JP7125079B2 - 無線通信装置および無線通信方法 - Google Patents

無線通信装置および無線通信方法 Download PDF

Info

Publication number
JP7125079B2
JP7125079B2 JP2017222506A JP2017222506A JP7125079B2 JP 7125079 B2 JP7125079 B2 JP 7125079B2 JP 2017222506 A JP2017222506 A JP 2017222506A JP 2017222506 A JP2017222506 A JP 2017222506A JP 7125079 B2 JP7125079 B2 JP 7125079B2
Authority
JP
Japan
Prior art keywords
sensing
wireless communication
wireless
transmission
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017222506A
Other languages
English (en)
Other versions
JP2019096941A (ja
Inventor
睿 滕
一人 矢野
智明 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ATR Advanced Telecommunications Research Institute International
Original Assignee
ATR Advanced Telecommunications Research Institute International
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ATR Advanced Telecommunications Research Institute International filed Critical ATR Advanced Telecommunications Research Institute International
Priority to JP2017222506A priority Critical patent/JP7125079B2/ja
Publication of JP2019096941A publication Critical patent/JP2019096941A/ja
Application granted granted Critical
Publication of JP7125079B2 publication Critical patent/JP7125079B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Mobile Radio Communication Systems (AREA)

Description

特許法第30条第2項適用 平成29年8月15日 http://www.gakkai-web.net/gakkai/ieice/S_2017/Settings/ab/b_17_015.htmlを通じて発表 平成29年8月29日 一般社団法人電子情報通信学会発行の「2017年ソサイエティ大会講演論文集」に発表 平成29年9月14日 一般社団法人電子情報通信学会主催の「2017年電子情報通信学会ソサイエティ大会」において文書をもって発表
本発明は、無線通信装置および無線通信方法に関する。
無線LANの利用拡大や無線監視カメラなど通信機能を有する機器の増加により無線通信のトラヒックが急激に増大しており、周波数利用効率を向上させて、限りある無線リソースにより多くのトラヒックを収容することが求められている。
ISM(Industry-Science-Medical)帯のような複数システム共用周波数帯域では、各システムが自律分散的に使用周波数を決定するため、使用周波数チャネルに偏りが生じる。
一方で、従来の無線通信方式、たとえば、3GPP(3rd Generation Partnership Project)で標準化が行なわれた無線通信システムであるLTE(Long Term Evolution)リリース8(Rel-8)は、最大20MHzの帯域を利用して通信を行うことが可能である。
さらに、LTEの発展版であるLTE-A(Long Term Evolution-Advanced)では、LTEとの後方互換性を確保しつつ、更なる高速伝送を実現するため、LTEでサポートされる帯域幅を基本単位としたコンポーネントキャリア(CC:Component Carrier)を複数束ねて同時に用いるキャリアアグリゲーション(CA:Carrier Aggregation)技術が採用され、最大で5CC(100MHz幅)を用いて100MHz幅の広帯域伝送が実現可能である。ただし、このようなキャリアアグリゲーションは、近接する周波数バンドでの異なるチャネルを用いた伝送である。
上記のような高速化が図られてはいるものの、近年、スマートフォン等の高機能な携帯端末の普及に伴って、移動通信トラヒックの需要が急激に増大している。
その結果、従来からの無線LAN(Local Area Network)の利用拡大に加え、スマートフォンの普及によるモバイルデータトラヒックの増大により無線LANへのオフロードが進展し、免許不要帯域(2.4GHz帯、5GHz帯)でのトラヒックが急増している。
また、IoT(Internet Of Things)/M2M(Machine to Machine)社会の進展により、上記周波数帯および920MHz帯の更なる逼迫が懸念され、これらの周波数帯の周波数利用効率向上は喫緊の課題となっている。
ここで、無線リソースの利用状況は、上述のように時間・場所・周波数帯や無線チャネル等によって変動するため、一部の周波数帯(や無線チャネル)のみが混雑する状況が発生し得る。
しかしながら、既存の自営系無線システム(例えばIEEE802.11無線LAN)は単一の周波数帯を用いるか、予め使用する帯域をひとつ決めてから通信を行う。例えば、IEEE802.11nは2.4GHz帯と5GHz帯のいずれを使用するかを予め設定する。このため、既存の自営系無線システム全体として無線リソースに空きがある場合であっても、輻輳が発生するおそれがある。
ここで、無線通信リソースの有効利用を図るためコグニティブ無線技術が注目されている。コグニティブ無線技術とは、無線端末が周囲の電波の利用状況を認識し、その状況に応じて利用する無線通信リソースを変えることをいう。コグニティブ無線技術には、異なる無線通信規格を状況に応じて選択して使うヘテロジニアス型と、無線端末が空き周波数を探し出して必要な通信帯域を確保する周波数共用型とがある。
ヘテロジニアス型においては、コグニティブ無線機は、周辺で運用されている複数の無線システムを認識し、各システムの利用度や実現可能な伝送品質に関する情報を入手し、適切な無線システムに接続する。即ち、ヘテロジニアス型のコグニティブ無線は、周辺に存在する無線システムの利用効率を高めることにより、間接的に周波数資源の利用効率を高めるものである。
一方、周波数共用型においては、コグニティブ無線機は、他の無線システムが運用されている周波数帯域において、一時的、または局所的に利用されていない周波数資源(これは、white spaceと呼ばれる)の存在を検知し、これを利用して信号伝送を行う。即ち、周波数共用型のコグニティブ無線は、ある周波数帯域における周波数資源の利用効率を直接的に高めるものである。
そして、上述したような免許不要帯域におけるトラヒックの増大の問題を解決する一手法として、使用周波数帯の異なる複数の無線LAN規格(例えば、2.4GHz帯無線LAN規格と5GHz帯無線LAN規格)を選択あるいは並行利用する、ヘテロジニアス型コグニティブ無線的アプローチが考えられる(たとえば、特許文献1、特許文献2)。
しかし、このヘテロジニアス型コグニティブ無線的アプローチでは送信データを適宜分割し、それぞれどの周波数帯で伝送するかを事前に振り分けておく必要がある。この結果、各周波数帯の混雑度合いによっては使用周波数帯によって伝送遅延が大きく異なったり、データが宛先に到着する順番が入れ替わる、等の問題が新たに発生してしまう。
そこで、互いに大きく分離した複数の周波数帯、たとえば、2.4GHz帯無線LANと5GHz帯無線LANにおいて、既存システムと周波数を共用して、コグニティブな無線通信を実現することが望ましい。
このように、複数の互いに分離した周波数帯域のいずれかで選択的に通信を行うという構成の場合において、次の送信タイミングで、いずれの周波数帯を使用するかを決定するためには、複数周波数帯の無線チャネルの利用状況等を効率的に把握するため、複数無線周波数帯のチャネルをセンシングすることが必要となる。
このようなチャネルセンシングの方法として、複数の無線通信装置が協調して、対象チャネルをセンシングする「協調センシング」の技術が知られている。
たとえば、非特許文献1、非特許文献2および非特許文献3に開示された技術では、既存の協調センシングはある単一のセンシング対象を仮定し、その検出精度を高めるために、複数の無線装置でセンシングした結果を収集する。
また、たとえば、非特許文献4に開示された技術では、単一のセンシング対象を仮定した協調センシングにおいて、センシング結果の報告(具体的には、センシング対象が「存在する」または「存在しない」)について同じ検出結果の報告を削減することが行われている。
特開2011-211433号明細書 特開2013-187561号明細書
Ian F. Akyildiz, Brandon F. Lo, and Ravikumar Balakrishnan, Cooperative spectrum sensing in cognitive radio networks: A survey Physical Communication, 2011. T. Yucek and H. Arslan, A survey of spectrum sensing algorithms for cognitive radio applications, IEEE Communications Surveys and Tutorials, vol. 11, no. 1, pp. 116-130, 2009. Nguyen-Thanh and Koo: A cluster-based selective cooperative spectrum sensing scheme in cognitive radio. EURASIP Journal on Wireless Communications and Networking 2013 2013:176. Zeyang Dai, Jian Liu, and Keping Long, Selective-reporting-based cooperative spectrum sensing strategies for cognitive radio networks, IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 64, NO. 7, JULY 2015.
しかしながら、非特許文献1、非特許文献2、非特許文献3および非特許文献4に開示された技術では、個々の無線装置が一つ以上のセンシング対象を持っており、センシング対象が無線チャネルの具体的な使用状況等である場合、すなわちセンシング対象が存在するかどうかの2値的なセンシングではない場合に、協調センシングにおけるセンシングの結果の報告を低オーバヘッドで行う技術は提供されていない。
本発明は、上記のような問題点を解決するためになされたものであって、その目的は、協調センシングにおけるセンシングの結果の報告を低オーバヘッドで実現可能な無線通信装置および無線通信方法を提供することである。
この発明の1つの局面に従うと、ランダムアクセス制御を行っている無線チャネルの利用状況を観測するチャネル利用状況観測部と、観測された利用状況に応じたセンシング結果を情報収集装置に送信するためのセンシング結果送信部と、他の無線通信装置から情報収集装置に送信されるセンシング結果を受信するセンシング結果受信部と、自装置での観測に応じたセンシング結果の方が、他の無線通信装置から送信されたセンシング結果よりも、無線チャネルが利用に適していることを示す適切度が高い場合には、自装置のセンシング結果を送信しないようにセンシング結果送信部を制御する送信制御部とを備える。
