JP2019049080A - Nonwoven fabric substrate for electromagnetic wave-shielding material - Google Patents

Nonwoven fabric substrate for electromagnetic wave-shielding material Download PDF

Info

Publication number
JP2019049080A
JP2019049080A JP2017174267A JP2017174267A JP2019049080A JP 2019049080 A JP2019049080 A JP 2019049080A JP 2017174267 A JP2017174267 A JP 2017174267A JP 2017174267 A JP2017174267 A JP 2017174267A JP 2019049080 A JP2019049080 A JP 2019049080A
Authority
JP
Japan
Prior art keywords
fiber
electromagnetic wave
fiber diameter
nonwoven fabric
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017174267A
Other languages
Japanese (ja)
Other versions
JP7125836B2 (en
Inventor
秀彰 三枝
Hideaki Saegusa
秀彰 三枝
敬生 増田
Takao Masuda
敬生 増田
重松 俊広
Toshihiro Shigematsu
俊広 重松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2017174267A priority Critical patent/JP7125836B2/en
Publication of JP2019049080A publication Critical patent/JP2019049080A/en
Application granted granted Critical
Publication of JP7125836B2 publication Critical patent/JP7125836B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a nonwoven fabric substrate for electromagnetic wave-shielding material capable of exhibiting excellent electromagnetic wave-shielding performance.SOLUTION: A wet-type nonwoven fabric substrate for electromagnetic wave-shielding material comprises a stretched polyester short fiber having a fiber diameter of less than 3.0 μm and an unstretched polyester short fiber having a fiber diameter of 3.0 μm or more and 5.0 μm or less as essential components.SELECTED DRAWING: None

Description

本発明は、優れた電磁波シールド性を発現できる電磁波シールド材用不織布基材に関する。   The present invention relates to a non-woven fabric substrate for an electromagnetic wave shielding material which can exhibit excellent electromagnetic wave shielding properties.

電子機器は電磁波を発生している。そして、電磁波を電子機器の外部に漏らさないようにするため、また、電磁波により電子機器が誤作動を起こさないようにするために、電磁波シールド材が使用されている。電磁波シールド材には、板金、金属を含む塗料、金属メッシュ、発泡金属等が挙げられる。近年の電子機器の小型化に伴い、薄い電磁波シールド材が求められており、ポリエステル系短繊維から形成される不織布に金属鍍金加工を施してなる電磁波シールド材が知られている(例えば、特許文献1)。   The electronic device generates an electromagnetic wave. Then, in order to prevent the electromagnetic wave from leaking to the outside of the electronic device and also to prevent the electronic device from malfunctioning due to the electromagnetic wave, an electromagnetic wave shielding material is used. Examples of the electromagnetic wave shielding material include a sheet metal, a paint containing a metal, a metal mesh, a foam metal and the like. With the recent miniaturization of electronic devices, a thin electromagnetic wave shielding material is required, and an electromagnetic wave shielding material formed by applying metal plating processing to a non-woven fabric formed of polyester short fibers is known (for example, patent documents 1).

特許文献1の実施例では、延伸ポリエステル系短繊維として、繊維径3μm及び7.4μmの短繊維が使用されているが、薄い電磁波シールド材が求められるにつれ、電磁波シールド性が十分に確保できない問題があった。   In the example of Patent Document 1, short fibers with a fiber diameter of 3 μm and 7.4 μm are used as the drawn polyester short fibers, but as thin electromagnetic wave shielding materials are required, there is a problem that electromagnetic wave shielding properties can not be sufficiently secured. was there.

特開2014−75485号公報JP, 2014-75485, A

本発明の課題は、優れた電磁波シールド性を発現できる電磁波シールド材用不織布基材を提供することにある。   An object of the present invention is to provide a non-woven fabric substrate for an electromagnetic wave shielding material which can exhibit excellent electromagnetic wave shielding properties.

本発明者らは、上記課題を解決するために鋭意研究した結果、湿式不織布である電磁波シールド材用不織布基材において、湿式不織布が、繊維径が3.0μm未満の延伸ポリエステル系短繊維と繊維径が3.0μm以上5.0μm以下の未延伸ポリエステル系短繊維とを必須成分として含有することを特徴とする電磁波シールド材用不織布基材を見出した。   MEANS TO SOLVE THE PROBLEM As a result of the present inventors earnestly researching in order to solve the said subject, in the nonwoven fabric base material for electromagnetic wave shield materials which is a wet nonwoven fabric, a wet nonwoven fabric has a fiber diameter of less than 3.0 micrometers drawn polyester-based short fibers and fibers The inventors have found a non-woven fabric base material for an electromagnetic wave shielding material comprising an undrawn polyester short fiber having a diameter of 3.0 μm or more and 5.0 μm or less as an essential component.

本発明の電磁波シールド材用不織布基材によって、優れた電磁波シールド性を発現できる電磁波シールド材用不織布基材が提供される。   The nonwoven fabric base material for an electromagnetic wave shielding material of the present invention provides a nonwoven fabric base material for an electromagnetic wave shielding material which can exhibit excellent electromagnetic wave shielding properties.

以下、本発明の電磁波シールド材用不織布基材について詳説する。本発明において、電磁波シールド材用不織布基材は、繊維径が3.0μm未満の延伸ポリエステル系短繊維と繊維径が3.0μm以上5.0μm以下の未延伸ポリエステル系短繊維とを必須成分として含有することを特徴としている。   Hereinafter, the nonwoven fabric base material for electromagnetic wave shielding materials of the present invention will be described in detail. In the present invention, the nonwoven fabric base for an electromagnetic wave shielding material comprises, as essential components, a drawn polyester-based short fiber having a fiber diameter of less than 3.0 μm and an undrawn polyester-based short fiber having a fiber diameter of 3.0 to 5.0 μm. It is characterized by containing.

