JP7118606B2 - 医用画像処理装置及び医用画像処理プログラム - Google Patents
医用画像処理装置及び医用画像処理プログラム Download PDFInfo
- Publication number
- JP7118606B2 JP7118606B2 JP2017141927A JP2017141927A JP7118606B2 JP 7118606 B2 JP7118606 B2 JP 7118606B2 JP 2017141927 A JP2017141927 A JP 2017141927A JP 2017141927 A JP2017141927 A JP 2017141927A JP 7118606 B2 JP7118606 B2 JP 7118606B2
- Authority
- JP
- Japan
- Prior art keywords
- data
- training
- detector
- medical image
- data set
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012545 processing Methods 0.000 title claims description 38
- PWPJGUXAGUPAHP-UHFFFAOYSA-N lufenuron Chemical compound C1=C(Cl)C(OC(F)(F)C(C(F)(F)F)F)=CC(Cl)=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F PWPJGUXAGUPAHP-UHFFFAOYSA-N 0.000 title 1
- 238000012549 training Methods 0.000 claims description 175
- 238000000034 method Methods 0.000 claims description 72
- 230000002159 abnormal effect Effects 0.000 claims description 59
- 210000003484 anatomy Anatomy 0.000 claims description 47
- 230000008569 process Effects 0.000 claims description 39
- 230000002547 anomalous effect Effects 0.000 claims description 29
- 230000005856 abnormality Effects 0.000 claims description 12
- 238000010801 machine learning Methods 0.000 claims description 5
- 230000006870 function Effects 0.000 claims description 3
- 238000012905 input function Methods 0.000 claims 2
- 208000007536 Thrombosis Diseases 0.000 description 23
- 238000001514 detection method Methods 0.000 description 23
- 230000003902 lesion Effects 0.000 description 23
- 210000004556 brain Anatomy 0.000 description 21
- 208000028867 ischemia Diseases 0.000 description 9
- 208000006011 Stroke Diseases 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 206010061216 Infarction Diseases 0.000 description 7
- 238000003384 imaging method Methods 0.000 description 7
- 230000007574 infarction Effects 0.000 description 7
- 230000009466 transformation Effects 0.000 description 7
- 238000002591 computed tomography Methods 0.000 description 6
- 239000000284 extract Substances 0.000 description 6
- 238000013527 convolutional neural network Methods 0.000 description 5
- 210000004204 blood vessel Anatomy 0.000 description 4
- 210000003657 middle cerebral artery Anatomy 0.000 description 4
- 210000004197 pelvis Anatomy 0.000 description 4
- 238000002603 single-photon emission computed tomography Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000002059 diagnostic imaging Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 230000000302 ischemic effect Effects 0.000 description 3
- 238000002600 positron emission tomography Methods 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 210000004885 white matter Anatomy 0.000 description 3
- 230000001154 acute effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000002595 magnetic resonance imaging Methods 0.000 description 2
- 210000004560 pineal gland Anatomy 0.000 description 2
- 238000007637 random forest analysis Methods 0.000 description 2
- 238000000844 transformation Methods 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 description 1
- 208000010392 Bone Fractures Diseases 0.000 description 1
- 208000004434 Calcinosis Diseases 0.000 description 1
- 206010017076 Fracture Diseases 0.000 description 1
- 206010062767 Hypophysitis Diseases 0.000 description 1
