JP7122456B2 - Measuring equipment and surface mounters - Google Patents

Measuring equipment and surface mounters Download PDF

Info

Publication number
JP7122456B2
JP7122456B2 JP2021506811A JP2021506811A JP7122456B2 JP 7122456 B2 JP7122456 B2 JP 7122456B2 JP 2021506811 A JP2021506811 A JP 2021506811A JP 2021506811 A JP2021506811 A JP 2021506811A JP 7122456 B2 JP7122456 B2 JP 7122456B2
Authority
JP
Japan
Prior art keywords
light
reflected light
measurement
height dimension
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021506811A
Other languages
Japanese (ja)
Other versions
JPWO2020188647A1 (en
Inventor
敬介 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Publication of JPWO2020188647A1 publication Critical patent/JPWO2020188647A1/en
Application granted granted Critical
Publication of JP7122456B2 publication Critical patent/JP7122456B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/081Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines
    • H05K13/0813Controlling of single components prior to mounting, e.g. orientation, component geometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2513Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with several lines being projected in more than one direction, e.g. grids, patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2518Projection by scanning of the object
    • G01B11/2522Projection by scanning of the object the position of the object changing and being recorded
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2531Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object using several gratings, projected with variable angle of incidence on the object, and one detection device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/306Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces for measuring evenness

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Operations Research (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Description

本明細書によって開示される技術は、計測装置および表面実装機に関する。 The technology disclosed by this specification relates to a measuring device and a surface mounter.

例えば、計測対象の高さを計測する高さ計測装置として、特開2001-217599号公報が知られている。この高さ計測装置は、光線照射手段によって計測対象へ投影した線状の光をCCDカメラなどの撮像手段によって撮像し、撮像した光の基準位置からのずれや光の輝度から計測対象の高さを計測する、いわゆる光切断法によって高さ計測を行うものである。 For example, Japanese Unexamined Patent Application Publication No. 2001-217599 is known as a height measuring device for measuring the height of an object to be measured. This height measuring device captures an image of the linear light projected onto the object to be measured by the beam irradiating means, using imaging means such as a CCD camera, and measures the height of the object to be measured based on the deviation of the imaged light from a reference position and the brightness of the light. The height is measured by the so-called light section method.

特開2001-217599号公報JP-A-2001-217599

ところで、上記の計測装置では、計測対象の間の距離が近い場合や他の部材との距離が近い場合には、計測対象に投影した光が、計測対象とは異なる部材に向かって反射し、撮像した画像に計測対象とは異なる部材から反射した光が映り込んでしまう。すると、計測対象の光を正確に認識することができなくなったり、光の輝度を正確に認識することができなくなったりすることにより、計測対象の計測精度が低下してしまう。 By the way, in the above measuring device, when the distance between the objects to be measured is short or the distance to another member is short, the light projected onto the object to be measured is reflected toward a member different from the object to be measured, Light reflected from a member other than the object to be measured is reflected in the captured image. As a result, it becomes impossible to accurately recognize the light of the measurement target, or it becomes impossible to accurately recognize the brightness of the light, thereby deteriorating the measurement accuracy of the measurement target.

本明細書では、計測対象の計測精度が低下することを抑制する技術を開示する。 This specification discloses a technique for suppressing a decrease in measurement accuracy of a measurement target.

本明細書によって開示される技術は、光切断法に基づいて計測対象の高さ寸法を計測する計測装置であって、前記計測対象を相対的に移動させながら前記計測対象を撮像する撮像部と、前記撮像部が前記計測対象を撮像する撮像領域を基準に両側の位置に少なくとも1ずつ配置され、前記計測対象に向けて線状の光を投影する複数の光源部と、制御部と、を備え、前記計測対象から反射する反射光は、前記計測対象から前記撮像部に向かって反射する第1反射光と、前記第1反射光とは異なる第2反射光とを含み、前記制御部は、前記撮像部によって撮像されたそれぞれの前記光源部における前記反射光の受光量に基づいて前記第1反射光に応じたデータを算出し、前記計測対象の高さ寸法を計測する。 The technology disclosed in this specification is a measuring device that measures the height dimension of a measurement target based on the light section method, and includes an imaging unit that captures an image of the measurement target while relatively moving the measurement target. a plurality of light source units arranged at least one at each of positions on both sides of an imaging area for imaging the measurement object, and projecting linear light toward the measurement object; and a control unit. The reflected light reflected from the measurement object includes first reflected light reflected from the measurement object toward the imaging unit and second reflected light different from the first reflected light, and the control unit and calculating data corresponding to the first reflected light based on the amount of the reflected light received by each of the light sources captured by the imaging section, and measuring the height dimension of the measurement object.

また、本明細書によって開示される技術は、表面実装機であって、前記計測装置と、前記計測対象を保持して基板に実装する部品実装装置と、を備える。 Further, the technology disclosed by the present specification is a surface mounter including the measurement device and a component mounting device that holds the measurement target and mounts it on a board.

このような構成の計測装置によると、例えば、計測対象の反射光が隣接する他の部材によって更に反射する第2反射光(多重の反射光)を除いた反射光、すなわち、第1反射光に応じたデータを算出し、計測対象の高さ寸法を求めることができる。つまり、他の部材などによって反射した第2反射光が撮像部に入射される場合でも、計測対象の正確な高さ寸法を計測できる。これにより、計測対象の高さ計測の精度が低下することを抑制できる。 According to the measuring apparatus having such a configuration, for example, the reflected light to be measured is reflected light other than the second reflected light (multiple reflected light) that is further reflected by another adjacent member, that is, the first reflected light. It is possible to calculate the corresponding data and obtain the height dimension of the object to be measured. That is, even when the second reflected light reflected by another member or the like enters the imaging unit, the height dimension of the measurement target can be accurately measured. As a result, it is possible to prevent the accuracy of the height measurement of the object to be measured from deteriorating.

ところで、複数の光源部から計測対象に光を投影する方法として、例えば、撮像位置の一側からのみ計測対象に光を投影する方法が考えられる。しかしながら、撮像位置の一側からのみ計測対象に光を投影する場合には、計測対象の一側のみを計測することになるため、計測精度が低下してしまうことが懸念される。 By the way, as a method of projecting light from a plurality of light source units onto the measurement object, for example, a method of projecting light onto the measurement object only from one side of the imaging position is conceivable. However, when light is projected onto the measurement object from only one side of the imaging position, only one side of the measurement object is measured, so there is a concern that the measurement accuracy may be degraded.

ところが、このような構成によると、計測対象に対して撮像位置の両側から光を投影して反射光を撮像し、計測対象全体の高さを計測するから、計測精度が低下することを抑制できる。 However, according to such a configuration, light is projected onto the measurement object from both sides of the imaging position, the reflected light is imaged, and the height of the entire measurement object is measured. .

本明細書によって開示される計測装置は、以下の構成としてもよい。
前記制御部は、前記複数の光源部によって前記計測対象の同一の測定箇所に光を投影して撮像し、同一の測定箇所におけるそれぞれの前記反射光の受光量のうち最も低い受光量に基づいて前記第1反射光に応じたデータを算出する構成としてもよい。
The measuring device disclosed by this specification may be configured as follows.
The control unit captures an image by projecting light onto the same measurement location of the measurement object using the plurality of light source units, and based on the lowest amount of received light among the received amounts of the reflected light at the same measurement location The data may be calculated according to the first reflected light.

このような構成によると、複数の光源部によって撮像されたそれぞれの反射光の受光量のうち最も低い受光量を求める簡便な方法によって、第1反射光に応じたデータを算出する。そして、光切断法によって、第1反射光に応じたデータを作成し、計測対象全体の高さ寸法を求めることができる。
前記制御部は、前記反射光の受光量に基づいて計測対象の高さ寸法のデータを算出し、同一の測定箇所においてそれぞれの算出した高さ寸法のデータのうち最も低い高さ寸法のデータを前記測定箇所における高さ寸法とする構成としてもよい。
このような構成によると、まず、反射光の受光量から計測対象の高さ寸法のデータを算出する。そして、同一の測定箇所においてそれぞれの算出した高さ寸法のデータのうち最も低い高さ寸法のデータを測定箇所における高さ寸法とすることによって、第1反射光に対応する高さ寸法データを得ることができる。これにより、計測対象の高さ計測を行うことができる。
According to such a configuration, the data corresponding to the first reflected light is calculated by a simple method of obtaining the lowest received light amount among the received light amounts of the respective reflected lights captured by the plurality of light source units. Then, by the light section method, data corresponding to the first reflected light can be created, and the height dimension of the entire measurement object can be obtained.
The control unit calculates height dimension data of the object to be measured based on the received amount of the reflected light, and calculates the lowest height dimension data among the calculated height dimension data at the same measurement point. It is good also as a structure which makes it the height dimension in the said measurement location.
According to such a configuration, first, data on the height dimension of the object to be measured is calculated from the amount of received reflected light. Then, the height dimension data corresponding to the first reflected light is obtained by taking the data of the lowest height dimension among the height dimension data calculated at the same measurement location as the height dimension at the measurement location. be able to. Thereby, the height measurement of the measurement target can be performed.

