TWI725813B - 磁振造影之自動腦部梗塞偵測系統及其運作方法 - Google Patents

磁振造影之自動腦部梗塞偵測系統及其運作方法 Download PDF

Info

Publication number
TWI725813B
TWI725813B TW109112042A TW109112042A TWI725813B TW I725813 B TWI725813 B TW I725813B TW 109112042 A TW109112042 A TW 109112042A TW 109112042 A TW109112042 A TW 109112042A TW I725813 B TWI725813 B TW I725813B
Authority
TW
Taiwan
Prior art keywords
image
brain
weighted
intensity
images
Prior art date
Application number
TW109112042A
Other languages
English (en)
Other versions
TW202138838A (zh
Inventor
蔡章仁
彭徐鈞
陳右緯
蔡孟宗
王國偉
郭葉璘
Original Assignee
國立中央大學
張煥禎
臺北醫學大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立中央大學, 張煥禎, 臺北醫學大學 filed Critical 國立中央大學
Priority to TW109112042A priority Critical patent/TWI725813B/zh
Priority to US16/884,070 priority patent/US11042983B1/en
Priority to CN202010649850.XA priority patent/CN113517063A/zh
Application granted granted Critical
Publication of TWI725813B publication Critical patent/TWI725813B/zh
Publication of TW202138838A publication Critical patent/TW202138838A/zh

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • G06T7/0014Biomedical image inspection using an image reference approach
    • G06T7/0016Biomedical image inspection using an image reference approach involving temporal comparison
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/20Image enhancement or restoration using local operators
    • G06T5/30Erosion or dilatation, e.g. thinning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/90Dynamic range modification of images or parts thereof
    • G06T5/92Dynamic range modification of images or parts thereof based on global image properties
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/97Determining parameters from multiple pictures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10088Magnetic resonance imaging [MRI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30016Brain
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30096Tumor; Lesion

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Quality & Reliability (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Linguistics (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Computing Systems (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Pathology (AREA)
  • Databases & Information Systems (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本發明提出一種磁振造影之自動腦部病灶偵測系統的運作方法,其包含以下步驟。從核磁造影機接受測者的腦部的不同切面的複數個影像;將複數個影像中之第一影像與第二影像進行影像遮罩處理;判斷第一影像中的小腦影像強度與大腦影像強度是否匹配;當小腦影像強度與大腦影像強度不匹配時,調整第一影像中小腦影像強度;將第一影像經由非線性回歸以得出第三影像;將第一影像、第二影像與第三影像進行切割後由一神經網路辨識出梗塞區域。