一般的に、電磁波シールド材用不織布基材の鍍金加工には無電解鍍金が用いられるが、無電解鍍金では、不織布を形成する繊維の比表面積(単位体積当たり表面積)が小さいと、単位体積当たりの金属の付着量が小さくなり、優れた電磁波シールド性を発現できない。繊維径が3.0μm未満の延伸ポリエステル系短繊維と繊維径が3.0μm以上5.0μm以下の未延伸ポリエステル系短繊維とを必須成分として含有する場合、比表面積を増やすことができ、優れた電磁波シールド性が発現できる。すなわち、電磁波シールド材用不織布基材が、繊維径が3.0μm以上の延伸ポリエステル系短繊維と繊維径が5.0μm超の未延伸ポリエステル系短繊維のみから成る場合では、優れた電磁波シールド性が発現できない。また、薄い電磁波シールド材が求められており、繊維径が小さいと電磁波シールド材としての強度が得られない場合がある。繊維径が3.0μm未満の延伸ポリエステル系短繊維と繊維径が3.0μm以上5.0μm以下の未延伸ポリエステル系短繊維とを含むことで、薄く強度のある電磁波シールド材用不織布基材を提供することが容易になる。   In general, electroless plating is used for plating the non-woven fabric base material for electromagnetic shielding material, but in electroless plating, per unit volume per unit volume if the specific surface area (surface area per unit volume) of the fibers forming the non-woven fabric is small. The amount of metal deposition on the surface decreases, and excellent electromagnetic wave shielding properties can not be expressed. When the drawn polyester-based short fiber having a fiber diameter of less than 3.0 μm and the undrawn polyester-based short fiber having a fiber diameter of 3.0 μm or more and 5.0 μm or less are contained as essential components, the specific surface area can be increased. Electromagnetic wave shielding can be expressed. That is, the electromagnetic wave shielding properties are excellent when the nonwoven fabric base material for the electromagnetic wave shielding material comprises only drawn polyester short fibers with a fiber diameter of 3.0 μm or more and undrawn polyester short fibers with a fiber diameter of more than 5.0 μm. Can not be expressed. In addition, a thin electromagnetic shielding material is required, and if the fiber diameter is small, the strength as the electromagnetic shielding material may not be obtained. A nonwoven fabric base material for an electromagnetic wave shielding material having a thin strength by containing a stretched polyester short fiber having a fiber diameter of less than 3.0 μm and an unstretched polyester short fiber having a fiber diameter of 3.0 μm to 5.0 μm. It becomes easy to provide.

本発明において、延伸ポリエステル系短繊維は、熱カレンダー処理によっても、溶融又は軟化しにくく、不織布基材の骨格を形成する主体繊維である。   In the present invention, the drawn polyester short fiber is a main fiber which is hardly melted or softened even by heat calendering, and forms a skeleton of the non-woven fabric substrate.

本発明において、未延伸ポリエステル系短繊維は、熱カレンダー処理によって、溶融又は軟化し、不織布基材の強度を高めるバインダー繊維として機能する。未延伸ポリエステルの融点は、220℃〜250℃が好ましい。未延伸ポリエステルの融点が220℃未満の場合、熱カレンダー処理時の熱ロールに不織布基材が貼り付いてしまい、シートにならない場合がある。250℃を超える場合、繊維が接着せずにシートの強度が発現しない場合がある。   In the present invention, the undrawn polyester short fibers are melted or softened by heat calendering, and function as binder fibers to increase the strength of the non-woven fabric substrate. The melting point of the unstretched polyester is preferably 220 ° C to 250 ° C. When the melting point of the unstretched polyester is less than 220 ° C., the non-woven fabric substrate may stick to the heat roll at the time of heat calendering treatment and the sheet may not be a sheet. If it exceeds 250 ° C., the fibers may not adhere and the strength of the sheet may not be developed.

未延伸ポリエステル系短繊維の融点は、示差走査熱量測定装置にて窒素雰囲気で昇温速度10℃/min、25℃から300℃まで昇温した時のピーク温度である。   The melting point of the undrawn polyester short fiber is a peak temperature when the temperature is increased from 25 ° C. to 300 ° C. at a heating rate of 10 ° C./min in a nitrogen atmosphere by a differential scanning calorimeter.

本発明において、電磁波シールド材用不織布基材は、繊維径が3.0μm未満の延伸ポリエステル系短繊維と繊維径が3.0μm以上5.0μm以下の未延伸ポリエステル系短繊維とを必須成分として含有する。繊維径が3.0μm未満の延伸ポリエステル系短繊維の繊維径は、0.1μm以上であることが好ましい。繊維径が0.1μm未満である場合、強度が発現しない場合がある。   In the present invention, the nonwoven fabric base for an electromagnetic wave shielding material comprises, as essential components, a drawn polyester-based short fiber having a fiber diameter of less than 3.0 μm and an undrawn polyester-based short fiber having a fiber diameter of 3.0 to 5.0 μm. contains. The fiber diameter of the drawn polyester short fiber having a fiber diameter of less than 3.0 μm is preferably 0.1 μm or more. When the fiber diameter is less than 0.1 μm, strength may not be exhibited.