前記制御部は、前記複数の光源部によって前記計測対象の同一の測定箇所に光を投影して撮像し、同一の測定箇所におけるそれぞれの前記反射光の受光量のうち、重複する受光量に基づいて前記第1反射光に応じたデータを算出する構成にしてもよい。 The control unit captures an image by projecting light onto the same measurement location of the measurement target by the plurality of light source units, and based on the overlapping received light amount among the received light amounts of the respective reflected light at the same measurement location may be configured to calculate data corresponding to the first reflected light.

このような構成によると、複数の光源部によって撮像されたそれぞれの反射光の受光量の重複データを求める簡便な方法によって、第1反射光に応じたデータを算出し、光切断法によって、第1反射光に応じたデータを作成する。これにより、計測対象全体の高さ寸法を求めることができる。
前記制御部は、前記反射光の受光量に基づいて計測対象の高さ寸法のデータを算出し、同一の測定箇所においてそれぞれ算出した高さ寸法のデータの論理積によって得られた高さ寸法のデータを前記測定箇所における高さ寸法とする構成としてもよい。
このような構成によると、まず、反射光の受光量から計測対象の高さ寸法のデータを算出する。そして、同一の測定箇所においてそれぞれ算出した高さ寸法のデータの論理積によって得られた高さ寸法のデータを測定箇所における高さ寸法とすることによって第1反射光に対応する高さ寸法データを得ることができる。これにより、計測対象の高さ計測を行うことができる。
According to such a configuration, the data corresponding to the first reflected light is calculated by a simple method of obtaining redundant data of the amount of light received by each of the reflected lights captured by the plurality of light source units, and the light section method is used to obtain the second reflected light. 1 Create data corresponding to the reflected light. Thereby, the height dimension of the entire measurement object can be obtained.
The control unit calculates data of the height dimension of the object to be measured based on the received amount of the reflected light, and calculates the height dimension data obtained by ANDing the data of the height dimension respectively calculated at the same measurement point. The data may be a height dimension at the measurement location.
According to such a configuration, first, data on the height dimension of the object to be measured is calculated from the amount of received reflected light. Then, the height dimension data corresponding to the first reflected light is obtained by using the height dimension data obtained by logical product of the height dimension data calculated at the same measurement location as the height dimension at the measurement location. Obtainable. Thereby, the height measurement of the measurement object can be performed.

本明細書によって開示される技術によれば、計測対象の計測精度が低下することを抑制できる。 According to the technique disclosed by this specification, it is possible to suppress the deterioration of the measurement accuracy of the measurement target.

表面実装機の平面図Top view of surface mounter ヘッドユニットを含む表面実装機の上部の正面図Front view of top of surface mounter including head unit 部品計測部の模式図Schematic diagram of part measuring unit 表面実装機の電気的構成を示すブロック図Block diagram showing the electrical configuration of a surface mounter 平坦度計測処理のフローチャート図Flowchart of flatness measurement processing 電子部品の電極に投影した光が反射している状態を示す模式図Schematic diagram showing a state in which light projected onto an electrode of an electronic component is reflected 2つの反射光の3次元形状から第1反射光にかかる3次元形状を作成する概念図Conceptual diagram of creating a three-dimensional shape of the first reflected light from the three-dimensional shapes of two reflected lights 従来の計測方法における部品計測部の模式図Schematic diagram of part measuring unit in conventional measuring method 光切断法における撮像画像の模式図Schematic diagram of an image captured by the light section method 重心検出法の概念図Conceptual diagram of centroid detection method 計測対象の電極から反射した光が隣の電極から部品認識カメラに向かって更に反射している状態を示す模式図Schematic diagram showing the state in which the light reflected from the electrode to be measured is further reflected from the adjacent electrode toward the component recognition camera. 電極の撮像画像に隣の電極の反射光が入射した状態の撮像画像の模式図Schematic diagram of a captured image in which the reflected light from the adjacent electrode is incident on the captured image of the electrode 図12の状態における重心検出法の概念図Conceptual diagram of the center-of-gravity detection method in the state of FIG. 実施形態2にかかる平坦度計測処理のフローチャート図FIG. 10 is a flowchart of flatness measurement processing according to the second embodiment;

<実施形態>
本明細書に開示された技術における実施形態1について図1から図7を参照して説明する。
<Embodiment>
Embodiment 1 of the technique disclosed in this specification will be described with reference to FIGS. 1 to 7. FIG.

本実施形態は、電子部品(「計測対象」の一例)Eをプリント基板B上に実装する表面実装機10を例示している。表面実装機10は、図1に示すように、平面視略矩形状の基台11と、基台11上にプリント基板Bを搬送する搬送コンベア12と、プリント基板B上に電子部品Eを実装する部品実装装置13と、部品実装装置13に電子部品Eを供給する部品供給装置14と、電子部品Eを計測する部品計測部20と、を備えて構成されている。なお、以下の説明において、図1におけるR方向を右方、L方向を左方、F方向を前方、B方向を後方とし、図2におけるU方向を上方、D方向を下方として説明する。 This embodiment exemplifies a surface mounter 10 that mounts an electronic component (an example of a “measurement target”) E on a printed circuit board B. FIG. As shown in FIG. 1, the surface mounter 10 includes a base 11 having a substantially rectangular shape in plan view, a conveyer 12 for conveying a printed circuit board B onto the base 11, and an electronic component E mounted on the printed circuit board B. , a component supply device 14 for supplying an electronic component E to the component mounting device 13, and a component measurement section 20 for measuring the electronic component E. In the following description, the R direction in FIG. 1 is right, the L direction is left, the F direction is forward, the B direction is backward, and the U direction in FIG. 2 is upward and the D direction is downward.

基台11は、図1に示すように、搬送コンベア12、部品実装装置13、部品計測部20などが配置可能とされている。 As shown in FIG. 1, the base 11 can be arranged with a conveyor 12, a component mounting device 13, a component measuring unit 20, and the like.

搬送コンベア12は、図1に示すように、基台11の前後方向の略中央部に配されており、プリント基板Bを上流である右方から下流である左方に向かって搬送する。搬送コンベア12には、プリント基板Bが架設するようにセットされる。プリント基板Bは、搬送コンベア12によって上流(右方)から基台11の左右方向略中央部の部品実装位置に搬入され、電子部品Eが実装された後、下流(左方)に搬出される。 As shown in FIG. 1, the conveyer 12 is arranged substantially in the center of the base 11 in the front-rear direction, and conveys the printed circuit board B from the right, which is upstream, to the left, which is downstream. A printed circuit board B is set on the conveyer 12 so as to be laid thereon. The printed circuit board B is conveyed from the upstream (right side) by the conveyer 12 to the component mounting position in the center of the base 11 in the left-right direction, and after the electronic components E are mounted, it is conveyed downstream (left side). .

部品供給装置14は、図1に示すように、フィーダ型であって、搬送コンベア12の上下方向両側に左右方向に2つずつ、合計4箇所に配置されている。各部品供給装置14は、搬送コンベア12側の端部から電子部品Eを供給する。 As shown in FIG. 1, the component supply device 14 is of a feeder type, and is arranged at a total of four locations, two on each side in the vertical direction of the conveyer 12 in the horizontal direction. Each component supply device 14 supplies electronic components E from the end on the conveyer 12 side.

部品実装装置13は、図1および図2に示すように、基台11上に配置された複数のフレーム16に支持されたヘッドユニット17と、ヘッドユニット17を移動させる複数の駆動装置18とを備えて構成されている。 As shown in FIGS. 1 and 2, the component mounting apparatus 13 includes a head unit 17 supported by a plurality of frames 16 arranged on the base 11, and a plurality of driving devices 18 for moving the head unit 17. configured with.

複数の駆動装置18は、前後方向に延びるフレーム16や左右方向に延びるフレーム16などに取り付けられており、複数の駆動装置18が通電制御されることにより、ヘッドユニット17が基台11上を前後左右方向に移動するようになっている。 A plurality of driving devices 18 are attached to a frame 16 extending in the front-rear direction and a frame 16 extending in the left-right direction. It is designed to move left and right.

ヘッドユニット17には、図1および図2に示すように、電子部品Eの保持および実装を行う実装ヘッド19が左右方向に複数並んで搭載されている。各実装ヘッド19は、部品供給装置14から供給される電子部品Eを吸着して保持し、プリント基板B上に実装する。 As shown in FIGS. 1 and 2, the head unit 17 is equipped with a plurality of mounting heads 19 for holding and mounting the electronic components E arranged side by side in the horizontal direction. Each mounting head 19 sucks and holds the electronic component E supplied from the component supply device 14 and mounts it on the printed circuit board B. As shown in FIG.

部品計測部20は、図1に示すように、基台11の前後方向の両側にそれぞれ配置されている。それぞれの部品計測部20は、図3に示すように、実装ヘッド19の先端に吸着保持された電子部品Eを撮像する部品認識カメラ(「撮像部」の一例)22と、電子部品Eに線状の光を投影する複数の光源部24とを備えている。 As shown in FIG. 1, the component measurement units 20 are arranged on both sides of the base 11 in the front-rear direction. As shown in FIG. 3, each component measuring unit 20 includes a component recognition camera (an example of an “image capturing unit”) 22 for capturing an image of the electronic component E sucked and held at the tip of the mounting head 19, and a line sensor for the electronic component E. and a plurality of light source units 24 for projecting shaped light.

