JP7118928B2 - 半導体ウエハの局所的歪みの特定に基づく全体的ウエハ歪みの改善 - Google Patents

半導体ウエハの局所的歪みの特定に基づく全体的ウエハ歪みの改善 Download PDF

Info

Publication number
JP7118928B2
JP7118928B2 JP2019143000A JP2019143000A JP7118928B2 JP 7118928 B2 JP7118928 B2 JP 7118928B2 JP 2019143000 A JP2019143000 A JP 2019143000A JP 2019143000 A JP2019143000 A JP 2019143000A JP 7118928 B2 JP7118928 B2 JP 7118928B2
Authority
JP
Japan
Prior art keywords
wafer
semiconductor wafer
distortion
pattern
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019143000A
Other languages
English (en)
Other versions
JP2020021076A (ja
JP2020021076A5 (ja
Inventor
ホーゲ ジョシュア
イプ ネイサン
エストレラ ジョエル
デヴィリアーズ アントン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/054,725 external-priority patent/US10622233B2/en
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Publication of JP2020021076A publication Critical patent/JP2020021076A/ja
Publication of JP2020021076A5 publication Critical patent/JP2020021076A5/ja
Application granted granted Critical
Publication of JP7118928B2 publication Critical patent/JP7118928B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/80Geometric correction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/26Acting in response to an ongoing measurement without interruption of processing, e.g. endpoint detection, in-situ thickness measurement
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70625Dimensions, e.g. line width, critical dimension [CD], profile, sidewall angle or edge roughness
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70633Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • H01L22/32Additional lead-in metallisation on a device or substrate, e.g. additional pads or pad portions, lines in the scribe line, sacrificed conductors