好ましくは、無線通信装置は、互いに分離した複数の周波数帯のそれぞれでランダムアクセス制御を行っている複数の無線チャネルを利用して、信号を送信するものであり、送信データを複数の周波数帯のそれぞれに対応して複数の部分データに分割し、各周波数帯ごとに送信パケットを生成するためのデジタル信号処理部と、各周波数帯ごとに設けられ、デジタル信号処理部によって生成されたデジタル信号を対応する周波数帯ごとの高周波信号に変換するための複数の高周波処理部と、複数の高周波処理部に共通に設けられ、複数の高周波処理部で使用されるクロック信号を生成するための局部発振器とをさらに備え、チャネル利用状況観測部は、複数の周波数帯において複数の無線チャネルの利用状況を観測し、センシング結果受信部は、複数の無線通信装置からのセンシング結果が統合された結果である統合センシング情報をも情報収集装置から受信し、統合センシング情報に基づいて、デジタル信号処理部および高周波処理部を制御し、複数の無線チャネルにより、各部分データを複数の周波数帯ごとのパケットとして、同期して同一のタイミングで送信するアクセス制御部をさらに備える。
好ましくは、送信制御部は、無線チャネルごとに、センシング結果の送信に関する制御を行う。
好ましくは、センシング結果は、チャネル利用率であり、送信制御部は、自装置での観測に応じたチャネル利用率の方が、他の無線通信装置から送信されたチャネル利用率よりも低い場合には、自装置のチャネル利用率を送信しないようにセンシング結果送信部を制御する。
好ましくは、送信制御部は、自装置のセンシング結果の方が、他の無線通信装置の所定の時間以内のセンシング結果よりも、適切度が高い場合には、自装置のセンシング結果を送信しないようにセンシング結果送信部を制御する。
この発明の他の局面に従うと、ランダムアクセス制御を行っている無線チャネルの利用状況を観測するステップと、他の無線通信装置から情報収集装置に送信されるセンシング結果を受信するステップと、自装置での観測に応じたセンシング結果の方が、他の無線通信装置から送信されたセンシング結果よりも、無線チャネルが利用に適していることを示す適切度が高い場合には、自装置のセンシング結果を情報収集装置に送信せず、自装置での観測に応じたセンシング結果の方が、他の無線通信装置から送信されたセンシング結果よりも、適切度が低い場合には、自装置のセンシング結果を情報収集装置に送信するステップとを備える。
本発明によれば、協調センシングにおけるセンシングの結果の報告を低オーバヘッドで実現可能である。
そして、本発明によれば、例えば、協調センシングの結果を利用し、複数周波数帯のチャネルを柔軟に選択または同時利用することで無線リソースを無駄なく活用して周波数利用効率向上を実現することが可能となる。
自局と相手局との通信におけるチャネルセンシングの概念を示す図である。 複数の互いに分離した周波数帯域における無線チャネルを説明するための概念図である。 本実施の形態の無線通信システムの構成を説明するための概念図である。 送信データを複数帯域にマッピングして送信し、受信側で一括受信して統合するための具体例を説明するための図である。 本実施の形態の送信装置1000の構成を説明するための機能ブロック図である。 協調センシングについて説明するための概念図である。 BSS内で協調センシングを行う場合の概念図である。 従来の分散型センシング方式と提案手法の自律分散型協調センシング方式とを比較するための概念図である。 センシング期間と報告期間とについて説明するための図である。 自律分散型協調センシング方式に関する処理を説明するためのフローチャートである。 シミュレーションの構成について説明するための概念図である。 センシングSTA数に応じたセンシングレポートの数について、従来手法と提案手法とを比較したシミュレーション結果の図である。 センシングレポート数に関する確率密度を、チャネルセンシングを行うSTA数ごとに示すシミュレーション結果の図である。 送信装置1000のより詳細な構成の例を説明するための機能ブロック図である。 本実施の形態の受信装置2000の構成を説明するための機能ブロック図である。 受信装置2000のより詳細な構成の例を説明するための機能ブロック図である。
以下、本発明の実施の形態の無線通信システムおよび無線通信装置の構成を説明する。なお、以下の実施の形態において、同じ符号を付した構成要素および処理工程は、同一または相当するものであり、必要でない場合は、その説明は繰り返さない。
なお、以下では、本発明の無線通信装置を説明する一例として、上述したような互いに大きく分離した複数の既存の免許不要帯域(たとえば、IoTなどに使用される920MHz帯、無線LANに使用される2.4GHz帯と5GHz帯)において、既存システムと周波数を共用して、コグニティブな無線通信を行うことが可能な無線通信システムにおける送信装置を例とする実施の形態を説明する。
また、以下では、「キャリアセンス」とは、電力検出または受信信号の復号を伴う仮想キャリアセンスにより、対象とする無線チャネルの信号の存在の有無を検出し送信タイミングの判断を行うためのセンシングを意味し、「チャネルセンシング」とは、キャリアセンスとしてのセンシングに加えて、対象チャネルの使用状況を把握するために、通信のモニタなどを実行するセンシングを意味するものとする。
[実施の形態]
以下では、本実施の形態の説明のために、複数の互いに分離した周波数帯域においてそれぞれランダムアクセス制御による通信を行うという構成の場合において、次の送信タイミングをいつにするかを決定するために、対象帯域の多チャネルの同時チャネルセンシングを行う構成について説明する。
ただし、複数の周波数帯を同時に使用して通信を行うことは、本発明にとっては、必ずしも必須ではなく、たとえば、複数の周波数帯域のいずれか少なくとも1つで選択的に通信を行うという構成の場合において、次の送信タイミングで、いずれの周波数帯を使用するかを決定するために、対象帯域の多チャネルの同時チャネルセンシングを行う構成にも適用することが可能である。
また、複数の無線チャネルのチャネルセンシングを行うことも、本発明にとっては、必ずしも必須ではなく、たとえば、通信を行う周波数帯域を決定するために、1つの無線チャネルのチャネルセンシングを行う構成にも適用することが可能である。また、無線チャネルのチャネルセンシングを行うことも、本発明にとっては、必ずしも必須ではなく、たとえば、後述するように、無線チャネルにおけるその他のセンシング(例えば、フレーム誤り率を取得するためのセンシング等)を行ってもよい。
さらに、ランダムアクセス制御を行っている無線チャネルを利用して実体的な通信を行うことも、本発明にとっては、必ずしも必須ではなく、たとえば、協調センシングのためにセンシング結果の送信は行うが、実体的な通信は行わない構成にも適用することが可能である。
図1は、自局と相手局との通信におけるチャネルセンシングの概念を示す図である。
自局10は、これから相手局20に対して、送信を行おうとする場合は、まず、使用帯域のうちの複数のチャネルについて、使用状況を確認するためにチャネルセンシングを行う。
ここで、自局10または相手局20の近辺で、使用可能帯域のチャネルのいずれかを使用する他の通信装置30.1~30.4がある場合は、これらは、干渉源となり、干渉波の影響を避けて通信を行うことになるために、自局10は、空いている周波数帯のチャネルを検出し使用して、相手局20と通信を行う。
図2は、複数の互いに分離した周波数帯域における無線チャネルを説明するための概念図である。
図2では、例として、横軸を周波数とし、免許不要帯域として、上述した920MHz帯、2.4GHz帯と5GHz帯を示す。各周波数帯域には、それぞれ、通信において選択的に使用される複数の無線チャネルが含まれる。
ここで、後述する本実施の形態の無線通信装置については、一般的に、互いに分離した複数の周波数帯域を用いて、同一の無線方式または異なる無線方式で同期したタイミングで同時並行的に通信を行う送信装置に適用することが可能である。
図3は、本実施の形態の無線通信システムの構成を説明するための概念図である。
図3を参照して、送信側では、920MHz帯、2.4GHz帯、5GHz帯の3つの周波数帯を使用することを前提に、各帯域で無線チャネルを1つずつ使用するものとして、送信フレームを構成する。
なお、各周波数帯で、複数チャネルを使用することとしてもよいが、以下では、周波数帯ごとに1チャネルを使用するものとして説明する。
本実施の形態では以下の特徴を有する無線アクセス制御を行う。
すなわち、まず、送信側では、後述するような方法で複数周波数帯の利用状況(各無線チャネルの空き状況など)をセンシングして観測する。
続いて、送信側では、あるタイミングで、1つ以上の未使用な周波数帯・無線チャネルで同時に無線パケット(フレーム)を送信する。このとき、送信データを複数帯域にマッピングして送信する。
一方で、受信側では複数帯域を一括受信してデータを統合する。
送受信において、このような構成にすると、帯域間で混雑状況に偏りがあっても送信機会を確保できるため周波数利用効率の向上と伝送遅延の低減が期待でき、またデータの到着順番が入れ替わるような問題も発生しない。
図4は、送信データを複数帯域にマッピングして送信し、受信側で一括受信して統合するための具体例を説明するための図である。
図4に示すように、送信データの系列を使用する各帯域の伝送レートRiに比例するシンボル数ずつ区切って各帯域に、シリアル/パラレル変換により割り当てる。
例えば、(5GHz帯伝送レート:2.4GHz帯伝送レート:920MHz帯伝送レート)=(R1:R2:R3)=(3:2:1)ならば、送信データの系列を6シンボル毎に区切り、5GHz帯(ch1)、2.4GHz帯(ch2)、920MHz帯(ch3)にはその中の3シンボル、2シンボル、1シンボルを割り当てる。なお、送信系列を分割して割り当てる際には、このような場合に限定されず、より一般には、m個の周波数帯を使用する場合は、周波数帯の伝送レートの比を、(R1:R2:…:Rm)(比率は、既約に表現されるとする)とするとき、送信系列を(R1+R2+…+Rm)×n(m,n:自然数)シンボル毎に区切り、各チャネルには、(R1×n)シンボル、(R2×n)シンボル、…、(Rm×n)シンボルを割り当てるものとしてもよい。
そのような割り当ての後に、各帯域ごとに、送信シンボルに対して物理ヘッダをつけて、パケットとし、これらのパケットを同一タイミングで同時並列的に送信する。
送信側で各帯域に割り当てられたシンボル数については、この物理ヘッダ内に情報として格納するか、送信前に制御情報として予め設定される。
受信側では、各帯域上の物理ヘッダを利用して同期と復調処理を行う。復調された各系列を送信側と逆の処理で、パラレル/シリアル変換により結合し、フレームの復号を行う。
[送信装置の構成]
図5は、本実施の形態の送信装置1000の構成を説明するための機能ブロック図である。
図5を参照して、送信装置1000は、送信データの系列に対して、誤り訂正符号化処理を行うための誤り訂正符号化部1110と、誤り訂正符号化後のデータに対してインターリーブ処理を行うインターリーブ部1112と、図4で説明したように各周波数帯域に割り当てる処理をするためのシリアル/パラレル変換(以下、S/P変換)部1010と、S/P変換後のデータに対して、周波数帯域ごとに、マッピング処理や物理ヘッダの付加など、所定の無線通信方式で通信するための無線フレーム(パケット)を形成するデジタル処理を実行するための無線フレーム生成部1020.1~1020.3と、無線フレーム生成部1020.1~1020.3からのデジタル信号に対して、それぞれ、デジタルアナログ変換処理、所定の変調方式への変調処理(たとえば、所定の多値変調方式のための直交変調処理)、アップコンバート処理、電力増幅処理などを実行する高周波処理部(RF部)1040.1~1040.3と、RF部1040.1~1040.3の高周波信号をそれぞれ送出するためのアンテナ1050.1~1050.3とを含む。RF部1040.1~1040.3の動作は、これらに共通に設けられた局部発振器1030からのクロックに基づいて制御される。
さらに、送信装置1000は、各周波数帯(各周波数帯の中では1つ以上の無線チャネル)の利用状況(各無線チャネルの空き状況など)を観測するチャネル利用状況観測部1060と、チャネル利用状況観測部1060の観測に基づいて、所定のタイミングでのチャネル利用状況を予測するチャネル利用状況予測部1070と、無線フレーム生成部1020.1~1020.3の処理タイミングおよびRF部1040.1~1040.3での送信タイミングを制御して、制御された同一の送信タイミングにおいて所定の期間につき未使用な周波数帯・無線チャネルで同時に無線パケットを送信するように制御するアクセス制御部1080と、観測された利用状況に応じたセンシング結果を情報収集装置に送信するためのセンシング結果送信部1090と、他の無線通信装置から情報収集装置に送信されるセンシング結果を受信するセンシング結果受信部1092と、自装置での観測(チャネル利用状況観測部1060による観測)に応じたセンシング結果の方が、他の無線通信装置から送信され、センシング結果受信部1092によって受信されたセンシング結果よりも、無線チャネルが利用に適していることを示す適切度が高い場合には、自装置のセンシング結果を送信しないようにセンシング結果送信部1090を制御する送信制御部1094とを含む。
ここで、チャネル利用状況観測部1060が上述したキャリアセンスおよびチャネルセンシングを実行する構成とする。