また、それぞれの部品計測部20は、後述する制御部110によって制御される。部品認識カメラ22は、実装ヘッド19に吸着保持されている電子部品Eを下方から撮像し、制御部110は、部品認識カメラ22が撮像して得た画像に基づいて、電子部品Eの形状、実装ヘッド19に対する電子部品Eの位置などを計測する。また、本実施形態では、制御部110は、電子部品Eに設けられた複数の電極E2の高さ寸法を計測し、複数の電極E2の高さ寸法に基づいて電子部品Eにおける電極E2の平坦度を計測する。部品計測部20と、制御部110とが計測装置に相当する。
なお、部品認識カメラ22に、電子部品Eに設けられた複数の電極E2の高さ寸法を計測する機能を持たせてもよい。
Further, each component measuring section 20 is controlled by a control section 110 which will be described later. The component recognition camera 22 captures an image of the electronic component E sucked and held by the mounting head 19 from below. The position of the electronic component E with respect to the mounting head 19 and the like are measured. In addition, in the present embodiment, the control unit 110 measures the height dimensions of the plurality of electrodes E2 provided on the electronic component E, and measures the flatness of the electrodes E2 on the electronic component E based on the height dimensions of the plurality of electrodes E2. measure degrees. The component measuring unit 20 and the control unit 110 correspond to the measuring device.
Note that the component recognition camera 22 may be provided with a function of measuring the height dimensions of the multiple electrodes E2 provided on the electronic component E. FIG.

部品認識カメラ22は、CCD(Charge-Coupled Device)やCMOS(Complementary Metal-Oxide Semiconductor)などの複数の受光素子を有するカメラである。部品認識カメラ22は、撮像面を上に向けた姿勢で配されている。部品認識カメラ22の光軸A1は、図3に示すように、部品認識カメラ22から電子部品Eに対して上下方向に延びる配置とされている。 The component recognition camera 22 is a camera having a plurality of light receiving elements such as CCD (Charge-Coupled Device) and CMOS (Complementary Metal-Oxide Semiconductor). The component recognition camera 22 is arranged with its imaging surface facing upward. The optical axis A1 of the component recognition camera 22 is arranged to extend vertically from the component recognition camera 22 to the electronic component E, as shown in FIG.

部品認識カメラ22は、図3に示すように光軸A1に沿って予め定められた撮像領域Pを持っている。実装ヘッド19に吸着保持された電子部品Eが撮像領域Pに存在することにより、部品認識カメラ22によって電子部品Eが撮像される。 The component recognition camera 22 has a predetermined imaging area P along the optical axis A1 as shown in FIG. Since the electronic component E sucked and held by the mounting head 19 exists in the imaging area P, the electronic component E is imaged by the component recognition camera 22 .

複数の光源部24は、図3に示すように、部品認識カメラ22が電子部品Eを撮像する撮像領域Pを基準に左右方向両側の位置に少なくとも1ずつ配置されている。本実施形態は、撮像領域Pを基準に左右方向両側に1つずつ配置されており、2つの光源部24は、部品認識カメラ22の光軸A1を基準に左右対称な位置関係となっている。 As shown in FIG. 3, at least one of the plurality of light source units 24 is arranged on both sides in the left-right direction with reference to an imaging region P where the component recognition camera 22 images the electronic component E. As shown in FIG. In this embodiment, one light source unit 24 is arranged on each side in the left-right direction with reference to the imaging area P, and the two light source units 24 have a symmetrical positional relationship with respect to the optical axis A1 of the component recognition camera 22. .

それぞれの光源部24は、部品認識カメラ22の光軸A1に対して傾斜した線状の光を撮像領域Pに投影する。本実施形態の光源部24は、部品認識カメラ22の光軸A1に対する傾斜角度θが30度から60度に設定されており、部品認識カメラ22の光軸A1に対するそれぞれの光源部24の傾斜角度は同一とされている。
つまり、本実施形態では、撮像領域Pに電子部品Eが存在すると、光源部24によって電子部品Eに光が投影され、電子部品Eから反射した反射光Rが部品認識カメラ22に入射するようになっている。
Each light source unit 24 projects linear light inclined with respect to the optical axis A<b>1 of the component recognition camera 22 onto the imaging region P. The light source unit 24 of this embodiment has an inclination angle θ of 30 degrees to 60 degrees with respect to the optical axis A1 of the component recognition camera 22. are assumed to be the same.
That is, in the present embodiment, when the electronic component E is present in the imaging area P, light is projected onto the electronic component E by the light source unit 24, and the reflected light R reflected from the electronic component E is incident on the component recognition camera 22. It's becoming

次に、表面実装機10の電気的構成について、図4を参照して説明する。
表面実装機10は、制御部110によってその全体が制御統括されている。制御部110は、CPUなどによって構成される演算処理部111、記憶部112、駆動制御部113、画像処理部114、部品供給制御部115などを有している。
Next, the electrical configuration of the surface mounter 10 will be described with reference to FIG.
The surface mounter 10 is entirely controlled by a control section 110 . The control unit 110 has an arithmetic processing unit 111, a storage unit 112, a drive control unit 113, an image processing unit 114, a component supply control unit 115, etc., which are configured by a CPU or the like.

記憶部112は、ROM(Read Only Memory)やRAM(Random Access Memory)等から構成される。記憶部112には、演算処理部111が実行する各種プログラムや各種データなどが記憶されている。具体的には、実装プログラムとしては、部品実装装置13、搬送コンベア12、部品供給装置14を制御して電子部品Eをプリント基板Bに配置する実装プログラムや、実装ヘッド19に吸着保持された電子部品Eにおける電極E2の平坦度を計測するコプラナリティ計測プログラムなどが記憶されている。 The storage unit 112 includes a ROM (Read Only Memory), a RAM (Random Access Memory), and the like. Various programs executed by the arithmetic processing unit 111 and various data are stored in the storage unit 112 . Specifically, the mounting program includes a mounting program for controlling the component mounting device 13, the transport conveyor 12, and the component supply device 14 to place the electronic component E on the printed circuit board B, and an electronic component sucked and held by the mounting head 19. A coplanarity measurement program for measuring the flatness of the electrode E2 on the part E and the like are stored.

駆動制御部113は、演算処理部111の指令により、搬送コンベア12や駆動装置18などを駆動させる。
画像処理部114は、演算処理部111の指令により、部品計測部20における部品認識カメラ22から出力された電気信号を変換することによって画像データを生成する。
部品供給制御部115は、演算処理部111の指令により、部品供給装置14を制御する。
The drive control unit 113 drives the conveyer 12, the driving device 18, and the like according to instructions from the arithmetic processing unit 111. FIG.
The image processing unit 114 generates image data by converting an electrical signal output from the component recognition camera 22 in the component measurement unit 20 according to a command from the arithmetic processing unit 111 .
The component supply control unit 115 controls the component supply device 14 according to commands from the arithmetic processing unit 111 .

演算処理部111は、記憶部112の各種制御プログラムを実行することによって表面実装機10の各部を制御する。演算処理部111は、例えば、記憶部112の実装プログラムに基づいて、駆動制御部113を介して搬送コンベア12および部品実装装置13を駆動させる。また、部品供給制御部115を介して部品供給装置14を制御する。これにより、プリント基板Bに電子部品Eを実装する。 The arithmetic processing section 111 controls each section of the surface mounter 10 by executing various control programs in the storage section 112 . The arithmetic processing unit 111 drives the conveyor 12 and the component mounting device 13 via the drive control unit 113 based on, for example, the mounting program in the storage unit 112 . It also controls the component supply device 14 via the component supply control unit 115 . Thus, the electronic component E is mounted on the printed circuit board B. FIG.

また、演算処理部111は、記憶部112に記憶されたコプラナリティ計測プログラムに従って、画像処理部114を介して部品認識カメラ22を駆動させる。演算処理部111は、部品認識カメラ22により撮像した撮像データを画像処理部114介して取り込み、撮像データに基づいて、電子部品Eにおける複数の電極E2の下端の位置から構成される面のコプラナリティ(平坦度)を判定する。 Further, the arithmetic processing unit 111 drives the component recognition camera 22 via the image processing unit 114 according to the coplanarity measurement program stored in the storage unit 112 . The arithmetic processing unit 111 takes in image data captured by the component recognition camera 22 via the image processing unit 114, and based on the image data, the coplanarity ( flatness).

ところで、表面実装機10においてプリント基板Bに実装される電子部品Eには、例えば、DIP(Dual inline Package)のような、パッケージ部分の下面から多数の電極が下方に突出している電子部品や、BGA(Ball Grid Allay)のような、パッケージ部分の底面から球状あるいは半球状の電極が下方に突出している電子部品がある。 By the way, the electronic component E mounted on the printed circuit board B by the surface mounter 10 includes, for example, an electronic component such as a DIP (Dual inline Package) having a large number of electrodes protruding downward from the lower surface of the package portion, There is an electronic component such as a BGA (Ball Grid Allay) in which spherical or hemispherical electrodes protrude downward from the bottom surface of a package portion.

