JP7125836B2 - Non-woven base material for electromagnetic wave shielding - Google Patents

Non-woven base material for electromagnetic wave shielding Download PDF

Info

Publication number
JP7125836B2
JP7125836B2 JP2017174267A JP2017174267A JP7125836B2 JP 7125836 B2 JP7125836 B2 JP 7125836B2 JP 2017174267 A JP2017174267 A JP 2017174267A JP 2017174267 A JP2017174267 A JP 2017174267A JP 7125836 B2 JP7125836 B2 JP 7125836B2
Authority
JP
Japan
Prior art keywords
short fibers
fiber diameter
nonwoven fabric
mass
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017174267A
Other languages
Japanese (ja)
Other versions
JP2019049080A (en
Inventor
秀彰 三枝
敬生 増田
俊広 重松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2017174267A priority Critical patent/JP7125836B2/en
Publication of JP2019049080A publication Critical patent/JP2019049080A/en
Application granted granted Critical
Publication of JP7125836B2 publication Critical patent/JP7125836B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Nonwoven Fabrics (AREA)
  • Paper (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

本発明は、優れた電磁波シールド性を発現できる電磁波シールド材用不織布基材に関する。 TECHNICAL FIELD The present invention relates to a nonwoven fabric base material for an electromagnetic shielding material capable of exhibiting excellent electromagnetic shielding properties.

電子機器は電磁波を発生している。そして、電磁波を電子機器の外部に漏らさないようにするため、また、電磁波により電子機器が誤作動を起こさないようにするために、電磁波シールド材が使用されている。電磁波シールド材には、板金、金属を含む塗料、金属メッシュ、発泡金属等が挙げられる。近年の電子機器の小型化に伴い、薄い電磁波シールド材が求められており、ポリエステル系短繊維から形成される不織布に金属鍍金加工を施してなる電磁波シールド材が知られている(例えば、特許文献1)。 Electronic devices generate electromagnetic waves. Electromagnetic wave shielding materials are used to prevent electromagnetic waves from leaking to the outside of electronic devices and to prevent electronic devices from malfunctioning due to electromagnetic waves. Examples of electromagnetic wave shielding materials include sheet metal, paint containing metal, metal mesh, foam metal, and the like. With the recent miniaturization of electronic devices, there is a demand for thin electromagnetic shielding materials, and electromagnetic shielding materials made by subjecting a nonwoven fabric formed from polyester short fibers to metal plating are known (for example, patent documents 1).

特許文献1の実施例では、延伸ポリエステル系短繊維として、繊維径3μm及び7.4μmの短繊維が使用されているが、薄い電磁波シールド材が求められるにつれ、電磁波シールド性が十分に確保できない問題があった。 In the examples of Patent Document 1, short fibers with fiber diameters of 3 μm and 7.4 μm are used as drawn polyester short fibers, but as thin electromagnetic shielding materials are required, there is a problem that sufficient electromagnetic shielding properties cannot be secured. was there.

特開2014-75485号公報JP 2014-75485 A

本発明の課題は、優れた電磁波シールド性を発現できる電磁波シールド材用不織布基材を提供することにある。 An object of the present invention is to provide a nonwoven fabric base material for an electromagnetic shielding material that can exhibit excellent electromagnetic shielding properties.

本発明者らは、上記課題を解決するために鋭意研究した結果、湿式不織布が、繊維径が3.0μm未満の延伸ポリエステル系短繊維と繊維径が3.0μm以上5.0μm以下の未延伸ポリエステル系短繊維とを必須成分として含有し、繊維径が3.0μm未満の延伸ポリエステル系短繊維が繊度0.06dtexの延伸ポリエチレンテレフタレート系短繊維であり、繊維径が3.0μm以上5.0μm以下の未延伸ポリエステル系短繊維が繊度0.2dtexの未延伸ポリエチレンテレフタレート系短繊維であり、繊度0.06dtexの延伸ポリエチレンテレフタレート系短繊維の含有率が不織布基材を構成する繊維全体の20~80質量%であり、繊度0.2dtexの未延伸ポリエチレンテレフタレート系短繊維の含有率が不織布基材を構成する繊維全体の20~80質量%であることを特徴とする電磁波シールド材用不織布基材を見出した。 As a result of intensive research by the present inventors to solve the above problems, the wet-laid nonwoven fabric is composed of stretched polyester short fibers with a fiber diameter of less than 3.0 μm and unstretched fibers with a fiber diameter of 3.0 μm or more and 5.0 μm or less. The drawn polyester short fibers having a fiber diameter of less than 3.0 μm are drawn polyethylene terephthalate short fibers having a fineness of 0.06 dtex, and the fiber diameter is 3.0 μm or more and 5.0 μm. The following unstretched polyester short fibers are unstretched polyethylene terephthalate short fibers with a fineness of 0.2 dtex, and the content of the stretched polyethylene terephthalate short fibers with a fineness of 0.06 dtex is 20 to 20% of the total fibers constituting the nonwoven fabric substrate. 80% by mass, and the content of unstretched polyethylene terephthalate staple fibers having a fineness of 0.2 dtex is 20 to 80% by mass of the total fibers constituting the nonwoven fabric substrate. found the material.

本発明の電磁波シールド材用不織布基材によって、優れた電磁波シールド性を発現できる電磁波シールド材用不織布基材が提供される。 The nonwoven fabric base material for electromagnetic wave shielding materials of the present invention provides a nonwoven base material for electromagnetic wave shielding materials capable of exhibiting excellent electromagnetic wave shielding properties.