Description

磁振造影之自動腦部梗塞偵測系統及其運作方法
本發明是有關於一種系統及其運作方法,且特別是有關於一種磁振造影之自動腦部梗塞偵測系統及其運作方法。
腦梗塞發生後,腦組織能量代謝受到破壞,大量細胞外水進入到細胞內,引起細胞內水分子的增加,細胞外水分子的減少,造成擴散受限,但缺血區域的含水量不會產生變化,僅僅是細胞內外含水量產生了變化,造成擴散受限,所以常規的MRI檢查例如T1、T2、FLAIR…等往往無法檢測出來。
因此,如何提供一種自動腦部梗塞偵測系統及其運作方法,便成為一個重要課題。
本發明提出一種自動腦部梗塞偵測系統及其運作 方法,改善先前技術的問題。
在本發明的一實施例中,本發明所提出的自動腦部梗塞偵測系統包含記憶體以及處理器。記憶體儲存至少一指令,處理器通訊耦接於記憶體。處理器用以存取並執行至少一指令以:從核磁造影機接受測者的腦部的不同切面的複數個影像;將複數個影像中之第一影像與第二影像進行影像遮罩處理;判斷第一影像中的小腦影像強度與大腦影像強度是否匹配;當小腦影像強度與大腦影像強度不匹配時,調整第一影像中小腦影像強度;將第一影像經由非線性回歸以得出第三影像;將第一影像、第二影像與第三影像進行切割後由神經網路辨識出梗塞區域。
在本發明的一實施例中,第一影像為一擴散權重影像(Diffusion-weighted image,DWI),第二影像為一表觀擴散係數(Apparent diffusion coefficient,ADC)影像。
在本發明的一實施例中,複數個影像更包含一T1加權影像(T1-weighted image),處理器依據T1加權影像中大腦輪廓,將T1加權影像中的大腦的位置移至影像中央處,進而將T1加權影像二值化,找出T1加權影像的大腦的位置最對稱的旋轉角度,據以旋轉T1加權影像,使T1加權影像對位。
在本發明的一實施例中,處理器採用已對位的T1加權影像當作擴散權重影像與表觀擴散係數影像二值化後進行旋轉與移位的依據。
在本發明的一實施例中,影像遮罩處理係從已對位的擴散權重影像與表觀擴散係數影像中濾除非腦組織的部分。
在本發明的一實施例中,本發明所提出的磁振造影之自動腦部病灶偵測系統的運作方法包含以下步驟:從核磁造影機接受測者的一腦部的不同切面的複數個影像;將複數個影像中之第一影像與第二影像進行影像遮罩處理;判斷第一影像中的小腦影像強度與大腦影像強度是否匹配;當小腦影像強度與大腦影像強度不匹配時,調整第一影像中小腦影像強度;將第一影像經由非線性回歸以得出第三影像;將第一影像、第二影像與第三影像進行切割後由神經網路辨識出梗塞區域。
在本發明的一實施例中,第一影像為擴散權重影像,第二影像為表觀擴散係數影像。
在本發明的一實施例中,複數個影像更包含T1加權影像,運作方法更包含:依據T1加權影像中大腦輪廓,將T1加權影像中的大腦的位置移至影像中央處,進而將T1加權影像二值化,找出T1加權影像的大腦的位置最對稱的旋轉角度,據以旋轉T1加權影像,使T1加權影像對位。
在本發明的一實施例中,運作方法更包含:採用已對位的T1加權影像當作擴散權重影像與表觀擴散係數影像二值化後進行旋轉與移位的依據。
在本發明的一實施例中,影像遮罩處理係從已對位的擴散權重影像與表觀擴散係數影像中濾除非腦組織的部 分。
綜上所述,本發明之技術方案與現有技術相比具有明顯的優點和有益效果。藉由本發明的技術方案,準確的偵測出病灶在磁振造影上的所在位置,在臨床上更有效率的幫助醫師在磁振造影上的診斷量化。
以下將以實施方式對上述之說明作詳細的描述,並對本發明之技術方案提供更進一步的解釋。
為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附符號之說明如下:
100:磁振造影之自動腦部梗塞偵測系統
110:記憶體
120:處理器
130:顯示器
190:核磁造影機
200:運作方法
S201~S211:步驟
為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下:
第1圖是依照本發明一實施例之一種磁振造影之自動腦部病灶偵測系統的方塊圖;以及
第2圖是依照本發明一實施例之一種磁振造影之自動腦部病灶偵測系統的運作方法的流程圖。
為了使本發明之敘述更加詳盡與完備,可參照所附之圖式及以下所述各種實施例,圖式中相同之號碼代表相同或相似之元件。另一方面,眾所週知的元件與步驟並未描述於實施例中,以避免對本發明造成不必要的限制。
於實施方式與申請專利範圍中,涉及『連接』之描述,其可泛指一元件透過其他元件而間接耦合至另一元件,或是一元件無須透過其他元件而直接連結至另一元件。
於實施方式與申請專利範圍中,涉及『連線』之描述,其可泛指一元件透過其他元件而間接與另一元件進行有線與/或無線通訊,或是一元件無須透過其他元件而實體連接至另一元件。