本実施形態では、図3および図6に示すように、直方体の形状を有する部品本体E1と、部品本体E1の底面から半球状に下方に突出する電極E2とを備える電子部品Eを例示している。ここで、各電極E2の最下端の高さにバラツキがあると電子部品Eをプリント基板Bに搭載したときに一部の電極E2がプリント基板Bに接触しないことによって実装不良となることが懸念される。 In this embodiment, as shown in FIGS. 3 and 6, an electronic component E including a component body E1 having a rectangular parallelepiped shape and an electrode E2 protruding downward in a hemispherical shape from the bottom surface of the component body E1 is exemplified. there is Here, if there is variation in the height of the lowest end of each electrode E2, there is concern that when the electronic component E is mounted on the printed circuit board B, some of the electrodes E2 do not come into contact with the printed circuit board B, resulting in mounting defects. be done.

そこで、制御部110は、図3に示すように、電子部品Eに光源部24の光を投影しながら電子部品Eを部品認識カメラ22に対してX方向に移動させ、この移動の間に、電子部品Eを複数回連続的に撮像する光切断法によって各電極E2の最下端の高さの平坦度、いわゆるコプラナリティを計測する。制御部110は、コプラナリティが基準値よりも悪い場合(すなわち電極E2の高さのバラツキが大きい場合)は不良部品として電子部品Eを廃棄する。 Therefore, as shown in FIG. 3, the control unit 110 moves the electronic component E in the X direction with respect to the component recognition camera 22 while projecting the light of the light source unit 24 onto the electronic component E. The so-called coplanarity, which is the flatness of the height of the lowermost end of each electrode E2, is measured by a light section method in which the electronic component E is imaged continuously a plurality of times. If the coplanarity is worse than the reference value (that is, if the height of the electrode E2 varies greatly), the control unit 110 discards the electronic component E as a defective component.

以下に、光切断法による電子部品Eにおける電極E2の高さ寸法の計測方法について簡単に説明する。
まず、光切断法を用いた従来の計測方法について、図8から図10を参照して説明する。
A method for measuring the height dimension of the electrode E2 in the electronic component E by the light section method will be briefly described below.
First, a conventional measurement method using the light section method will be described with reference to FIGS. 8 to 10. FIG.

一般に、光切断法を用いた従来の計測方法では、図8に示すように、電子部品Eの高さ寸法を計測する場合、電子部品Eの移動方向Xと部品認識カメラ22の光軸A1に沿って予め定められた撮像領域Pに、1つの光源部24から光軸A1に対して傾斜する線状の光を投影する。 Generally, in the conventional measurement method using the light section method, as shown in FIG. Linear light inclined with respect to the optical axis A1 is projected from one light source unit 24 onto an imaging region P predetermined along the line.

次に、撮像領域Pに光を投影した状態において、図8に示すように、電子部品EをX方向に移動させ、撮像領域Pを通過する電子部品Eを複数回連続的に撮像する。そして、各撮像画像60における光のずれ位置hに基づいて電極E2の全体の高さ寸法を計測する。 Next, in a state in which light is projected onto the imaging region P, the electronic component E is moved in the X direction as shown in FIG. Then, the overall height dimension of the electrode E2 is measured based on the light shift position h in each captured image 60 .

詳細には、制御部110は、部品計測部20において、まず、電子部品Eを移動経路Cに沿って移動させつつ、撮像領域Pにおいて電子部品Eを複数回に亘って連続的に撮像し、各撮像画像60において光のずれ位置hを求める。 Specifically, the control unit 110 causes the component measurement unit 20 to first move the electronic component E along the movement path C, continuously image the electronic component E in the imaging region P a plurality of times, A shift position h of light is obtained in each captured image 60 .

ここで、電子部品Eが撮像領域P内に進入する前の状態では、光は撮像領域Pに投影される。撮像領域Pに投影される光Re1の位置は基準位置Sとされる。電子部品Eが撮像領域P内に進入すると、図9に示すように、光が電子部品Eに投影され、電子部品Eの高さ寸法に応じて電子部品Eに投影される光Re2が基準位置Sからずれて投影される。 Here, light is projected onto the imaging region P before the electronic component E enters the imaging region P. As shown in FIG. The position of the light Re1 projected onto the imaging area P is defined as a reference position S. As shown in FIG. When the electronic component E enters the imaging region P, as shown in FIG. 9, light is projected onto the electronic component E, and the light Re2 projected onto the electronic component E according to the height dimension of the electronic component E is positioned at the reference position. It is projected out of S.

電子部品Eに投影される光の基準位置Sからのずれ位置h(図9参照)は、電子部品Eに投影される光Re2の位置と光の輝度Lをもとに重心検出法に基づいて決定する。 The deviation position h (see FIG. 9) of the light projected onto the electronic component E from the reference position S is determined based on the position of the light Re2 projected onto the electronic component E and the brightness L of the light, based on the centroid detection method. decide.

図10は、図9に示す撮像画像60において四角で囲んだY座標における電子部品Eに投影された光のX座標における輝度Lを表している。図10において、横軸は電極E2に投影された光の基準位置Sからの距離をX座標で示しており、縦軸は、各X座標における輝度Lを示している。 FIG. 10 shows the luminance L of the light projected on the electronic component E at the Y coordinate surrounded by a square in the captured image 60 shown in FIG. 9 at the X coordinate. In FIG. 10, the horizontal axis indicates the distance from the reference position S of the light projected onto the electrode E2 in X coordinates, and the vertical axis indicates the luminance L at each X coordinate.

撮像画像60におけるY座標の重心位置CPは、電子部品Eに投影される光Re2の座標と光Re2の輝度Lをもとに以下の式(1)によって求められる。式(1)においてxiは基準位置Sからの距離(X座標)であり、Lは各X座標の輝度である。

Figure 0007122456000001
そして、式(1)で求められた重心位置CPのX座標が電極E2に投影される光の基準位置Sからのずれ位置hとして決定される。The center-of-gravity position CP of the Y coordinate in the captured image 60 is obtained by the following formula (1) based on the coordinates of the light Re2 projected onto the electronic component E and the brightness L of the light Re2. In equation (1), xi is the distance (X coordinate) from the reference position S, and L is the brightness of each X coordinate.
Figure 0007122456000001
Then, the X-coordinate of the center-of-gravity position CP obtained by Equation (1) is determined as the shift position h from the reference position S of the light projected onto the electrode E2.

次に、制御部110は、撮像画像60における各Y座標の光の基準位置Sからのずれ位置hを決定し、各Y座標における光のずれ位置hをY方向に繋ぐことにより、光を投影した位置における電子部品Eの断面形状(断面における高さ寸法)を求める。 Next, the control unit 110 determines the deviation position h of each Y-coordinate light from the reference position S in the captured image 60, and connects the deviation position h of the light at each Y-coordinate in the Y direction to project the light. A cross-sectional shape (height dimension in the cross section) of the electronic component E at the position where the cross section is set is obtained.

そして、制御部110は、それぞれの撮像画像60において電子部品Eの断面形状を求め、それぞれの撮像画像60における電子部品Eの断面形状をX方向に繋ぐことによって、電子部品Eの3次元形状を作成する。 Then, the control unit 110 obtains the cross-sectional shape of the electronic component E in each captured image 60, and connects the cross-sectional shapes of the electronic component E in each captured image 60 in the X direction, thereby obtaining the three-dimensional shape of the electronic component E. create.

以上のように、従来の計測方法では、1つの光源部24から投影された光の反射光Rを部品認識カメラ22によって撮像し、反射光Rの受光量に基づいて電子部品Eの電極E2の高さ寸法を計測する。そして、各電極E2の最下端の高さのコプラナリティを判定する。 As described above, in the conventional measurement method, the reflected light R of light projected from one light source unit 24 is imaged by the component recognition camera 22, and the electrode E2 of the electronic component E is detected based on the received amount of the reflected light R. Measure the height dimension. Then, the coplanarity of the height of the lowest end of each electrode E2 is determined.

ところで、例えば、電子部品Eにおける電極E2の間の距離が近い場合には、図11に示すように、計測対象の電極E2に投影した光Liが、計測対象とは異なる隣の電極E2に向かって反射し、撮像画像60に計測対象の電極E2とは異なる電極E2から反射した光RAが部品認識カメラ22に入射してしまう。すると、図12に示すように、撮像画像60において、計測対象の電極E2において反射した光R0と、隣の電極E2において反射した光RAが撮像されてしまう。 By the way, for example, when the distance between the electrodes E2 in the electronic component E is short, as shown in FIG. The light RA reflected on the captured image 60 from an electrode E2 different from the electrode E2 to be measured enters the component recognition camera 22 . Then, as shown in FIG. 12, in the captured image 60, the light R0 reflected by the electrode E2 to be measured and the light RA reflected by the adjacent electrode E2 are captured.