以下、本発明の電磁波シールド材用不織布基材について詳説する。本発明において、電磁波シールド材用不織布基材は、繊維径が3.0μm未満の延伸ポリエステル系短繊維と繊維径が3.0μm以上5.0μm以下の未延伸ポリエステル系短繊維とを必須成分として含有することを特徴としている。 The nonwoven fabric base material for electromagnetic shielding materials of the present invention will be described in detail below. In the present invention, the non-woven fabric base material for electromagnetic wave shielding material is composed of stretched polyester short fibers with a fiber diameter of less than 3.0 μm and unstretched polyester short fibers with a fiber diameter of 3.0 μm or more and 5.0 μm or less as essential components. It is characterized by containing

一般的に、電磁波シールド材用不織布基材の鍍金加工には無電解鍍金が用いられるが、無電解鍍金では、不織布を形成する繊維の比表面積(単位体積当たり表面積)が小さいと、単位体積当たりの金属の付着量が小さくなり、優れた電磁波シールド性を発現できない。繊維径が3.0μm未満の延伸ポリエステル系短繊維と繊維径が3.0μm以上5.0μm以下の未延伸ポリエステル系短繊維とを必須成分として含有する場合、比表面積を増やすことができ、優れた電磁波シールド性が発現できる。すなわち、電磁波シールド材用不織布基材が、繊維径が3.0μm以上の延伸ポリエステル系短繊維と繊維径が5.0μm超の未延伸ポリエステル系短繊維のみから成る場合では、優れた電磁波シールド性が発現できない。また、薄い電磁波シールド材が求められており、繊維径が小さいと電磁波シールド材としての強度が得られない場合がある。繊維径が3.0μm未満の延伸ポリエステル系短繊維と繊維径が3.0μm以上5.0μm以下の未延伸ポリエステル系短繊維とを含むことで、薄く強度のある電磁波シールド材用不織布基材を提供することが容易になる。 Generally, electroless plating is used for plating non-woven fabric substrates for electromagnetic wave shielding materials. The adhesion amount of the metal becomes small, and excellent electromagnetic wave shielding properties cannot be exhibited. When the stretched polyester short fibers with a fiber diameter of less than 3.0 μm and the unstretched polyester short fibers with a fiber diameter of 3.0 μm or more and 5.0 μm or less are contained as essential components, the specific surface area can be increased, which is excellent. electromagnetic wave shielding properties can be expressed. That is, when the non-woven fabric base material for electromagnetic wave shielding material consists only of stretched polyester short fibers with a fiber diameter of 3.0 μm or more and unstretched polyester short fibers with a fiber diameter of more than 5.0 μm, excellent electromagnetic shielding properties are obtained. cannot be expressed. In addition, thin electromagnetic wave shielding materials are required, and if the fiber diameter is small, strength as an electromagnetic wave shielding material may not be obtained. A thin and strong non-woven fabric substrate for electromagnetic wave shielding material is provided by containing stretched polyester short fibers with a fiber diameter of less than 3.0 μm and unstretched polyester short fibers with a fiber diameter of 3.0 μm or more and 5.0 μm or less. easier to provide.

本発明において、延伸ポリエステル系短繊維は、熱カレンダー処理によっても、溶融又は軟化しにくく、不織布基材の骨格を形成する主体繊維である。 In the present invention, the stretched polyester short fibers are the main fibers that are difficult to melt or soften even by heat calendering and form the skeleton of the nonwoven fabric base material.

本発明において、未延伸ポリエステル系短繊維は、熱カレンダー処理によって、溶融又は軟化し、不織布基材の強度を高めるバインダー繊維として機能する。未延伸ポリエステルの融点は、220℃~250℃が好ましい。未延伸ポリエステルの融点が220℃未満の場合、熱カレンダー処理時の熱ロールに不織布基材が貼り付いてしまい、シートにならない場合がある。250℃を超える場合、繊維が接着せずにシートの強度が発現しない場合がある。 In the present invention, the unstretched polyester short fibers are melted or softened by heat calendering and function as binder fibers that increase the strength of the nonwoven fabric substrate. The melting point of unstretched polyester is preferably 220°C to 250°C. If the unstretched polyester has a melting point of less than 220° C., the nonwoven fabric base material may stick to the hot roll during heat calendering and may not form a sheet. If the temperature exceeds 250°C, the fibers may not adhere to each other and the strength of the sheet may not be exhibited.

未延伸ポリエステル系短繊維の融点は、示差走査熱量測定装置にて窒素雰囲気で昇温速度10℃/min、25℃から300℃まで昇温した時のピーク温度である。 The melting point of unstretched polyester short fibers is the peak temperature when the temperature is raised from 25° C. to 300° C. at a temperature elevation rate of 10° C./min in a nitrogen atmosphere using a differential scanning calorimeter.

本発明において、電磁波シールド材用不織布基材は、繊維径が3.0μm未満の延伸ポリエステル系短繊維と繊維径が3.0μm以上5.0μm以下の未延伸ポリエステル系短繊維とを必須成分として含有する。繊維径が3.0μm未満の延伸ポリエステル系短繊維の繊維径は、0.1μm以上であることが好ましい。繊維径が0.1μm未満である場合、強度が発現しない場合がある。 In the present invention, the non-woven fabric base material for electromagnetic wave shielding material is composed of stretched polyester short fibers with a fiber diameter of less than 3.0 μm and unstretched polyester short fibers with a fiber diameter of 3.0 μm or more and 5.0 μm or less as essential components. contains. The fiber diameter of the drawn polyester short fibers having a fiber diameter of less than 3.0 µm is preferably 0.1 µm or more. If the fiber diameter is less than 0.1 μm, strength may not be exhibited.