本発明において、延伸ポリエステル系短繊維と未延伸ポリエステル系短繊維の質量含有比率は、20:80〜80:20であることが好ましい。未延伸ポリエステル系短繊維の含有率が不織布基材を構成する繊維全体の20質量%未満であると、基材として必要な強度が発現しなくなることがある。一方、未延伸ポリエステル系短繊維の含有率が80質量%を超えると、均一性を損なう場合がある。   In the present invention, the mass content ratio of the drawn polyester short fiber and the undrawn polyester short fiber is preferably 20:80 to 80:20. When the content rate of the undrawn polyester short fibers is less than 20% by mass of the entire fibers constituting the nonwoven fabric substrate, the strength necessary for the substrate may not be expressed. On the other hand, if the content of undrawn polyester short fibers exceeds 80% by mass, the uniformity may be impaired.

本発明において、繊維径が3.0μm未満の延伸ポリエステル系短繊維と繊維径が3.0μm以上5.0μm以下の未延伸ポリエステル系短繊維以外の繊維を使用しても良い。すなわち、繊維径が3.0μm以上の延伸ポリエステル系短繊維、繊維径が3.0μm未満や5.0μm超の未延伸ポリエステル系短繊維を使用しても良い。これらは、単独で使用しても良いし、2種類以上の繊維径の繊維を併用してもよい。   In the present invention, fibers other than drawn polyester short fibers having a fiber diameter of less than 3.0 μm and undrawn polyester short fibers having a fiber diameter of 3.0 μm to 5.0 μm may be used. That is, a drawn polyester short fiber having a fiber diameter of 3.0 μm or more and an undrawn polyester short fiber having a fiber diameter of less than 3.0 μm or more than 5.0 μm may be used. Each of these may be used alone, or fibers of two or more fiber diameters may be used in combination.

繊維径が3.0μm未満の延伸ポリエステル系短繊維については、その質量含有率は、含有する全延伸ポリエステル系短繊維中、1〜100質量%であることが好ましく、3〜100質量%であることがより好ましい。繊維径が3.0μm未満の延伸ポリエステル系短繊維の含有率が1質量%未満である場合、併用する繊維径によっては比表面積が小さくなり、優れた電磁波シールド性が発現し難くなる場合がある。   With respect to drawn polyester-based short fibers having a fiber diameter of less than 3.0 μm, the mass content thereof is preferably 1 to 100% by mass, and 3 to 100% by mass in the total drawn polyester-based short fibers contained. Is more preferred. If the content of the drawn polyester short fibers having a fiber diameter of less than 3.0 μm is less than 1% by mass, the specific surface area may be reduced depending on the diameter of the fiber to be used in combination, which may make it difficult to express excellent electromagnetic wave shielding properties. .

また、繊維径が3.0μm以上5.0μm以下の未延伸ポリエステル系短繊維については、その質量含有率は、含有する全未延伸ポリエステル系短繊維中、1〜100質量%が好ましく、2〜100質量%がより好ましい。繊維径が3.0μm以上5.0μm以下の未延伸ポリエステル系短繊維の含有率が1質量%未満である場合、併用する繊維径によっては比表面積が小さくなり、優れた電磁波シールド性が発現し難くなる、または優れた不織布の強度が発現し難くなる場合がある。   In addition, with respect to unstretched polyester short fibers having a fiber diameter of 3.0 μm or more and 5.0 μm or less, the mass content thereof is preferably 1 to 100 mass% in the total unstretched polyester short fibers contained, 2 to 2 100 mass% is more preferable. When the content of unstretched polyester short fibers having a fiber diameter of 3.0 μm or more and 5.0 μm or less is less than 1% by mass, the specific surface area decreases depending on the fiber diameter used in combination, and excellent electromagnetic wave shielding properties are expressed It may become difficult or it may become difficult to develop the strength of the excellent nonwoven fabric.

なお、ポリエステル系短繊維の繊維径は、顕微鏡で3000倍の不織布基材断面の拡大写真を撮り、ポリエステル系短繊維の断面積を測定し、繊維の断面形状が真円として算出した直径であり、本発明では、10本以上の繊維の算術平均値を求めた。   The fiber diameter of polyester-based staple fiber is a diameter obtained by taking a magnified photograph of the cross section of the nonwoven fabric substrate at 3000 times with a microscope, measuring the cross-sectional area of polyester-based staple fiber, and calculating the fiber cross-sectional shape as a perfect circle. In the present invention, the arithmetic mean value of ten or more fibers was determined.

ポリエステル系短繊維の繊維長は、好ましくは1〜20mmであり、より好ましくは1〜10mmであり、さらに好ましくは2〜8mmである。ポリエステル系短繊維の繊維長が1mm未満である場合、基材として必要な強度が発現しなくなることがある。ポリエステル系短繊維の繊維長が20mm超の場合、均一性を損なう場合がある。   The fiber length of the polyester-based staple fiber is preferably 1 to 20 mm, more preferably 1 to 10 mm, and still more preferably 2 to 8 mm. When the fiber length of the polyester short fiber is less than 1 mm, the strength necessary for the substrate may not be developed. If the fiber length of the polyester staple fiber is more than 20 mm, the uniformity may be impaired.

上記繊維をシート状に形成せしめる方法としては、スパンボンド法、メルトブロー法、静電紡糸法、湿式法等の各種製造方法によることができる。繊維間を接合する方法としては、ケミカルボンド法、熱融着法等の各種方法によることができる。これらの中で、湿式法によってシート状に形成し、熱融着法によって接合することが、耐久性や強度に優れ表面が平滑な不織布基材が得られることから好ましい。   As a method of forming the said fiber in a sheet form, it can be based on various manufacturing methods, such as a spun bond method, a melt-blowing method, an electrostatic spinning method, a wet method. As a method of bonding between fibers, various methods such as a chemical bond method and a heat fusion method can be used. Among these, it is preferable to form in a sheet shape by a wet method and to bond by a heat fusion method because a nonwoven fabric base having excellent durability and strength and a smooth surface can be obtained.