ここで、アクセス制御部1080は、送信時に候補となる対象帯域をキャリアセンスした結果に応じて使用可能であると判明したチャネルを選択し使用して、制御された同一の送信タイミングにおいて未使用な周波数帯・無線チャネルで同時に無線パケットを送信することになる。また、アクセス制御部1080は、後述する統合センシング情報に基づいて、送信タイミングの制御を行う。統合センシング情報に基づいてとは、統合センシング情報を用いて決定された1つまたは複数の無線チャネル、または、統合センシング情報によって示される1つまたは複数の無線チャネルにおいて、無線パケットの送信を行うことである。前者の場合には、例えば、無線通信装置において、統合センシング情報に基づいて、無線通信で用いる1つまたは複数の無線チャネルを決定してもよい。
チャネル利用状況予測部1070の詳しい動作の例については後述する。ただし、チャネル利用状況観測部1060の観測結果を直接用いて、現時点で利用可能と判断された周波数帯を用いるように、アクセス制御部1080が送信タイミングを制御する構成としてもよい。
このような構成の送信装置1000により、図4で説明したように、データを複数帯域にマッピングして送信し、受信側では複数帯域を一括受信してデータを統合する。
また、以下では、センシング結果の送信先である情報収集装置がアクセスポイントAPである一例について説明するが、情報収集装置は、それに限定されるものではなく、例えば、センシング結果を収集するための装置であってもよい。情報収集装置は、チャネルセンシングの結果を収集し、統合して各無線通信装置に送信する。情報収集装置によって統合されたセンシング結果である統合センシング情報も、センシング結果受信部1092によって受信される。情報収集装置では、無線チャネルごとに、最も適切度の低いチャネルセンシングの結果が保持される。したがって、情報収集装置は、ある無線チャネルについて、各無線通信装置から報告されたセンシング結果が、以前に報告されたものよりも適切度が低い場合に、保持しているセンシング結果を更新し、各無線通信装置から報告されたセンシング結果が、以前に報告されたものよりも適切度が低くない場合に、保持しているセンシング結果を更新しなくてもよい。なお、時間の経過に応じて保持しているセンシング結果が古くなった場合には、情報収集装置は、センシング結果の内容に関わらず、保持しているセンシング結果を新たに報告されたものに更新してもよい。最新のセンシング結果を保持するためである。そのようにして、センシング結果の統合が行われる。
センシング結果送信部1090は、送信対象のセンシング結果を、送信対象のデータとして誤り訂正符号化部1110に入力する。そして、上記のように変調等が行われ、センシング結果が情報収集装置であるアクセスポイントAPに送信される。なお、その送信は、あらかじめ決められた1つの周波数帯によって送信されてもよい。例えば、アクセスポイントAPと端末との間で2.4GHz帯の制御チャネルを用いて制御信号等の送受信を行うことになっていた場合には、センシング結果は、その2.4GHz帯のみで送信されてもよい。
センシング結果受信部1092は、他の無線通信装置から送信されたセンシング結果を、後述する誤り訂正部4040から受け取ってもよい。したがって、本発明の無線通信装置は、後述する受信装置の構成をも有していてもよい。他の無線通信装置から送信されたセンシング結果は、その送信元の無線通信装置における観測に応じたセンシング結果である。
図6は、協調センシングについて説明するための概念図である。
効率的な無線通信を行うには、各無線通信装置が自装置の属する無線ネットワークにおける伝搬状況や無線リソースの利用状況を逐次把握して、その結果に基づきアクセス制御することが必要である。しかし、単一の無線通信装置によって無線ネットワークの各位置におけるセンシングを行おうとすることは、コスト等の観点から非現実的である。
協調センシングによれば、複数の無線通信装置間でセンシング情報を交換・共有することによって、一台の無線通信装置がリアルタイムセンシングを行って得られる無線チャネルのセンシング情報よりも多くの無線チャネルのセンシング情報を得ることができる。
ただし、協調センシングで理想的なセンシング(「全ての観測対象の情報を全てのノードで共有している状態」(全ての観測対象は、例えば「全てのノード位置における全チャネル」などに相当))を実現するには全ノード間での情報交換が必要となり、過大な協調コストがかかる。
そこで、理想的なセンシングが行える場合と比較して周波数利用効率の劣化を十分小さく抑えられる範囲に情報交換を削減して、センシングコストを抑えることが必要である。
なお、特には限定されないが、以下では、次のような状況である場合について説明する。
交換する情報は、必ずしもリアルタイムな情報である必要はなく、一定時間内におけるセンシング結果であるものとする。ただし、各無線通信装置は、センシング自体は基本的に常時実施している。
図7は、BSS内で協調センシングを行う場合の概念図である。
ここで、「BSS(Basic Service Set)」とは、無線LANのインフラストラクチャモードで、1つのAPとそのAPの電波の到達範囲内にいる配下の無線LANクライアント端末で構成されるネットワークをいうものとする。
なお、アクセスポイントAPは、後述する無線通信装置STAと同等の無線通信方式での無線通信機能と、協調センシングの分担の決定や管理を実行するためのプロセッサやメモリを備える。プロセッサやメモリの構成は周知であるので、説明は省略する。
図7を参照して、BSS内で情報交換をするプロトコルとしては、以下のような構成とすることができる。
効率的な情報収集とBSS内情報の展開の観点からアクセスポイントAP(情報収集装置)と無線通信装置STA-A~STA-F間でセンシング情報を交換する。
この場合、無線通信装置STA-A~STA-Fがセンシング結果をアクセスポイントAPに報告し、アクセスポイントAPがセンシング情報を集約して、その集約した統合センシング情報を配下の無線通信装置STA-A~STA-Fに展開する。
図8は、従来の分散型センシング方式と、本実施の形態(提案手法)の自律分散型協調センシング方式とを比較するための図である。ここでは、センシング結果がチャネル利用率であり、図中の各STA11~15の近傍に記載されている数値が、そのチャネル利用率であるとする。また、無線通信装置STA11、STA12、…、STA15の順番にアクセスポイントAP1へのセンシング結果の送信が行われるものとする。
図8(a)を参照して、従来のセンシング方式では、BSS1に属する5個の無線通信装置STA11~STA15のそれぞれから、センシング結果が送信されることになる。なお、あるBSSにおける無線チャネルの制御では、無線チャネルの利用について、最も悪い値(図8の場合には、STA11のチャネル利用率「60%」)が用いられることになる。したがって、無線通信装置STA12~STA15から送信されるセンシング結果は、冗長な情報であり、その冗長な情報の送信によって無線リソースが不必要に消費され、オーバヘッドの増大を招くことになる。
図8(b)を参照して、本実施の形態による自律分散型協調センシング方式では、各無線通信装置において、他の無線通信装置から送信されたセンシング結果を受信し、そのセンシング結果よりも悪い値のセンシング結果のみをアクセスポイントAP1に送信する。すなわち、送信制御部1094は、自装置での観測、すなわちチャネル利用状況観測部1060による観測に応じたセンシング結果の方が、他の無線通信装置から送信されたセンシング結果、すなわちセンシング結果受信部1092によって受信されたセンシング結果よりも、無線チャネルが利用に適していることを示す適切度が高い場合には、自装置のセンシング結果を送信しないようにセンシング結果送信部1090を制御する。また、送信制御部1094は、自装置のセンシング結果の方が、他装置のセンシング結果よりも適切度が低い場合には、自装置のセンシング結果を送信するようにセンシング結果送信部1090を制御する。なお、自装置のセンシング結果と、他装置のセンシング結果との適切度が同じ場合には、送信制御部1094は、自装置のセンシング結果を送信するように制御してもよく、送信しないように制御してもよいが、無線リソースの消費を抑制する観点からは、送信しないように制御することが好適である。なお、送信制御部1094は、自装置のセンシング結果を、例えば、チャネル利用状況観測部1060から受け取ってもよく、センシング結果送信部1090から受け取ってもよい。
図8(b)では、破線で囲んだ範囲内において、他の無線通信装置の送信した情報を互いに受信できるものとする。すなわち、無線通信装置STA11、STA12、STA15の間では、それぞれ他装置が送信したセンシング結果を受信できるものとする。また、無線通信装置STA13,STA14の間では、それぞれ他装置が送信したセンシング結果を受信できるものとする。そのような状況において、まず、無線通信装置STA11は、自装置のセンシング結果(60%)をアクセスポイントAP1に送信する。次に、無線通信装置STA12は、無線通信装置STA11が送信したセンシング結果(60%)を受信し、自装置での観測に応じたセンシング結果が40%であり、すでに送信された結果よりもよい値であるため(すなわち、適切度が高いため)、センシング結果の送信を行わない。一方、無線通信装置STA13は、無線通信装置STA11から送信されたセンシング結果を受信できないため、センシング結果(30%)を送信する。また、無線通信装置STA14は、無線通信装置STA13が送信したセンシング結果(30%)を受信し、自装置での観測に応じたセンシング結果が20%であり、すでに送信された結果よりもよい値であるため、センシング結果の送信を行わない。また同様に、無線通信装置STA15も、自装置のセンシング結果の送信を行わない。その結果、2個の無線通信装置STA11、STA13のみからセンシング結果の送信が行われることになり、従来と比較して、センシング結果の送信回数を低減することができる。したがって、センシング結果の報告に関するオーバヘッドを大幅に低減でき、不必要な無線リソースの消費を抑制することができる。また、センシング結果の送信・非送信の制御を各無線通信装置が自律的に行うため、その制御について余分な通信が発生することもない。また、各無線通信装置が自律的にセンシング結果の送信・非送信の制御を行うため、スケーラビリティを確保できる。
ここで、アクセスポイントAP1(情報収集装置)から各無線通信装置に送信される統合センシング情報について説明する。アクセスポイントAP1では、適切度の最も低いセンシング結果が保持されるため、例えば、図8で示されるようにセンシング結果の報告が行われた場合には、チャネル利用率「60%」に統合され、その統合センシング情報「60%」が各無線通信装置STA11~STA15に送信されてもよい。その送信は、あらかじめ決められた無線チャネルである制御チャネルを用いて行われてもよい。また、複数の無線チャネルについてセンシング結果の送信が行われる場合には、その統合センシング情報は、複数の無線通信装置から送信されたセンシング結果に応じてアクセスポイントAP1において選択された、BSS1の無線通信で用いる1つまたは複数の無線チャネルを示す情報であってもよい。具体的には、無線チャネルch1、ch2、ch3、ch4、ch5について、各無線通信装置から送信されたセンシング結果によって示されるチャネル利用率の最高値がそれぞれ60%、30%、40%、50%、20%である場合には、アクセスポイントAP1は、チャネル利用率の低い順(適切度の高い順)に3個のチャネルを選択し、その選択した無線チャネルch2、ch3、ch5を示す統合センシング情報を、各無線通信装置STAに送信してもよい。そして、各無線通信装置STAでは、その無線チャネルch2、ch3、ch5を用いて、無線通信が行われてもよい。なお、選択する無線チャネルの個数は、あらかじめ決められていてもよく、または、センシング結果に応じて決められてもよい。後者の場合には、例えば、あらかじめ決められた閾値以上の適切度である無線チャネルから、あらかじめ決められた個数以内の無線チャネルが選択されてもよい。具体的には、その閾値がチャネル利用率30%に設定されており、あらかじめ決められた個数が「3個」である場合には、上記の例において、アクセスポイントAP1から、ch2、ch5を示す統合センシング情報が各無線通信装置STAに送信されてもよい。