本発明において、延伸ポリエステル系短繊維と未延伸ポリエステル系短繊維の質量含有比率は、20:80~80:20であることが好ましい。未延伸ポリエステル系短繊維の含有率が不織布基材を構成する繊維全体の20質量%未満であると、基材として必要な強度が発現しなくなることがある。一方、未延伸ポリエステル系短繊維の含有率が80質量%を超えると、均一性を損なう場合がある。 In the present invention, the mass content ratio of the stretched polyester short fibers and the unstretched polyester short fibers is preferably 20:80 to 80:20. If the content of the unstretched polyester short fibers is less than 20% by mass of the total fibers constituting the nonwoven fabric base material, the strength required for the base material may not be exhibited. On the other hand, if the content of unstretched polyester short fibers exceeds 80% by mass, uniformity may be impaired.

本発明において、繊維径が3.0μm未満の延伸ポリエステル系短繊維と繊維径が3.0μm以上5.0μm以下の未延伸ポリエステル系短繊維以外の繊維を使用しても良い。すなわち、繊維径が3.0μm以上の延伸ポリエステル系短繊維、繊維径が3.0μm未満や5.0μm超の未延伸ポリエステル系短繊維を使用しても良い。これらは、単独で使用しても良いし、2種類以上の繊維径の繊維を併用してもよい。 In the present invention, fibers other than stretched polyester staple fibers with a fiber diameter of less than 3.0 μm and unstretched polyester staple fibers with a fiber diameter of 3.0 μm or more and 5.0 μm or less may be used. That is, stretched polyester staple fibers with a fiber diameter of 3.0 μm or more and unstretched polyester staple fibers with a fiber diameter of less than 3.0 μm or more than 5.0 μm may be used. These may be used alone, or may be used in combination of fibers having two or more fiber diameters.

繊維径が3.0μm未満の延伸ポリエステル系短繊維については、その質量含有率は、含有する全延伸ポリエステル系短繊維中、1~100質量%であることが好ましく、3~100質量%であることがより好ましい。繊維径が3.0μm未満の延伸ポリエステル系短繊維の含有率が1質量%未満である場合、併用する繊維径によっては比表面積が小さくなり、優れた電磁波シールド性が発現し難くなる場合がある。 The mass content of the stretched polyester short fibers having a fiber diameter of less than 3.0 μm is preferably 1 to 100% by mass, more preferably 3 to 100% by mass, of the total stretched polyester short fibers contained. is more preferable. If the content of the stretched polyester short fibers with a fiber diameter of less than 3.0 μm is less than 1% by mass, the specific surface area may decrease depending on the fiber diameter used in combination, making it difficult to develop excellent electromagnetic shielding properties. .

また、繊維径が3.0μm以上5.0μm以下の未延伸ポリエステル系短繊維については、その質量含有率は、含有する全未延伸ポリエステル系短繊維中、1~100質量%が好ましく、2~100質量%がより好ましい。繊維径が3.0μm以上5.0μm以下の未延伸ポリエステル系短繊維の含有率が1質量%未満である場合、併用する繊維径によっては比表面積が小さくなり、優れた電磁波シールド性が発現し難くなる、または優れた不織布の強度が発現し難くなる場合がある。 In addition, for unstretched polyester short fibers having a fiber diameter of 3.0 μm or more and 5.0 μm or less, the mass content of the total unstretched polyester short fibers contained is preferably 1 to 100% by mass, and 2 to 100% by mass. 100% by mass is more preferred. If the content of unstretched polyester staple fibers with a fiber diameter of 3.0 μm or more and 5.0 μm or less is less than 1% by mass, the specific surface area may be reduced depending on the fiber diameter used in combination, resulting in excellent electromagnetic shielding properties. It may become difficult, or it may become difficult to develop excellent nonwoven fabric strength.

なお、ポリエステル系短繊維の繊維径は、顕微鏡で3000倍の不織布基材断面の拡大写真を撮り、ポリエステル系短繊維の断面積を測定し、繊維の断面形状が真円として算出した直径であり、本発明では、10本以上の繊維の算術平均値を求めた。 The fiber diameter of the polyester staple fiber is the diameter obtained by taking an enlarged photograph of the cross section of the nonwoven fabric substrate at a magnification of 3000 times with a microscope, measuring the cross-sectional area of the polyester staple fiber, and calculating the cross-sectional shape of the fiber as a perfect circle. , in the present invention, the arithmetic mean value of 10 or more fibers was determined.

ポリエステル系短繊維の繊維長は、好ましくは1~20mmであり、より好ましくは1~10mmであり、さらに好ましくは2~8mmである。ポリエステル系短繊維の繊維長が1mm未満である場合、基材として必要な強度が発現しなくなることがある。ポリエステル系短繊維の繊維長が20mm超の場合、均一性を損なう場合がある。 The fiber length of the polyester short fibers is preferably 1 to 20 mm, more preferably 1 to 10 mm, still more preferably 2 to 8 mm. If the fiber length of the polyester short fibers is less than 1 mm, the strength required as a base material may not be exhibited. If the fiber length of the polyester short fibers exceeds 20 mm, uniformity may be impaired.

上記繊維をシート状に形成せしめる方法としては、スパンボンド法、メルトブロー法、静電紡糸法、湿式法等の各種製造方法によることができる。繊維間を接合する方法としては、ケミカルボンド法、熱融着法等の各種方法によることができる。これらの中で、湿式法によってシート状に形成し、熱融着法によって接合することが、耐久性や強度に優れ表面が平滑な不織布基材が得られることから好ましい。 Various manufacturing methods such as a spunbonding method, a melt blowing method, an electrostatic spinning method and a wet method can be used as methods for forming the above fiber into a sheet. Various methods such as a chemical bond method and a heat fusion method can be used as a method for bonding between fibers. Among these, it is preferable to form a sheet by a wet method and to bond by a heat-sealing method because a nonwoven fabric base material having excellent durability and strength and a smooth surface can be obtained.