- 206010021703 Indifference Diseases 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 206010034246 Pelvic fractures Diseases 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 238000012952 Resampling Methods 0.000 description 1
- 208000005475 Vascular calcification Diseases 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 210000004227 basal ganglia Anatomy 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 230000002308 calcification Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 210000000038 chest Anatomy 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 210000001653 corpus striatum Anatomy 0.000 description 1
- 230000001054 cortical effect Effects 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 210000003414 extremity Anatomy 0.000 description 1
- 210000001508 eye Anatomy 0.000 description 1
- 210000002683 foot Anatomy 0.000 description 1
- 210000004884 grey matter Anatomy 0.000 description 1
- 210000004247 hand Anatomy 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 210000001847 jaw Anatomy 0.000 description 1
- 210000001503 joint Anatomy 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 230000005055 memory storage Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000001817 pituitary effect Effects 0.000 description 1
- 210000003635 pituitary gland Anatomy 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 238000011158 quantitative evaluation Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 210000002832 shoulder Anatomy 0.000 description 1
- 210000003625 skull Anatomy 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001732 thrombotic effect Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 210000003932 urinary bladder Anatomy 0.000 description 1
- 210000005166 vasculature Anatomy 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/778—Active pattern-learning, e.g. online learning of image or video features
- G06V10/7784—Active pattern-learning, e.g. online learning of image or video features based on feedback from supervisors
- G06V10/7788—Active pattern-learning, e.g. online learning of image or video features based on feedback from supervisors the supervisor being a human, e.g. interactive learning with a human teacher
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2415—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on parametric or probabilistic models, e.g. based on likelihood ratio or false acceptance rate versus a false rejection rate
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/40—Software arrangements specially adapted for pattern recognition, e.g. user interfaces or toolboxes therefor
- G06F18/41—Interactive pattern learning with a human teacher
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
- G06T7/0014—Biomedical image inspection using an image reference approach
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/30—Determination of transform parameters for the alignment of images, i.e. image registration
- G06T7/33—Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/30—Determination of transform parameters for the alignment of images, i.e. image registration
- G06T7/33—Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
- G06T7/337—Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods involving reference images or patches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/60—Analysis of geometric attributes
- G06T7/68—Analysis of geometric attributes of symmetry