図9は、周期的なセンシングと、周期的な報告(センシング結果の情報収集装置への送信)との関係の一例を示す概念図である。図9を参照して、各無線通信装置におけるセンシング期間の時間的長さは決まっており、一例として、アクセスポイントAPからの指示に応じて、各無線通信装置におけるセンシングが開始される。したがって、各無線通信装置における各センシング期間(例えば、センシング期間1やセンシング期間2など)の始点と終点は同じとなる。センシング期間1における無線チャネルの観測に応じたセンシング結果は、報告期間1においてアクセスポイントAPに送信される。その送信は、各無線通信装置においてランダムに選択された報告タイミングに応じて行われる。図9の各報告期間における上向きの矢印が、センシング結果の送信タイミングを示している。ただし、前記のように、すでに他の無線通信装置から送信されたセンシング結果よりも自装置のセンシング結果の方が悪い場合にのみ、自装置のセンシング結果の報告が行われ、すでに他の無線通信装置から送信されたセンシング結果の方が自装置のセンシング結果よりも悪い場合には、自装置のセンシング結果の報告は行われない。その制御に応じて、センシング結果の報告数が低減されることになる。なお、図9では、センシング期間および報告期間がそれぞれインターバルを介することなく連続して繰り返される場合について示しているが、そうでなくてもよい。センシング期間および報告期間の少なくとも一方は、インターバルを介して連続して繰り返されてもよい。例えば、センシング期間がP秒であり、報告期間がN秒であり、N秒がP秒よりも小さい場合には(一般的に、報告期間Nはセンシング期間Pより小さいと想定する)、各報告期間の間に(P-N)秒のインターバルが存在してもよい。
なお、アクセスポイントAPには、最新のセンシング結果が報告されるようになることが好適である。したがって、送信制御部1094は、自装置のセンシング結果の方が、他の無線通信装置の所定の時間以内のセンシング結果よりも、適切度が高い場合には、自装置のセンシング結果を送信しないようにセンシング結果送信部を制御してもよい。すなわち、その所定の時間より以前に送信されたセンシング結果と比較して、自装置のセンシング結果の方が適切度が高かったとしても、その所定の時間以内には、自装置のセンシング結果よりも適切度の低いセンシング結果が他装置から送信されていない場合には、自装置からのセンシング結果の送信が行われることになる。その所定の時間は、例えば、あらかじめ決められた一定の期間であってもよく、または、報告期間に関する、制御時点(比較時点)の直前の切り替わり時点までの期間(報告期間の切り替わり時点から、制御時点までの期間)であってもよい。後者の場合には、自装置と他装置とのセンシング結果の比較の処理が、報告期間ごとにリセットされることになる。上記のようにセンシング結果の送信制御が行われることによって、アクセスポイントAPは、常時、最新のセンシング結果を受信することができるようになる。なお、各無線通信装置は、ランダムアクセス制御によって無線通信を行うため、厳密には、センシング結果を取得してから送信するまでにタイムラグ(待ち時間)が存在することになるが、ここでは、センシング結果の受信時点が、そのセンシング結果の取得時点であるとして判断を行ってもよいものとする。両時点が大きく乖離する可能性は低いと考えられるからである。また、センシング結果に、センシング時点やセンシング結果の取得時点を示す情報が含まれている場合には、その情報を用いて、上記の制御が行われてもよい。
ここで、センシング結果としては、例えば、以下のようなものがある。なお、センシング結果が以下の例示に限定されないことはいうまでもない。
a1)チャネル利用率(チャネル占有率)
a2)フレーム誤り率
a3)干渉源の端末の個数
a4)隠れ端末の個数
センシング結果は、例えば、上記a1)~a4)のいずれかであってもよく、任意の二以上の組み合わせであってもよく、それらを1つ以上用いて生成された値(例えば、上記a1)~a4)のいずれか1つ以上を引数とする関数の値など)であってもよい。また、センシング結果は、上記の適切度であってもよい。チャネル利用率に応じた適切度は、例えば、「1-チャネル利用率」のように算出されてもよい。
チャネル利用率は、観測期間においてビジー状態である期間を、観測期間で除算することによって算出することができる。なお、チャネル利用率に代えて、例えば、観測期間においてアイドル状態である期間を観測期間で除算したアイドル率や、観測期間におけるアイドル状態の期間を、観測期間におけるビジー状態の期間で除算したアイドル/ビジー比率などをセンシング結果としてもよい。また、センシング結果の送信が高い頻度で行われる場合には、センシング結果は、例えば、ビジー状態であるのか、アイドル状態であるのかを示す情報であってもよい。センシング結果がチャネル利用率である場合には、無線チャネルの利用状況の観測は、無線チャネルがビジー状態であるのか、アイドル状態であるのかの観測であってもよい。
フレーム誤り率は、観測によって受信したフレームのうち、正確に復調できなかったものの比率であってもよい。この場合には、無線チャネルの利用状況の観測は、無線信号の受信や復調であってもよい。
干渉源の端末の個数は、他セル(自装置の属するセルとは異なるセル)の無線信号を復調し、MACアドレスなどの端末識別子のユニーク数をカウントすることによって取得することができる。この場合には、無線チャネルの利用状況の観測は、無線信号の受信や復調であってもよい。
隠れ端末の個数は、自装置が受信していないRTS(送信要求)に対して送信されたCTS(送信許可)の受信に応じて取得されてもよく、また、自装置が受信していないデータに対してアクセスポイントAPから送信されたACKの受信に応じて取得されてもよい。例えば、そのようなCTSやACKに含まれる送信先のMACアドレスなどの端末識別子のユニーク数をカウントすることによって、自装置に対する隠れ端末数を取得してもよい。なお、RTS,CTSについては後述する。この場合には、無線チャネルの利用状況の観測は、RTS,CTS、ACKなどの受信や復調であってもよい。
センシング結果がチャネル利用率やフレーム誤り率、干渉源の端末の個数、隠れ端末の個数である場合には、チャネル利用率等が高いほど、適切度は低いことになる。したがって、例えば、送信されるセンシング結果がチャネル利用率である場合には、送信制御部1094は、自装置での観測に応じたチャネル利用率の方が、他の無線通信装置から送信されたチャネル利用率よりも低い場合には、自装置のチャネル利用率を送信しないようにセンシング結果送信部1094を制御する。一方、センシング結果がアイドル率である場合には、アイドル率が高いほど、適切度は高いことになる。
なお、上記説明では、1つの無線チャネルについて協調センシングを行う場合について説明したが、複数の無線チャネルについて、同様の協調センシングを行ってもよい。その場合には、例えば、送信制御部1094は、複数の無線チャネルごとに、センシング結果の送信に関する上記制御を行ってもよい。複数の無線チャネルとして無線チャネルch1、ch2およびch3を想定した場合に、図8で示される各無線通信装置STA11~STA15での観測に応じたセンシング結果が、次のようであったとする。なお、センシング結果であるチャネル利用率は、左から順番にch1、ch2、ch3に対応するものとする。
(ch1、ch2、ch3)
STA11:(60%、40%、20%)
STA12:(40%、30%、10%)
STA13:(30%、10%、10%)
STA14:(20%、20%、40%)
STA15:(10%、20%、20%)
また、上記説明と同様の順番でセンシング結果の送信が行われるとすると、まず、無線通信装置STA11からセンシング結果が送信される。その後、無線通信装置STA12は、ch1、ch2、ch3のそれぞれについて、すでに送信されたセンシング結果よりも適切度が高いため、送信を行わない。また、無線通信装置STA13は、それまでに送信されたセンシング結果を受信できないため、センシング結果を送信する。その後、無線通信装置STA14は、ch2、ch3について、無線通信装置STA13が送信したセンシング結果よりも、自装置のセンシング結果の方が適切度が低いと判断し、センシング結果を送信する。その際に、無線通信装置STA14は、ch2、ch3のみのセンシング結果を送信してもよく、すべての無線チャネル、すなわちch1、ch2、ch3のセンシング結果を送信してもよい。また、無線通信装置STA15は、ch1、ch2、ch3のそれぞれについて、すでに送信されたセンシング結果よりも適切度が高いかまたは同じであるため、送信を行わない。
なお、複数の無線チャネルについて協調センシングを行う場合に、センシング結果の送信に関する制御を、無線チャネルごとに行わなくてもよい。複数の無線チャネルについて一括して行うようにしてもよい。その場合には、送信制御部1094は、例えば、複数の無線チャネルのセンシング結果のうち、代表値を用いて、送信するかどうかの制御を行ってもよく、複数の無線チャネルのセンシング結果の合計値を用いて、送信するかどうかの制御を行ってもよい。代表値は、例えば、最も適切度の低い値であってもよく、平均値であってもよく、その他の代表値であってもよい。ここでは、複数の無線チャネルのセンシング結果のうち、最も適切度の低いセンシング結果を用いて、送信制御を行う場合について具体的に説明する。上記STA11~STA15の例において、最も適切度の低いセンシング結果は、次のようになる。
STA11:60%
STA12:40%
STA13:30%
STA14:40%
STA15:20%
したがって、この場合には、無線通信装置STA11、STA13、STA14がセンシング結果を送信することになる。この場合には、複数の無線チャネルについて一括して判断を行っているため、センシング結果を送信する際には、複数の無線チャネルのそれぞれのセンシング結果を送信することが好適である。
次に、複数の無線チャネルのセンシング結果のうち、複数の無線チャネルのセンシング結果の合計値を用いて、送信制御を行う場合について具体的に説明する。上記STA11~STA15の例において、センシング結果(チャネル利用率)の無線チャネルごとの合計値は、次のようになる。
STA11:120%
STA12:80%
STA13:50%
STA14:80%
STA15:50%
したがって、この場合には、無線通信装置STA11、STA13、STA14がセンシング結果を送信することになる。この場合には、複数の無線チャネルについて一括して判断を行っているため、センシング結果を送信する際には、複数の無線チャネルのそれぞれのセンシング結果を送信することが好適である。
なお、上記説明では、各無線通信装置STA11~STA15が、3個の無線チャネルのそれぞれについてセンシング結果を取得するものである場合について説明したが、そうでなくてもよい。複数の無線通信装置のうち、少なくともいずれかは、一部の無線チャネルについてセンシング結果を取得しないものであってもよい。そのような場合であっても、複数の無線通信装置からセンシング結果がアクセスポイントAPに送信されることによって、アクセスポイントAPは、結果として、複数の無線チャネルのそれぞれについて、センシング結果を受信できることが好適である。
図10は、無線通信装置が、自律的な分散型協調センシングによって、センシング結果の送信または非送信を決定するフローを説明するための図である。
図10を参照して、無線通信装置は、まず、無線通信を行う可能性のある複数の対象無線チャネルについてセンシングを行う(S101)。このセンシングは、チャネル利用状況観測部1060による複数の無線チャネルの利用状況の観測によって行われる。そのセンシングは、センシング期間が終了するまで継続して行われる(S102)。なお、あるセルにおける最初のセンシング期間の開始タイミングは、アクセスポイントAPによって指定されてもよい。
センシング期間が終了すると、センシング結果送信部1090は、観測結果に応じてセンシング結果を取得する(S103)。ここでは、そのセンシング結果がチャネル利用率であるとする。なお、センシング結果がチャネル利用率以外である場合には、そのセンシング結果が、観測された利用状況を用いてセンシング結果送信部1090によって取得されてもよい。
続いて、センシング結果送信部1090は、センシング結果を送信するタイミングをランダムに決定する(S104)。なお、そのタイミングは、報告期間内になるように決定されることが好適である。
センシング結果送信部1090は、ステップS104で決定したセンシング結果の送信タイミングが到来したかどうか判断する(S105)。そして、その送信タイミングが到来した場合には、センシング結果をアクセスポイントAPに送信する(S109)。一方、送信タイミングがまだ到来していない場合には、センシング結果受信部1092によって他の無線通信装置が送信したセンシング結果の受信を行う(S106)。そして、他の無線通信装置から送信されたセンシング結果が受信された場合には、送信制御部1094は、他の無線通信装置から送信されたセンシング結果の方が、自装置のセンシング結果よりも悪いかどうか、すなわち適切度が低いかどうか判断し、適切度が低い場合には、センシング結果送信部1090によるセンシング結果の送信を取り消す(S107,S108)。なお、両者の適切度が同じである場合にも、センシング結果の送信が取り消されてもよい。一方、他の無線装置から送信されたセンシング結果の方が、自装置のセンシング結果よりも適切度が高い場合や、他の無線通信装置から送信されたセンシング結果の受信が行われていない場合には、ステップS105に戻る(S107)。このようにして、センシング結果が送信されるか、または、その送信が取り消されるまで、センシング結果の送信タイミングが到来したかどうかの判断処理と、他装置のセンシング結果の方が自装置のセンシング結果よりも適切度が低いかどうかの判断処理とが継続されることになる。