湿式法における熱融着法としては、抄紙で得られたシートを、多筒式ドライヤー、ヤンキードライヤー、エアースルードライヤー等の抄紙後に使用される乾燥機で乾燥する際に熱融着する方法を用いることができる。また、金属製熱ロール/金属製熱ロール、金属製熱ロール/弾性ロール、金属製熱ロール/コットンロールなどのロール組み合わせを有する熱カレンダー装置による熱カレンダー処理によって熱融着する方法が好ましい。熱カレンダー処理により、バインダー成分が熱溶融し、熱融着が生じる。 As the heat-sealing method in the wet method, a method of heat-sealing the sheet obtained by papermaking when drying it with a dryer used after papermaking such as a multi-tube dryer, a Yankee dryer, an air-through dryer, etc. is used. be able to. Also, a method of heat-sealing by thermal calendering using a thermal calender having a combination of rolls such as metal hot roll/metal hot roll, metal hot roll/elastic roll, and metal hot roll/cotton roll is preferred. The heat calendering heat-melts the binder component, resulting in heat-sealing.

また、熱カレンダーの条件は以下に例示することができるが、これらに限定されるものではない。熱カレンダー処理における熱ロールの温度は、200℃以上215℃以下が好ましい。熱ロールの温度が200℃未満の場合、繊維同士が接着せずに強度が発現しないという問題が発生し、逆に、熱ロールの温度が215℃超である場合、熱ロールに不織布が貼り付いてしまい、シートにならないという問題が発生する。熱ロールの温度は、より好ましくは、205℃以上210℃以下である。強度を発現するために熱カレンダー処理における圧力は、好ましくは50~250kN/mであり、さらに好ましくは80~150kN/mである。50kN/m未満である場合、表面の平滑性を損なう可能性があり、また、速度を低下させないと厚みが薄くならない可能性がある。250kN/m超の場合、シートが圧力に耐えられずに破断する可能性がある。熱カレンダーの速度は1~300m/minが好ましい。1m/min以上とすることで、作業効率が良好となる。300m/min以下とすることで、不織布基材に熱を伝導させ、熱融着の実効を得やすくなる。熱カレンダーのニップ回数は不織布基材に熱を伝導することができれば特に限定するものではないが、金属製熱ロール/弾性ロールの組み合わせでは、不織布基材の表裏から熱を伝導させるために2回以上ニップしても良い。 In addition, the conditions for thermal calendering can be exemplified below, but are not limited to these. The temperature of the hot roll in the hot calendering is preferably 200° C. or higher and 215° C. or lower. If the temperature of the heat roll is less than 200°C, the fibers do not bond to each other and strength does not develop. There is a problem that it does not become a sheet. The temperature of the hot roll is more preferably 205° C. or higher and 210° C. or lower. The pressure in the heat calendering is preferably 50-250 kN/m, more preferably 80-150 kN/m, in order to develop strength. If it is less than 50 kN/m, the smoothness of the surface may be impaired, and the thickness may not be reduced unless the speed is lowered. If it exceeds 250 kN/m, the sheet may break without being able to withstand the pressure. The speed of hot calendering is preferably 1 to 300 m/min. By making it 1 m/min or more, work efficiency is improved. By setting it to 300 m/min or less, heat is conducted to the nonwoven fabric base material, making it easier to obtain the effect of heat fusion. The number of nips of the hot calender is not particularly limited as long as heat can be conducted to the nonwoven fabric base material, but in the combination of metal hot rolls/elastic rolls, the number of nips is 2 in order to conduct heat from the front and back of the nonwoven fabric base material. You can nip more.

本発明の電磁波シールド材用不織布基材の厚みは、電子機器で使用する目的から、7~30μmであることが好ましく、目付(坪量)は6~30g/mであることが好ましい。目付が6g/m未満であると、均一性を得ることが難しくなり、電磁波シールド性の効果にバラつきが発生しやすくなる。 The thickness of the nonwoven fabric substrate for electromagnetic wave shielding material of the present invention is preferably 7 to 30 μm, and the basis weight (basis weight) is preferably 6 to 30 g/m 2 for the purpose of use in electronic devices. If the basis weight is less than 6 g/m 2 , it becomes difficult to obtain uniformity, and the electromagnetic wave shielding effect tends to vary.

以下に実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。なお、実施例において、%及び部は、断りのない限り、全て質量基準である。また、実施例4及び7は参考例である。
EXAMPLES The present invention will be described below with reference to Examples, but the present invention is not limited to these Examples. In the examples, % and parts are all based on mass unless otherwise specified. Moreover, Examples 4 and 7 are reference examples.