湿式法における熱融着法としては、抄紙で得られたシートを、多筒式ドライヤー、ヤンキードライヤー、エアースルードライヤー等の抄紙後に使用される乾燥機で乾燥する際に熱融着する方法を用いることができる。また、金属製熱ロール/金属製熱ロール、金属製熱ロール/弾性ロール、金属製熱ロール/コットンロールなどのロール組み合わせを有する熱カレンダー装置による熱カレンダー処理によって熱融着する方法が好ましい。熱カレンダー処理により、バインダー成分が熱溶融し、熱融着が生じる。   As a heat fusion method in the wet method, a method of heat fusion is used when drying a sheet obtained by paper making with a dryer used after paper making such as a multi-cylinder dryer, Yankee dryer, air through dryer, etc. be able to. In addition, it is preferable to carry out heat fusion by a heat calendering process using a heat calender device having a roll combination such as a metal heat roll / metal heat roll, a metal heat roll / elastic roll, and a metal heat roll / cotton roll. The heat calendering treatment causes the binder component to be heat melted and causes heat fusion.

また、熱カレンダーの条件は以下に例示することができるが、これらに限定されるものではない。熱カレンダー処理における熱ロールの温度は、200℃以上215℃以下が好ましい。熱ロールの温度が200℃未満の場合、繊維同士が接着せずに強度が発現しないという問題が発生し、逆に、熱ロールの温度が215℃超である場合、熱ロールに不織布が貼り付いてしまい、シートにならないという問題が発生する。熱ロールの温度は、より好ましくは、205℃以上210℃以下である。強度を発現するために熱カレンダー処理における圧力は、好ましくは50〜250kN/mであり、さらに好ましくは80〜150kN/mである。50kN/m未満である場合、表面の平滑性を損なう可能性があり、また、速度を低下させないと厚みが薄くならない可能性がある。250kN/m超の場合、シートが圧力に耐えられずに破断する可能性がある。熱カレンダーの速度は1〜300m/minが好ましい。1m/min以上とすることで、作業効率が良好となる。300m/min以下とすることで、不織布基材に熱を伝導させ、熱融着の実効を得やすくなる。熱カレンダーのニップ回数は不織布基材に熱を伝導することができれば特に限定するものではないが、金属製熱ロール/弾性ロールの組み合わせでは、不織布基材の表裏から熱を伝導させるために2回以上ニップしても良い。   Also, the conditions of the thermal calendar can be exemplified below, but are not limited thereto. The temperature of the heat roll in heat calendering is preferably 200 ° C. or more and 215 ° C. or less. When the temperature of the heat roll is less than 200 ° C., there is a problem that the fibers do not adhere to each other and strength does not develop, and conversely, when the temperature of the heat roll is more than 215 ° C., the non-woven fabric adheres to the heat roll And the problem of not forming a sheet occurs. The temperature of the heat roll is more preferably 205 ° C. or more and 210 ° C. or less. The pressure in the heat calendering treatment to develop strength is preferably 50 to 250 kN / m, more preferably 80 to 150 kN / m. If it is less than 50 kN / m, the smoothness of the surface may be impaired, and the thickness may not be reduced unless the speed is reduced. If it exceeds 250 kN / m, the sheet may break without being able to withstand pressure. The speed of the heat calender is preferably 1 to 300 m / min. Work efficiency becomes good by setting it as 1 m / min or more. By setting the density to 300 m / min or less, heat is conducted to the non-woven fabric substrate, and it becomes easy to obtain the effect of heat fusion. The number of nips of the heat calender is not particularly limited as long as heat can be conducted to the non-woven fabric substrate, but in the case of a combination of metal heat roll / elastic roll, twice to conduct heat from the front and back of the non-woven fabric substrate. The above may be nipped.

本発明の電磁波シールド材用不織布基材の厚みは、電子機器で使用する目的から、7〜30μmであることが好ましく、目付(坪量)は6〜30g/mであることが好ましい。目付が6g/m未満であると、均一性を得ることが難しくなり、電磁波シールド性の効果にバラつきが発生しやすくなる。 It is preferable that it is 7-30 micrometers for the purpose of using with an electronic device for the thickness of the nonwoven fabric base material for electromagnetic wave shielding materials of this invention, and it is preferable that a fabric weight (basic weight) is 6-30 g / m < 2 >. If the areal weight is less than 6 g / m 2 , it is difficult to obtain uniformity, and variations in the electromagnetic wave shielding effect are likely to occur.

以下に実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。なお、実施例において、%及び部は、断りのない限り、全て質量基準である。   EXAMPLES The present invention will be described by way of examples, which should not be construed as limiting the present invention. In the examples,% and parts are all based on mass unless otherwise noted.