ここで、複数の無線通信装置について、報告期間の始点が一致している場合には、ステップS105~S108のようにセンシング結果の送信が行われることによって、自装置と他装置とのセンシング結果の比較の処理が、報告期間ごとにリセットされることになる。例えば、複数の無線通信装置について、ステップS101の対象チャネルのセンシングを開始するタイミングが同期しており、また、センシングを終了するまでのセンシング期間が一致している場合には、その複数の無線通信装置の報告期間の始点が一致することになる。
なお、図10のフローチャートの処理は、各無線通信装置において繰り返して実行されることになる。また、ステップS107の判断処理は、複数の無線チャネルのそれぞれについて行われてもよい。そして、例えば、いずれかの無線チャネルについて、自装置のセンシング結果の方が、他装置のセンシング結果よりも適切度が低い場合には、ステップS105に戻ってもよい。そのようにしてステップS105に戻った場合には、自装置のセンシング結果の方が、他装置のセンシング結果よりも適切度が低いと判断した無線チャネルについてのみ、それ以降のステップS107に関する判断を行ってもよい。また、ステップS109では、すべての無線チャネルのセンシング結果が送信されてもよく、または、ステップS107において、他装置のセンシング結果の方が、自装置のセンシング結果よりも適切度が低いと判断された無線チャネル以外の無線チャネルに対応するセンシング結果のみが送信されてもよい。また、図9で示されるように、周期的なセンシングと、周期的なセンシング結果の送信とが並行して実行される場合には、ステップS101~S103のセンシング結果の取得処理と、ステップS104~S109のセンシング結果の送信または送信取消の処理とは、並行して実行されてもよい。
従来の協調センシングと、本実施の形態による協調センシングとについて、シミュレーションによる評価を行った。このシミュレーションでは、図11で示されるように、BSS1の各無線通信装置(STA)が、干渉源であるBSS2のプライマリーチャネル(PCH:Primary Channel)をセンシングする状況を想定した。BSS2のSTA数は、15個とし、BSS1のSTA数は、5個から40個まで、5個ずつ変化させた。また、干渉源であるBSS2において、アクセスポイントAP2のチャネル利用率を30%に設定し、各STAのチャネル利用率を10%に設定した。また、無線通信装置の通信範囲を10メートルに設定し、各STAの位置は、BSS1,2共にランダムに決定した。また、シミュレーションを簡単にするため、1つの無線チャネルについて協調センシングを行うとした。
図12は、BSS1におけるSTA数に対するセンシングレポート(センシング結果)の数の変化を、すべてのSTAがセンシング結果を送信する従来例の場合(全STAがレポート送信)と、本実施の形態のように送信制御部1094による制御を行う場合(提案手法)とで比較したシミュレーション結果である。図12で示されるように、従来の方法では、BSS1におけるSTA数が多くなるにしたがって、アクセスポイントAP1に送信されるセンシング結果の数も増加することになる。一方、本実施の形態による制御を行った場合には、BSS1におけるSTA数が増加しても、アクセスポイントAP1に送信されるセンシング結果の数がそれほど増加しておらず、そのことは、STA数が多くなればなるほど顕著になる。このように、本実施の形態による制御を用いることによって、レポート数を、従来手法と比較して50~90%程度削減できることが分かる。
図13は、送信されたセンシング結果の数(センシングレポート数)に対する確率密度(probability density)を、BSS1におけるSTA数ごとに示す図である。図13で示されるように、本実施の形態による送信制御を行った場合には、BSS1におけるSTA数が増加したとしても、送信されるセンシング結果の数が多い範囲における確率が低く抑えられていることが分かる。このことは、多くのSTAは、似たようなセンシング結果を取得しており、STA数が増加したとしても、各STAがセンシング結果を送信する必要がないことに起因していると考えられる。そのため、本実施の形態による送信制御部1094による制御を行うことによって、協調センシングの効果を損なうことなく、無線リソースの不必要な利用を低減することができ、協調センシングのオーバヘッドを低減することができていることが分かる。
以上のような処理により、センシング端末である各無線通信装置が観測したセンシング結果のうち、最大あるいは最小の値が情報収集装置に送信されることになり、低オーバヘッドで協調センシングを実行することが可能である。また、協調センシングの結果を利用し、複数周波数帯のチャネルを柔軟に選択または同時利用することで無線リソースを無駄なく活用して周波数利用効率向上を実現することが可能となる。
[無線通信装置の詳細な構成]
図14は、送信装置1000のより詳細な構成の例を説明するための機能ブロック図である。
図14に示した機能ブロック図は、一例として、無線通信規格802.11aと同様の無線通信方式に従う送信装置の構成を示す。
すなわち、無線通信規格802.11aは、5GHz帯の無線LAN通信方式であるものの、図14では、2.4GHz、920MHz帯でも、周波数帯が異なるだけで、それ以外は同様の構成の無線通信方式に従う送信部を使用するものとする。
したがって、各周波数帯域において、パケットのプリアンブル部分の構成などは、複数の周波数帯について共通であるものとする。
ただし、必ずしも、各周波数帯の無線通信方式が同様の構成を有していることは必須ではなく、周波数帯ごとに無線通信方式(信号形式、シンボル長やサブキャリア間隔など)が異なっていてもよい。この場合は、少なくとも単一の送信系列を各帯域に分割して同時に送信し、また、周波数帯が異なる以外は、RF部の構成が基本的に同一であればよく、パケットのプリアンブル部分の構成(プリアンブルの長さなど)が、複数の周波数帯ごとに異なっていてもよい。
図14では、5GHz帯の送信に係る構成を代表して例示的に示す。無線通信規格802.11aと同様の無線通信方式を想定しているので、伝送する信号は、OFDM(直交周波数分割多重)変調するものとする。
図14を参照して、無線フレーム生成部1020.3は、S/P変換部1010から分配された送信データを受けて、マッピング処理を実行するためのマッピング部1122と、逆フーリエ変換処理を実行するためのIFFT部1130と、ガードインターバル部分を付加するためのGI付加部1140と、デジタル信号をI成分およびQ成分のアナログ信号に変換するためのデジタルアナログコンバータ(DAC)1150とを含む。図14に示すように、無線フレーム生成部1020.1~1020.3は、ベースバンド処理部ということもできる。また、S/P変換部1010および無線フレーム生成部1020.1~1020.3ではデジタル信号処理が行われるため、それらを総称してデジタル信号処理部と呼ぶ。
高周波処理部1040.3は、DAC1150からの信号を所定の多値変調信号に変調するための直交変調器1210と、直交変調器1210の出力をアップコンバートするアップコンバータ1220と、アップコンバータ1220の出力を電力増幅しアンテナ1050.3から送出するための電力増幅器1230とを含む。
その結果、RF部1040.3により、基底帯域OFDM信号は搬送帯域OFDM信号に変換される。
さらに、高周波処理部1040.3は、局部発振器1030からの参照周波数信号を対応する周波数帯域の基準クロック信号に変換するためのクロック周波数変換部1310と、クロック周波数変換部1310からの基準クロックに基づいて、直交復調器1210での変調処理に使用するクロックを生成するクロック生成部1320と、クロック周波数変換部1310からの基準クロックに基づいて、アップコンバータ1220でのアップコンバート処理に使用するクロックを生成するクロック生成部1340とを含む。
すなわち、局部発振器1030からの参照周波数信号は、このような基底帯域OFDM信号から搬送帯域OFDM信号への変換におけるクロック信号として使用される。なお、より一般に、無線通信方式が異なる場合でも、基本的に、局部発振器1030からの参照周波数信号は、基底帯域信号から搬送帯域信号への変換におけるクロック信号として使用される。
なお、チャネル利用状況観測部1060の構成および動作については、上述した協調センシングの方式で説明したものと同様のものを使用することができる。
チャネル利用状況観測部1060は、自局のセンシング結果および/または分担局のセンシング結果により、各周波数帯の利用状況(例えば各無線チャネルの空き状況やビジー確率等)を観測し、チャネル利用状況予測部1070は、各周波数帯の直近の利用状況を予測し、それに応じて、アクセス制御部1080が送信タイミングの制御を実行する。
[受信装置の構成]
以下では、図4で説明したような無線通信システムで使用される受信装置の構成について説明する。
図15は、本実施の形態の受信装置2000の構成を説明するための機能ブロック図である。
図15を参照して、受信装置2000は、複数の周波数帯域(920MHz帯、2.4GHz帯、5GHz帯)の信号をそれぞれ受信するためのアンテナ2010.1~2010.3と、アンテナ2010.1~2010.3の信号のダウンコンバート処理、復調・復号処理などの受信処理を実行するための受信部2100.1~2100.3と、受信部2100.1~2100.3に対して共通に設けられ、受信部2100.1~2100.3の動作の基準となるクロックである参照周波数信号を生成する局部発振器2020と、受信部2100.1~2100.3からの信号の各系列を送信側と逆の処理で、パラレル/シリアル変換により結合するためのパラレル/シリアル変換部2700とを含む。
パラレル/シリアル(P/S)変換部2700からの統合されたフレームの出力は、上位レイヤーに受け渡される。
受信装置2000は、受信した信号のプリアンブル信号から局部発振器2020の周波数オフセットの検出を行って、局部発振器2020の発振周波数を制御するための信号(発振周波数制御信号)を生成し、搬送波周波数同期処理を行い、また、受信した信号からデジタル信号処理におけるタイミング同期をとるための信号(同期タイミング信号)を生成する同期処理部2600を含む。
受信部2100.1は、アンテナ2010.1からの信号を受けて、低雑音増幅処理、ダウンコンバート処理、所定の変調方式に対する復調処理(たとえば、所定の多値変調方式に対する直交復調処理)、アナログデジタル変換処理等を実行するための高周波処理部(RF部)2400.1と、RF部2400.1からのデジタル信号に対して、復調・復号処理等のベースバンド処理を実行するためのベースバンド処理部2500.1を含む。
受信部2100.2も、対応する周波数帯域についての同様の処理を行うための高周波処理部(RF部)2400.2ならびにベースバンド処理部2500.2を含む。また、受信部2100.3も、対応する周波数帯域についての同様の処理を行うための高周波処理部(RF部)2400.3ならびにベースバンド処理部2500.3を含む。
ベースバンド処理部2500.1~2500.3およびパラレル/シリアル(P/S)変換部2700とを総称して、デジタル信号処理部2800と呼ぶ。
図16は、図15に示した受信装置2000のより詳細な構成の例を説明するための機能ブロック図である。
図16に示した機能ブロック図でも、一例として、無線通信規格802.11aと同様の無線通信方式に従う受信装置の構成を示す。
したがって、受信装置の構成は、図14に示した送信装置の構成に対応するものである。
図16でも、5GHz帯の受信部2100.3の構成を代表して例示的に示す。
図16を参照して、受信部2100.3のRF部2400.3は、アンテナ2010.3からの受信信号を増幅するための低雑音増幅器3010と、低雑音増幅器3010の出力を周波数変換するためのダウンコンバータ3020と、ダウンコンバータ3020の出力を所定の振幅となるように制御するための自動利得制御器3030と、所定の多値変調信号を復調するための直交復調器3040と、直交復調器3040のI成分出力およびQ成分出力をそれぞれデジタル信号に変換するためのアナログデジタルコンバータ(ADC)3050とを含む。
RF部2400.3は、さらに、局部発振器2020からの参照周波数信号を対応する周波数帯域の基準クロック信号に変換するためのクロック周波数変換部3060と、クロック周波数変換部3060からの基準クロックに基づいて、ダウンコンバータ3020でのダウンコンバート処理に使用するクロックを生成するクロック生成部3070と、クロック周波数変換部3060からの基準クロックに基づいて、直交復調器3040での復調処理に使用するクロックを生成するクロック生成部3080とを含む。