於實施方式與申請專利範圍中,除非內文中對於冠詞有所特別限定,否則『一』與『該』可泛指單一個或複數個。
本文中所使用之『約』、『大約』或『大致』係用以修飾任何可些微變化的數量,但這種些微變化並不會改變其本質。於實施方式中若無特別說明,則代表以『約』、『大約』或『大致』所修飾之數值的誤差範圍一般是容許在百分之二十以內,較佳地是於百分之十以內,而更佳地則是於百分之五以內。
第1圖是依照本發明一實施例之一種磁振造影之自動腦部病灶偵測系統100的方塊圖。如第1圖所示,磁振造影之自動腦部病灶偵測系統100包含記憶體110、處理器120以及顯示器130。舉例而言,記憶體110可為硬碟、快閃記憶體或其他儲存媒介,處理器120可為中央處理器,顯示器130可為內建顯示器或外接螢幕。
在架構上,磁振造影之自動腦部病灶偵測系統100通訊耦接於核磁造影機190,記憶體110以及顯示器130通訊耦接於處理器120。
於使用時,記憶體110儲存至少一指令,處理器120通訊耦接於記憶體。處理器120用以存取並執行至少一 指令以:從核磁造影機190接受測者的腦部的不同切面的複數個影像;將複數個影像中之第一影像與第二影像進行影像遮罩處理;判斷第一影像中的小腦影像強度(如:小腦影像平均強度)與大腦影像強度(如:大腦影像平均強度)是否匹配;當小腦影像強度與大腦影像強度不匹配時,調整第一影像中小腦影像強度;將第一影像經由非線性回歸以得出第三影像;將第一影像、第二影像與第三影像進行切割後由神經網路辨識出梗塞區域。顯示器130顯示梗塞區域。
在本發明的一實施例中,第一影像為擴散權重影像(Diffusion-weighted image,DWI),第二影像為表觀擴散係數(Apparent diffusion coefficient,ADC)影像。由於腦梗塞發生後,腦組織能量代謝受到破壞,大量細胞外水進入到細胞內,引起細胞內水分子的增加,細胞外水分子的減少,造成擴散受限,但缺血區域的含水量不會產生變化,僅僅是細胞內外含水量產生了變化,造成擴散受限,所以常規的MRI檢查例如T1、T2、FLAIR......等往往無法檢測出來,所以磁振造影之自動腦部病灶偵測系統100選擇梗塞最明顯的DWI與ADC。
在本發明的一實施例中,上述複數個影像更包含T1加權影像(T1-weighted image),本發明採用T1加權影像則是因為大腦的輪廓清晰,用於定位,將大腦置於固定的位置。實務上,偽影與梗塞主要是在影像直方圖上有很大的重疊,且每位患者的影像強度沒有固定的值, 形狀上也不能很明確地做出區別,因此傳統方式才無法直接分離出梗塞與偽影,造成辨識上的難度,所以本發明從影像中的位置來增加神經網路的判斷依據。
具體而言,處理器120依據T1加權影像中大腦輪廓,將T1加權影像中的大腦的位置移至影像中央處,進而將T1加權影像二值化,找出T1加權影像的大腦的位置最對稱的旋轉角度,據以旋轉T1加權影像,使T1加權影像對位。
舉例而言,處理器120依T1加權影像的直方圖的50%做二值化的門檻值,數值大於門檻值為1,數值小於門檻值則為0。實務上,可取整組T1加權影像的最中間一張影像作為對位的依據。在已選擇的T1加權影像中,藉由膨脹形態學操作填補大腦中的空洞,並利用侵蝕形態學操作還原本大腦的大小與輪廓。例如:選擇5*5的大小,作為膨脹的尺寸;選擇5*5的大小,作為侵蝕的尺寸。
由於人的大腦是對稱的,所以要找出對稱的中線,即為最佳旋轉。處理器120將T1加權影像旋轉-45度至45度與X,Y軸各移位45的體素點,每次旋轉或者移位都會將影像分割成兩半,彼此相乘後找出相乘的最大值,即是最佳的旋轉,然而將整個大腦的置於圖像的中心。
承上,處理器120採用已對位的T1加權影像當作擴散權重影像與表觀擴散係數影像二值化後進行旋轉與移位的依據。
舉例而言,處理器120依擴散權重影像的直方圖的60%做二值化的門檻值,數值大於門檻值為1,數值小於門 檻值則為0。實務上,在擴散權重影像中,藉由膨脹形態學操作填補大腦中的空洞,並利用侵蝕形態學操作還原本大腦的大小與輪廓。例如:選擇11*11的大小,作為膨脹的尺寸;選擇11*11的大小,作為侵蝕的尺寸。
處理器120以T1加權影像作為目標,將擴散權重影像旋轉-45度至45度與X,Y軸各移位45的體素點,每次旋轉與移位都於T1加權影像相乘,找出相乘最大的值,即為擴散權重影像對位完成。
由於表觀擴散係數影像是擴散權重影像後製而成,所以處理器120依擴散權重影像所需的旋轉角度與位移,表觀擴散係數影像也同樣旋轉與位移。
在本發明的一實施例中,影像遮罩處理係從已對位的擴散權重影像與表觀擴散係數影像中濾除非腦組織的部分(如:雜訊、骨頭…等)。
