method including.
改良前地盤に前記コーンを貫入し、地盤性状に関する三成分を計測する事前貫入工程と、
前記事前貫入工程にて地盤に貫入された前記コーンを前記改良前地盤から引き上げる事前引き上げ工程と、
をさらに含み、
前記貫入工程において前記三成分を計測する、
請求項1に記載の評価方法。
A pre-penetration process in which the cone is penetrated into the ground before improvement and the three components related to the ground properties are measured.
A pre-pulling step of pulling the cone that has penetrated into the ground in the pre-penetrating step from the improved pre-ground, and a pre-pulling step.
Including
In the intrusive step, the three components are measured.
The evaluation method according to claim 1.
前記事前貫入工程において、前記カメラにより前記改良前地盤の着色前画像を撮像する、
請求項2に記載の評価方法。
In the pre-penetration step, the camera captures a pre-colored image of the improved ground.
The evaluation method according to claim 2.
前記事前引き上げ工程において、前記試薬散布部により試薬を散布して前記カメラにより前記改良前地盤の着色後画像を撮像する、
請求項2または3に記載の評価方法。
In the pre-pulling step, the reagent is sprayed by the reagent spraying portion, and the image after coloring of the improved ground is imaged by the camera.
The evaluation method according to claim 2 or 3.
前記固化改良地盤の前記着色前画像と前記着色後画像を比較して出来形を評価する評価工程をさらに含む、
請求項1~4のいずれか1項に記載の評価方法。
An evaluation step of comparing the pre-colored image and the post-colored image of the solidified improved ground to evaluate the finished shape is further included.
The evaluation method according to any one of claims 1 to 4.
前記評価工程において、前記改良前地盤の前記着色前画像と、前記固化改良地盤の前記着色前画像または前記着色後画像とを比較して出来形を評価する、
請求項5に記載の評価方法。
In the evaluation step, the pre-colored image of the pre-improved ground is compared with the pre-colored image or the post-colored image of the solidified improved ground to evaluate the finished shape.
The evaluation method according to claim 5.
前記評価工程において、前記改良前地盤の前記着色前画像と前記着色後画像とを比較して出来形を評価する、
請求項5または6に記載の評価方法。
In the evaluation step, the finished shape is evaluated by comparing the pre-colored image and the post-colored image of the ground before improvement.
The evaluation method according to claim 5 or 6.
前記深層混合処理工法が高圧噴射攪拌式であり、
前記造成出来形は、所定の設計改良径よりも大径で形成され、
前記コーンの貫入位置は前記設計改良径の位置である、
請求項1~7のいずれか1項に記載の評価方法。
The deep-layer mixing treatment method is a high-pressure injection stirring type.
The created shape is formed with a diameter larger than a predetermined design improvement diameter.
The penetration position of the cone is the position of the design improvement diameter.
The evaluation method according to any one of claims 1 to 7.
前記深層混合処理工法が機械攪拌式であり、
前記コーンの貫入位置は改良中間部である、
請求項1~7のいずれか1項に記載の評価方法。
The deep mixing treatment method is a mechanical stirring method.
The penetration position of the cone is the improved intermediate part,
The evaluation method according to any one of claims 1 to 7.
深層混合処理工法における固化改良地盤の造成出来形の評価システムであって、
カメラと試薬散布部とを有するコーンと、
制御装置と、を備え、
前記制御装置は、
前記固化改良地盤に前記コーンを貫入し、引き抜く動作を制御するコーン制御部と、
前記固化改良地盤からの前記コーンの引き上げ時に試薬を前記固化改良地盤に散布するよう前記試薬散布部を制御する試薬制御部と、
前記固化改良地盤に前記コーンを貫入したときに前記固化改良地盤の着色前画像を撮像し、前記固化改良地盤からの前記コーンの引き上げ時に前記試薬散布部から試薬を前記固化改良地盤に散布した後に前記固化改良地盤の着色後画像を撮像するよう、前記カメラを制御する撮像制御部と、
を有する、
評価システム。
It is an evaluation system for the formation of solidified and improved ground in the deep mixing treatment method.
A cone with a camera and a reagent sprayer,
Equipped with a control device,
The control device is
A cone control unit that controls the operation of penetrating the cone into the solidified ground and pulling it out.
A reagent control unit that controls the reagent spraying unit so that the reagent is sprayed on the solidified improved ground when the cone is pulled up from the solidified improved ground.
After the pre-colored image of the solidified improved ground is captured when the cone is penetrated into the solidified improved ground, and the reagent is sprayed from the reagent spraying portion onto the solidified improved ground when the cone is pulled up from the solidified improved ground. An imaging control unit that controls the camera so as to capture an image after coloring of the solidified improved ground.
Have,
Rating system.
JP2021002026A 2021-01-08 2021-01-08 Evaluation method and evaluation system for completed form of solidified improved ground Active JP7127163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021002026A JP7127163B2 (en) 2021-01-08 2021-01-08 Evaluation method and evaluation system for completed form of solidified improved ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021002026A JP7127163B2 (en) 2021-01-08 2021-01-08 Evaluation method and evaluation system for completed form of solidified improved ground