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/774—Generating sets of training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10081—Computed x-ray tomography [CT]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20048—Transform domain processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20076—Probabilistic image processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30016—Brain
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30101—Blood vessel; Artery; Vein; Vascular
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/03—Recognition of patterns in medical or anatomical images
- G06V2201/031—Recognition of patterns in medical or anatomical images of internal organs
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Physics & Mathematics (AREA)
- Databases & Information Systems (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Medical Informatics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Data Mining & Analysis (AREA)
- Computing Systems (AREA)
- Multimedia (AREA)
- Software Systems (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- General Engineering & Computer Science (AREA)
- Quality & Reliability (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Geometry (AREA)
- Probability & Statistics with Applications (AREA)
- Human Computer Interaction (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Image Analysis (AREA)
Description
a)急性梗塞による島皮質における低吸収
b)大脳基底核の区分の消失。レンズ核右側の消失。
c)急性右中大脳動脈(MCA)梗塞における皮質/白質の消失。
d)MCA領域内の高吸収な血管(dense vessel)
e)古い虚血性変化。
A.ch0=左輝度、ch1=右輝度、GT class=左から
B.ch0=右輝度、ch1=左輝度、GT class=右から
ここでch0、ch1は、第一と第二の輝度チャンネルであり、GT classは、グラウンドトゥルースのどの部分が使用されるかを示している。
18…入力装置、20…メモリ、22…中央処理ユニット(CPU)、24…アライメント部、26…訓練部、28…検出器
Claims (10)
- 多数の医用画像データを受け取る入力部と、
前記入力部で入力された医用画像データ上において、同一被検体の異なる領域を表す第一の部分と第二の部分とを選択する選択部と、
前記第一の部分に対応する第一のデータと前記第二の部分に対応する第二のデータとが入力され、被検体の異常性を有する領域が検出されるように機械学習に用いる検出器を訓練する訓練部と、
を具備し、
前記第一の部分及び前記第二の部分は、実質的に対称な領域の少なくとも一つか、実質的に同一の形状を有する領域の少なくとも一つか、を表している、医用画像処理装置。 - 前記第一の部分は、前記医用画像データによって表された解剖学的構造の対称線の一方の領域に対応し、
前記第二の部分は、前記医用画像データによって表された解剖学的構造の対称線の他方の領域に対応し、
前記訓練部は、前記第二の部分と、前記第一の部分に関連付けられたグラウンドトゥルースとに基づいて、被検体における少なくとも一つの異常性の有無を決定するために、前記検出器を訓練する、
請求項1記載の医用画像処理装置。 - 前記訓練部は、
前記第二のデータを用いて、前記第一のデータを少なくとも部分的に正規化し、
前記正規化された第一のデータを用いて、前記検出器を訓練する、
請求項1または請求項2記載の医用画像処理装置。 - 前記選択部は、
前記医用画像データに対して、前記第一の部分が前記第二の部分を少なくとも部分的に覆うように、前記第一のデータと前記第二のデータとの少なくとも一方の部分について、前記医用画像データによって表された解剖学的構造の対称線に関する折り畳み処理を実行し、
前記折り畳み処理の結果を用いて、前記検出器を訓練する、
請求項1乃至3のうちいずれか一項記載の医用画像処理装置。 - 前記訓練部は少なくとも一つのグラウンドトゥルース、一つ以上の異常性の予測位置、少なくとも一つの選択された解剖学的特徴の位置、に基づいて前記第一の部分と前記第二の部分との境界を選択する請求項1乃至4のうちいずれか一項記載の医用画像処理装置。
- 前記訓練部は、
異常性の有る領域に近傍する少なくともいくつかの位置に対応する前記グラウンドトゥルースを修正し、
前記検出器の訓練において前記修正されたグラウンドトゥルースを用いて、前記検出器を訓練する、
請求項2記載の医用画像処理装置。 - 前記訓練部は、前記修正されたグラウンドトゥルースの重要度を調整する請求項6記載の医用画像処理装置。
- 前記選択部は、前記第一の部分及び第二の部分の選択において、
アトラスデータを使用すること、
少なくとも一つの解剖学的特徴の予測または実際の位置を使用すること、
前記多数の医用画像データの少なくとも一つを少なくとも一つのアトラスデータセットにアライメントし、前記第一の部分と前記第二の部分とをレジストレーションすること、のうちの少なくとも一つを行う請求項1乃至7のうちいずれか一項記載の医用画像処理装置。 - 前記検出器は、機械学習で用いられるネットワークモデルであり、
前記訓練部は、前記第一のデータと前記第二のデータとが入力され、被検体の異常性を有する領域が検出されるように前記ネットワークモデルを学習する、請求項1に記載の医用画像処理装置。 - コンピュータに、
多数の医用画像データを受け取る入力機能と、
前記入力機能で入力された医用画像データ上において、同一被検体の異なる領域を表す第一の部分と第二の部分とを選択する選択機能と、
前記第一の部分に対応する第一のデータと前記第二の部分に対応する第二のデータとが入力され、被検体の異常性を有する領域が検出されるように機械学習に用いる検出器を訓練する訓練機能と、
を実現させる医用画像処理プログラムであって、