[実施例1]
繊度0.06dtex(繊維径2.4μm)、繊維長3mmの延伸ポリエチレンテレフタレート(PET)系短繊維60質量部と、繊度0.2dtex(繊維径4.3μm)、繊維長3mmの単一成分型バインダー用未延伸PET系短繊維40質量部とをパルパーにより水中に分散し、濃度1質量%の均一な抄造用スラリーを調製した。この抄造用スラリーを、通気度275cm/cm/sec、組織[上網:平織、下網:畝織]の抄造ワイヤーを設置した傾斜型抄紙機にて、湿式法で抄き上げ、135℃のシリンダードライヤーによって、バインダー用未延伸PET系短繊維を熱融着させて不織布強度を発現させ、目付10g/mの不織布とした。さらに、この不織布を、誘電発熱ジャケットロール(金属製熱ロール)及び弾性ロールからなる1ニップ式熱カレンダー装置を使用して、熱ロール温度200℃、線圧100kN/m、処理速度30m/分の条件で熱カレンダー処理し、厚み15μmの不織布基材を作製した。
[Example 1]
60 parts by mass of stretched polyethylene terephthalate (PET) short fibers with a fineness of 0.06 dtex (fiber diameter of 2.4 μm) and a fiber length of 3 mm, and a single component type of a fineness of 0.2 dtex (fiber diameter of 4.3 μm) and a fiber length of 3 mm 40 parts by mass of unstretched PET short fibers for binder were dispersed in water with a pulper to prepare a uniform slurry for papermaking with a concentration of 1% by mass. This papermaking slurry was wet-processed using an inclined paper machine equipped with papermaking wires having an air permeability of 275 cm 3 /cm 2 /sec and a structure [upper net: plain weave, lower net: ribbed weave]. The non-stretched PET short fibers for the binder were heat-sealed with the cylinder dryer of No. 1 to express the strength of the non-woven fabric, thereby obtaining a non-woven fabric having a basis weight of 10 g/m 2 . Furthermore, this nonwoven fabric is treated using a one-nip type thermal calender consisting of a dielectric heating jacket roll (metal hot roll) and an elastic roll, at a hot roll temperature of 200°C, a linear pressure of 100 kN/m, and a processing speed of 30 m/min. A nonwoven fabric base material having a thickness of 15 μm was produced by heat calendering under the above conditions.

[実施例2]
繊度0.1dtex(繊維径3.0μm)、繊維長3mmの延伸ポリエチレンテレフタレート(PET)系短繊維20質量部と、繊度0.06dtex(繊維径2.4μm)、繊維長3mmの延伸PET系短繊維40質量部と、繊度0.2dtex(繊維径4.3μm)、繊維長3mmの単一成分型バインダー用未延伸PET系短繊維40質量部とした以外は実施例1と同じようにして、厚み15μmの不織布基材を作製した。
[Example 2]
20 parts by mass of drawn polyethylene terephthalate (PET) short fibers with a fineness of 0.1 dtex (fiber diameter of 3.0 μm) and a fiber length of 3 mm, and drawn PET short fibers with a fineness of 0.06 dtex (fiber diameter of 2.4 μm) and a fiber length of 3 mm. In the same manner as in Example 1, except that 40 parts by mass of fibers and 40 parts by mass of unstretched PET short fibers for a single-component type binder having a fineness of 0.2 dtex (fiber diameter of 4.3 μm) and a fiber length of 3 mm were used. A nonwoven fabric substrate having a thickness of 15 μm was produced.

[実施例3]
繊度0.3dtex(繊維径5.3μm)、繊維長3mmの延伸ポリエチレンテレフタレート(PET)系短繊維20質量部と、繊度0.06dtex(繊維径2.4μm)、繊維長3mmの延伸PET系短繊維40質量部と、繊度0.2dtex(繊維径4.3μm)、繊維長3mmの単一成分型バインダー用未延伸PET系短繊維40質量部とした以外は実施例1と同じようにして、厚み15μmの不織布基材を作製した。
[Example 3]
20 parts by mass of drawn polyethylene terephthalate (PET) short fibers with a fineness of 0.3 dtex (fiber diameter of 5.3 μm) and a fiber length of 3 mm, and drawn PET short fibers with a fineness of 0.06 dtex (fiber diameter of 2.4 μm) and a fiber length of 3 mm. In the same manner as in Example 1, except that 40 parts by mass of fibers and 40 parts by mass of unstretched PET short fibers for a single-component type binder having a fineness of 0.2 dtex (fiber diameter of 4.3 μm) and a fiber length of 3 mm were used. A nonwoven fabric substrate having a thickness of 15 μm was produced.

[実施例4]
繊度0.06dtex(繊維径2.4μm)、繊維長3mmの延伸PET系短繊維90質量部と、繊度0.2dtex(繊維径4.3μm)、繊維長3mmの単一成分型バインダー用未延伸PET系短繊維10質量部とした以外は実施例1と同じようにして、厚み15μmの不織布基材を作製した。
[Example 4]
90 parts by mass of drawn PET short fibers with a fineness of 0.06 dtex (fiber diameter of 2.4 μm) and a fiber length of 3 mm, and undrawn single-component binder with a fineness of 0.2 dtex (fiber diameter of 4.3 μm) and a fiber length of 3 mm. A nonwoven fabric substrate having a thickness of 15 μm was produced in the same manner as in Example 1, except that the PET short fibers were 10 parts by mass.

[実施例5]
繊度0.06dtex(繊維径2.4μm)、繊維長3mmの延伸PET系短繊維80質量部と、繊度0.2dtex(繊維径4.3μm)、繊維長3mmの単一成分型バインダー用未延伸PET系短繊維20質量部とした以外は実施例1と同じようにして、厚み15μmの不織布基材を作製した。
[Example 5]
80 parts by mass of drawn PET short fibers with a fineness of 0.06 dtex (fiber diameter of 2.4 µm) and a fiber length of 3 mm, and undrawn single-component binders with a fineness of 0.2 dtex (fiber diameter of 4.3 µm) and a fiber length of 3 mm. A nonwoven fabric substrate having a thickness of 15 μm was produced in the same manner as in Example 1, except that 20 parts by mass of PET short fibers were used.