關於判斷小腦與大腦的影像平均強度,在本發明的一實施例中,處理器120判斷小腦(例如:取第九張之前的切片)與大腦(例如:取第九張之後的切片)的影像平均強度,若是小腦的影像平均強度過高,則處理器120將小腦的影像平均強度降低到大腦的影像平均強度。舉例而言,大腦腦組織的影像平均強度約1000,梗塞的影像強度約1500-2000,小腦腦組織的影像平均強度約1800,則經由處理器120調整之後,將小腦的影像平均強度降低成1000。
關於非線性回歸,在本發明的一實施例中,處理器 120利用大腦平均影像強度以及每張切片的平均影像強度找出最佳門檻值的非線性方程式,且避免產生神經網路將影像平均強度過高皆辨識成梗塞的問題。非線性回歸利用擴散權重影像製作成第三影像(即,非線性回歸影像),濾除正常腦組織與雜訊。
關於影像切割,輸入的第一、第二、第三影像為已影像遮罩處理過的擴散權重影像與表觀擴散係數影像以及非線性回歸影像,處理器120每次以移動8個體素點取一次圖片,圖片的大小例如為16*16。處理器120將三種影像以同樣位置與大小進行切割,並將所切割出來的影像進行重疊,影像矩陣上方加入當時patch的位置、DWI全腦影像平均強度、DWI單張切片影像平均強度以及第幾張切片。
關於神經網路的樣本數,舉例而言,患者數約有33名,而且每張切片的梗塞大小不同,所以能切割出來的張個數也有所不同,由於處理器120將每個影像切割成一個個的小圖片,所以當切割完成時,約有1300張左右的梗塞影像;偽影所切割出來的圖片,約有1000張;除了梗塞與偽影的部分,其餘皆是非梗塞可以切割的部分,所以能切割出來的圖片,甚至到達數萬張,但當神經網路的個別資料量差太多時,會使神經網路的分類偏向某一個資料量過多的標籤,而且非梗塞的圖片比梗塞與偽影還要多變化性,所以非梗塞所需的資料,會比梗塞與偽影多得多,約為8000張。處理器120將梗塞與偽影以及非梗塞影像,各取十分之一做為測試資料,並隨機打亂順序,其餘作為訓 練資料,隨機打亂其順序。
關於神經網路架構,舉例而言,Max pooling雖然能大幅降低運算速度,但會遺失微小的特徵,所以本實施例不使用Max pooling會使結果更加準確。
舉例而言,神經網路可以共有15層,第二層為卷積層,採用4*4的卷積核,並擁有16個隨機權重的卷積核,每個卷積核都會對原圖片進行卷積,得出16個的特徵圖,並對其做批次正規化,然而使用ReLU將低於的數值都去除;第五層為卷積層,採用4*4的卷積核,並擁有32個卷積核,卷積核都會對前層所得的結果進行卷積,得出32個的特徵圖;第八層為卷積層,採用4*4的卷積核,並擁有64個卷積核,卷積核都會對前層所得的結果進行卷積,得出64個的特徵圖;第十一層如同上述得出64個更深層的特徵圖,並利用softmax函數找出每一個標籤可能的機率,找出機率最大的為辨識結果。
為了對上述磁振造影之自動腦部病灶偵測系統100的運作方法做更進一步的闡述,請同時參照第1~2圖,第2圖是依照本發明一實施例之一種磁振造影之自動腦部病灶偵測系統100的運作方法200的流程圖。如第2圖所示,運作方法200包含步驟S201~S211(應瞭解到,在本實施例中所提及的步驟,除特別敘明其順序者外,均可依實際需要調整其前後順序,甚至可同時或部分同時執行)。
本發明所提出的磁振造影之自動腦部病灶偵測系 統100的運作方法200包含以下步驟:從核磁造影機190接受測者的一腦部的不同切面的複數個影像(步驟S201~S205);將複數個影像中之第一影像與第二影像進行影像遮罩處理(步驟S206);判斷第一影像中的小腦影像強度與大腦影像強度是否匹配(步驟S207);當小腦影像強度與大腦影像強度不匹配時,調整第一影像中小腦影像強度(步驟S208);將第一影像經由非線性回歸以得出第三影像(步驟S209);將第一影像、第二影像與第三影像進行切割後由神經網路辨識出梗塞區域(步驟S210~S211)。
在本發明的一實施例中,第一影像為擴散權重影像,第二影像為表觀擴散係數影像。
在本發明的一實施例中,複數個影像更包含T1加權影像(步驟S201),步驟S204更包含:依據T1加權影像中大腦輪廓,將T1加權影像中的大腦的位置移至影像中央處,進而將T1加權影像二值化,找出T1加權影像的大腦的位置最對稱的旋轉角度,據以旋轉T1加權影像,使T1加權影像對位(步驟S204)。
在本發明的一實施例中,步驟S205更包含:採用已對位的T1加權影像當作擴散權重影像與表觀擴散係數影像二值化後進行旋轉與移位的依據。
在步驟S206中,影像遮罩處理係從已對位的擴散權重影像與表觀擴散係數影像中濾除非腦組織的部分。
綜上所述,本發明之技術方案與現有技術相比具有明顯的優點和有益效果。藉由本發明的技術方案,準確的 偵測出病灶在磁振造影上的所在位置,在臨床上更有效率的幫助醫師在磁振造影上的診斷量化。
雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
200:運作方法
S201~S211:步驟