前記第一の部分及び前記第二の部分は、実質的に対称な領域の少なくとも一つか、実質的に同一の形状を有する領域の少なくとも一つか、を表している、医用画像処理プログラム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/216,006 US10163040B2 (en) | 2016-07-21 | 2016-07-21 | Classification method and apparatus |
US15/216,006 | 2016-07-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018011958A JP2018011958A (ja) | 2018-01-25 |
JP7118606B2 true JP7118606B2 (ja) | 2022-08-16 |
Family
ID=60989995
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017141927A Active JP7118606B2 (ja) | 2016-07-21 | 2017-07-21 | 医用画像処理装置及び医用画像処理プログラム |
Country Status (2)
Country | Link |
---|---|
US (1) | US10163040B2 (ja) |
JP (1) | JP7118606B2 (ja) |
Families Citing this family (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12026868B2 (en) | 2015-08-14 | 2024-07-02 | Elucid Bioimaging Inc. | Quantitative imaging for detecting histopathologically defined plaque erosion non-invasively |
US11071501B2 (en) | 2015-08-14 | 2021-07-27 | Elucid Bioiwaging Inc. | Quantitative imaging for determining time to adverse event (TTE) |
US11094058B2 (en) | 2015-08-14 | 2021-08-17 | Elucid Bioimaging Inc. | Systems and method for computer-aided phenotyping (CAP) using radiologic images |
US12008751B2 (en) | 2015-08-14 | 2024-06-11 | Elucid Bioimaging Inc. | Quantitative imaging for detecting histopathologically defined plaque fissure non-invasively |
US11676359B2 (en) | 2015-08-14 | 2023-06-13 | Elucid Bioimaging Inc. | Non-invasive quantitative imaging biomarkers of atherosclerotic plaque biology |
US11087459B2 (en) | 2015-08-14 | 2021-08-10 | Elucid Bioimaging Inc. | Quantitative imaging for fractional flow reserve (FFR) |
WO2018172990A1 (en) | 2017-03-24 | 2018-09-27 | Pie Medical Imaging B.V. | Method and system for assessing vessel obstruction based on machine learning |
US12089977B2 (en) | 2017-03-24 | 2024-09-17 | Pie Medical Imaging B.V. | Method and system for assessing vessel obstruction based on machine learning |
US11664114B2 (en) * | 2017-05-25 | 2023-05-30 | Enlitic, Inc. | Medical scan assisted review system |
US10733730B2 (en) | 2017-06-19 | 2020-08-04 | Viz.ai Inc. | Method and system for computer-aided triage |
EP3642743B1 (en) | 2017-06-19 | 2021-11-17 | Viz.ai, Inc. | A method and system for computer-aided triage |
US10489905B2 (en) | 2017-07-21 | 2019-11-26 | Canon Medical Systems Corporation | Method and apparatus for presentation of medical images |
US10606982B2 (en) * | 2017-09-06 | 2020-03-31 | International Business Machines Corporation | Iterative semi-automatic annotation for workload reduction in medical image labeling |
WO2019167882A1 (ja) * | 2018-02-27 | 2019-09-06 | 富士フイルム株式会社 | 機械学習装置および方法 |
US10699407B2 (en) | 2018-04-11 | 2020-06-30 | Pie Medical Imaging B.V. | Method and system for assessing vessel obstruction based on machine learning |
WO2019216125A1 (ja) * | 2018-05-09 | 2019-11-14 | 富士フイルム株式会社 | 梗塞領域を判別する判別器の学習装置、方法およびプログラム、梗塞領域を判別する判別器、並びに梗塞領域判別装置、方法およびプログラム |
JP7113916B2 (ja) * | 2018-05-27 | 2022-08-05 | エルシド バイオイメージング インコーポレイテッド | 定量的イメージングを利用するための方法およびシステム |
JP2020032045A (ja) * | 2018-08-31 | 2020-03-05 | 富士フイルム株式会社 | 梗塞領域を判別する判別器の学習装置、方法およびプログラム、梗塞領域を判別する判別器、並びに梗塞領域判別装置、方法およびプログラム |
WO2020054738A1 (ja) * | 2018-09-10 | 2020-03-19 | 京セラ株式会社 | 推定装置、推定システム及び推定プログラム |
JP7018856B2 (ja) * | 2018-09-14 | 2022-02-14 | 富士フイルム株式会社 | 医用画像処理装置、方法およびプログラム |
JP7129870B2 (ja) * | 2018-10-01 | 2022-09-02 | 富士フイルム株式会社 | 疾患領域を判別する判別器の学習装置、方法及びプログラム、疾患領域を判別する判別器、並びに疾患領域判別装置及びプログラム |