[実施例6]
繊度0.06dtex(繊維径2.4μm)、繊維長3mmの延伸PET系短繊維20質量部と、繊度0.2dtex(繊維径4.3μm)、繊維長3mmの単一成分型バインダー用未延伸PET系短繊維80質量部とした以外は実施例1と同じようにして、厚み15μmの不織布基材を作製した。
[Example 6]
20 parts by mass of stretched PET short fibers with a fineness of 0.06 dtex (fiber diameter of 2.4 μm) and a fiber length of 3 mm, and unstretched single-component binders with a fineness of 0.2 dtex (fiber diameter of 4.3 μm) and a fiber length of 3 mm A nonwoven fabric substrate having a thickness of 15 μm was produced in the same manner as in Example 1, except that 80 parts by mass of PET short fibers were used.

[実施例7]
繊度0.06dtex(繊維径2.4μm)、繊維長3mmの延伸PET系短繊維10質量部と、繊度0.2dtex(繊維径4.3μm)、繊維長3mmの単一成分型バインダー用未延伸PET系短繊維90質量部とした以外は実施例1と同じようにして、厚み15μmの不織布基材を作製した。
[Example 7]
10 parts by mass of drawn PET short fibers with a fineness of 0.06 dtex (fiber diameter of 2.4 µm) and a fiber length of 3 mm, and undrawn single-component binders with a fineness of 0.2 dtex (fiber diameter of 4.3 µm) and a fiber length of 3 mm. A non-woven fabric substrate having a thickness of 15 μm was produced in the same manner as in Example 1, except that 90 parts by mass of the PET short fibers were used.

[比較例1]
繊度0.6dtex(繊維径7.4μm)、繊維長5mmの延伸PET系短繊維30質量部と、繊度0.3dtex(繊維径5.3μm)、繊維長3mmの延伸PET系短繊維30質量部と、繊度1.2dtex(繊維径10.5μm)、繊維長5mmの単一成分型バインダー用未延伸PET系短繊維40質量部とした以外は実施例1と同じようにして、厚み15μmの不織布基材を作製した。
[Comparative Example 1]
30 parts by mass of drawn PET short fibers with a fineness of 0.6 dtex (fiber diameter of 7.4 µm) and a fiber length of 5 mm and 30 parts by mass of drawn PET short fibers with a fineness of 0.3 dtex (fiber diameter of 5.3 µm) and a fiber length of 3 mm A non-woven fabric having a thickness of 15 μm was prepared in the same manner as in Example 1 except that 40 parts by mass of unstretched PET short fibers for a single-component type binder having a fineness of 1.2 dtex (fiber diameter of 10.5 μm) and a fiber length of 5 mm were used. A substrate was produced.

[比較例2]
繊度0.06dtex(繊維径2.4μm)、繊維長3mmの延伸PET系短繊維60質量部と、繊度1.2dtex(繊維径10.5μm)、繊維長5mmの単一成分型バインダー用未延伸PET系短繊維40質量部とした以外は実施例1と同じようにして、厚み15μmの不織布基材を作製した。
[Comparative Example 2]
60 parts by mass of stretched PET short fibers with a fineness of 0.06 dtex (fiber diameter of 2.4 μm) and a fiber length of 3 mm, and unstretched single-component binders with a fineness of 1.2 dtex (fiber diameter of 10.5 μm) and a fiber length of 5 mm A non-woven fabric substrate having a thickness of 15 μm was produced in the same manner as in Example 1, except that 40 parts by mass of PET short fibers were used.

[比較例3]
繊度0.6dtex(繊維径7.4μm)、繊維長5mmの延伸PET系短繊維30質量部と、繊度0.3dtex(繊維径5.3μm)、繊維長3mmの延伸PET系短繊維30質量部と、繊度0.2dtex(繊維径4.3μm)、繊維長3mmの単一成分型バインダー用未延伸PET系短繊維40質量部とした以外は実施例1と同じようにして、厚み15μmの不織布基材を作製した。
[Comparative Example 3]
30 parts by mass of drawn PET short fibers with a fineness of 0.6 dtex (fiber diameter of 7.4 µm) and a fiber length of 5 mm and 30 parts by mass of drawn PET short fibers with a fineness of 0.3 dtex (fiber diameter of 5.3 µm) and a fiber length of 3 mm A nonwoven fabric having a thickness of 15 μm was prepared in the same manner as in Example 1 except that 40 parts by mass of unstretched PET short fibers for a single-component type binder having a fineness of 0.2 dtex (fiber diameter of 4.3 μm) and a fiber length of 3 mm were used. A substrate was produced.

[比較例4]
繊度0.1dtex(繊維径3.0μm)、繊維長3mmの延伸PET系短繊維50質量部と、繊度0.2dtex(繊維径4.3μm)、繊維長3mmの単一成分型バインダー用未延伸PET系短繊維50質量部とした以外は実施例1と同じようにして、厚み15μmの不織布基材を作製した。
[Comparative Example 4]
50 parts by mass of drawn PET short fibers with a fineness of 0.1 dtex (fiber diameter of 3.0 μm) and a fiber length of 3 mm, and undrawn single-component binders with a fineness of 0.2 dtex (fiber diameter of 4.3 μm) and a fiber length of 3 mm A nonwoven fabric substrate having a thickness of 15 μm was produced in the same manner as in Example 1, except that 50 parts by mass of PET short fibers were used.

実施例及び比較例で作製した不織布基材に対して無電解鍍金法により、銅及びニッケルの鍍金を施し、電磁波シールド材を作製した。 The nonwoven fabric substrates produced in Examples and Comparative Examples were plated with copper and nickel by an electroless plating method to produce electromagnetic wave shielding materials.