無線通信規格802.11aと同様の無線通信方式を想定しているので、伝送されてきた信号は、OFDM(直交周波数分割多重)変調されている。その結果、RF部2400.3により、搬送帯域OFDM信号は、基底帯域OFDM信号に変換される。
そして、局部発振器2020からの参照周波数信号は、このような搬送帯域OFDM信号から基底帯域OFDM信号への変換における搬送周波数同期に使用される。なお、より一般に、無線通信方式が異なる場合でも、基本的に、局部発振器2020からの参照周波数信号は、搬送帯域信号から基底帯域信号への変換における搬送周波数同期に使用される。
ベースバンド処理部2500.3は、ADC3050からの信号を受けて、ガードインターバル部分を除去するためのGI除去部4010と、ガードインターバルが除去された信号に対して、高速フーリエ変換を実行するためのFFT部4020と、FFT部4020の出力に対して、デマッピング処理を実行するためのデマッピング部4032とを含む。
ベースバンド処理部2500.1~2500.3において、ガードインターバルの除去、FFT処理およびデマッピング処理を実施した後に、受信データについて、P/S変換部2700により各周波数帯の信号を結合した後に、デインターリーブ部4042によるデインターリーブ処理および誤り訂正部4040による誤り訂正処理を実行する。
ここで、同期処理部2600から出力される同期タイミング信号は、OFDMシンボルの始まりを検出するためのシンボルタイミング同期などに使用される。
より一般に、無線通信方式が異なる場合でも、基本的に、同期処理部2600から出力される同期タイミング信号は、ベースバンド処理における同期信号として使用される。
以上のような構成により、複数の互いに分離した周波数帯域で同時並行に通信をする場合に、多チャネルの同時センシングを効率的に実行できる。また、各送信データを複数周波数帯域にマッピングし、送信タイミングを調整してデータ伝送を行うことが可能である。
(予測センシング)
以下では、協調センシングにより得られたチャネルの利用状況の情報に基づき、チャネル利用状況予測部1070により、チャネルのビジー状態またはアイドル状態となる確率を予測する構成について説明する。まず、チャネル利用状況観測部1060およびチャネル利用状況予測部1070の動作を説明する前提として、用語の説明のために、無線LANにおいて、各端末からの送信の衝突を回避する一般的な方法について簡単に説明する。
無線LANでは、お互いに送信を待ち合わせないとパケットが衝突して効率的な通信が成り立たないため、ほかに送信信号がないことを確認してから送信することで複数の端末が同じ回線を共用する「CSMA(Carrier Sense Multiple Access)」と呼ばれる方式が採用されている。送信時には、「待ち時間(DIFS:Distributed access Inter Frame Space)」及び「コンテンション・ウィンドウ(CW:Contention Window)」と呼ぶランダム性を有する待ち時間を設け、その後に、ほかに送信信号がないことを確認してから送信する。このような方式を「CA(Collision Avoidance、衝突回避)」と呼ぶ。
また、送信後には、必ず「ACK(ACKnowledgement、到着確認応答)」を待ち、ACKが戻らない場合は衝突などが起きたと判断して再送信を行う。これは無線の場合、送信中に衝突を確実に検出するのが困難なためである。
これ以外にも、無線LAN固有のアクセス制御の仕組みとして、たとえば、隠れ端末対策のために考案された「RTS/CTS(Request to Send/Clear to Send)」がある。ここで、隠れ端末とは、自分からは電波圏外だが、通信相手の電波圏内にいる端末のことである。その存在を直接知ることはできないが、干渉を引き起こす。
電波の到達距離をLmと仮定すると、無線端末Aの通信相手B(アクセスポイント)がLm先におり、さらにそのLm先に別の無線端末Cがいるという状況を考える。
このとき、端末Cの電波は端末Aまで届かないため、端末Aがほかの端末が信号を送出しているか調べても(キャリアセンスしても)端末Cの存在がわからないことから、端末Cは端末Aの隠れ端末になる。何も対策をとらないと、端末CがアクセスポイントBに送信中であっても、端末AもアクセスポイントBにデータを送信してしまうことが起きてしまうことになる。これは、アクセスポイントBで衝突を引き起こし、スループットを下げる要因になる。
RTS/CTSとは、無線機器が送信前に「RTS(送信要求)」のパケットを送信し、受信側がRTSを受信した場合には「CTS(受信可能)」で応答する仕組みである。前述の例では、端末CはアクセスポイントBにまずRTSを送信する。ただし、このRTSは、端末Aには届かないとする。
その後、アクセスポイントBは、端末Cに対してCTSを送信することで受信可能なことを通知する。このCTSは、端末Aにも届くため、端末Aは近隣で通信が行なわれることを察知し、送信を延期する。RTS/CTSのパケットには、チャネルの占有予定期間が書かれており、その間これを受信した端末は通信を保留する。この期間を「NAV(Network Allocation Vector、送信禁止期間)」と呼ぶ。
チャネル利用状況観測部1060からチャネル利用状況予測部1070に与えられる所定期間についての観測・計測の結果から、チャネル利用状況予測部1070が算出および予測する各無線チャネルの利用状況統計量としては、以下のようなものがある。
a)ビジー(busy)状態となる確率(時間的利用率)
b)ビジー(busy)状態とアイドル(idle)状態の継続時間の確率分布
c)直前のビジー(busy)/アイドル(idle)状態継続時間に対するアイドル(idle)/ビジー(busy)状態の継続時間の発生確率分布(たとえば、確率密度関数(PDF:probability density function)や累積確率(CDF:cumulative distribution function))
d)ビジー(busy)状態とアイドル(idle)状態の発生パターン(周期とduty比 : 背景トラヒックが周期的な場合)
以下では、上記のうち、チャネル利用状況予測部1070が算出する予測情報の具体例を説明する。
1)「アイドル(idle)状態の継続時間の発生確率分布」の算出方法
無線LANのフレーム到来間隔τの確率密度関数(PDF)p(τ)は、以下の式(1)で表されるパレート(Pareto)分布に概ね従うことが知られている(以下の文献1を参照)。
文献1:Dashdorj Yamkhin and Youjip Won, "Modeling and analysis of wireless LAN traffic," Journal of Information Science and Engineering, vol. 25, no. 6, pp. 1783-1801, Nov. 2009.
Figure 0007125079000001
ここで、aは分布形状を決定する係数、τmは最小フレーム到来間隔である。
また、aとτmが与えられた場合、τの平均μと分散σ2は、a>2では以下の式(2)および(3)で与えられる。
Figure 0007125079000002
例えばIEEE 802.11 DCF規格の場合、データフレームの最小到来間隔は、上述したDIFS+CW以上であるため、CWの最小値をCWminとしたときτm=DIFS+CWminと設定する。アイドル(idle)状態の継続時間をフレーム到来間隔とし、チャネルセンシング結果からμやσ2を計測すれば、上の式を用いて、チャネル利用状況予測部1070は、aの値を推定できる。
そして、aの値が求まれば、アイドル(idle)状態が、τ時間以上継続する確率C(τ)として、チャネル利用状況予測部1070は、次式で表される発生確率分布を得る。
Figure 0007125079000003
使用予定の無線チャネルがアイドル(idle)状態となった場合、その時点からt後までアイドル(idle)状態が継続する確率は、C(τ)から求めることができる。
2)センシングの結果、アイドル(idle)継続時間とビジー(busy)継続時間が、それぞれ毎回ほぼ同じ時間であり、チャネル利用状況予測部1070がトラヒックが周期的であると判断した場合は、アイドル(idle)状態の継続時間の発生確率分布として、例えば、アイドル(idle)状態開始時時点からアイドル(idle)状態の継続時間の平均値(中央値や最小値でも良い)までの間のアイドル(idle)継続確率を100%、とし、それ以降は0%とするステップ関数としても良い。
3)一方、使用予定の無線チャネルがビジー(busy)状態の場合、飛来しているパケット(フレーム)の物理ヘッダに記載されているフレーム長や、MACフレームに記載されているNAVの値を復号することで、チャネル利用状況予測部1070は、ビジー(busy)状態の継続時間を取得しビジー状態の継続時間を予測することができる。
なお、チャネル利用状況観測部1060による無線チャネルの利用状況の観測や、チャネル利用状況予測部1070による予測は、統合センシング情報を用いて各無線通信装置において決定された、無線通信に用いる1つまたは複数の無線チャネルについて、または、統合センシング情報によって示される、無線通信に用いる1つまたは複数の無線チャネルについて、それぞれ行われてもよい。
以上説明した無線通信装置STAやアクセスポイントAPならびにそれらにより実行される協調センシングの構成により、低オーバヘッドで協調センシングを行うことができ、不必要な無線リソースの消費を回避することができる。
また、協調センシングの結果を利用し、複数周波数帯のチャネルを柔軟に選択または同時利用することで無線リソースを無駄なく活用して周波数利用効率向上を実現することが可能となる。
なお、上記したように、送信制御部1094による送信の制御は、1つの無線チャネルに関する協調センシングを行う場合に用いられてもよい。そして、そのような1つの無線チャネルに関する協調センシングを行う無線通信装置においては、無線通信で用いる無線チャネルの選択のために、センシング結果が用いられてもよい。その無線チャネルの決定をアクセスポイントAP(情報収集装置)において行う場合には、アクセスポイントAPにおけるセンシング結果の統合や、その統合された統合センシング情報の各無線通信装置STAへの送信は行われなくてもよい。
また、本実施の形態では、無線通信装置が無線LAN端末である場合を想定して説明したが、無線通信装置は、無線LAN端末ではなく、センシング結果を送信するが、それに応じた実体的な通信(すなわち、制御用の無線通信ではなく、文字列や画像等を送受信するための無線通信であり、例えば、アクセスポイントAPを介したインターネット通信など)を行わないものであってもよい。したがって、本実施の形態による無線通信装置は、例えば、センシング結果の収集にのみ用いられる装置であってもよい。
また、本実施の形態では、センシング結果に応じて、無線通信で用いられる無線チャネルが決定される場合について説明したが、そのセンシング結果が、各無線通信装置において、BSSにおける観測結果として用いられてもよい。したがって、予測を行わない場合には、情報収集装置から送信された統合センシング情報に応じて、送信タイミングの制御が行われてもよく、予測を行う場合には、その統合センシング情報に応じて、所定のタイミングでのチャネル利用状況が予測されてもよい。そのように、統合センシング情報が送信タイミングの制御や予測に用いられる場合には、センシング結果は、例えば、各無線チャネルがビジー状態であるのか、アイドル状態であるのかの情報であり、統合センシング情報がアクセスポイントAPから各無線通信装置STAに高い頻度で送信されてもよい。また、そのような場合には、アクセス制御部1080が、統合センシング情報に基づいて送信タイミングを制御するとは、統合センシング情報を間接的に用いることであってもよい。
今回開示された実施の形態は、本発明を具体的に実施するための構成の例示であって、本発明の技術的範囲を制限するものではない。本発明の技術的範囲は、実施の形態の説明ではなく、特許請求の範囲によって示されるものであり、特許請求の範囲の文言上の範囲および均等の意味の範囲内での変更が含まれることが意図される。
1000 送信装置、1010 S/P変換部、1020.1~1020.3 無線フレーム生成部、1030 局部発振器、1040.1~1040.3 RF部(高周波処理部)、1050.1~1050.3 アンテナ、1060 チャネル利用状況観測部、1070 チャネル利用状況予測部、1080 アクセス制御部、1090 センシング結果送信部、1092 センシング結果受信部、1094 送信制御部、1110 誤り訂正符号化部、1112 インターリーブ部、2000 受信装置、2010.1~2010.3 アンテナ、2020 局部発振器、2100.1~2100.3 受信部、2400.1~2400.3 RF部(高周波処理部)、2500.1~2500.3 ベースバンド処理部、2600 同期処理部、2700 P/S変換部、2800 デジタル信号処理部。