Publications (2)

Publication Number Publication Date
JP2022107219A true JP2022107219A (en) 2022-07-21
JP7127163B2 JP7127163B2 (en) 2022-08-29

Family

ID=82457541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021002026A Active JP7127163B2 (en) 2021-01-08 2021-01-08 Evaluation method and evaluation system for completed form of solidified improved ground

Country Status (1)

Country Link
JP (1) JP7127163B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010255318A (en) * 2009-04-24 2010-11-11 Maeda Corp Method for estimating strength of soil improving body
JP2011226250A (en) * 2010-04-01 2011-11-10 Maeda Corp Quality control method for soil improvement body, measuring method and measuring rod
JP4886921B2 (en) * 2007-10-24 2012-02-29 前田建設工業株式会社 Effective diameter confirmation method of ground improvement body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4886921B2 (en) * 2007-10-24 2012-02-29 前田建設工業株式会社 Effective diameter confirmation method of ground improvement body
JP2010255318A (en) * 2009-04-24 2010-11-11 Maeda Corp Method for estimating strength of soil improving body
JP2011226250A (en) * 2010-04-01 2011-11-10 Maeda Corp Quality control method for soil improvement body, measuring method and measuring rod

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
手塚 広明, 山内 崇寛, 川西 敦士: "高圧噴射撹拌工法で改良された地盤の品質管理手法", 地盤工学ジャーナル, vol. 8, no. 2, JPN6022022270, 2013, JP, pages 251 - 263, ISSN: 0004793709 *

Also Published As

Publication number Publication date
JP7127163B2 (en) 2022-08-29

Similar Documents

Publication Publication Date Title
CN104164860B (en) For the gravity type hole pressure power feeler inspection device of the sea-bottom shallow soil body
EP1277067B1 (en) Method for the recording of an object space
JP4886921B2 (en) Effective diameter confirmation method of ground improvement body
DE102013212151A1 (en) Construction machine with a vibration unit
JP2022107219A (en) Evaluation method and evaluation system of construction finished shape of solidified and improved ground
US10520351B2 (en) Method and apparatus for peak weight detection
EP3885694A1 (en) Method and device for controlled filling and inspection of blast holes
US8064714B2 (en) Method for binarizing a digital gray value image to generate a binarized gray value image and arrangement for carrying out said method
DE112010005521T5 (en) Numerical control device
DE102007010532B3 (en) Soil substance density determining method for e.g. hardening survey in earthwork, involves determining wet and dry density of substance from pit capacity, mass of substance and humidity ratio
EP3089263A1 (en) Portable directional antenna, measuring assembly and measuring method
DE102019203538A1 (en) Measuring and control logic for excavators
EP2510380A1 (en) Monitoring system for an inner chamber of a machine
CH694897A5 (en) A method for recording an object space.
JP2007085137A (en) Ground improvement work evaluation device
DE112020003003T5 (en) Exclusion of a work machine component from a video frame based on motion information
CN110397475A (en) The super prop drawing monitoring and pre-alarming method of fully-mechanized mining working advance support, apparatus and system
US20180322622A1 (en) Non-destructive inspection methods and systems
CN109797728A (en) A kind of two-stage combination cone head hole pressure static sounding perforation device
JP6713858B2 (en) Machined hole position measuring device and machined hole position measuring method
DE102013110583C5 (en) Method and device for optically scanning and measuring an environment
DE102019217008B4 (en) Method for loading a cargo container of a loading vehicle
US6939201B2 (en) Grinding tool, and method and apparatus for inspection conditions of grinding surface of the same
CN110174063A (en) A kind of neutral pen ink height detecting system and detection method based on machine vision
US20190381624A1 (en) Characterizing a cutting tool edge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220817

R150 Certificate of patent or registration of utility model

Ref document number: 7127163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150