したがって、従来の計測方法では、光切断法による重心位置CPの決定の際に、図13示すように、重心位置CPが本来の重心位置CP0よりも大きくなる方向にずれた位置に決定されてしまい、電極E2の高さ寸法が本来よりも高く計測されてしまう。 Therefore, in the conventional measurement method, when the center of gravity position CP is determined by the light section method, the center of gravity position CP is determined at a position shifted in the direction of being larger than the original center of gravity position CP0, as shown in FIG. , the height dimension of the electrode E2 is measured higher than it should be.

そこで、本実施形態は、部品計測部20における2つの光源部24を用いて平坦度計測処理を実行する。
以下に、本実施形態における平坦度計測処理について、図5に示すフローチャートを参照しつつ説明する。
Therefore, in the present embodiment, the two light source units 24 in the component measurement unit 20 are used to execute flatness measurement processing.
The flatness measurement process according to this embodiment will be described below with reference to the flowchart shown in FIG.

本実施形態の制御部110は、部品計測部20において撮像領域Pに存在する電子部品Eの電極E2の高さ寸法を計測する場合、まず、2つの光源部24のうちの一方の光源部(図3の図示左側の光源部24)24Lによって、図6に示すように、計測対象の電極E2に対して左側から傾斜した線状の光Li1(図6は説明のために3つの光Li1を記載しているが、光は連続して電極E2に投影される。)を投影する(S11)。そして、従来と同様の光切断法によって計測対象である電極E2の3次元形状M1を作成する(S12)。 When the component measurement unit 20 measures the height dimension of the electrode E2 of the electronic component E present in the imaging region P, the control unit 110 of the present embodiment firstly selects one of the two light source units 24 ( As shown in FIG. 6, the light source unit 24) 24L on the left side of FIG. 3 emits linear light Li1 (three light beams Li1 in FIG. 6 for explanation) inclined from the left side with respect to the electrode E2 to be measured. , the light is continuously projected onto the electrode E2) (S11). Then, a three-dimensional shape M1 of the electrode E2 to be measured is created by a light section method similar to the conventional one (S12).

ここで、電極E2に対して左斜めから光が投影されると、投影された光Li1は電極E2において反射し、反射光Rは部品認識カメラ22に入射する。しかしながら、電極E2の左側部に投影される一部の光は、左側に向かって反射する。 Here, when light is projected obliquely to the left of the electrode E2, the projected light Li1 is reflected by the electrode E2, and the reflected light R enters the component recognition camera 22. FIG. However, some light projected on the left side of electrode E2 is reflected toward the left.

左側に向かって反射した光は、計測対象の電極E2の左側に配置された電極E2Lによって更に反射し、計測対象の電極E2から部品認識カメラ22に向かって反射した光とは異なる多重に反射した光が部品認識カメラ22に入射する。 The light reflected toward the left side is further reflected by the electrode E2L arranged on the left side of the electrode E2 to be measured, and is reflected in multiple ways different from the light reflected from the electrode E2 to be measured toward the component recognition camera 22. Light enters the component recognition camera 22 .

つまり、部品認識カメラ22に撮像される電極E2の反射光Rは、電極E2から部品認識カメラ22に向かって反射する第1反射光R1と、電極E2から反射して更に他の部材から部品認識カメラ22に向かって反射する第2反射光R2を含んでいる。 That is, the reflected light R of the electrode E2 imaged by the component recognition camera 22 is divided into the first reflected light R1 reflected from the electrode E2 toward the component recognition camera 22 and the first reflected light R1 reflected from the electrode E2 and further reflected from other members for component recognition. It contains the second reflected light R2 that is reflected toward the camera 22 .

したがって、光切断法における重心位置CPの決定の際には、電極E2の左側端部の高さ寸法が高く計測されることになり、図7の上段に示すように、左側端部の高さ寸法が高い3次元形状M1が作成される。そして、3次元形状M1は、撮像領域PにおけるXY座標ともに記憶部112に記憶される。 Therefore, when determining the center-of-gravity position CP in the light-section method, the height dimension of the left end of the electrode E2 is measured to be high, and as shown in the upper part of FIG. A three-dimensional shape M1 with high dimensions is created. The three-dimensional shape M1 is stored in the storage unit 112 together with the XY coordinates in the imaging region P. FIG.

次に、制御部110は、2つの光源部24のうちの他方の光源部(図3の図示右側の光源部24)24Rによって、一方の光源部24Lの光Li1によって投影した電極E2の同一の測定箇所に対して右側から傾斜した線状の光Li2を投影する(S13)。したがって、本実施形態は、一方の光源部24Rと他方の光源部24Lとが電極E2に光を投影する時期はずれているもの、一方の光源部24Rと他方の光源部24Lとが、撮像領域Pの同一の場所において電極E2の同一の測定箇所に光を投影している。
なお、一方の光源部24Rと他方の光源部24Lとは、撮像領域Pにおける水平方向に離れた場所において、投影時期をずらして電極E2の同一の測定箇所に光を投影してもよい。また、一方の光源部24Rと他方の光源部24Lとが電極E2に光を投影する時期は、同時であってもよく、光を同時に投影する場合には、撮像時間を短縮できる。
そして、従来と同様の光切断法によって計測対象である電極E2の3次元形状M2を作成する(S14)。
Next, the control unit 110 controls the light source unit 24R of the other of the two light source units 24 (the light source unit 24 on the right side of the drawing in FIG. 3) to cause the electrode E2 projected by the light Li1 of the one light source unit 24L. A linear light Li2 inclined from the right side of the measurement point is projected (S13). Therefore, in the present embodiment, one light source unit 24R and the other light source unit 24L project light onto the electrode E2 at different timings, but the one light source unit 24R and the other light source unit 24L project the imaging region P , the light is projected onto the same measurement point of the electrode E2.
One light source unit 24R and the other light source unit 24L may project light onto the same measurement point of the electrode E2 at different locations in the imaging region P in the horizontal direction with different projection timings. Also, the light source unit 24R and the light source unit 24L may project light onto the electrode E2 at the same time, and when the light is projected at the same time, the imaging time can be shortened.
Then, a three-dimensional shape M2 of the electrode E2 to be measured is created by a light section method similar to the conventional one (S14).

ここで、電極E2に対して右斜めから光が投影されると、投影された光は電極E2において反射し、反射光Rは部品認識カメラ22に入射する。しかしながら、電極E2の右側部に投影される一部の光は、右側に向かって反射する。 Here, when light is projected obliquely to the right of the electrode E2, the projected light is reflected by the electrode E2, and the reflected light R is incident on the component recognition camera 22. FIG. However, some of the light projected onto the right side of electrode E2 is reflected toward the right.

右側に向かって反射した光は、計測対象の電極E2の右側に配置された電極E2Rによって更に反射し、計測対象の電極E2から部品認識カメラ22に向かって反射した光とは異なる多重に反射した光が部品認識カメラ22に入射する。 The light reflected toward the right side is further reflected by the electrode E2R arranged on the right side of the electrode E2 to be measured, and is reflected in multiple ways different from the light reflected from the electrode E2 to be measured toward the component recognition camera 22. Light enters the component recognition camera 22 .

つまり、他方の光源部24Rに基づく計測においても、部品認識カメラ22に撮像される電極E2の反射光Rは、電極E2から部品認識カメラ22に向かって反射する第1反射光R1と、電極E2から反射して更に他の部材から部品認識カメラ22に向かって反射する第2反射光R2を含んでいる。 That is, even in the measurement based on the other light source unit 24R, the reflected light R of the electrode E2 imaged by the component recognition camera 22 is the first reflected light R1 reflected from the electrode E2 toward the component recognition camera 22 and the electrode E2 It includes the second reflected light R2 that is reflected from another member and reflected toward the component recognition camera 22 from another member.

したがって、光切断法における重心位置CPの決定の際には、電極E2の右側端部の高さ寸法が高く計測されることになり、図7の中段に示すように、右側端部の高さ寸法が高い3次元形状M2が作成される。そして、3次元形状M2は、撮像領域PにおけるXY座標ともに記憶部112に記憶される。 Therefore, when determining the center-of-gravity position CP in the light-section method, the height dimension of the right end of the electrode E2 is measured to be high, and as shown in the middle of FIG. A three-dimensional shape M2 with high dimensions is created. The three-dimensional shape M2 is stored in the storage unit 112 together with the XY coordinates in the imaging region P. FIG.