Claims (4)

  1. 互いに分離した複数の周波数帯のそれぞれでランダムアクセス制御を行っている複数の無線チャネルを利用して、信号を送信する無線通信装置であって、
    送信データを前記複数の周波数帯のそれぞれに対応して複数の部分データに分割し、各前記周波数帯ごとに送信パケットを生成するためのデジタル信号処理部と、
    各前記周波数帯ごとに設けられ、前記デジタル信号処理部によって生成されたデジタル信号を対応する前記周波数帯ごとの高周波信号に変換するための複数の高周波処理部と、
    前記複数の高周波処理部に共通に設けられ、前記複数の高周波処理部で使用されるクロック信号を生成するための局部発振器と、
    前記複数の周波数帯において前記複数の無線チャネルの利用状況を観測するチャネル利用状況観測部と、
    観測された前記利用状況に応じたセンシング結果を情報収集装置に送信するためのセンシング結果送信部と、
    他の無線通信装置から前記情報収集装置に送信されるセンシング結果を受信すると共に、複数の無線通信装置からのセンシング結果が統合された結果である統合センシング情報を前記情報収集装置から受信するセンシング結果受信部と、
    自装置での観測に応じた複数の無線チャネルのセンシング結果の代表値の方が、前記他の無線通信装置から送信された複数の無線チャネルのセンシング結果の代表値よりも、無線チャネルが利用に適していることを示す適切度が高い場合には、自装置のセンシング結果を送信しないように前記センシング結果送信部を制御する送信制御部と
    前記統合センシング情報に基づいて、前記デジタル信号処理部および前記高周波処理部を制御し、前記複数の無線チャネルにより、各前記部分データを前記複数の周波数帯ごとのパケットとして、同期して同一のタイミングで送信するアクセス制御部とを備える、無線通信装置。
  2. 前記センシング結果は、チャネル利用率であり、
    前記送信制御部は、自装置での観測に応じた複数の無線チャネルのチャネル利用率の代表値の方が、他の無線通信装置から送信された複数の無線チャネルのチャネル利用率の代表値よりも低い場合には、自装置のチャネル利用率を送信しないように前記センシング結果送信部を制御する、請求項1記載の無線通信装置。
  3. 前記送信制御部は、自装置の複数の無線チャネルのセンシング結果の代表値の方が、前記他の無線通信装置の所定の時間以内の複数の無線チャネルのセンシング結果の代表値よりも、前記適切度が高い場合には、前記自装置のセンシング結果を送信しないように前記センシング結果送信部を制御する、請求項1または請求項記載の無線通信装置。
  4. 互いに分離した複数の周波数帯のそれぞれでランダムアクセス制御を行っている複数の無線チャネルを利用して、信号を送信する無線通信方法であって、
    前記複数の周波数帯において前記複数の無線チャネルの利用状況を観測するステップと、
    他の無線通信装置から情報収集装置に送信されるセンシング結果を受信するステップと、
    自装置での観測に応じた複数の無線チャネルのセンシング結果の代表値の方が、前記他の無線通信装置から送信された複数の無線チャネルのセンシング結果の代表値よりも、無線チャネルが利用に適していることを示す適切度が高い場合には、自装置のセンシング結果を前記情報収集装置に送信せず、自装置での観測に応じた複数の無線チャネルのセンシング結果の代表値の方が、前記他の無線通信装置から送信された複数の無線チャネルのセンシング結果の代表値よりも、前記適切度が低い場合には、自装置のセンシング結果を前記情報収集装置に送信するステップと
    複数の無線通信装置からのセンシング結果が統合された結果である統合センシング情報を前記情報収集装置から受信するステップと、
    送信データを前記複数の周波数帯のそれぞれに対応して複数の部分データに分割し、各前記周波数帯ごとに送信パケットを生成するステップと、
    前記複数の周波数帯に共通に設けられる局部発振器によって生成されたクロック信号を使用して、各前記周波数帯ごとに、生成された送信パケットのデジタル信号を対応する前記周波数帯ごとの高周波信号に変換するステップと、
    前記統合センシング情報に基づいて、前記複数の無線チャネルにより、各前記部分データを前記複数の周波数帯ごとのパケットとして、同期して同一のタイミングで送信するステップとを備える、無線通信方法。
JP2017222506A 2017-11-20 2017-11-20 無線通信装置および無線通信方法 Active JP7125079B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017222506A JP7125079B2 (ja) 2017-11-20 2017-11-20 無線通信装置および無線通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017222506A JP7125079B2 (ja) 2017-11-20 2017-11-20 無線通信装置および無線通信方法