[実施例1]
繊度0.06dtex(繊維径2.4μm)、繊維長3mmの延伸ポリエチレンテレフタレート(PET)系短繊維60質量部と、繊度0.2dtex(繊維径4.3μm)、繊維長3mmの単一成分型バインダー用未延伸PET系短繊維40質量部とをパルパーにより水中に分散し、濃度1質量%の均一な抄造用スラリーを調製した。この抄造用スラリーを、通気度275cm/cm/sec、組織[上網:平織、下網:畝織]の抄造ワイヤーを設置した傾斜型抄紙機にて、湿式法で抄き上げ、135℃のシリンダードライヤーによって、バインダー用未延伸PET系短繊維を熱融着させて不織布強度を発現させ、目付10g/mの不織布とした。さらに、この不織布を、誘電発熱ジャケットロール(金属製熱ロール)及び弾性ロールからなる1ニップ式熱カレンダー装置を使用して、熱ロール温度200℃、線圧100kN/m、処理速度30m/分の条件で熱カレンダー処理し、厚み15μmの不織布基材を作製した。
Example 1
60 parts by mass of drawn polyethylene terephthalate (PET) short fibers with a fineness of 0.06 dtex (fiber diameter 2.4 μm) and a fiber length of 3 mm, and a single component type with a fineness of 0.2 dtex (fiber diameter 4.3 μm) and a fiber length of 3 mm 40 parts by mass of undrawn PET-based short fiber for binder was dispersed in water with a pulper to prepare a uniform sheet-forming slurry with a concentration of 1% by mass. This slurry for papermaking is formed by a wet method on an inclined paper machine equipped with a papermaking wire having an air permeability of 275 cm 3 / cm 2 / sec and a texture [upper mesh: plain weave, lower mesh: twill weave], 135 ° C. The unstretched PET-based short fiber for binder was heat-sealed by a cylinder drier in order to develop the strength of the non-woven fabric, whereby a non-woven fabric with a fabric weight of 10 g / m 2 was formed. Furthermore, this non-woven fabric was heated at a temperature of 200 ° C., a linear pressure of 100 kN / m, and a processing speed of 30 m / min using a one-nip heat calendar device comprising a dielectric heating jacket roll (metal heat roll) and an elastic roll. It heat-calendered on conditions, and produced the 15-micrometer-thick nonwoven fabric base material.

[実施例2]
繊度0.1dtex(繊維径3.0μm)、繊維長3mmの延伸ポリエチレンテレフタレート(PET)系短繊維20質量部と、繊度0.06dtex(繊維径2.4μm)、繊維長3mmの延伸PET系短繊維40質量部と、繊度0.2dtex(繊維径4.3μm)、繊維長3mmの単一成分型バインダー用未延伸PET系短繊維40質量部とした以外は実施例1と同じようにして、厚み15μmの不織布基材を作製した。
Example 2
20 parts by mass of drawn polyethylene terephthalate (PET) short fibers with a fineness of 0.1 dtex (fiber diameter 3.0 μm) and a fiber length of 3 mm, and a drawn PET short with a fineness of 0.06 dtex (fiber diameter 2.4 μm) In the same manner as in Example 1 except that 40 parts by mass of fibers, 40 parts by mass of unstretched PET short fibers for a single component type binder having a fineness of 0.2 dtex (fiber diameter of 4.3 μm) and a fiber length of 3 mm were used A non-woven fabric substrate having a thickness of 15 μm was produced.

[実施例3]
繊度0.3dtex(繊維径5.3μm)、繊維長3mmの延伸ポリエチレンテレフタレート(PET)系短繊維20質量部と、繊度0.06dtex(繊維径2.4μm)、繊維長3mmの延伸PET系短繊維40質量部と、繊度0.2dtex(繊維径4.3μm)、繊維長3mmの単一成分型バインダー用未延伸PET系短繊維40質量部とした以外は実施例1と同じようにして、厚み15μmの不織布基材を作製した。
[Example 3]
20 parts by mass of drawn polyethylene terephthalate (PET) short fibers with a fineness of 0.3 dtex (fiber diameter 5.3 μm) and a fiber length of 3 mm, and a drawn PET short with a fineness of 0.06 dtex (fiber diameter 2.4 μm) In the same manner as in Example 1 except that 40 parts by mass of fibers, 40 parts by mass of unstretched PET short fibers for a single component type binder having a fineness of 0.2 dtex (fiber diameter of 4.3 μm) and a fiber length of 3 mm were used A non-woven fabric substrate having a thickness of 15 μm was produced.

[実施例4]
繊度0.06dtex(繊維径2.4μm)、繊維長3mmの延伸PET系短繊維90質量部と、繊度0.2dtex(繊維径4.3μm)、繊維長3mmの単一成分型バインダー用未延伸PET系短繊維10質量部とした以外は実施例1と同じようにして、厚み15μmの不織布基材を作製した。
Example 4
90 parts by weight of drawn PET-based short fibers with a fineness of 0.06 dtex (fiber diameter 2.4 μm) and a fiber length of 3 mm, and undrawn for single component type binders with a fineness of 0.2 dtex (fiber diameter 4.3 μm) A nonwoven fabric substrate with a thickness of 15 μm was produced in the same manner as in Example 1 except that 10 parts by mass of PET short fibers were used.

[実施例5]
繊度0.06dtex(繊維径2.4μm)、繊維長3mmの延伸PET系短繊維80質量部と、繊度0.2dtex(繊維径4.3μm)、繊維長3mmの単一成分型バインダー用未延伸PET系短繊維20質量部とした以外は実施例1と同じようにして、厚み15μmの不織布基材を作製した。
[Example 5]
Unstretched for single component type binder with a denier of 0.06 dtex (fiber diameter 2.4 μm) and a stretched PET-based short fiber with a fiber length of 3 mm and a denier of 0.2 dtex (fiber diameter of 4.3 μm) and a fiber length of 3 mm A nonwoven fabric substrate with a thickness of 15 μm was produced in the same manner as in Example 1 except that 20 parts by mass of PET-based short fibers were used.

[実施例6]
繊度0.06dtex(繊維径2.4μm)、繊維長3mmの延伸PET系短繊維20質量部と、繊度0.2dtex(繊維径4.3μm)、繊維長3mmの単一成分型バインダー用未延伸PET系短繊維80質量部とした以外は実施例1と同じようにして、厚み15μmの不織布基材を作製した。
[Example 6]
20 parts by mass of drawn PET-based short fibers with a fineness of 0.06 dtex (fiber diameter 2.4 μm) and a fiber length of 3 mm, and undrawn for single component type binders with a fineness of 0.2 dtex (fiber diameter 4.3 μm) A nonwoven fabric substrate with a thickness of 15 μm was produced in the same manner as in Example 1 except that 80 parts by mass of PET-based short fibers were used.

[実施例7]
繊度0.06dtex(繊維径2.4μm)、繊維長3mmの延伸PET系短繊維10質量部と、繊度0.2dtex(繊維径4.3μm)、繊維長3mmの単一成分型バインダー用未延伸PET系短繊維90質量部とした以外は実施例1と同じようにして、厚み15μmの不織布基材を作製した。
[Example 7]
10 parts by mass of drawn PET-based short fibers with a fineness of 0.06 dtex (fiber diameter 2.4 μm) and a fiber length of 3 mm, and undrawn for single component type binders with a fineness of 0.2 dtex (fiber diameter 4.3 μm) A nonwoven fabric substrate with a thickness of 15 μm was produced in the same manner as in Example 1 except that 90 parts by mass of PET-based short fibers were used.

[比較例1]
繊度0.6dtex(繊維径7.4μm)、繊維長5mmの延伸PET系短繊維30質量部と、繊度0.3dtex(繊維径5.3μm)、繊維長3mmの延伸PET系短繊維30質量部と、繊度1.2dtex(繊維径10.5μm)、繊維長5mmの単一成分型バインダー用未延伸PET系短繊維40質量部とした以外は実施例1と同じようにして、厚み15μmの不織布基材を作製した。
Comparative Example 1
30 parts by mass of drawn PET-based short fibers with a denier of 0.6 dtex (fiber diameter 7.4 μm) and a fiber length of 5 mm, and 30 parts by mass of drawn PET-based short fibers with a denier of 0.3 dtex (fiber diameter of 5.3 μm) And a nonwoven fabric having a thickness of 15 μm in the same manner as in Example 1 except that 40 parts by mass of unstretched PET-based short fibers for a single component type binder having a fineness of 1.2 dtex (fiber diameter 10.5 μm) and a fiber length of 5 mm A substrate was made.

[比較例2]
繊度0.06dtex(繊維径2.4μm)、繊維長3mmの延伸PET系短繊維60質量部と、繊度1.2dtex(繊維径10.5μm)、繊維長5mmの単一成分型バインダー用未延伸PET系短繊維40質量部とした以外は実施例1と同じようにして、厚み15μmの不織布基材を作製した。
Comparative Example 2
60 parts by mass of drawn PET-based short fibers with a fineness of 0.06 dtex (fiber diameter 2.4 μm) and a fiber length of 3 mm, and undrawn for single component type binders with a fineness of 1.2 dtex (fiber diameter 10.5 μm) and a fiber length of 5 mm A nonwoven fabric substrate with a thickness of 15 μm was produced in the same manner as in Example 1 except that 40 parts by mass of PET-based short fibers were used.

[比較例3]
繊度0.6dtex(繊維径7.4μm)、繊維長5mmの延伸PET系短繊維30質量部と、繊度0.3dtex(繊維径5.3μm)、繊維長3mmの延伸PET系短繊維30質量部と、繊度0.2dtex(繊維径4.3μm)、繊維長3mmの単一成分型バインダー用未延伸PET系短繊維40質量部とした以外は実施例1と同じようにして、厚み15μmの不織布基材を作製した。
Comparative Example 3
30 parts by mass of drawn PET-based short fibers with a denier of 0.6 dtex (fiber diameter 7.4 μm) and a fiber length of 5 mm, and 30 parts by mass of drawn PET-based short fibers with a denier of 0.3 dtex (fiber diameter of 5.3 μm) And a nonwoven fabric having a thickness of 15 μm in the same manner as in Example 1 except that 40 parts by mass of unstretched PET-based short fiber for a single component type binder having a fineness of 0.2 dtex (fiber diameter 4.3 μm) and a fiber length of 3 mm A substrate was made.

[比較例4]
繊度0.1dtex(繊維径3.0μm)、繊維長3mmの延伸PET系短繊維50質量部と、繊度0.2dtex(繊維径4.3μm)、繊維長3mmの単一成分型バインダー用未延伸PET系短繊維50質量部とした以外は実施例1と同じようにして、厚み15μmの不織布基材を作製した。
Comparative Example 4
Unstretched for single component type binders with a denier of 0.1 dtex (fiber diameter 3.0 μm) and a stretched PET-based short fiber with a fiber length of 3 mm and a denier of 0.2 dtex (fiber diameter of 4.3 μm) and a fiber length of 3 mm A nonwoven fabric substrate with a thickness of 15 μm was produced in the same manner as in Example 1 except that 50 parts by mass of PET-based short fibers were used.

実施例及び比較例で作製した不織布基材に対して無電解鍍金法により、銅及びニッケルの鍍金を施し、電磁波シールド材を作製した。   Copper and nickel were plated on the non-woven fabric substrates produced in Examples and Comparative Examples by the electroless plating method, to produce an electromagnetic shielding material.

<評価>
[耐繊維脱落性]
不織布基材を5分間、10%水酸化ナトリウム水溶液に浸した後、純水で十分に洗浄した。その後、学振型摩擦堅牢度試験機を使い、500gfの錘を載せたビリケンモス布を使って5往復基材を擦り下記基準で評価した。
<Evaluation>
[Fiber resistant to falling off]
The non-woven fabric substrate was immersed in a 10% aqueous solution of sodium hydroxide for 5 minutes and then thoroughly washed with pure water. After that, using a Gakushin-type friction fastness tester, a 5-reciprocation substrate was rubbed using a Birken moth cloth loaded with a 500 gf weight, and evaluated according to the following criteria.

「○」ビリケンモス布に繊維がほとんど付着しない。
「△」ビリケンモス布に繊維が若干付着するが実用上問題がない。
Almost no fiber adheres to the "○" Birken moss cloth.
Some fibers adhere to the "△" bilik moth cloth, but there is no problem in practical use.

[電磁波シールド性]
電磁波シールド材をKEC法によって評価した。
[Electromagnetic wave shielding property]
The electromagnetic shielding material was evaluated by the KEC method.

「◎」特に優れた電磁波シールド性がある。
「○」優れた電磁波シールド性がある。
「△」やや優れた電磁波シールド性がある。
「×」電磁波シールド性が劣る。
"◎" There is an excellent electromagnetic wave shielding property.
"○" has excellent electromagnetic wave shielding properties.
"△" There is a somewhat superior electromagnetic wave shielding property.
"X" electromagnetic wave shielding property is inferior.

Figure 2019049080
Figure 2019049080

実施例1〜4の不織布基材は、繊維径が3.0μm未満の延伸ポリエステル系短繊維と繊維径が3.0μm以上5.0μm以下の未延伸ポリエステル系短繊維とを必須成分として含有することから、優れた電磁波シールド性がある。これに対し、繊維径が3.0μm未満の延伸ポリエステル系短繊維と繊維径が3.0μm以上5.0μm以下の未延伸ポリエステル系短繊維とを含有していない比較例1の不織布基材、繊維径が3.0μm以上5.0μm以下の未延伸ポリエステル系短繊維を含有していない比較例2の不織布基材、繊維径が3.0μm未満の延伸ポリエステル系短繊維を含有していない比較例3及び4の不織布基材では、電磁波シールド性が劣るものであった。   The nonwoven fabric substrates of Examples 1 to 4 contain, as essential components, drawn polyester short fibers having a fiber diameter of less than 3.0 μm and undrawn polyester short fibers having a fiber diameter of 3.0 μm to 5.0 μm. Therefore, it has excellent electromagnetic shielding properties. On the other hand, the nonwoven fabric base material of Comparative Example 1 which does not contain a stretched polyester-based short fiber having a fiber diameter of less than 3.0 μm and an unstretched polyester-based short fiber having a fiber diameter of 3.0 to 5.0 μm, Non-woven fabric base material of Comparative Example 2 not containing undrawn polyester short fiber having a fiber diameter of 3.0 μm or more and 5.0 μm or less, comparison not containing drawn polyester short fiber having a fiber diameter of less than 3.0 μm The nonwoven fabric substrates of Examples 3 and 4 were inferior in electromagnetic wave shielding properties.

また、未延伸ポリエステル系短繊維の含有率が不織布基材を構成する繊維全体の20質量%未満である実施例4は、含有率が20質量%以上の実施例1〜3、5、6と比較してやや耐繊維脱落性すなわち強度が低下した。また、未延伸ポリエステル系短繊維の含有率が不織布基材を構成する繊維全体の80質量%を超える実施例7は、含有率が80質量%以下の実施例1〜3、5、6と比較してやや電磁波シールド性が低下した。繊維の融着点が多く、フィルム状になり、不織布基材としての均一性が損なわれたためと考える。   In addition, Example 4 in which the content of unstretched polyester short fibers is less than 20% by mass of the entire fibers constituting the nonwoven fabric substrate, Examples 1 to 3, 5 and 6 in which the content is 20% by mass or more In comparison, the defibering resistance, that is, the strength was slightly reduced. In addition, Example 7 in which the content of undrawn polyester short fibers exceeds 80% by mass of the total fibers constituting the nonwoven fabric substrate is compared with Examples 1 to 3, 5 and 6 in which the content is 80% by mass or less Then the electromagnetic wave shielding performance was slightly reduced. It is considered that the number of fusion points of the fibers is large, the film is formed, and the uniformity as the non-woven fabric substrate is lost.

本発明の不織布基材の活用例としては、電磁波シールド材が好適である。   An electromagnetic shielding material is suitable as an application example of the non-woven fabric substrate of the present invention.