Claims (10)

  1. 一種磁振造影之自動腦部梗塞偵測系統,包含:
    一記憶體,儲存至少一指令;以及
    一處理器,通訊耦接於該記憶體,其中該處理器用以存取並執行該至少一指令以:
    從一核磁造影機接受一受測者的一腦部的不同切面的複數個影像;
    將該些影像中之一第一影像與一第二影像進行影像遮罩處理;
    判斷該第一影像中的一小腦影像強度與一大腦影像強度是否匹配;
    當該小腦影像強度與該大腦影像強度不匹配時,調整該第一影像中該小腦影像強度;
    將該第一影像經由一非線性回歸以得出一第三影像;以及
    將該第一影像、該第二影像與該第三影像進行切割後由一神經網路辨識出一梗塞區域。
  2. 如請求項1所述之磁振造影之自動腦部梗塞偵測系統,其中該第一影像為一擴散權重影像(Diffusion-weighted image,DWI),該第二影像為一表觀擴散係數(Apparent diffusion coefficient, ADC)影像。
  3. 如請求項2所述之磁振造影之自動腦部梗塞偵測系統,其中該些影像更包含一T1加權影像(T1-weighted image),該處理器依據該T1加權影像中大腦輪廓,將該T1加權影像中的大腦的位置移至影像中央處,進而將該T1加權影像二值化,找出該T1加權影像的該大腦的該位置最對稱的旋轉角度,據以旋轉該T1加權影像,使該T1加權影像對位。
  4. 如請求項3所述之磁振造影之自動腦部梗塞偵測系統,其中該處理器採用已對位的該T1加權影像當作該擴散權重影像與該表觀擴散係數影像二值化後進行旋轉與移位的依據。
  5. 如請求項4所述之磁振造影之自動腦部梗塞偵測系統,其中該影像遮罩處理係從已對位的該擴散權重影像與該表觀擴散係數影像中濾除非腦組織的部分。
  6. 一種磁振造影之自動腦部梗塞偵測系統的運作方法,該運作方法包含:
    從一核磁造影機接受一受測者的一腦部的不同切面的複數個影像;
    將該些影像中之一第一影像與一第二影像進行影像遮 罩處理;
    判斷該第一影像中的一小腦影像強度與一大腦影像強度是否匹配;
    當該小腦影像強度與該大腦影像強度不匹配時,調整該第一影像中該小腦影像強度;
    將該第一影像經由一非線性回歸以得出一第三影像;以及
    將該第一影像、該第二影像與該第三影像進行切割後由一神經網路辨識出一梗塞區域。
  7. 如請求項6所述之運作方法,該第一影像為一擴散權重影像,該第二影像為一表觀擴散係數影像。
  8. 如請求項7所述之運作方法,其中該些影像更包含一T1加權影像,該磁振造影之自動腦部梗塞偵測方法更包含:
    依據該T1加權影像中大腦輪廓,將該T1加權影像中的大腦的位置移至影像中央處,進而將該T1加權影像二值化,找出該T1加權影像的該大腦的該位置最對稱的旋轉角度,據以旋轉該T1加權影像,使該T1加權影像對位。
  9. 如請求項8所述之運作方法,更包含:
    採用已對位的該T1加權影像當作該擴散權重影像與 該表觀擴散係數影像二值化後進行旋轉與移位的依據。
  10. 如請求項9所述之運作方法,其中該影像遮罩處理係從已對位的該擴散權重影像與該表觀擴散係數影像中濾除非腦組織的部分。
TW109112042A 2020-04-09 2020-04-09 磁振造影之自動腦部梗塞偵測系統及其運作方法 TWI725813B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW109112042A TWI725813B (zh) 2020-04-09 2020-04-09 磁振造影之自動腦部梗塞偵測系統及其運作方法
US16/884,070 US11042983B1 (en) 2020-04-09 2020-05-27 Automatic brain infarction detection system on magnetic resonance imaging and operation method thereof
CN202010649850.XA CN113517063A (zh) 2020-04-09 2020-07-08 磁振造影的自动脑部梗塞侦测系统及其运作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109112042A TWI725813B (zh) 2020-04-09 2020-04-09 磁振造影之自動腦部梗塞偵測系統及其運作方法

Publications (2)

Publication Number Publication Date
TWI725813B true TWI725813B (zh) 2021-04-21
TW202138838A TW202138838A (zh) 2021-10-16

Family

ID=76441946

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109112042A TWI725813B (zh) 2020-04-09 2020-04-09 磁振造影之自動腦部梗塞偵測系統及其運作方法

Country Status (3)

Country Link
US (1) US11042983B1 (zh)
CN (1) CN113517063A (zh)
TW (1) TWI725813B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009020049A (ja) * 2007-07-13 2009-01-29 Univ Of Tokyo 脳血管疾患の診断方法
WO2012067152A1 (ja) * 2010-11-16 2012-05-24 三菱化学株式会社 Endothelial Protein C Receptor蛋白質による脳梗塞の検査方法
CN103565440A (zh) * 2012-08-07 2014-02-12 法玛科技顾问股份有限公司 大脑体积测量系统
TW201408262A (en) * 2012-08-30 2014-03-01 Univ Chang Gung Method of extracting arterial input function and its application for dynamic contrast enhanced magnetic resonance imaging (DCE-MRI)
TWI651688B (zh) * 2017-03-17 2019-02-21 長庚大學 利用磁振造影影像預測神經疾病的臨床嚴重度的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4961425A (en) * 1987-08-14 1990-10-09 Massachusetts Institute Of Technology Morphometric analysis of anatomical tomographic data
JP5243865B2 (ja) 2008-07-07 2013-07-24 浜松ホトニクス株式会社 脳疾患診断システム
TWI542328B (zh) * 2014-07-31 2016-07-21 國立中央大學 偵測與量化腦梗塞區域的方法
TWI536969B (zh) 2015-01-05 2016-06-11 國立中央大學 磁共振造影之白質病變區域識別方法及系統
US10163040B2 (en) 2016-07-21 2018-12-25 Toshiba Medical Systems Corporation Classification method and apparatus
CN110533668B (zh) * 2019-07-30 2021-09-21 北京理工大学 基于统计约束损失函数的脑梗塞病灶自动分割方法
US11545266B2 (en) * 2019-09-30 2023-01-03 GE Precision Healthcare LLC Medical imaging stroke model

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009020049A (ja) * 2007-07-13 2009-01-29 Univ Of Tokyo 脳血管疾患の診断方法
WO2012067152A1 (ja) * 2010-11-16 2012-05-24 三菱化学株式会社 Endothelial Protein C Receptor蛋白質による脳梗塞の検査方法
CN103565440A (zh) * 2012-08-07 2014-02-12 法玛科技顾问股份有限公司 大脑体积测量系统
TW201408262A (en) * 2012-08-30 2014-03-01 Univ Chang Gung Method of extracting arterial input function and its application for dynamic contrast enhanced magnetic resonance imaging (DCE-MRI)
TWI651688B (zh) * 2017-03-17 2019-02-21 長庚大學 利用磁振造影影像預測神經疾病的臨床嚴重度的方法

Also Published As

Publication number Publication date
US11042983B1 (en) 2021-06-22
TW202138838A (zh) 2021-10-16
CN113517063A (zh) 2021-10-19

Similar Documents

Publication Publication Date Title
EP3432784B1 (en) Deep-learning-based cancer classification using a hierarchical classification framework
US10413180B1 (en) System and methods for automatic processing of digital retinal images in conjunction with an imaging device
Wang et al. Human visual system-based fundus image quality assessment of portable fundus camera photographs
Mahapatra et al. Automatic detection and segmentation of Crohn's disease tissues from abdominal MRI
CN106600571A (zh) 融合全卷积神经网络和条件随机场的脑肿瘤自动分割方法
Sawyer et al. Three-dimensional texture analysis of optical coherence tomography images of ovarian tissue
CN112348785B (zh) 一种癫痫病灶定位方法及系统
Somasundaram et al. Brain segmentation in magnetic resonance human head scans using multi-seeded region growing
US8160330B2 (en) Texture quantification of medical images based on a complex-valued local spatial frequency distribution of a stockwell transform
KR102328229B1 (ko) 인공지능 기반의 3차원 의료 영상을 이용한 종양 검출 및 진단 방법
Lee et al. Fully automated and real-time volumetric measurement of infarct core and penumbra in diffusion-and perfusion-weighted MRI of patients with hyper-acute stroke
Schoemann et al. Cerebral microinfarcts in primary open-angle glaucoma correlated with DTI-derived integrity of optic radiation
CN110555856A (zh) 一种基于深度神经网络的黄斑水肿病变区域分割方法
Moraru et al. Texture anisotropy technique in brain degenerative diseases
CN115995295A (zh) 基于影像组学的乳腺癌骨转移治疗反应评估方法及系统
TWI725813B (zh) 磁振造影之自動腦部梗塞偵測系統及其運作方法
Chen et al. A novel framework for sub-acute stroke lesion segmentation based on random forest
Pedoia et al. Automatic MRI 2D brain segmentation using graph searching technique
CN110428431B (zh) 一种心脏医学图像的分割方法、装置、设备及存储介质
Akram et al. Detection of neovascularization for screening of proliferative diabetic retinopathy
Liu et al. Retinal vessel segmentation using densely connected convolution neural network with colorful fundus images
Sumijan et al. Detection and Extraction of Brain Hemorrhage on the CT-Scan Image using Hybrid Thresholding Method
Wiharto et al. Blood vessels segmentation in retinal fundus image using hybrid method of frangi filter, otsu thresholding and morphology
CN112287985A (zh) 一种基于不变特征的脑胶质瘤组织学分类及其可视化方法
Kliś et al. Computer-assisted analysis of intracerebral hemorrhage shape and density