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

関連出願の相互参照
本出願は、2016年9月5日に出願された米国仮特許出願第62/383,549号、2017年9月5日に出願された米国非仮特許出願第15/695,966号、及び2018年8月3日に出願された米国非仮特許出願第16/054,725号に関連し、それらの優先権を主張するものであり、これらの内容全体を参照により本明細書に組み入れる。
本発明の実施形態によれば、半導体チップ製造プロセス中のパターンのオーバレイ誤差を最小限にするために、半導体基板上の膜応力を測定することに関する。一実施形態においてにおいて、方法は、取得された形状データに基づいて、半導体ウエハの離散化された複数のピクセルのそれぞれの局所的歪みを特定するステップを含む。その後、複数のピクセルの各々の特定された局所的歪みを生成し、かつ半導体ウエハの全体的歪に寄与する、各ピクセルにおける1つ以上の力を推定するステップが続く。次に、システムは、複数の離散化されたピクセルのそれぞれについて、各ピクセルについての推定された力を使用して、半導体ウエハの背面の対応する離散化されたピクセルに適用されるときに、半導体ウエハの全体的歪みを改善する背面層の改善パターンを生成する。
別の実施形態では、上記の方法は、半導体ウエハの形状データを取得するウエハ形状測定器を含むシステム上で実施されることができ、形状データは半導体ウエハの全体的歪みを表す。システムは、取得された形状データに少なくとも部分的に基づいて、半導体ウエハの複数の離散化されたピクセルのそれぞれの局所的歪みを特定するためのウエハシミュレータを使用することができる。
システムは、複数のピクセルの各々の特定された局所歪を生成し、かつ半導体ウエハの全体的歪に寄与する、各ピクセルにおける1つ以上の力を推定するための応力推定器も有することができる。上述の要素は、離散化された複数のピクセルのそれぞれについて、各ピクセルについて推定された力を使用して、背面層の改善パターンを生成するための背面パターン生成器に情報を提供することができ、改善パターンは、半導体ウエハの背面の対応する離散化されたピクセルに適用されるときに、半導体ウエハの全体的歪みを改善する。
本発明の他の一実施形態では、基板湾曲(substrate bow)を最小化するための背面パターンは、半導体ウエハの形状データを取得するステップであって、形状データは前記半導体ウエハの全体的歪みを表す、ステップと、半導体ウエハの等二軸ウエハ応力(equibiaxial wafer stress)を計算するステップであって、計算は取得された形状データに基づく、ステップと、を含む。その後、半導体ウエハの初期カスタムパラメータを取得するステップと、計算された等2軸ウエハ応力及び取得されたカスタムパラメータの少なくとも一部に基づいてウエハ歪みを計算するステップと、取得されたウエハ形状データと計算されたウエハ形状との間の差異として残差ウエハ形状を特定するステップと、残差ウエハ形状又はウエハ歪み又はその両方を低減するためにカスタムパラメータ更新するステップと、異なるカスタムパラメータを使用してウエハ形状を計算するステップと残差ウエハ形状を特定するステップとを繰り返すことによって、プレート理論方程式の解を最適化するステップと、少なくとも部分的にその解に基づいて、改善パターンを生成するステップであって、改善パターンは、半導体ウエハの背面に適用される(applied)ときに、半導体ウエハの歪みを改善することができる、ステップと、が続き、半導体ウエハの歪みを改善する。
半導体ウエハの典型的製造プロセスに関係する多くのステップが、ある。例えば、典型的な入力ウエハ(incoming wafer)(例えば、むき出しの(bare)シリコンウエハ)は、絶縁層(すなわち、ガラス等の誘電体フィルム)の堆積から始まる。その後、パターンマスクの層が、リソグラフィを用いて絶縁層上に配置される(laid down)。次いで、材料は、エッチングを用いてこれらの層から選択的に除去される。その後、フォトレジストマスクを除去し(すなわち、ストリップ)、残留物及び粒子を除去する(すなわち、清浄又は研磨)。最後に、導電性材料は、ウエハの各半導体デバイスのために堆積される(すなわち、堆積)。要するに、簡略化された典型的なステップは、堆積、リソグラフィ、エッチング、ストリップ、洗浄及び堆積を含む。もちろん、これらの工程の多くは、複数の層を形成するためにしばしば繰り返される。これらの設計によれば、各層は、隣接する層の対応する材料と整列するように配置される材料のパターンを有する。例えば、ある層のコンタクトは、次の層のコンタクトと整列する。アライメントのずれ(Misalignments)は、有効な歩留まり及びコストに影響を及ぼす、短絡及び接続不良を引き起こす可能性がある。隣接する層の材料パターンのアライメントは、本明細書では、オーバレイと称される。
オーバレイは、各層が完全に平坦であるか、略平坦であることを前提としている。しかしながら、ウエハは平坦でないことが一般的であり、実際には、ウエハはかなり湾曲している場合がある。これは、ウエア湾曲と称される。ウエハは平坦ではないので、湾曲したウエハ上の層も同様に平坦ではない。半導体ウエハの湾曲は、クランプされていない自由なウエハの中位表面(the median surface)の中心点の、中位表面から基準面への偏差であり、基準面は正三角形の3つの角によって画定される。
本明細書に記載されている技術による歪んだウエハの異なる例を示す図である。 本明細書に記載されている技術によるウエハ歪み改善システム200の例を示す図である。 本明細書に記載されている技術による離散化されたウエハシミュレーションの例示的表現を示す図である。 本明細書に記載されている技術による例示的なプロセスのフローチャートを示す図である。 本明細書に記載されている技術による例示的なプロセスのフローチャートを示すである。 本明細書に記載されている技術による例示的なプロセスのフローチャートを示す図である。 本明細書に記載されている技術による改善パターンの生成を示す図である。
詳細な説明は、添付の図を参照する。図面において、参照符号の左端の数字は、参照符号が最初に現れる図面を示す。同様の特徴及び構成要素を参照するために、図面を通して同じ番号が使用される。
詳細な説明
本明細書に開示されているのは、半導体ウエハの局所的歪みの特定に基づく全体的ウエハ歪みの改善(例えば、補正)に関連する技術である。ここで、歪みは、面外歪み(OPD)又は面内歪み(IPD)のいずれかである。この歪みに対する基準面は、推定上平坦な(presumptively flat)半導体ウエハの表面によって共有される面に基づいている。
したがって、面外歪みは、基準面の上方及び/又は下方に延在するウエハ材料の屈曲(bending)、波打ち(rippling)、カーブ(curved)等を含む。したがって、面外歪みを有するウエハは平坦ではない。反対に、面内歪みは、基準面に沿った材料の膨張、伸展、又は圧縮を含む。したがって、ウエハは平坦かもしれないが、材料の密度は不均一であり、及び/又はウエハの形状は不均一である。
図1は、歪曲したウエハ100の一例を示す。歪曲したウエハ100の例は、異なるウエハ描写110、112、114として示されており、これらは、次第に歪みが増加して示されている。ウエハ描写110は、平坦に示されている。ウエハ描写112は、浅いボウル形状を有する。ウエハ描写114は、より深いボウル形状を有する。歪んだウエハ100の形状は、面外及び面内で作用する応力又は力によって引き起こされ得る。膨張力及び収縮力(すなわち、x方向の力及びy方向の力)は、ウエハ自体と同じ平面内でウエハを押したり引っ張ったりし、しばしば、119の方向性矢印によって表されるように、面外歪みを生じる。
116によって示される垂直歪みは、120によって示される水平移動を引き起こす。ウエハがテーブル上にクランプされると、水平方向の移動120はIPDを引き起こし、オーバレイに寄与し得る。
さらに、水平方向の力は、ウエハを水平方向に膨張又は収縮させる可能性がある。これらの力は、追加の歪み及びオーバーレイエラーを引き起こし得る。
ここで、全体的ウエハ歪み(a global wafer distortion)とは、半導体ウエハ全体の歪みを指し、その一部分だけを指すものではない。すなわち、ウエハの全体的歪みは、全体又は全体のうちの実質的部分(a substantial portion)として現れる歪みである。実施形態に応じて、全体的歪みに対するウエハの実質的部分は、ウエハの30%超、50%超、又は65%超にわたって現れる。例えば、ウエハ代表例114の全体にわたる(overall)ボウル形状は、全体的歪みの一例である。
対照的に、局所的歪み(a local distortion)とは、ウエハ全体よりむしろ、半導体ウエハの一部分のみの歪みを指す。つまり、ウエハの局所的な歪みは、全体のうちの非実質的部分(an insubstantial portion)に現れる歪みである。実施形態に応じて、全体的歪みに対するウエハの非実質的部分は、ウエハの30%未満、15%未満、又は5%未満にわたって現れる。
例えば、ウエハ代表例114の領域122の局所的歪みは、局所的歪みを表す。本明細書で1つの実施形態と共に使用されるように、局所的歪みは、ウエハの各離散化された部分又は領域に適用される。本明細書で使用されるように、ウエハの離散化された部分又は領域は、ピクセルと呼ばれる。ウエハ湾曲(すなわち、一次歪み)又はウエハ反り(すなわち、二次歪み)は、全体的歪み、特に、全体的な面外歪みの例である。
本明細書に記載される技術は、半導体ウエハの複数の離散化されたピクセルのそれぞれの局所的歪みの特定を含み得る。その特定は、そのウエハの形状データに基づいている。形状データは、ウエハの全体的歪みを表す。
本明細書に記載される技術は、ピクセルの各々について、そのピクセルの特定される局所的歪みを生成し、半導体ウエハの全体歪みに寄与する、ピクセルの1つ以上の力(例えば、応力)の推定を含んでもよい。本明細書に記載される技術は、各ピクセルについて、背面層の改善(例えば、補正)パターンを生成することができ、背面層の改善パターンは、半導体ウエハの背面の対応する離散化されたピクセルに適用される場合に、半導体ウエハの全体的及び局所的歪みを改善(例えば、補正)する。
基板(例えば、ウエハ)の上面(The top side)は、典型的には、膜積層体、製造されるデバイス、部分的に製造されるデバイス、フィーチャ等を受け容れる。従って、基板の上面は、作用面としても知られ得る。基板の上面から反対側の面は、基板の背面(the backside)である。半導体製造では、通常、基板は、その上に堆積及び/又は製造されるさまざまな膜及びデバイスのオーバレイに対して歪むようになる。かかるプロセスは、基板を歪ませる傾向のあるアニーリング及び他の処理を含み得る。しかしながら、本明細書中の技術は、基板のかかる歪みを補正する。
半導体デバイスの加工技術が進歩するにつれて、半導体デバイスを製造するために使用されるフォトリソグラフィシステム及びコータ/デベロッパに対する要求が高まっている。これは、基板アライメントの精度への要求の高まりを含む。基板は、典型的には、ウエハテーブルとも呼ばれるチャック上に取り付けられる。露光中、基板上で露光されるフィーチャは、基板上の既存のフィーチャを覆う又はオーバレイする必要がある。所望のオーバレイ性能を達成するために、基板は露光前に基板ステージにアライメントされる。オーバレイ誤差は、予測位置と基板の実際の位置との差である。
平坦化された基板は、最小の面外歪みを有する基板である。前提は、平坦な基板はオーバレイのアライメントを保証するということである。しかしながら、ウエハ上の水平方向の力による歪みも存在する。すなわち、面内歪みである。本明細書で説明される技術の実施形態の少なくともいくつかは、屈曲及び伸展からの歪みに起因する可能性がある基板のIPDに対処する。
図2は、ウエハ歪み改善システム200の例を示す。ウエハ歪み改善システム200の例は、本明細書に記載される技術の実施例である。
例示的なウエハ歪み改善システム200は、ウエハ形状測定器210、対象ウエハシミュレータ220、応力推定器230、背面パターン発生器240、及び背面パターン適用器250を含む。これらのコンポーネントの各々は、少なくとも部分的に、コンピューティングハードウェア、ファームウェア、又は、ハードウェア、ファームウェア、及びソフトウェアの組み合わせによって実施することができる。ウエハ形状測定器210は、対象ウエハ(a subject wafer)205に関するウエハ形状データを取得する。対象ウエハ205は、面外及び/又は面内歪を示す基板である。基準平面線206は、対象ウエハ205の一部ではなく、単に平面又は平坦な基準点を示すだけである。
対象ウエハ205は、対象ウエハ205の上面207上に少なくとも部分的に製造される複数の半導体構造を有する。例えば、かかる構造は、ゲート、トランジスタ、トレンチ、ビア、ハードマスク、膜等を含むことができる。従って、対象ウエハ205は、半導体グレードの基板とすることができる。ウエハは、非平面の背面表面(a backside surface)209を有する。背面表面209は、複数の半導体構造の製造の結果として非平面である。背面表面209は、上表面(the top surface)207(作用面としても知られる)の反対側にある。
対象ウエハ205全体が(上表面207を含む)湾曲(bowing)を有することがあり、この湾曲は背面表面209に少なくとも現れることに留意されたい。また、最初に、対象ウエハ205は、表面高さ偏差が約100ナノメートル又はさらに10ナノメートルの許容範囲内に留まり得るという点で平面であり得ることに留意されたい。また、本明細書における非平面とはミクロン距離又はミクロンスケーリングに関することに留意されたい。例えば、約1ミクロンから約300ミクロンより大きい表面高さ偏差は、非平面であると考えることができる。したがって、目視検査から、基板は完全に平坦に見えるが、フォトリソグラフィシステム及び他のかかるシステムの解像能力と比較すると、基板は十分に平坦ではない。
従来、所与の基板は、1~400ミクロンの湾曲(bow)又は撓み(deflection)を発現し得る。露光は、ある程度の撓みの原因であり得るが、オーバレイは、依然として、撓みによって影響される。ウエハ形状測定器210は、対象ウエハ205の曲線又は形状の測定値を、直接測定するか、又は、測定ツール(例えば、KLA-Tencor製のパターン化されたウエハのジオメトリ―ツール(Patterned Wafer Geometry tool))から受け取る。これらの測定は、撓み測定又はウエハ形状データと称されることがある。そのような撓み測定は、光学的検出、反射技術、及び音響測定などの種々のメカニズムを用いて達成することができる。この測定は、基本的に面外歪みを測定する。
例えば、これは、平面座標系に結び付けられた相対的撓み又はz高さ測定を含む所与の基板のx、y又は半径方向位置を生成することを含み得る。これは、凸部と凹部とを区別するために正又は負の値とすることができるが、他のスケーリングシステムを使用することもできる。したがって、撓みシグネチャは、基板上の横方向の位置(すなわち、空間的位置)によって、高さにおける相対的差異をマッピングする。
図1のチャート130は、1つのウエハから得られたウエハ形状データの二次元(2D)チャートの例である。濃淡(The shading)は、面外(すなわちZ位置)の歪みを、ウエハの領域上のプロットとして示す。ウエハ形状測定器210は、空間フィルタをウエハ形状データに適用し、数学的関数(例えば、ゼルニケ多項式)を用いてそのデータを処理することができる。ウエハ形状測定器210の動作は、半導体ウエハの形状データを得ることとして説明することができ、その形状データは、半導体ウエハの全体的な歪みを表す。
対象ウエハシミュレータ220は、ウエハモデル225からのデータに基づいて、かつ、応力推定器230と協働して、対象ウエハ205に基づくデータのシミュレーション又はモデルを生成する。ウエハモデル225は、理想化された膜応力(例えば、等二軸膜応力)を受けるべき最初は平坦なウエハ(an initially flat wafer subjected to
idealized film stress)の高度に詳細な物理モデルである。これは、例えば、有限要素解析(FEA)のための有限要素法を使用する有限要素(FE)モデルを使用することによって達成することができる。
FEMは工学と数理物理学の問題を解く数値法である。典型的な関心問題領域は、構造解析、熱伝達、流体フロー、マストランスポート、及び電磁ポテンシャルを含む。これらの問題の解析的解は、一般に、偏微分方程式のための境界値問題の解を必要とする。FEMは、大きな問題を有限要素と呼ばれる、より小さい、より単純な部分に細分化する。これらの有限要素をモデル化する簡単な方程式は、そのご、問題全体をモデル化するより大きな方程式の系に組み立てられる。
始めに、対象ウエハシミュレータ220は、理想化されたウエハモデル225を、複数の領域又はブロック(chunks)のグリッド又はアレイに離散化した。グリッドは、例えば、デカルトグリッド、直線グリッド、曲線グリッド、又は構造化グリッドであり得る。ここで、これらのブロックは、テレビスクリーンの画像要素(すなわち、ピクセル)に類似しているので、「ピクセル」と呼ばれる。この動作は、本明細書では離散化、ブロック化(chunking)、又はピクセル化であり得る。
図3は、ピクセルのデカルトグリッドが適用された例示的なウエハシミュレーション300を示す。ピクセルは、A1~J6の順に番号が付され、最初の文字は行を表し、数字はその行内の列位置を表します。この例示的なウエハシミュレーション300は、図示目的のみのために提供される。本明細書では、本明細書に記載された技術の1つ以上の実施形態をより良く説明するために参照される。
ピクセル化後、例示的なウエハ歪み改善システム200の構成要素は、対象ウエハ205のシミュレーションのピクセル上で、最低レベルで動作する。したがって、理想化されたウエハモデル225のデータは、各ピクセルに対応するブロックにまとめられる。典型的には、対象ウエハ205のシミュレーションは、ウエハの微細部分の微細レベル詳細を有する。
ピクセル化の後、各ピクセルの関連データがそのピクセルについて収集される。すなわち、ピクセルの関連データは、歪みに影響を及ぼし得るデータを含む。例えば、理想化されたウエハモデル225のピクセルF4に対応する領域の全ての関連データは、ともに収集され、対象ウエハ205のシミュレーション内のピクセルF4に適用される。
応力推定器230は、そのウエハの上面207上の(複数の)膜に基づいて、対象ウエハ205への応力を推定する。この推定は、ウエハ形状測定器210によって取得された形状データに基づいている。これは、従来のアプローチ又は新規なアプローチを介して達成することができる。例えば、その形状に基づいてウエハに誘導される応力を特定するために、ストー二―方程式が採用されることができる。
図1のチャート140は、ウエハ形状データの勾配(slope)の計算から導出された、推定された面内歪み(IPD)データの2Dチャートの例である。濃淡は、ウエハの領域上にプロットされたIPDの相対量を示す。ウエハの片面の応力膜に対して、所与の方向のデータ点の勾配は、ウエハがチャックされるときに、オーバレイ誤差に寄与するIPDに比例する。
IPDは、次の式によって、ウエハ湾曲の勾配に近似することができる:
Figure 0007118928000001
式1
第1項は膜応力による面内伸展(stretching)を表し、第2項は膜応力による屈曲(bending)を表す。この式により、測定されたウエハ湾曲(ウエハ形状データの一例)をIPDに変換することができる。
ウエハがテーブル上に配置されると、屈曲成分の大部分が減少する。伸展成分の大部分はリソグラフィツールによって説明される(accounted for)。残余の成分はオーバレイに寄与する。
可撓性基板(例えば、ウエハ)上の薄膜内の応力は、基板のひずみ(curvature)を誘発する。通常、基板は膜よりも桁違いに厚く、わずかな純粋な、基板の弾性変形を引き起こす。この場合、ストーニー方程式は、基板の測定されたひずみから、膜内の応力を導き出す。ストーニー方程式は膜の厚さと、基板の厚さと、基板の弾性特性と、を含む。
典型的には、基板の弾性特性は、E(ヤング率)及びν(ポアソン比)によって特定される。
ストーニー方程式は、ウエハの形状、w、及び、薄膜コーティングの応力σ_f、と相関する最初の理論である。ストーニー方程式は、次の式で表される:
Figure 0007118928000002
式2
ここで、σ及びhはそれぞれ、膜応力及び膜厚であり、E、ν,hは、それぞれ、基板のヤング率、ポアソン比及び厚さであり、及び、κは、ウエハの変形された曲率(the deformed curvature)である。曲率κは、ウエハ形状の二次微分をとることによって得ることができ、κ=
Figure 0007118928000003
である。
対象ウエハシミュレータ220によって提供される離散化されたウエハシミュレーションを使用して、応力推定器230は、ウエハシミュレーションの各ピクセルに作用する力を推定する。各ピクセルにおける力の推定は、そのピクセルそれ自身への(on its own pixel)力の影響及び他のピクセルに対する力の影響を考慮に入れる。実際、すべてのピクセル(それ自身を含む)に対するピクセルの力の影響は、その力の推定に考慮される。ピクセルの力の振幅は、ウエハ形状データと緊密に一致する(closely matching)その力の影響に基づいて選択される。
図1のチャート150は、ウエハ形状データから推定された力の2Dチャートの例である。濃淡は、ウエハ領域上にプロットされた相対的な力の量を示す。これは、応力に数学的に関連する曲率を得るために、推定されたIPDの勾配をとることによって計算されることができる。
その中で、推定されるピクセルの(複数の)力は、ピクセル全体に適用されると仮定される一定のものである。本願明細書において、これを一定の膜応力を有する活性化ピクセルと呼ぶことができる。
さらに、対象ウエハシミュレータ220と応力推定器230は、相互作用的に推定値を改善するために協働して働く。すなわち、各ピクセルの力の推定値は、得られたウエハ形状データの歪みを有するウエハを生成する力への一致を最適化するために相互作用的に改善される。このプロセスは、各ピクセルについての計算ライブラリの作成及び使用によって支援され得る。かかるライブラリを有することの効果は、繰り返し毎に必要な再計算の量を減らすことである。
ライブラリは有限要素シミュレーションを用いて作成される。例示的なライブラリは、いくつかの膜応力プロファイルに対する対象ウエハの歪みを含む。例示的なライブラリは、ウエハの上面を多数の小さなピース(すなわち、ピクセル)に離散化し、各ピースに一度に均一な応力を加えることによって生成される。
有限要素シミュレーションは、ピースの結果(the effect of the piece)に対応する歪みを出力する。このようにして、膜応力プロファイルは、すべてのピースにわたる応力の離散化分布によって表されることができる。その後、重ね合わせの法則によって、全体的な歪みを形成するために、すべてのピースを合計することができる。かかるライブラリは、膜応力プロファイルを得るために、歪みとの比較のために使用されることができる。膜応力プロファイルは、歪みから、最適化アプローチを介して、各ピースにおける応力を変化させることによって、そのピースにおける歪み寄与を変化させて、解かれる。
シミュレーションライブラリ法の結果は、完全有限要素シミュレーションに匹敵する。しかしながら、シミュレーションライブラリ法が通常、1分以内に解を計算する一方で、完全有限要素シミュレーションは何倍も長い時間を要する。
対象ウエハシミュレータ220及び応力推定器230の協働動作は、取得された形状データに基づいて、半導体ウエハの離散化された複数のピクセルのそれぞれの局所的歪みを特定するステップ、及び、複数のピクセルの各々の特定された局所的歪みを生成し、かつ半導体ウエハの全体的歪みに寄与する、各ピクセルにおける1つ以上の力を推定するステップ、として記載され得る。
背面パターン発生器240は、対象ウエハシミュレータ220と応力推定器230との協働の結果である、対象ウエハシミュレーションの各ピクセルに作用する(複数の)力の最適化された推定又は推定値(the optimized estimation)を受け取る。背面パターン生成器240は、離散化された複数のピクセルのそれぞれについて、各ピクセルについて推定された(複数の)力を使用して、背面層の改善パターンを生成するステップであって、改善パターンは、半導体ウエハの背面の対応する離散化されたピクセルに適用されるときに、半導体ウエハの全体的歪み及び局所的歪みを改善する。
本明細書で使用する場合、改善には、対象ウエハの歪みを低減することが含まれる。いくつかの実施形態では、その動作は補正と称され得る。とにかく、改善動作により、面外及び/又は面内の歪みを低減する背面層が適用される。背面パターンの生成には様々な要因がある。これらの要因は、少なくとも部分的には、背面膜の圧縮/引張応力、膜厚、及び背面膜の設計されたパターン/応力分布プロファイルが含まれる。
背面パターン生成器240は、背面パターンをデジタルファイル(例えば、画像)又はそのようなパターンのデータベースとして記憶装置245に保存することができる。あるいは、背面パターン生成器240は、背面パターンを生成するために適切なツールを指示する一組の命令を生成することができる。その一組の命令は、かかるツールへ直接送られることができ、又は、記憶装置245に保存されることができる。
背面パターン適用器250は、対象ウエハの背面に対する背面パターンを生成し、堆積するツール又はツールセットである。その結果、対象ウエハの歪みが低減され、おそらく除去される。
背面パターン適用器250によって実行される改善動作は、歪み補正を補助するために、1つ以上の膜を背面上に堆積させることによって達成されることができる。図2は、対象ウエハの補正されたバージョンである基板255を示す。基板255は、上表面257と背面表面とを有し、背面表面はその上に堆積された背面膜259を有する。背面膜259は、背面表面上に堆積され、例えば、基板を内側に引っ張るか、又は外側に押し得る。
例示的なシステム200のいくつかの実施形態では、システムは、対象ウエハが理想的であると推定し得る。つまり、ウエハ上の膜は均一である。他の実施形態では、これは仮定されず、実際には、ウエハ上の膜の不均一性が予想され、説明される。多くの非理想特性(non-idealities)がウエハ内に存在し、そのウエハの処理は、実際の結果に対する予測された結果の誤差を増加させる可能性がある。かかる非理想特性には、(例えば)ウエハにわたる背面膜厚の均一性、設定線量対ウエハにわたる補正膜が曝露される実際の線量の変動、背面パターンの配置、ウエハにわたる背面パターンのエッチング及びエッチングプロファイルの変動、及び、シミュレーションの忠実度の制限による系統的誤差、が含まれる。
定期的に、又はウエハ毎に更新される保存された較正ファイルの実験的に特定されるデータベースは、所与のピクセル上で可能な応力の上限及び下限を再定義するために使用される。その後、これらの新しい限度を用いて背面パターンが最適化される。
図4は、半導体ウエハの局所的な歪みの特定に基づいて、全体的なウエハ歪みの改善のために本明細書に記載の技術を実施する例示的なプロセス400を示すフロー図である。例示的なプロセス400は、少なくとも部分的に、例示的なウエハ歪み改善システム200によって実行される。簡単化のために、動作を実行する者は、「システム」と称される。もちろん、実施形態に応じて、動作は、システムの1つの構成要素、システムの複数の構成要素、又はシステムの特定の部分ではないデバイスによって実行されることができる。
ブロック410において、システムは、半導体ウエハの形状データを取得する。図1のチャート130は、その形状データの表現である。そのデータは、対象ウエハの直接的又は間接的な測定から取得されることができる。形状データは、半導体ウエハの全体的歪みを表す。ブロック420において、システムは、取得された形状データに基づいて、半導体ウエハの離散化された複数のピクセルのそれぞれの局所的歪みを特定する。システムは、ウエハのマップ又はモデルをピクセル化する。その後、システムは、各ピクセルに対する局所的歪み(例えば、面外及び/又は面内歪み)の量を特定又は推定する。
いくつかの実施形態では、システムは形状データをライブラリと直接比較する。最適化ループはピクセルのすべての点と作用を同時に比較する。
局所的歪みの特定は、複数の離散化されたピクセルを半導体ウエハ上にマッピングすることを含み得る。各々の複数の離散化されたピクセルは、半導体ウエハの領域にマッピングされる。その特定は、各複数の離散化されたピクセルについて、そのピクセルについての歪みの振幅を表す局所的歪みの値を計算するステップを含み得る。
例示的なプロセス400の実施に依存して、全体的歪みは、面外歪みのみ、面内歪みのみ、又は両方のタイプの歪みを含み得る。同様に、局所的歪みは、面外歪みのみ、面内歪みのみ、又は両方のタイプの歪みを含み得る。
ブロック430において、システムは、複数のピクセルの各々の特定された局所的歪を生成し、かつ半導体ウエハの全体的歪に寄与する、各ピクセルにおける1つ以上の力を推定する。各ピクセルにおける1つ以上の力の推定は、そのピクセル自身に対する1つ以上の力の影響、及び他のピクセルに対する1つ以上の力の影響を考慮する。実際には、ピクセルの(複数の)力の(それ自体を含む)全てのピクセルに対する影響は、その(複数の)力の推定に考慮される。ピクセルの(複数の)力の振幅は、ウエハ形状データに厳密に一致するその力の影響に基づいて推定される。
各ピクセルにおける1つ以上の力の推定は、そのピクセルの局所的歪みを再現し、全体的歪みに寄与するピクセル上の力をモデリングするステップと、各ピクセルについて一つ以上の力の最適値が見つかるまで、力を変化させながらモデリングを繰り返し行うステップと、前記1つ以上の力の最適化された値をそのピクセルに割り当てるステップと、を含み得る。
ブロック440において、システムは、離散化された複数のピクセルのそれぞれについて、各ピクセルについて推定された力を使用して、背面層の改善パターンを生成し、改善パターンは、半導体ウエハの背面の対応する離散化されたピクセルに適用されるときに、半導体ウエハの全体的及び局所的歪みを改善する。
いくつかの例では、改善パターンの生成は、改善パターンの画像を保存するステップ、又は、生成された改善パターンを使用して、半導体ウエハの背面に背面層を適用するようにツールに指示する命令を生成するステップを含む。ブロック450において、システムは、背面層を半導体ウエハの背面に適用する又は施す(applies)。背面層は、生成された改善パターンに従ってパターン化される。この動作は、ウエハの全体的な歪みを低減する。
いくつかの実施形態では、システムは、(複数の)背面層によって行われた調整に関する情報を半導体製造プロセスの1つ以上のツールに送信し、それらのツールがそれらのプロセスに対してその調整を考慮できるようにする。このことは、ウエハ製造プロセス内の他のツールへ改善パターンの影響をフィードフォワードするステップ、と称され得る。
フォトリソグラフィツールは、システムがかかる情報をフィードフォワードし得る半導体製造ツールの一例である。典型的には、フォトリソグラフィツールのスキャナは、例示的プロセス400が実行し得るオーバレイ補正を全く期待しないで、オーバレイを説明する。フォトリソグラフィツールの位置合わせプロセスの間、スキャナは、最小のオーバレイ残差(overlay residual)を生成するために、補正パラメータセット(例えば、倍率、回転など)を実施する。典型的には、フィードバックループ内で連続的に調整されるこれらのパラメータの最良の設定を特定するために、いくつかのウエハが処理され、オーバレイが測定される。ウエハ背面に適用される改善パターンは歪みに影響を与え、したがってこれらのパラメータの最適化された値に影響を与えるため、システムは歪み情報又は新たな最適化された補正をスキャナにフィードフォワードし得る。
図5は、半導体ウエハの局所的な歪みの特定に基づいて、全体的なウエハ歪みの改善のために本明細書に記載の技術を実施する例示的なプロセス500を示すフロー図である。例示的なプロセス500は、少なくとも部分的に、例示的なウエハ歪み改善システム200によって実行される。簡単化のために、動作を実行する者は、「システム」と称される。もちろん、実施形態に応じて、動作は、システムの1つの構成要素、システムの複数の構成要素、又はシステムの特定の部分ではないデバイスによって実行されることができる。
例示的なプロセス500は、曲率法(the curvature method)と呼ばれるアプローチを実施する。このアプローチは、不均一な膜応力及び非等二軸応力に起因する形状の補正を説明する。(ストーニー方程式の拡張である)次の方程式は、不均一膜応力を説明する方程式の例である。
Figure 0007118928000004
式3
これらは、使用され得るプレート理論方程式(the plate theory equations)の例である。かかる方程式を用いれば、不均一膜応力を局所的曲率∇wに関連付けることができる。測定したウエハ湾曲を用いてこの方程式を解くと、曲率法の背面補正パターンが得られる。
ブロック510において、システムは、半導体ウエハの形状データを取得する。図1のチャート130は、その形状データの表現である。そのデータは、対象ウエハの直接的又は間接的な測定から取得されることができる。形状データは、半導体ウエハの全体的歪みを表す。さらに、システムは、空間フィルタをウエハ形状データに適用し、数学的関数(例えば、ゼルニケ多項式)を用いてそのデータを処理することができる。
ブロック520において、システムはウエハ曲率を計算する。これは、例えば、得られた形状データに基づいて曲率を求めることによって行うことができる。これは、少なくとも部分的には、x方向及びy方向における複数の所与の測定点を用いてz高さ形状データの勾配を計算し、その後、曲率を得るために勾配データの勾配を再計算することによって行われる。
ブロック530において、システムは等二軸ウエハ応力を計算する。システムは、空間フィルタを適用することによりデータを平滑化し、その後、システムは、IPD及び曲率を得るために、フィルタリングされたデータの数値導関数を取る。このシステムは、ウエハ応力を計算するために、上記の式3で概説したプレート理論をカスタムパラメータと共に適用する。
ブロック540において、システムは、少なくとも部分的に、カスタムパラメータ545に基づいてウエハ形状を計算する。カスタムパラメータ545は、例えば、背面層の数、膜特性、カバレッジ境界(coverage boundaries)、及びピクセルサイズを含む。
ブロック550において、システムは、残差ウエハ形状(residual wafer shape)を計算する。残差ウエハ形状は、ウエハ510の形状データと計算されたウエハ形状540との差として定義される。
ブロック560において、システムは更新を行う。以下は、更新されることができる、全体的応力マップマルチプライヤ、シフト応力マップ均一性、及び非等軸応力補正パターン。残差ウエハ形状を低減するために、更新ではパラメータが調整される。これらのパラメータは、以下を含むことができる:全体的応力の調整、特定の形状に対抗するように設計された既知の応力パターン、非等軸応力挙動によって生じる既知の形状、高応力領域と低応力領域の間の応力の勾配の補正、及びモデルに対する追加の解析項が含まれ得る。
まとめると、ブロック540、550、及び560は、最適化された結果が見つかるまで繰り返される最適化ループを形成する。このループでは、システムは、生データに基づいてプレート理論方程式に含まれる解析項の数(the number of analytical terms)を最適化し、応力を解く。
システムは、以前に特定された可能性の最も高い応力範囲(the highest possible range of the stress)を捕捉するために、反対応力(opposing stress)のパターン化された膜によって覆われる、圧縮性又は引張り性の基層の二重積層体の厚さを最適化する。システムは、応力のマップを膜の補正カバレッジ(corrective coverage of the film)の割合(percentage)のマップに変換する。その後、システムは、所与のセクションのカバレッジ割合(the percentage coverage)をそのカバレッジ割合のパターンに変換する。
例えば、可能性の最も高い応力範囲を捕捉するために、反対応力のパターン化された膜で覆われた圧縮性又は引張性のベース層の二重積層の厚さの最適化があり得る。パターンが-200N/mから+500N/mまで変化することにより、局所的な面内力(例えば、応力×厚さ)が生じることが特定されたウエハを考える。
最適化は、残差ウエハ形状、残差IPD、局所応力変動などの一連の測定基準(metrics)が所定の値を満たすときに終了する。上面応力を相殺する背面パターンを生成することが望ましい。しかしながら、パターンが生成される場合、システムは、(例えば、スキャナのチャックピンの直径が50μmであるため)所与の領域内での膜の過剰な除去(例えば、75%を超える)を避けるように、又は、スキャナチャックピンがフィルム上に静止することができる領域とできない領域との間に不均一性(unevenness)のリスクがあることに、注意すべきである。
この例のこれらの制約を考慮すると、パターン化された背面膜は、-433N/mのブランケット膜にわたって(500-(-200))/0.75=700N/mの面内力で生成される。
ブロック570において、システムは、最適化された背面パターンを生成する。カバレッジ割合は、ツール要件に特有のより細かいレベルで最小カバレッジを保証し、実施可能な割合の忠実度を最大化するパターンに変換される。
図6Aは、半導体ウエハの局所的な歪みの特定に基づく全体的なウエハ歪みの改善のために、本明細書に記載されるような改善パターンの生成を実施する例示的なプロセス600を示すフロー図である。すなわち、例示的なプロセス600は、例示的なプロセス500のブロック570及び/又は例示的なプロセス400のブロック440の実施形態の一部であってもよい。
例示的なプロセス600は、少なくとも部分的に、例示的なウエハ歪み改善システム200によって実行される。簡単化のために、動作を実行する者は、「システム」と称される。もちろん、実施形態に応じて、動作は、システムの1つの構成要素、システムの複数の構成要素、又はシステムの特定の部分ではないデバイスによって実行されることができる。
図6Bは、例示的プロセス600によって生成される例示的補正マップの詳細を図示する。パターン650は、例示的プロセス600によって生成される最終的な(final)改善パターンの例を表す。拡大ブロック652は、パターン650の1つの小部分である。
ブロック610において、システムは、初期改善パターンの一例である補正マップを受け取る。補正マップは、最後に(ultimate)背面パターンが有するべき応力又は力を示す。例示的なプロセス600は、その背面パターンに必要な対抗力(counterforces)と応力を達成する最終的なパターンの特定の低レベルの詳細(the particular and low-level details)を正確に特定する。
補正マップは、ウエハの前面上のピクセルの歪みに対抗する(counteracts)ウエハ背面のピクセルに適用される応力のアナログ量である。しかし、応力は、ウエハの裏の、膜の領域と膜の無い領域とのデジタルパターンで適用される又はかけられる(applied)。図6の正方形660は、4つのサブブロックにおける3つの異なるデジタルパターンの例を示す。裏面パターン(又はより一般的には改善パターン)は、ウエハの背面にパターンを適用することによって歪みを低減するように設計又は最適化されたものである。このパターンは、例えば、例示的なプロセス500のブロック560及び/又は例示的なプロセス400のブロック440によって出力される。
ブロック630において、システムはカバレッジレイアウトを生成する。デジタルパターンはカバレッジレイアウトである。カバレッジレイアウトでは、各ピクセル(例えば、6mm)は、カバレッジライブラリ630から選択されたパターンを有するより小さいピクセル(例えば、200μm)に分割される。サブブロック(664、665、666、667)は、より小さいピクセルの例である。
これらのパターンは、ウエハとスキャナチャックとの間のレベル接触を確保しながら、サブピクセルに対して所望の応力を達成する。これらのサブピクセルはまた、ピクセル間の応力のより連続的な変化を得るために、サブピクセルとピクセルとの間の境界をぼやけさせるための使用を可能にする。ブロック640において、システムは、最終的な背面パターンを生成するためのレシピ又は命令を生成する。レシピ作成のために、カバレッジレイアウトは、処理ツール(例えば、露光ツール)の機械語での命令セットに変換される。
例えば、背面パターン650を考える。パターン650は、ブロック652のようなブロックのアレイを含む。各ブロック(例えば、ブロック652)は、複数のサブブロックからさらに構成される。図示されるように、ブロック652は、4つのサブブロック(664、665、666、667)を有する。
これらのサブブロック(664、665、666、667)の各々は、サブブロックの特定の対抗力(counterforce)を集合的に生成するように設計される。これを達成するために、サブブロックに対して所望の対抗力を達成することが知られている構造の反復パターンが各サブブロックに使用される。正方形660は、ブロック652の4つのサブブロック(664、665、666、667)の全てが出会う四角領域(a four-corner area)の拡大です。図示されているように、正方形660内のサブブロックの各対応部分は、それ自体のデジタルパターンを有する。各サブブロックのデジタルパターンは、そのサブブロックの所望の対抗力と一致する。
加えて、幾つかの実施形態では、ブロックとサブブロックとの間の激しいパターン変化(harsh pattern changes)を回避することが望ましい場合がある。したがって、これらの実施形態は、それらの境界からわずかな距離内で遷移パターンを使用することによって、ブロックとサブブロックとの間の境界を平滑化することができる。
追加及び代替の実施形態に関する注記
上記の例示的な実施の説明では、説明の目的で、具体的な数、材料、構成、及び他の詳細は、特許請求の範囲に記載されているように、本発明をより良く説明するために記載されている。しかしながら、特許請求の範囲に記載された発明が、本明細書に記載された例示的なものとは異なる詳細を使用して実施され得ることは、当業者に明らかであろう。他の例では、例示的な実施形態の説明を明確にするために、周知の特徴が省略又は簡略化される。本発明者らは、説明された例示的な実施形態が主な実施例であることを意図している。本発明者らは、これらの例示的な実施形態が添付の特許請求の範囲の範囲を制限することを意図していない。むしろ、発明者らは、特許請求の範囲に記載された発明が、他の、現在又は将来の技術と共に、他の方法で実施されることも想定している。
さらに、「例示的(exemplary)」という用語は、本明細書では、例、事例、又は説明として機能することを意味するために使用される。本明細書に「例示的」として記載される任意の態様又は設計は、必ずしも、他の態様又は設計よりも好ましく又は有利であると解釈されるものではない。むしろ、例示的な用語の使用は、概念及び技術を具体的な方法で提示することを意図している。「技術」という用語は、例えば、本明細書に記載される文脈によって示されるように、1つ以上のデバイス、装置、システム、方法、製造物品、及び/又は、コンピュータで読取り可能な命令を指すことができる。
本文書で使用される場合、「又は」という用語は、排他的な「又は」ではなく、包括的な「又は」を意味することを意図している。すなわち、「Xは、A又はBを使用する」は、別段の規定がない限り、又は文脈から明確でない限り、自然な包含的順列のいずれかを意味することを意図している。すなわち、XがAを使用する場合、XがBを使用する場合、又は、XがAとBの両方を使用する場合、「XがA又はBを使用する」は、上記のいずれの場合でも満たされる。さらに、本文書で使用されているように、「及び/又は」という用語は、記載された可能性のいずれか又は両方が有効であるか又は真であることを意味することを意図している。すなわち、「Xは、A及び/又はBを使用する」という文脈は、別段の規定がない限り、又は文脈から明確でない限り、AもしくはBのいずれか又はA及びBの両方を意味することを意図している。
本願明細書及び添付の特許請求の範囲で使用される冠詞「a」及び「an」は、別段の規定がない限り、又は文脈から単数形を指すことが明確でない限り、一般に「1つ又は複数」を意味すると解釈されるべきである。
これらのプロセスは、論理フロー図におけるブロックの集合として示されており、これは、機械的部分のみで、又はハードウェア、ソフトウェア、及び/又はファームウェアとの組み合わせで実施され得る一連の動作を表す。ソフトウェア/ファームウェアのコンテキストでは、ブロックは、1つ以上のプロセッサによって実行されたときに、列挙された動作を実行する、1つ以上のコンピュータ可読記憶媒体に記憶された命令を表す。
プロセスが記載されている順序は、制限として解釈されることを意図しておらず、プロセス又は代替プロセスを実施するために、任意の数の説明されたプロセスブロックを任意の順序で組み合わせることができる。したがって個々のブロックは、本明細書で説明される主題の思想及び範囲から逸脱することなくプロセスから削除されてもよい。
「コンピュータ可読媒体」という用語は、コンピュータ記憶媒体を含む。例えば、コンピュータ記憶媒体は、磁気記憶装置(例えば、ハードディスク、フロッピーディスク、及び磁気ストリップ)、光ディスク(例えば、コンパクトディスク(CD)及びデジタル多用途ディスク(DVD))、スマートカード、フラッシュメモリデバイス(例えば、サムドライブ、スティック、キードライブ、及びSDカード)、並びに、揮発性及び不揮発性メモリ(例えば、ランダムアクセスメモリ(RAM)、リードオンリーメモリ(ROM))を含むが、これらに限定されない。コンテキストが別段の指示をしない限り、本明細書で使用される用語「論理(logic)」は、その論理について説明された機能を実行するのに適した、ハードウェア、ソフトウェア、ファームウェア、回路、論理回路、集積回路、他の電子部品及び/又はそれらの組み合わせを含む。

Claims (19)

  1. 半導体ウエハの形状データを取得するステップであって、前記形状データは前記半導体ウエハの全体的歪みを表す、ステップと、
    取得された前記形状データに基づいて、前記半導体ウエハの、グリッド状に離散化された複数のピクセルのそれぞれの局所的歪みを特定するステップと、
    前記複数のピクセルの各々の特定された局所的歪みを生成し、かつ前記半導体ウエハの前記全体的歪みに寄与する、各ピクセルにおける1つ以上の力を推定するステップと、
    前記離散化された複数のピクセルのそれぞれについて、各ピクセルについて推定された前記力を使用して、背面層の改善パターンを生成するステップであって、前記改善パターンは、前記半導体ウエハの背面の対応する離散化されたピクセルに適用されるときに、前記半導体ウエハの全体的歪みを改善する、ステップと、
    を含み、
    前記各ピクセルにおける1つ以上の力を推定するステップは、
    ピクセル上の力であって、そのピクセルの局所的歪みを再現し、全体的歪みに寄与する力をモデリングするステップと、
    各ピクセルについて一つ以上の力の最適値が見つかるまで、力を変化させながら前記モデリングを繰り返し行うステップと、
    前記一つ以上の力の最適化された値をそのピクセルに割り当てるステップと、を含む、
    方法。
  2. 前記半導体ウエハの前記背面に前記背面層を適用するステップであって、前記背面層は生成された前記改善パターンにしたがってパターン化されている、ステップをさらに含む、
    請求項1記載の方法。
  3. 前記改善パターンを生成するステップは、
    前記改善パターンを保存するステップと、
    前記改善パターンの画像を保存するステップ、又は、
    生成された前記改善パターンを使用して、前記半導体ウエハの前記背面に前記背面層を適用するようにツールに指示する命令を生成するステップ、又は、
    前記半導体ウエハに適用される前記背面層に対する前記改善パターンの寸法を特定するステップ、又は、
    前記半導体ウエハの前記背面に適用されるべき前記背面層の寸法及び/又は組成を特定するステップと、を含む
    請求項1記載の方法。
  4. 前記全体的歪みは、前記半導体ウエハの実質的部分にわたって現れるウエハの歪みを含む、
    請求項1記載の方法。
  5. 前記局所的歪みは、前記半導体ウエハの非実質的部分の上に現れる歪みを含む、
    請求項1記載の方法。
  6. 前記全体的歪み及び/又は前記局所的歪みは、面外歪み及び/又は面内歪みを含む、
    請求項1記載の方法。
  7. 前記半導体ウエハの前面上の1つ以上のパターンのオーバレイ誤差への、前記改善パターンの影響を特定するステップであって、前記前面は、前記半導体ウエハの前記背面の反対側にある、ステップと、
    前記半導体ウエハの製造プロセスで使用される他のツールへ、前記改善パターンの前記影響をフィードフォワードするステップと、を含む、
    請求項1記載の方法。
  8. 前記局所的歪みを特定するステップは、
    前記半導体ウエハ上に前記複数の離散化されたピクセルをマッピングするステップであって、各複数の離散化されたピクセルは前記半導体ウエハの1つの領域にマッピングされている、ステップと、
    前記複数の離散化されたピクセルのそれぞれについて、そのピクセルについての歪みの振幅を表す局所的歪みの値を計算するステップと、を含む、
    請求項1記載の方法。
  9. 前記グリッドは、デカルトグリッド、直線グリッド、曲線グリッド、又は構造化グリッドである、
    請求項1記載の方法。
  10. 生成された前記改善パターンが、前記半導体ウエハの背面の対応する離散化されたピクセルに適用される場合、
    前記改善パターンは前記半導体ウエハの前記局所的歪みを改善する、ステップを含む、
    請求項1記載の方法。
  11. 前記改善パターンを生成するステップは、
    生成された前記改善パターンに基づいてカバレッジレイアウトを生成するステップであって、カバレッジレイアウトの各ピクセルはカバレッジライブラリ内のデジタルパターンに基づく、ステップを含む、
    請求項1記載の方法。
  12. 実行時にコンピュータ装置のプロセッサに請求項1に記載の方法を実行させる命令を含む、プログラム。
  13. 半導体ウエハの形状データを取得するウエハ形状測定部であって、前記形状データは前記半導体ウエハの全体的歪みを表す、ウエハ形状測定部と、
    少なくとも部分的に取得された前記形状データに基づいて、前記半導体ウエハの、グリッド状に離散化された複数のピクセルの各々の局所的歪みを特定するためのウエハシミュレータと、
    前記複数のピクセルの各々の特定された局所的歪みを生成し、かつ前記半導体ウエハの前記全体的歪みに寄与する、各ピクセルにおける1つ以上の力を推定するための応力推定部と、
    前記離散化された複数のピクセルのそれぞれについて、各ピクセルについて推定された前記力を使用して、半導体ウエハの背面の対応する離散化されたピクセルに適用されるときに、前記半導体ウエハの全体的歪みを改善する背面層の改善パターンを生成するための背面パターン生成部と、
    を有し、
    前記各ピクセルにおける1つ以上の力を推定するための応力推定部は、
    ピクセル上の力であって、そのピクセルの局所的歪みを再現し、全体的歪みに寄与する力をモデリングし、
    各ピクセルについて一つ以上の力の最適値が見つかるまで、力を変化させながら前記モデリングを繰り返し行い、
    前記一つ以上の力の最適化された値をそのピクセルに割り当てる、ように構成されている、
    システム。
  14. 前記半導体ウエハの前記背面に前記背面層を適用する背面パターン構成要素をさらに有し、前記背面層は生成された前記改善パターンにしたがってパターン化されている、
    請求項13記載のシステム。
  15. 前記背面パターン生成部による前記生成は、
    改善パターンの保存と、
    前記改善パターンの画像の保存、又は、
    生成された前記改善パターンを使用して、前記半導体ウエハの前記背面に前記背面層を適用するようにツールに指示する命令の生成、又は、
    前記半導体ウエハに適用される背面層のための改善パターンの寸法の特定、又は、
    前記半導体ウエハの前記背面に適用されるべき前記背面層の寸法及び/又は組成の特定と、を含む、
    請求項13記載のシステム。
  16. 前記局所的歪みの特定は、
    前記半導体ウエハ上への前記複数の離散化されたピクセルのマップを生成し、各複数の離散化されたピクセルは前記半導体ウエハの1つの領域にマッピングされていることと、
    前記複数の離散化されたピクセルの各々について、そのピクセルについての歪みの振幅を表す局所的歪みの値を計算することと、を含む、
    請求項13記載のシステム。
  17. 半導体ウエハの形状データを取得するステップであって、前記形状データは前記半導体ウエハの全体的歪みを表す、ステップと、
    前記半導体ウエハの等二軸ウエハ応力を計算するステップであって、前記計算は取得された前記形状データに基づいて行われる、ステップと、
    前記半導体ウエハの初期カスタムパラメータを取得するステップと、
    計算された前記等二軸ウエハ応力及び取得された前記初期カスタムパラメータのうちの少なくとも一部に基づいてウエハ歪みを計算するステップと、
    取得された前記形状データと計算されたウエハ形状との間の差異として、残差ウエハ形状を特定するステップと、
    残差ウエハ形状又はウエハ歪み又はこれらの両方を低減するために、カスタムパラメータを更新するステップと、
    異なるカスタムパラメータで、ウエハ形状の計算と残差ウエハ形状の特定とを繰り返すことにより、プレート理論方程式の解を最適化するステップと、
    前記解に少なくとも部分的に基づいて、改善パターンを生成するステップであって、前記改善パターンは前記半導体ウエハの歪みを改善することができ、前記半導体ウエハの背面に適用されたときに、前記半導体ウエハの歪みを改善する、ステップと、
    を含む、方法。
  18. 前記カスタムパラメータは、背面層の数、膜特性、カバレッジ境界及びピクセルサイズからなる群から選択される、
    請求項17記載の方法。
  19. 前記解の最適化は、少なくとも部分的に、所定の範囲内に収まる前記半導体ウエハの1つ以上の測定基準に基づいている、
    請求項17記載の方法。
JP2019143000A 2018-08-03 2019-08-02 半導体ウエハの局所的歪みの特定に基づく全体的ウエハ歪みの改善 Active JP7118928B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/054,725 US10622233B2 (en) 2016-09-05 2018-08-03 Amelioration of global wafer distortion based on determination of localized distortions of a semiconductor wafer
US16/054725 2018-08-03