JP7129869B2 (ja) * | 2018-10-01 | 2022-09-02 | 富士フイルム株式会社 | 疾患領域抽出装置、方法及びプログラム |
US11457871B2 (en) | 2018-11-21 | 2022-10-04 | Enlitic, Inc. | Medical scan artifact detection system and methods for use therewith |
US11282198B2 (en) | 2018-11-21 | 2022-03-22 | Enlitic, Inc. | Heat map generating system and methods for use therewith |
US11145059B2 (en) | 2018-11-21 | 2021-10-12 | Enlitic, Inc. | Medical scan viewing system with enhanced training and methods for use therewith |
US10818386B2 (en) | 2018-11-21 | 2020-10-27 | Enlitic, Inc. | Multi-label heat map generating system |
KR102056989B1 (ko) * | 2018-12-24 | 2020-02-11 | (주)제이엘케이인스펙션 | 머신러닝 기반의 gre 영상을 활용한 혈전 분류 방법 및 시스템 |
KR102227439B1 (ko) * | 2019-03-21 | 2021-03-15 | 울산대학교 산학협력단 | 얼굴 영역 이미지 분석 장치 및 방법 |
US20200359981A1 (en) | 2019-05-03 | 2020-11-19 | Ischemaview, Inc. | Analysis of intracranial blood vessels |
EP3991134A4 (en) | 2019-06-27 | 2023-07-05 | Viz.ai, Inc. | METHOD AND SYSTEM FOR COMPUTER-ASSISTED TRIAGE IN STROKE |
JP7234364B2 (ja) * | 2019-06-28 | 2023-03-07 | 富士フイルム株式会社 | 医用画像処理装置、方法およびプログラム |
EP4004946A4 (en) * | 2019-07-30 | 2023-08-02 | Viz.ai, Inc. | METHOD AND SYSTEM FOR COMPUTER ASSISTED STROKE TRIAGE |
GB201912149D0 (en) * | 2019-08-23 | 2019-10-09 | Univ Oxford Innovation Ltd | Computerised tomography image processing |
EP3797692B1 (de) * | 2019-09-30 | 2023-01-18 | Siemens Healthcare GmbH | Verfahren und vorrichtung zur ansteuerung eines medizinischen bildgebungsgeräts |
EP3798971A1 (en) * | 2019-09-30 | 2021-03-31 | Siemens Healthcare GmbH | Method and data processing system for providing a stroke information |
US11462315B2 (en) | 2019-11-26 | 2022-10-04 | Enlitic, Inc. | Medical scan co-registration and methods for use therewith |
TWI725813B (zh) | 2020-04-09 | 2021-04-21 | 國立中央大學 | 磁振造影之自動腦部梗塞偵測系統及其運作方法 |
KR102165840B1 (ko) * | 2020-05-21 | 2020-10-16 | 주식회사 휴런 | 인공지능 기반 뇌졸중 진단 장치 및 방법 |
US11328400B2 (en) | 2020-07-24 | 2022-05-10 | Viz.ai Inc. | Method and system for computer-aided aneurysm triage |
US12061994B2 (en) | 2020-08-11 | 2024-08-13 | Enlitic, Inc. | Inference process visualization system for medical scans |
JP7390666B2 (ja) * | 2021-01-09 | 2023-12-04 | 国立大学法人岩手大学 | 顎口腔疾患部位の検出画像処理方法およびそのシステム |
US11669678B2 (en) | 2021-02-11 | 2023-06-06 | Enlitic, Inc. | System with report analysis and methods for use therewith |
JP2022135392A (ja) * | 2021-03-05 | 2022-09-15 | コニカミノルタ株式会社 | 医用情報管理装置、医用情報管理方法および医用情報管理プログラム |
US11694807B2 (en) | 2021-06-17 | 2023-07-04 | Viz.ai Inc. | Method and system for computer-aided decision guidance |
US20240315655A1 (en) * | 2021-06-25 | 2024-09-26 | Inteneural Networks Inc. | A method for cerebral vessel calcification detection and quantification, using machine learning |
US12094136B2 (en) | 2021-10-28 | 2024-09-17 | Canon Medical Systems Corporation | Image processing method and apparatus |
US11941825B2 (en) * | 2021-10-28 | 2024-03-26 | Canon Medical Systems Corporation | Method and apparatus for registering image volumes |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002529996A (ja) | 1998-11-05 | 2002-09-10 | アーチ・デベロップメント・コーポレーション | 胸部x線画像のコンピュータ処理用システム |
US20030194124A1 (en) | 2002-04-12 | 2003-10-16 | The University Of Chicago | Massive training artificial neural network (MTANN) for detecting abnormalities in medical images |