次に、制御部110は、一方の光源部24Lの投影によって得られた3次元形状M1と他方の光源部24Rによって得られた3次元形状M2との同一の測定箇所(XY座標)における高さ寸法データを比較する(S15)。
3次元形状M1と3次元形状M2との同一の測定箇所(XY座標)における高さ寸法データの比較の結果、高さが低い高さ寸法データを各測定箇所(XY座標)の高さとして、図7の下段に示すような新たな3次元形状M3を作成する(S16)。
具体的には、図7のX1よりも左側、X3よりも右の座標では、3次元形状M2の高さ寸法データ(3次元形状M1よりも低い高さ寸法データ)M2Aが新たな3次元形状の高さ寸法データとして選択される。図7のX2よりも右側、X4よりも左の座標では、3次元形状M1の高さ寸法データ(3次元形状M2よりも低い高さ寸法データ)M1Aが新たな3次元形状の高さ寸法データとして選択される。
Next, the control unit 110 determines the height at the same measurement point (XY coordinates) of the three-dimensional shape M1 obtained by the projection of one light source unit 24L and the three-dimensional shape M2 obtained by the other light source unit 24R. The dimension data are compared (S15).
As a result of comparing the height dimension data at the same measurement points (XY coordinates) of the three-dimensional shape M1 and the three-dimensional shape M2, the height dimension data with the lowest height is used as the height of each measurement point (XY coordinates), A new three-dimensional shape M3 as shown in the lower part of FIG. 7 is created (S16).
Specifically, at the coordinates on the left side of X1 and the right side of X3 in FIG. is selected as the height dimension data of At coordinates on the right side of X2 and the left side of X4 in FIG. is selected as

言い換えると、同一の測定箇所(XY座標)におけるそれぞれの反射光Rのうち最も低い受光量に基づいて電極E2から部品認識カメラ22に向かって反射する第1反射光R1を算出し、新たな3次元形状M3を作成する。 In other words, the first reflected light R1 reflected from the electrode E2 toward the component recognition camera 22 is calculated based on the lowest amount of light received among the reflected lights R at the same measurement point (XY coordinates), and a new 3 Create a dimensional shape M3.

つまり、新たに作成された3次元形状M3は、計測対象の電極E2とは異なる箇所から部品認識カメラ22に入射される光が除かれた状態となり、計測対象の電極E2から部品認識カメラ22に向かって反射した第1反射光R1のみをもとに作成されることになる。これにより、電子部品Eにおける各電極E2の正確な高さ寸法を求めることができる。 In other words, the newly created three-dimensional shape M3 is in a state where the light incident on the component recognition camera 22 from a location different from the electrode E2 to be measured is removed, and the light from the electrode E2 to be measured to the component recognition camera 22 is removed. It is created based only on the first reflected light R1 reflected toward it. Thereby, an accurate height dimension of each electrode E2 in the electronic component E can be obtained.

すなわち、隣接する電極E2や他の部材などによって反射した第2反射光R2が部品認識カメラ22に入射される場合でも、計測対象の電極E2の正確な高さ寸法を計測できる。これにより、計測対象である電極E2の高さ計測の精度が低下することを抑制できる。
そして、電子部品Eにおける各電極E2の高さ寸法を計測し(S17)、電子部品Eにおけるコプラナリティを判定する(S18)。
That is, even when the second reflected light R2 reflected by the adjacent electrode E2 or another member enters the component recognition camera 22, it is possible to accurately measure the height dimension of the electrode E2 to be measured. As a result, it is possible to prevent the height measurement accuracy of the electrode E2, which is the measurement target, from being lowered.
Then, the height dimension of each electrode E2 in the electronic component E is measured (S17), and the coplanarity in the electronic component E is determined (S18).

つまり、電子部品Eにおける各電極E2の高さ寸法の計測精度の低下が抑制されたことにより、電子部品Eにおけるコプラナリティの計測精度が低下することを抑制できるようになっている。 That is, since the deterioration of the measurement accuracy of the height dimension of each electrode E2 in the electronic component E is suppressed, the deterioration of the coplanarity measurement accuracy in the electronic component E can be suppressed.

以上のように、本実施形態の部品計測部(計測装置)20は、光切断法に基づいて計測対象の高さ寸法を計測するものであって、電子部品Eの電極E2(計測対象)を相対的に移動させながら計測対象の電極E2を撮像する部品認識カメラ(撮像部)22と、部品認識カメラ22が電極E2を撮像する撮像領域Pを基準に両側の位置に少なくとも1ずつ配置され、計測対象の電極E2に向けて線状の光を投影する複数の光源部24と、制御部110と、を備えている。 As described above, the component measuring unit (measuring device) 20 of the present embodiment measures the height dimension of the object to be measured based on the light section method. At least one component recognition camera (imaging unit) 22 that captures an image of the electrode E2 to be measured while being relatively moved, and at least one component recognition camera 22 are arranged at positions on both sides of the imaging region P that captures the electrode E2, A control unit 110 and a plurality of light source units 24 that project linear light toward the electrodes E2 to be measured are provided.

そして、電極E2から反射する反射光Rは、電極E2から部品認識カメラ22に向かって反射する第1反射光R1と、第1反射光R1とは異なる第2反射光R2とを含んでいる。制御部110は、部品認識カメラ22によって撮像されたそれぞれの光源部24における反射光Rの受光量に基づいて、図7の下段に示すように、第1反射光R1に応じた3次元形状(データ)M3を算出し、計測対象である電極E2の高さ寸法を計測する。 The reflected light R reflected from the electrode E2 includes a first reflected light R1 reflected from the electrode E2 toward the component recognition camera 22 and a second reflected light R2 different from the first reflected light R1. Based on the amount of reflected light R received by each light source unit 24 captured by the component recognition camera 22, the control unit 110 generates a three-dimensional shape ( Data) M3 is calculated, and the height dimension of the electrode E2 to be measured is measured.

したがって、本実施形態によると、計測対象の電極E2から反射して更に他の部材によって反射する第2反射光R2を除いた反射光、すなわち、電極E2から部品認識カメラ22に向かって反射する第1反射光R1に応じたデータを算出して計測対象の高さ寸法を求めることができる。つまり、他の部材などによって第2反射光R2が部品認識カメラ22に入射される場合でも、計測対象である電極E2の正確な高さ寸法を計測できる。これにより、計測対象である電極E2の高さ計測の精度、ひいては電子部品Eにおけるコプラナリティの計測精度が低下することを抑制できる。 Therefore, according to the present embodiment, reflected light excluding the second reflected light R2 reflected from the electrode E2 to be measured and further reflected by another member, that is, the second reflected light reflected from the electrode E2 toward the component recognition camera 22 The height dimension of the object to be measured can be obtained by calculating data according to one reflected light R1. That is, even when the second reflected light R2 is incident on the component recognition camera 22 due to another member or the like, it is possible to accurately measure the height dimension of the electrode E2, which is the measurement target. As a result, it is possible to suppress the accuracy of measuring the height of the electrode E2, which is the object to be measured, and the accuracy of measuring the coplanarity of the electronic component E from deteriorating.

ところで、複数の光源部から計測対象に光を投影する方法として、例えば、撮像位置の一側からのみ計測対象に光を投影する方法が考えられる。
しかしながら、撮像領域Pの一側からのみ計測対象に光を投影する場合、計測対象の一側のみを計測することになるため、計測精度が低下してしまうことが懸念される。
By the way, as a method of projecting light from a plurality of light source units onto the measurement object, for example, a method of projecting light onto the measurement object only from one side of the imaging position is conceivable.
However, when light is projected onto the measurement target from only one side of the imaging region P, only one side of the measurement target is measured, and there is a concern that the measurement accuracy may deteriorate.

ところが、本実施形態によると、電極E2に対して撮像領域Pの両側から光を投影して反射光Rを撮像し、電極E2の高さを計測するから、計測精度が低下することを抑制できる。 However, according to the present embodiment, light is projected onto the electrode E2 from both sides of the imaging region P, the reflected light R is imaged, and the height of the electrode E2 is measured. .

また、本実施形態によると、制御部110が、図6に示すように、複数の光源部24によって電極E2の同一箇所に光を投影して撮像し、同一座標におけるそれぞれの反射光Rのうち最も低い受光量に基づいて、図7の下段に示す第1反射光R1に応じた3次元形状(データ)を算出する。
具体的には、反射光Rの受光量に基づいて計測対象の高さ寸法のデータ(3次元形状M1,M2)を算出し、同一の測定箇所においてそれぞれの算出した高さ寸法のデータのうち最も低い高さ寸法のデータを測定箇所における高さ寸法とする。
つまり、本実施形態によると、計測対象の電極E2とは異なる箇所から部品認識カメラ22に入射されて受光量が高くなった反射光Rを除いて、第1反射光R1のみを算出するといった簡便な方法により、3次元形状M3を作成して電極E2の高さ寸法を計測することができる。
Further, according to the present embodiment, as shown in FIG. 6, the control unit 110 projects light onto the same location of the electrode E2 by the plurality of light source units 24 to capture an image. A three-dimensional shape (data) corresponding to the first reflected light R1 shown in the lower part of FIG. 7 is calculated based on the lowest amount of received light.
Specifically, height data (three-dimensional shapes M1 and M2) of the object to be measured is calculated based on the amount of light received by the reflected light R, and at the same measurement point, among the calculated height data, Let the data of the lowest height dimension be the height dimension at the measurement point.
That is, according to the present embodiment, it is simple to calculate only the first reflected light R1, excluding the reflected light R that is incident on the component recognition camera 22 from a location different from the electrode E2 to be measured and has a high received light amount. A three-dimensional shape M3 can be created and the height dimension of the electrode E2 can be measured by such a method.