Publications (2)

Publication Number Publication Date
JP2019096941A JP2019096941A (ja) 2019-06-20
JP7125079B2 true JP7125079B2 (ja) 2022-08-24

Family

ID=66972006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017222506A Active JP7125079B2 (ja) 2017-11-20 2017-11-20 無線通信装置および無線通信方法

Country Status (1)

Country Link
JP (1) JP7125079B2 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012029253A (ja) 2010-07-28 2012-02-09 Hitachi Kokusai Electric Inc 無線通信装置
WO2017153628A1 (en) 2016-03-11 2017-09-14 Nokia Technologies Oy Feedback signaling management

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012029253A (ja) 2010-07-28 2012-02-09 Hitachi Kokusai Electric Inc 無線通信装置
WO2017153628A1 (en) 2016-03-11 2017-09-14 Nokia Technologies Oy Feedback signaling management

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Rui Teng,"A Basic Study of Low-Cost Cooperative Sensing for Wireless-LAN with Concurrent Use of Multiple Frequency Bands",電子情報通信学会2017年総合大会講演論文集 通信1,一般社団法人電子情報通信学会,2017年03月07日,p.484

Also Published As

Publication number Publication date
JP2019096941A (ja) 2019-06-20

Similar Documents

Publication Publication Date Title
Deng et al. IEEE 802.11 ax: Next generation wireless local area networks
JP2024019695A (ja) Wlanにおけるbssカラー強化型送信(bss-cet)
US20180213596A1 (en) Method and apparatus for triggering uplink data in wireless lan
EP3592078B1 (en) Channel aware resource allocation
JP6356253B2 (ja) 無線lanにおけるフレームを送信する方法及び装置
US20150117365A1 (en) Systems and methods for improved communication efficiency in high efficiency wireless networks
US8880116B2 (en) Method and apparatus for selecting cell to increase transmission capacity in wireless communication system
JP6387541B2 (ja) 無線通信装置および無線通信方法
JP6955236B2 (ja) 無線通信システムおよび無線通信方法
WO2017058135A1 (en) Multiplexed messaging in wireless network
JP2018521526A (ja) 複数ユーザアップリンク応答ルールのための方法および装置
JP7032721B2 (ja) チャネル状態予測装置、チャネル状態予測方法、無線通信装置および無線通信方法
EP3915310B1 (en) Cooperative inter-network channel selection
JP6901082B2 (ja) 無線通信装置および無線通信方法
JP6914527B2 (ja) 無線通信装置および無線通信方法
CN115997414A (zh) 无线网状网中的多用户(mu)通信
CN114902788A (zh) 参考信号资源配置
JP2018170621A (ja) 無線通信装置および無線通信方法
JP6387557B2 (ja) 無線通信装置および無線通信方法
JP7125079B2 (ja) 無線通信装置および無線通信方法
JP2019176254A (ja) チャネル状態予測装置、チャネル状態予測方法、無線通信装置および無線通信方法
JP7136443B2 (ja) 無線通信装置、情報収集装置、無線通信方法、および情報収集方法
JP7249830B2 (ja) 無線通信装置、および無線通信方法
JP7013007B2 (ja) 無線通信装置および無線通信方法
JP7245086B2 (ja) 情報収集装置、無線通信装置、情報収集方法、および無線通信方法

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20171205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220804

R150 Certificate of patent or registration of utility model

Ref document number: 7125079

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150