US20100260396A1 (en) | 2005-12-30 | 2010-10-14 | Achiezer Brandt | integrated segmentation and classification approach applied to medical applications analysis |
JP2011250811A (ja) | 2008-09-25 | 2011-12-15 | Konica Minolta Medical & Graphic Inc | 医用画像処理装置及びプログラム |
US20130182008A1 (en) | 2012-01-12 | 2013-07-18 | Siemens Medical Solutions Usa, Inc. | Symmetry-Based Visualization for Enhancing Anomaly Detection |
JP2014150957A (ja) | 2013-02-07 | 2014-08-25 | Toshiba Corp | 超音波診断装置、画像処理装置及び画像処理プログラム |
US20150201895A1 (en) | 2012-08-31 | 2015-07-23 | The University Of Chicago | Supervised machine learning technique for reduction of radiation dose in computed tomography imaging |
JP2015173923A (ja) | 2014-03-17 | 2015-10-05 | キヤノン株式会社 | 画像処理装置、画像処理方法およびプログラム |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000123154A (ja) | 1998-10-19 | 2000-04-28 | Hitachi Medical Corp | 画像処理装置 |
US7043066B1 (en) * | 1998-11-05 | 2006-05-09 | Arch Development Corporation | System for computerized processing of chest radiographic images |
JP4480508B2 (ja) | 2004-08-02 | 2010-06-16 | 富士通株式会社 | 診断支援プログラムおよび診断支援装置 |
EP1996959A4 (en) * | 2006-03-03 | 2012-02-29 | Medic Vision Brain Technologies Ltd | SYSTEM AND METHOD FOR PRIORITIZE PRIORITIZATION AND AUTOMATIC ANALYSIS OF MEDICAL IMAGES |
US9159127B2 (en) * | 2007-06-20 | 2015-10-13 | Koninklijke Philips N.V. | Detecting haemorrhagic stroke in CT image data |
US8116548B2 (en) | 2008-06-04 | 2012-02-14 | Siemens Aktiengesellschaft | Method and system for detecting 3D anatomical structures using constrained marginal space learning |
US9165360B1 (en) * | 2012-09-27 | 2015-10-20 | Zepmed, Llc | Methods, systems, and devices for automated analysis of medical scans |
WO2014152919A1 (en) * | 2013-03-14 | 2014-09-25 | Arizona Board Of Regents, A Body Corporate Of The State Of Arizona For And On Behalf Of Arizona State University | Kernel sparse models for automated tumor segmentation |
US20160220166A1 (en) * | 2015-01-29 | 2016-08-04 | Kirtley Elliott Thornton | Methodology for Discriminating Concussion Subjects from Normal Subjects by Identifying and Using QEEG correlates of concussion across 4 cognitive tasks and eyes closed condition. |
-
2016
- 2016-07-21 US US15/216,006 patent/US10163040B2/en active Active
-
2017
- 2017-07-21 JP JP2017141927A patent/JP7118606B2/ja active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002529996A (ja) | 1998-11-05 | 2002-09-10 | アーチ・デベロップメント・コーポレーション | 胸部x線画像のコンピュータ処理用システム |
US20030194124A1 (en) | 2002-04-12 | 2003-10-16 | The University Of Chicago | Massive training artificial neural network (MTANN) for detecting abnormalities in medical images |
US20100260396A1 (en) | 2005-12-30 | 2010-10-14 | Achiezer Brandt | integrated segmentation and classification approach applied to medical applications analysis |
JP2011250811A (ja) | 2008-09-25 | 2011-12-15 | Konica Minolta Medical & Graphic Inc | 医用画像処理装置及びプログラム |
US20130182008A1 (en) | 2012-01-12 | 2013-07-18 | Siemens Medical Solutions Usa, Inc. | Symmetry-Based Visualization for Enhancing Anomaly Detection |
US20150201895A1 (en) | 2012-08-31 | 2015-07-23 | The University Of Chicago | Supervised machine learning technique for reduction of radiation dose in computed tomography imaging |
JP2014150957A (ja) | 2013-02-07 | 2014-08-25 | Toshiba Corp | 超音波診断装置、画像処理装置及び画像処理プログラム |