<評価>
[耐繊維脱落性]
不織布基材を5分間、10%水酸化ナトリウム水溶液に浸した後、純水で十分に洗浄した。その後、学振型摩擦堅牢度試験機を使い、500gfの錘を載せたビリケンモス布を使って5往復基材を擦り下記基準で評価した。
<Evaluation>
[Resistance to falling off fibers]
The nonwoven fabric substrate was soaked in a 10% sodium hydroxide aqueous solution for 5 minutes and then thoroughly washed with pure water. After that, using a Gakushin type rubbing fastness tester, a billiken moss cloth on which a weight of 500 gf was placed was rubbed against the substrate five times and evaluated according to the following criteria.

「○」ビリケンモス布に繊維がほとんど付着しない。
「△」ビリケンモス布に繊維が若干付着するが実用上問題がない。
"◯" Almost no fibers adhere to the Billiken moss cloth.
"Fair": A few fibers adhere to the Billiken moss cloth, but there is no practical problem.

[電磁波シールド性]
電磁波シールド材をKEC法によって評価した。
[Electromagnetic shielding]
The electromagnetic wave shielding material was evaluated by the KEC method.

「◎」特に優れた電磁波シールド性がある。
「○」優れた電磁波シールド性がある。
「△」やや優れた電磁波シールド性がある。
「×」電磁波シールド性が劣る。
"A" has particularly excellent electromagnetic wave shielding properties.
"○" has excellent electromagnetic wave shielding properties.
"Δ" has somewhat excellent electromagnetic wave shielding properties.
"X": Poor electromagnetic wave shielding properties.

Figure 0007125836000001
Figure 0007125836000001

実施例1~4の不織布基材は、繊維径が3.0μm未満の延伸ポリエステル系短繊維と繊維径が3.0μm以上5.0μm以下の未延伸ポリエステル系短繊維とを必須成分として含有することから、優れた電磁波シールド性がある。これに対し、繊維径が3.0μm未満の延伸ポリエステル系短繊維と繊維径が3.0μm以上5.0μm以下の未延伸ポリエステル系短繊維とを含有していない比較例1の不織布基材、繊維径が3.0μm以上5.0μm以下の未延伸ポリエステル系短繊維を含有していない比較例2の不織布基材、繊維径が3.0μm未満の延伸ポリエステル系短繊維を含有していない比較例3及び4の不織布基材では、電磁波シールド性が劣るものであった。 The nonwoven fabric substrates of Examples 1 to 4 contain stretched polyester staple fibers with a fiber diameter of less than 3.0 μm and unstretched polyester staple fibers with a fiber diameter of 3.0 μm or more and 5.0 μm or less as essential components. Therefore, it has excellent electromagnetic wave shielding properties. In contrast, the nonwoven fabric substrate of Comparative Example 1, which does not contain stretched polyester short fibers with a fiber diameter of less than 3.0 μm and unstretched polyester short fibers with a fiber diameter of 3.0 μm or more and 5.0 μm or less, Non-woven fabric substrate of Comparative Example 2 that does not contain unstretched polyester short fibers with a fiber diameter of 3.0 μm or more and 5.0 μm or less, comparison that does not contain stretched polyester short fibers with a fiber diameter of less than 3.0 μm The nonwoven fabric substrates of Examples 3 and 4 were inferior in electromagnetic wave shielding properties.

また、未延伸ポリエステル系短繊維の含有率が不織布基材を構成する繊維全体の20質量%未満である実施例4は、含有率が20質量%以上の実施例1~3、5、6と比較してやや耐繊維脱落性すなわち強度が低下した。また、未延伸ポリエステル系短繊維の含有率が不織布基材を構成する繊維全体の80質量%を超える実施例7は、含有率が80質量%以下の実施例1~3、5、6と比較してやや電磁波シールド性が低下した。繊維の融着点が多く、フィルム状になり、不織布基材としての均一性が損なわれたためと考える。 In addition, Example 4, in which the content of unstretched polyester short fibers is less than 20% by mass of the total fibers constituting the nonwoven fabric substrate, is similar to Examples 1 to 3, 5, and 6, in which the content is 20% by mass or more. In comparison, the resistance to fiber dropout, that is, the strength, was slightly lowered. In addition, Example 7, in which the content of unstretched polyester short fibers exceeds 80% by mass of the total fibers constituting the nonwoven fabric substrate, is compared with Examples 1 to 3, 5, and 6 in which the content is 80% by mass or less. As a result, the electromagnetic wave shielding performance decreased slightly. It is thought that this is because the fibers had many fused points and formed a film, impairing the uniformity of the nonwoven fabric base material.

本発明の不織布基材の活用例としては、電磁波シールド材が好適である。 An electromagnetic wave shielding material is suitable as an example of utilization of the nonwoven fabric base material of the present invention.

Claims (1)

湿式不織布である電磁波シールド材用不織布基材において、湿式不織布が、繊維径が3.0μm未満の延伸ポリエステル系短繊維と繊維径が3.0μm以上5.0μm以下の未延伸ポリエステル系短繊維とを必須成分として含有し、繊維径が3.0μm未満の延伸ポリエステル系短繊維が繊度0.06dtexの延伸ポリエチレンテレフタレート系短繊維であり、繊維径が3.0μm以上5.0μm以下の未延伸ポリエステル系短繊維が繊度0.2dtexの未延伸ポリエチレンテレフタレート系短繊維であり、繊度0.06dtexの延伸ポリエチレンテレフタレート系短繊維の含有率が不織布基材を構成する繊維全体の20~80質量%であり、繊度0.2dtexの未延伸ポリエチレンテレフタレート系短繊維の含有率が不織布基材を構成する繊維全体の20~80質量%であることを特徴とする電磁波シールド材用不織布基材。 In a nonwoven fabric base material for an electromagnetic shielding material, which is a wet-laid nonwoven fabric, the wet-laid nonwoven fabric comprises stretched polyester short fibers having a fiber diameter of less than 3.0 μm and unstretched polyester short fibers having a fiber diameter of 3.0 μm or more and 5.0 μm or less. as an essential component , the drawn polyester short fibers having a fiber diameter of less than 3.0 μm are drawn polyethylene terephthalate short fibers having a fineness of 0.06 dtex, and the undrawn polyester having a fiber diameter of 3.0 μm or more and 5.0 μm or less The system short fibers are unstretched polyethylene terephthalate short fibers with a fineness of 0.2 dtex, and the content of the stretched polyethylene terephthalate short fibers with a fineness of 0.06 dtex is 20 to 80 mass% of the total fibers constituting the nonwoven fabric substrate. A nonwoven fabric base material for an electromagnetic shielding material, characterized in that the content of unstretched polyethylene terephthalate staple fibers having a fineness of 0.2 dtex is 20 to 80% by mass of the total fibers constituting the nonwoven fabric base material.
JP2017174267A 2017-09-11 2017-09-11 Non-woven base material for electromagnetic wave shielding Active JP7125836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017174267A JP7125836B2 (en) 2017-09-11 2017-09-11 Non-woven base material for electromagnetic wave shielding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017174267A JP7125836B2 (en) 2017-09-11 2017-09-11 Non-woven base material for electromagnetic wave shielding

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021019709A Division JP7191135B2 (en) 2021-02-10 2021-02-10 Method for producing nonwoven fabric base material for electromagnetic wave shielding material

Publications (2)

Publication Number Publication Date
JP2019049080A JP2019049080A (en) 2019-03-28
JP7125836B2 true JP7125836B2 (en) 2022-08-25

Family

ID=65905412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017174267A Active JP7125836B2 (en) 2017-09-11 2017-09-11 Non-woven base material for electromagnetic wave shielding

Country Status (1)

Country Link
JP (1) JP7125836B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7249451B2 (en) 2016-01-28 2023-03-30 株式会社Fuji Unit replacement trolley

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112703281B (en) * 2018-09-19 2023-01-06 三菱制纸株式会社 Nonwoven fabric for electromagnetic wave shielding material and electromagnetic wave shielding material
CN112030547A (en) * 2020-09-17 2020-12-04 兴中村(东莞)新材料科技有限公司 Manufacturing method of conductive shielding non-woven fabric

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4473867B2 (en) 2004-03-30 2010-06-02 帝人ファイバー株式会社 Sea-island type composite fiber bundle and manufacturing method thereof
JP2013118950A (en) 2011-12-07 2013-06-17 Teijin Ltd Facial oil blotting paper

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5722775B2 (en) * 2009-07-24 2015-05-27 旭化成せんい株式会社 Electromagnetic shield sheet
JP6235205B2 (en) * 2012-10-04 2017-11-22 帝人株式会社 Electromagnetic shielding material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4473867B2 (en) 2004-03-30 2010-06-02 帝人ファイバー株式会社 Sea-island type composite fiber bundle and manufacturing method thereof
JP2013118950A (en) 2011-12-07 2013-06-17 Teijin Ltd Facial oil blotting paper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7249451B2 (en) 2016-01-28 2023-03-30 株式会社Fuji Unit replacement trolley

Also Published As

Publication number Publication date
JP2019049080A (en) 2019-03-28

Similar Documents

Publication Publication Date Title
JP7125836B2 (en) Non-woven base material for electromagnetic wave shielding
JPS58136867A (en) Production of heat bonded nonwoven fabric
JP6669940B1 (en) Non-woven fabric for electromagnetic wave shielding material and electromagnetic wave shielding material
CN106582313A (en) Double-layer alkali-resisting separation membrane support material and preparing method thereof
JP2012127018A (en) Paper composed of polyphenylene sulfide fiber and method for producing the same
JP2012106177A (en) Semipermeable membrane support
JP7191135B2 (en) Method for producing nonwoven fabric base material for electromagnetic wave shielding material
JP6799514B2 (en) Manufacturing method of non-woven fabric base material for electromagnetic wave shielding material
CN106823838B (en) Sea water desalination reverse osmosis membrane supporter and preparation method
JP2014083843A (en) Three-layer laminate and production method of the same
JP6723758B2 (en) Method for producing non-woven fabric containing polyphenylene sulfide fiber
JP2014180638A (en) Method for manufacturing semipermeable membrane
WO2019208160A1 (en) Nonwoven fabric and method for producing same
JP2000160432A (en) Fiber from which superfine fibers can be generated, superfine fibers generated therefrom and fiber sheet using the superfine fibers
JP2021140950A (en) Conductive pressure sensitive adhesive sheet
JP7219364B1 (en) sheet nonwoven fabric
JP2001192954A (en) Nonwoven fabric for wall paper
NO138328B (en) PAVEMENT FURNITURE.
JP2002235269A (en) Stretchable nonwoven fabric and method for producing the same
JP6545638B2 (en) Heat resistant wet non-woven
JP2020050985A (en) Unwoven fabric base material for electromagnetic wave shielding member
JP7323728B1 (en) Electromagnetic wave shielding substrate and electromagnetic wave shielding material containing wet-laid nonwoven fabric
JP2012052267A (en) Adhesive interlining for knit fabric
JP2505588B2 (en) Polyester non-woven fabric for hot stencil printing
JP2014153654A (en) Cleaning sheet base material for electrophotographic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200408

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201110

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210210

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220125

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220526

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220607

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220614

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220712

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220815

R150 Certificate of patent or registration of utility model

Ref document number: 7125836

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150