Claims (1)

湿式不織布である電磁波シールド材用不織布基材において、湿式不織布が、繊維径が3.0μm未満の延伸ポリエステル系短繊維と繊維径が3.0μm以上5.0μm以下の未延伸ポリエステル系短繊維とを必須成分として含有することを特徴とする電磁波シールド材用不織布基材。   In the nonwoven fabric base material for an electromagnetic wave shielding material which is a wet nonwoven fabric, the wet nonwoven fabric comprises a stretched polyester short fiber having a fiber diameter of less than 3.0 μm and an unstretched polyester short fiber having a fiber diameter of 3.0 to 5.0 μm. The nonwoven fabric base material for electromagnetic wave shielding materials characterized by including as an essential component.
JP2017174267A 2017-09-11 2017-09-11 Non-woven base material for electromagnetic wave shielding Active JP7125836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017174267A JP7125836B2 (en) 2017-09-11 2017-09-11 Non-woven base material for electromagnetic wave shielding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017174267A JP7125836B2 (en) 2017-09-11 2017-09-11 Non-woven base material for electromagnetic wave shielding

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021019709A Division JP7191135B2 (en) 2021-02-10 2021-02-10 Method for producing nonwoven fabric base material for electromagnetic wave shielding material

Publications (2)

Publication Number Publication Date
JP2019049080A true JP2019049080A (en) 2019-03-28
JP7125836B2 JP7125836B2 (en) 2022-08-25

Family

ID=65905412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017174267A Active JP7125836B2 (en) 2017-09-11 2017-09-11 Non-woven base material for electromagnetic wave shielding

Country Status (1)

Country Link
JP (1) JP7125836B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6669940B1 (en) * 2018-09-19 2020-03-18 三菱製紙株式会社 Non-woven fabric for electromagnetic wave shielding material and electromagnetic wave shielding material
CN112030547A (en) * 2020-09-17 2020-12-04 兴中村(东莞)新材料科技有限公司 Manufacturing method of conductive shielding non-woven fabric

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7249451B2 (en) 2016-01-28 2023-03-30 株式会社Fuji Unit replacement trolley

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010697A1 (en) * 2009-07-24 2011-01-27 旭化成せんい株式会社 Electromagnetic shielding sheet
JP2013118950A (en) * 2011-12-07 2013-06-17 Teijin Ltd Facial oil blotting paper
JP2014075485A (en) * 2012-10-04 2014-04-24 Teijin Ltd Electromagnetic wave shielding material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4473867B2 (en) 2004-03-30 2010-06-02 帝人ファイバー株式会社 Sea-island type composite fiber bundle and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010697A1 (en) * 2009-07-24 2011-01-27 旭化成せんい株式会社 Electromagnetic shielding sheet
JP2013118950A (en) * 2011-12-07 2013-06-17 Teijin Ltd Facial oil blotting paper
JP2014075485A (en) * 2012-10-04 2014-04-24 Teijin Ltd Electromagnetic wave shielding material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6669940B1 (en) * 2018-09-19 2020-03-18 三菱製紙株式会社 Non-woven fabric for electromagnetic wave shielding material and electromagnetic wave shielding material
WO2020059582A1 (en) * 2018-09-19 2020-03-26 三菱製紙株式会社 Non-woven fabric for electromagnetic wave shielding materials and electromagnetic wave shielding material
CN112703281A (en) * 2018-09-19 2021-04-23 三菱制纸株式会社 Nonwoven fabric for electromagnetic wave shielding material and electromagnetic wave shielding material
JP2022043131A (en) * 2018-09-19 2022-03-15 三菱製紙株式会社 Manufacturing method of electromagnetic wave shield material
CN112030547A (en) * 2020-09-17 2020-12-04 兴中村(东莞)新材料科技有限公司 Manufacturing method of conductive shielding non-woven fabric

Also Published As

Publication number Publication date
JP7125836B2 (en) 2022-08-25

Similar Documents

Publication Publication Date Title
JP2019049080A (en) Nonwoven fabric substrate for electromagnetic wave-shielding material
JP6669940B1 (en) Non-woven fabric for electromagnetic wave shielding material and electromagnetic wave shielding material
WO2014125735A1 (en) Dust collector filter cloth
JP2012127018A (en) Paper composed of polyphenylene sulfide fiber and method for producing the same
JP6799514B2 (en) Manufacturing method of non-woven fabric base material for electromagnetic wave shielding material
JP6723758B2 (en) Method for producing non-woven fabric containing polyphenylene sulfide fiber
JP7191135B2 (en) Method for producing nonwoven fabric base material for electromagnetic wave shielding material
JP2021140950A (en) Conductive pressure sensitive adhesive sheet
JP2022083165A (en) Nonwoven fabric for electromagnetic shield material
JP2022082755A (en) Nonwoven fabric and production method thereof
JP2013122102A (en) Wet nonwoven fabric
JP2020050985A (en) Unwoven fabric base material for electromagnetic wave shielding member
JP6625922B2 (en) Heat dissipation sheet substrate
JP7323728B1 (en) Electromagnetic wave shielding substrate and electromagnetic wave shielding material containing wet-laid nonwoven fabric
JP6689681B2 (en) Heat resistant wet non-woven fabric
JPH11117163A (en) Heat resistant nonwoven fabric and its production
JP2012052267A (en) Adhesive interlining for knit fabric
JPH05119688A (en) Cleaning web for electrophotography
JP6866626B2 (en) Prepreg and its manufacturing method, fiber reinforced thermoplastic resin sheet manufacturing method, metal-clad laminated sheet manufacturing method, and wiring board manufacturing method
JP2015017332A (en) Nonwoven fabric for cleaning, and copier
JP2014153654A (en) Cleaning sheet base material for electrophotographic device
JP2023042295A (en) Heat dissipation sheet
JP2024019948A (en) Sheet nonwoven fabric
TW554097B (en) Divisible hollow copolyester fibers, and divided copolyester fibers, woven or knitted fabric, artificial leather and nonwoven fabric comprising same
JP2023029024A (en) Production method of non-woven fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200408

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201110

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210210

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220125

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220526

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220607

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220614

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220712

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220815

R150 Certificate of patent or registration of utility model

Ref document number: 7125836

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150