<実施形態2>
次に、実施形態2について、図14のフローチャートを参照して説明する。
実施形態2の平坦度計測処理は、実施形態1のS16を変更したものであって、実施形態1と共通する構成、作用、および効果については重複するため、その説明を省略する。また、実施形態1と同じ構成については同一の符号を用いるものとする。
<Embodiment 2>
Next, Embodiment 2 will be described with reference to the flowchart of FIG.
The flatness measurement process of the second embodiment is a modification of S16 of the first embodiment, and since the configurations, actions, and effects common to those of the first embodiment overlap, the description thereof will be omitted. Moreover, the same code|symbol shall be used about the same structure as Embodiment 1. FIG.

実施形態2の平坦度計測処理は、制御部110が、図14のフローチャートに示すように、S12およびS14においてそれぞれの3次元形状が作成できたところで、S15において同一の測定箇所(同一のXY座標)における3次元形状の高さ寸法を比較する。そして、2つの3次元形状において重複する高さ寸法データ(重複する受光量に基づくデータ)を各測定箇所の高さ寸法として決定し、新たな3次元形状(データ)を作成する。 In the flatness measurement process of the second embodiment, as shown in the flow chart of FIG. 14, the control unit 110 has created each three-dimensional shape in S12 and S14, and in S15, the same measurement points (same XY coordinates ) to compare the height dimensions of the three-dimensional shapes. Then, overlapping height dimension data (data based on overlapping amounts of received light) in the two three-dimensional shapes is determined as the height dimension of each measurement point, and a new three-dimensional shape (data) is created.

言い換えると、同一の測定箇所(同一のXY座標)におけるそれぞれの反射光Rの高さ寸法のうち、重複する受光量に基づいて算出された高さ寸法データ、すなわち、同一の測定箇所におけるそれぞれの反射光Rの高さ寸法の論理積を、第1反射光R1の高さ寸法として算出し、電極E2の高さ寸法として決定(S26)する。これにより、第1反射光R1における3次元形状(データ)を作成し、電極E2の高さ寸法を計測することができる。
具体的には、図7を参考に説明すると、X1よりも左側、X3よりも右の座標では、3次元形状M2の高さ寸法データM2Aが3次元形状M1の高さ寸法データ(図7の3次元形状M1の一部)と重複し、重複しているデータである高さ寸法データM2Aが新たな3次元形状の高さ寸法データとして選択される。X2よりも右側、X4よりも左の座標では、3次元形状M1の高さ寸法データM1Aが3次元形状M2の高さ寸法データ(図7の3次元形状M2の一部)と重複し、重複しているデータである高さ寸法データM1Aが新たな3次元形状の高さ寸法データとして選択される。
In other words, among the height dimensions of the reflected light beams R at the same measurement point (same XY coordinates), the height dimension data calculated based on the overlapping amount of received light, that is, the height dimension data at the same measurement point The logical product of the height dimension of the reflected light R is calculated as the height dimension of the first reflected light R1, and determined as the height dimension of the electrode E2 (S26). Thereby, the three-dimensional shape (data) of the first reflected light R1 can be created, and the height dimension of the electrode E2 can be measured.
Specifically, referring to FIG. 7, at coordinates on the left side of X1 and on the right side of X3, the height dimension data M2A of the three-dimensional shape M2 is the height dimension data of the three-dimensional shape M1 (see FIG. 7). A part of the three-dimensional shape M1), and the height dimension data M2A, which is the overlapping data, is selected as the height dimension data of the new three-dimensional shape. At the coordinates to the right of X2 and to the left of X4, the height dimension data M1A of the three-dimensional shape M1 overlaps the height dimension data of the three-dimensional shape M2 (part of the three-dimensional shape M2 in FIG. 7), and overlaps. The height dimension data M1A, which is the data having the height dimension data, is selected as the height dimension data of the new three-dimensional shape.

したがって、本実施形態において新たに作成された3次元形状は、実施形態1と同様に、計測対象の電極E2とは異なる箇所から部品認識カメラ22に入射される光が除かれ、計測対象の電極E2から直接反射した光のみをもとに作成されることになる。これにより、電子部品Eにおける各電極E2の高さ寸法を求めることができ、計測対象の高さ計測の精度が低下することを抑制できる。 Therefore, in the three-dimensional shape newly created in this embodiment, as in the first embodiment, the light incident on the component recognition camera 22 from a location different from the electrode E2 to be measured is removed, and the electrode E2 to be measured is removed. It will be created based on only the light directly reflected from E2. Thereby, the height dimension of each electrode E2 in the electronic component E can be calculated|required, and it can suppress that the precision of height measurement of a measuring object falls.

そして、実施形態1と同様に、電子部品Eにおける各電極E2の高さ寸法を計測し(S17)、電子部品Eにおけるコプラナリティを判定する(S18)。
つまり、電子部品Eにおける各電極E2の高さ寸法の計測精度の低下が抑制されたことにより、電子部品Eにおけるコプラナリティの計測精度が低下することを抑制できるようになっている。
Then, similarly to the first embodiment, the height dimension of each electrode E2 in the electronic component E is measured (S17), and the coplanarity in the electronic component E is determined (S18).
That is, since the deterioration of the measurement accuracy of the height dimension of each electrode E2 in the electronic component E is suppressed, the deterioration of the coplanarity measurement accuracy in the electronic component E can be suppressed.

<他の実施形態>
本明細書で開示される技術は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような種々の態様も含まれる。
(1)上記実施形態では、部品計測部20において半球形状の電極E2の計測を一例として示した。しかしながら、これに限らず、DIP(Dual inline Package)のような、パッケージ部分から多数の電極が下方に突出している電子部品や、QFP(Quad Flat Package)のような、パッケージ部分から多数の電極がパッケージ部分の側方に延びた後下方に曲げられた電子部品の計測に適用してもよい。
<Other embodiments>
The technology disclosed in this specification is not limited to the embodiments described by the above description and drawings, and includes various aspects such as the following, for example.
(1) In the above embodiment, measurement of the hemispherical electrode E2 in the component measurement unit 20 is shown as an example. However, it is not limited to this, and electronic components such as DIP (Dual inline Package) in which a large number of electrodes protrude downward from the package portion, and QFP (Quad Flat Package) in which a large number of electrodes protrude from the package portion. It may be applied to the measurement of an electronic component that extends laterally of the package portion and then bends downward.

(2)上記実施形態では、部品計測部20を備えた表面実装機10を一例として示した。しかしながら、これに限らず、検査装置などに本明細書で開示した部品計測部を適用してもよい。
(3)上記実施形態では、光源部24によって電極E2に投影した光のずれ位置を重心検出法によって決定するに構成した。しかしながら、これに限らず、曲線近似法を用いて光のずれ位置を決定するに構成してもよい。
(2) In the above embodiment, the surface mounter 10 including the component measuring section 20 is shown as an example. However, the component measurement unit disclosed in this specification may be applied to an inspection device or the like without being limited to this.
(3) In the above embodiment, the shift position of the light projected onto the electrode E2 by the light source unit 24 is determined by the centroid detection method. However, the present invention is not limited to this, and a configuration may be adopted in which a curve approximation method is used to determine the shift position of the light.

(4)上記実施形態では、部品認識カメラ22の撮像領域Pの両側に光源部24をそれぞれ1つずつ配置する構成とした。しかしながら、これに限らず、部品認識カメラの撮像領域の両側に光源部をそれぞれ複数ずつ配置してもよい。
(5)上記実施形態では、2つの光源部24における光が部品認識カメラ22の光軸A1に対して同一角度で投影される構成とした。しかしながら、これに限らず、光源部における光を異なる角度によって投影し、角度の差を補正する構成にしてもよい。
(4) In the above embodiment, one light source unit 24 is arranged on each side of the imaging area P of the component recognition camera 22 . However, not limited to this, a plurality of light source units may be arranged on both sides of the imaging area of the component recognition camera.
(5) In the above embodiment, the light from the two light source units 24 is projected at the same angle with respect to the optical axis A1 of the component recognition camera 22 . However, the present invention is not limited to this, and a configuration may be adopted in which the light from the light source section is projected at different angles and the difference in angles is corrected.

10:表面実装機
13:部品実装装置
20:部品計測部(「計測装置」の一例)
22:部品認識カメラ(「撮像部」の一例)
24:光源部
110:制御部
B:プリント基板(「基板」の一例)
E:電子部品(「計測対象」の一例)
E2:電極(「計測対象」の一例)
M3:3次元形状(「データ」の一例)
P:撮像領域
R:反射光
R1:第1反射光
R2:第2反射光
10: Surface mounter 13: Component mounting device 20: Component measuring unit (an example of "measuring device")
22: Component recognition camera (an example of an “imaging unit”)
24: Light source unit 110: Control unit B: Printed circuit board (an example of a “board”)
E: Electronic parts (an example of "measurement target")
E2: Electrode (an example of "measurement target")
M3: 3D shape (an example of "data")
P: imaging region R: reflected light R1: first reflected light R2: second reflected light

Claims (5)

光切断法に基づいて計測対象の高さ寸法を計測する計測装置であって、
前記計測対象を相対的に移動させながら前記計測対象を撮像する撮像部と、
前記撮像部が前記計測対象を撮像する撮像領域を基準に両側の位置に少なくとも1ずつ配置され、前記計測対象に向けて線状の光を投影する複数の光源部と、
制御部と、を備え、
前記計測対象から反射する反射光は、前記計測対象から前記撮像部に向かって反射する第1反射光と、前記第1反射光とは異なる第2反射光とを含み、
前記制御部は、前記撮像部によって撮像されたそれぞれの前記光源部における前記反射光の受光量に基づいて前記第1反射光に応じたデータを算出し、前記計測対象の高さ寸法を計測し
前記制御部は、前記複数の光源部によって前記計測対象の同一の測定箇所に光を投影して撮像し、同一の測定箇所におけるそれぞれの前記反射光の受光量のうち最も低い受光量に基づいて前記第1反射光に応じたデータを算出する、計測装置。
A measuring device for measuring the height dimension of an object to be measured based on the light section method,
an imaging unit that captures an image of the measurement target while relatively moving the measurement target;
a plurality of light source units, each of which has at least one imaging unit arranged at each of positions on both sides of an imaging region for imaging the measurement object, and projects linear light toward the measurement object;
a control unit;
The reflected light reflected from the measurement target includes first reflected light reflected from the measurement target toward the imaging unit and second reflected light different from the first reflected light,
The control unit calculates data corresponding to the first reflected light based on the amount of the reflected light received by each of the light sources captured by the imaging unit, and measures the height dimension of the measurement object. ,
The control unit captures an image by projecting light onto the same measurement location of the measurement object using the plurality of light source units, and based on the lowest amount of received light among the received amounts of the reflected light at the same measurement location A measuring device that calculates data according to the first reflected light .
前記制御部は、前記反射光の受光量に基づいて計測対象の高さ寸法のデータを算出し、同一の測定箇所においてそれぞれの算出した高さ寸法のデータのうち最も低い高さ寸法のデータを前記測定箇所における高さ寸法とする請求項1に記載の計測装置。 The control unit calculates height dimension data of the object to be measured based on the received amount of the reflected light, and calculates the lowest height dimension data among the calculated height dimension data at the same measurement point. 2. The measuring device according to claim 1 , wherein the height dimension is the measurement location. 光切断法に基づいて計測対象の高さ寸法を計測する計測装置であって、
前記計測対象を相対的に移動させながら前記計測対象を撮像する撮像部と、
前記撮像部が前記計測対象を撮像する撮像領域を基準に両側の位置に少なくとも1ずつ配置され、前記計測対象に向けて線状の光を投影する複数の光源部と、
制御部と、を備え、
前記計測対象から反射する反射光は、前記計測対象から前記撮像部に向かって反射する第1反射光と、前記第1反射光とは異なる第2反射光とを含み、
前記制御部は、前記撮像部によって撮像されたそれぞれの前記光源部における前記反射光の受光量に基づいて前記第1反射光に応じたデータを算出し、前記計測対象の高さ寸法を計測し
前記制御部は、前記複数の光源部によって前記計測対象の同一の測定箇所に光を投影して撮像し、同一の測定箇所におけるそれぞれの前記反射光の受光量のうち、重複する受光量に基づいて前記第1反射光に応じたデータを算出する、計測装置。
A measuring device for measuring the height dimension of an object to be measured based on the light section method,
an imaging unit that captures an image of the measurement target while relatively moving the measurement target;
a plurality of light source units, each of which has at least one imaging unit arranged at each of positions on both sides of an imaging region for imaging the measurement object, and projects linear light toward the measurement object;
a control unit;
The reflected light reflected from the measurement target includes first reflected light reflected from the measurement target toward the imaging unit and second reflected light different from the first reflected light,
The control unit calculates data corresponding to the first reflected light based on the amount of the reflected light received by each of the light sources captured by the imaging unit, and measures the height dimension of the measurement object. ,
The control unit captures an image by projecting light onto the same measurement location of the measurement target by the plurality of light source units, and based on the overlapping received light amount among the received light amounts of the respective reflected light at the same measurement location to calculate data corresponding to the first reflected light .
前記制御部は、前記反射光の受光量に基づいて計測対象の高さ寸法のデータを算出し、同一の測定箇所においてそれぞれ算出した高さ寸法のデータの論理積によって得られた高さ寸法のデータを前記測定箇所における高さ寸法とする請求項3に記載の計測装置。 The control unit calculates data of the height dimension of the object to be measured based on the received amount of the reflected light, and calculates the height dimension data obtained by ANDing the data of the height dimension respectively calculated at the same measurement point. 4. The measuring device according to claim 3 , wherein the data is the height dimension at the measurement point. 請求項1から請求項4のいずれか一項に記載の計測装置と、
前記計測対象を保持して基板に実装する部品実装装置と、を備えた表面実装機。
A measuring device according to any one of claims 1 to 4 ;
and a component mounting device that holds the object to be measured and mounts it on a substrate.
JP2021506811A 2019-03-15 2019-03-15 Measuring equipment and surface mounters Active JP7122456B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/010919 WO2020188647A1 (en) 2019-03-15 2019-03-15 Measurement device and surface mounting machine

Publications (2)

Publication Number Publication Date
JPWO2020188647A1 JPWO2020188647A1 (en) 2021-10-28
JP7122456B2 true JP7122456B2 (en) 2022-08-19

Family

ID=72519705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021506811A Active JP7122456B2 (en) 2019-03-15 2019-03-15 Measuring equipment and surface mounters

Country Status (3)

Country Link
JP (1) JP7122456B2 (en)
DE (1) DE112019007030T5 (en)
WO (1) WO2020188647A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024189795A1 (en) * 2023-03-14 2024-09-19 株式会社Fuji Component mounting machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024254A1 (en) 2008-08-26 2010-03-04 株式会社ブリヂストン Specimen roughness detecting method, and apparatus for the method
JP2011227006A (en) 2010-04-23 2011-11-10 Nidec Tosok Corp Engraved mark inspection apparatus
JP2015122420A (en) 2013-12-24 2015-07-02 株式会社レクザム Inclination inspection device for component
US20150233708A1 (en) 2014-02-14 2015-08-20 SmartRay GmbH Method and apparatus for optical non-contact scanning of surfaces

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6263842A (en) * 1985-08-17 1987-03-20 Fujitsu Ltd Unevenness inspection instrument
JPS6363842A (en) * 1986-09-03 1988-03-22 佐藤工業株式会社 Shrinking joint material using polymer absorbing body
JPH069069B2 (en) 1988-07-06 1994-02-02 三洋電機株式会社 Vending machine product unloading device
JPH021A (en) 1989-05-09 1990-01-05 Seiko Epson Corp Color filter
JPH03163305A (en) * 1989-11-22 1991-07-15 Matsushita Electric Works Ltd Method for detecting soldered shape
JP4189111B2 (en) 2000-02-04 2008-12-03 ヤマハ発動機株式会社 Surface mount component mounting machine and electronic component detection method in surface mount component mounter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024254A1 (en) 2008-08-26 2010-03-04 株式会社ブリヂストン Specimen roughness detecting method, and apparatus for the method
JP2011227006A (en) 2010-04-23 2011-11-10 Nidec Tosok Corp Engraved mark inspection apparatus
JP2015122420A (en) 2013-12-24 2015-07-02 株式会社レクザム Inclination inspection device for component
US20150233708A1 (en) 2014-02-14 2015-08-20 SmartRay GmbH Method and apparatus for optical non-contact scanning of surfaces

Also Published As

Publication number Publication date
JPWO2020188647A1 (en) 2021-10-28
WO2020188647A1 (en) 2020-09-24
DE112019007030T5 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
TWI622754B (en) Three-dimensional measuring device
JP5421763B2 (en) Inspection apparatus and inspection method
JP5445509B2 (en) Image forming apparatus, image forming method, and component mounting apparatus
US20140368835A1 (en) Three-dimensional shape measuring apparatus
US11982522B2 (en) Three-dimensional measuring device
JP5109633B2 (en) Measuring method and inspection method, measuring device and inspection device
US20120133920A1 (en) High speed, high resolution, three dimensional printed circuit board inspection system
JP4733001B2 (en) Component mounting apparatus, component mounting method, and program
US20160320314A1 (en) Visual inspection apparatus and visual inspection method
JP7122456B2 (en) Measuring equipment and surface mounters
JP3926347B2 (en) Electronic component mounting equipment
JP2013191775A (en) Component mounting device and component shape measuring method
JP6177714B2 (en) Component recognition device, component transfer device, and component mounting device
JP7271250B2 (en) Measuring equipment and surface mounters
JP3923168B2 (en) Component recognition method and component mounting method
JP2002098513A (en) Lens frame form measuring device
JP2002267415A (en) Semiconductor measuring instrument
JP7303069B2 (en) inspection equipment
WO2024189795A1 (en) Component mounting machine
KR101005077B1 (en) Apparatus for detecting bump
US20240200934A1 (en) Measurement device and board inspection device
JP2001217599A (en) Surface mounting component attaching device and electronic component detecting method thereof
JP6457295B2 (en) Parts judgment device
JP2022080510A (en) Component mounting system and component mounting state determination method
JP2023148455A (en) Mounting machine and method for measuring substrate height

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220808

R150 Certificate of patent or registration of utility model

Ref document number: 7122456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150