Publications (3)

Publication Number Publication Date
JP2020021076A JP2020021076A (ja) 2020-02-06
JP2020021076A5 JP2020021076A5 (ja) 2021-10-21
JP7118928B2 true JP7118928B2 (ja) 2022-08-16

Family

ID=69487426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019143000A Active JP7118928B2 (ja) 2018-08-03 2019-08-02 半導体ウエハの局所的歪みの特定に基づく全体的ウエハ歪みの改善

Country Status (3)

Country Link
JP (1) JP7118928B2 (ja)
KR (1) KR102558635B1 (ja)
CN (1) CN110807273B (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7198912B2 (ja) * 2018-08-22 2023-01-04 エーエスエムエル ネザーランズ ビー.ブイ. 基板全体の面内ディストーション(ipd)を決定する方法、及びコンピュータプログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015504170A (ja) 2012-01-18 2015-02-05 ユニヴェルシタ・デグリ・ストゥディ・ローマ・トレ 材料のポアソン比および残留応力を測定するための方法
JP2016538717A (ja) 2013-10-29 2016-12-08 ケーエルエー−テンカー コーポレイション プロセス誘起による歪みの予測、ならびにオーバーレイ誤差のフィードフォワード及びフィードバック修正
JP2017122716A (ja) 2015-12-07 2017-07-13 ウルトラテック インク Cgs干渉分光法を用いた処理制御のためにプロセス誘導ウエハ形状を特徴化するシステムおよび方法
JP2018041080A (ja) 2016-09-05 2018-03-15 東京エレクトロン株式会社 半導体プロセッシング中のオーバレイを制御するための湾曲を制御する応力の位置特定チューニング

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL275027A (ja) * 1961-03-09
EP1089328A1 (en) * 1999-09-29 2001-04-04 Infineon Technologies AG Method for manufacturing of a semiconductor device
US9158209B2 (en) * 2012-10-19 2015-10-13 Taiwan Semiconductor Manufacturing Company, Ltd. Method of overlay prediction
US9269607B2 (en) * 2014-06-17 2016-02-23 Globalfoundries Inc. Wafer stress control with backside patterning
US10377665B2 (en) * 2015-11-19 2019-08-13 Varian Semiconductor Equipment Associates, Inc. Modifying bulk properties of a glass substrate
US9466538B1 (en) * 2015-11-25 2016-10-11 Globalfoundries Inc. Method to achieve ultra-high chip-to-chip alignment accuracy for wafer-to-wafer bonding process
WO2018072961A1 (en) * 2016-10-17 2018-04-26 Asml Netherlands B.V. A processing apparatus and a method for correcting a parameter variation across a substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015504170A (ja) 2012-01-18 2015-02-05 ユニヴェルシタ・デグリ・ストゥディ・ローマ・トレ 材料のポアソン比および残留応力を測定するための方法
JP2016538717A (ja) 2013-10-29 2016-12-08 ケーエルエー−テンカー コーポレイション プロセス誘起による歪みの予測、ならびにオーバーレイ誤差のフィードフォワード及びフィードバック修正
JP2017122716A (ja) 2015-12-07 2017-07-13 ウルトラテック インク Cgs干渉分光法を用いた処理制御のためにプロセス誘導ウエハ形状を特徴化するシステムおよび方法
JP2018041080A (ja) 2016-09-05 2018-03-15 東京エレクトロン株式会社 半導体プロセッシング中のオーバレイを制御するための湾曲を制御する応力の位置特定チューニング

Also Published As

Publication number Publication date
CN110807273A (zh) 2020-02-18
KR20200015426A (ko) 2020-02-12
CN110807273B (zh) 2024-05-14
JP2020021076A (ja) 2020-02-06
KR102558635B1 (ko) 2023-07-21

Similar Documents

Publication Publication Date Title
TWI790391B (zh) 基於半導體晶圓局部變形判定之全域晶圓變形的改善
US11761880B2 (en) Process-induced distortion prediction and feedforward and feedback correction of overlay errors
TWI573215B (zh) 模擬由於半導體晶圓固持之平面內失真之基於有限元素模型的預測之系統及方法
JP5758406B2 (ja) 基板トポグラフィならびにそのリソグラフィ・デフォーカスおよびオーバーレイとの関係についてのサイトに基づく定量化
KR102460056B1 (ko) Cgs 간섭측정을 이용한 공정 제어를 위해 공정-유도된 웨이퍼 형상을 특징짓는 시스템 및 방법
JP2010529659A (ja) 応力ならびにオーバーレイのフィードフォーワード、及び/または、フィードバック・リソグラフィック・プロセス制御
JP2004118194A (ja) マスク設計における基板トポグラフィ補償:アンカー付きトポグラフィによる3dopc
CN113406859B (zh) 光学邻近修正模型的建模方法
KR20040076568A (ko) 시뮬레이션 장치
JP7118928B2 (ja) 半導体ウエハの局所的歪みの特定に基づく全体的ウエハ歪みの改善
TWI640050B (zh) 基於用之最佳集成晶片製造效能之設計改良的增強型圖案化晶圓幾何量測
CN104022049B (zh) 校准目标值的方法以及配置用于校准目标值的处理系统
JP2020060666A (ja) マスクパターン補正システム、及び該補正システムを利用する半導体製造方法
TWI681479B (zh) 用於分析半導體晶圓之處理的方法及裝置
JP7445003B2 (ja) マルチステッププロセス検査方法
JP4657646B2 (ja) マスクパターン配置方法、マスク作製方法、半導体装置の製造方法、プログラム
KR20080108788A (ko) 노광마스크 및 반도체 소자의 두께 측정 방법

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210909

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220803

R150 Certificate of patent or registration of utility model

Ref document number: 7118928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150