JP2015173923A (ja) | 2014-03-17 | 2015-10-05 | キヤノン株式会社 | 画像処理装置、画像処理方法およびプログラム |
Non-Patent Citations (1)
Title |
---|
Milan Matesin et al.,A Rule-Based Approach to Stroke Lesion Analysis from CT Brain Images,ISPA 2001. Proceedings of the 2nd International Symposium on Image and Signal Processing and Analysis,2002年08月07日 |
Also Published As
Publication number | Publication date |
---|---|
US10163040B2 (en) | 2018-12-25 |
US20180025255A1 (en) | 2018-01-25 |
JP2018011958A (ja) | 2018-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7118606B2 (ja) | 医用画像処理装置及び医用画像処理プログラム | |
Lessmann et al. | Automatic calcium scoring in low-dose chest CT using deep neural networks with dilated convolutions | |
Zhang et al. | Context-guided fully convolutional networks for joint craniomaxillofacial bone segmentation and landmark digitization | |
US11154196B2 (en) | Deep-learnt tissue deformation for medical imaging | |
US9495752B2 (en) | Multi-bone segmentation for 3D computed tomography | |
US8369593B2 (en) | Systems and methods for robust learning based annotation of medical radiographs | |
US8958614B2 (en) | Image-based detection using hierarchical learning | |
US9741131B2 (en) | Anatomy aware articulated registration for image segmentation | |
US9082231B2 (en) | Symmetry-based visualization for enhancing anomaly detection | |
JP6704723B2 (ja) | 医用画像処理装置、医用画像処理方法及び医用画像処理プログラム | |
US20150131882A1 (en) | Medical image data processing apparatus and method | |
US11544844B2 (en) | Medical image processing method and apparatus | |
EP3107031A1 (en) | Method, apparatus and system for spine labeling | |
JP2021140769A (ja) | 医用情報処理装置、医用情報処理方法及び医用情報処理プログラム | |
Jimenez-Pastor et al. | Automated vertebrae localization and identification by decision forests and image-based refinement on real-world CT data | |
Peña-Solórzano et al. | Findings from machine learning in clinical medical imaging applications–Lessons for translation to the forensic setting | |
US9286688B2 (en) | Automatic segmentation of articulated structures | |
US20230103692A1 (en) | Data processing apparatus and method | |
Chedid et al. | Synthesis of fracture radiographs with deep neural networks | |
Tan et al. | A segmentation method of lung parenchyma from chest CT images based on dual U-Net | |
Tobon-Gomez et al. | Unfolded cylindrical projection for rib fracture diagnosis | |
Kim et al. | A fully automated landmark detection for spine surgery planning with a cascaded convolutional neural net | |
WO2017198518A1 (en) | Image data processing device | |
Militzer et al. | Learning a prior model for automatic liver lesion segmentation in follow-up CT images | |
Rajaraman et al. | Improved TB classification using bone-suppressed chest radiographs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200427 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210317 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210330 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210517 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211102 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220510 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220620 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220705 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220803 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7118606 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |