JP7116241B2 - sample holder - Google Patents

sample holder Download PDF

Info

Publication number
JP7116241B2
JP7116241B2 JP2021502147A JP2021502147A JP7116241B2 JP 7116241 B2 JP7116241 B2 JP 7116241B2 JP 2021502147 A JP2021502147 A JP 2021502147A JP 2021502147 A JP2021502147 A JP 2021502147A JP 7116241 B2 JP7116241 B2 JP 7116241B2
Authority
JP
Japan
Prior art keywords
sample holder
groove
surface roughness
distance
holder according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021502147A
Other languages
Japanese (ja)
Other versions
JPWO2020171179A1 (en
Inventor
義悟 楢崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Publication of JPWO2020171179A1 publication Critical patent/JPWO2020171179A1/en
Application granted granted Critical
Publication of JP7116241B2 publication Critical patent/JP7116241B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • H01J37/32724Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68785Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the mechanical construction of the susceptor, stage or support
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/06Heater elements structurally combined with coupling elements or holders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • H05B3/143Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds applied to semiconductors, e.g. wafers heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/28Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material
    • H05B3/283Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material the insulating material being an inorganic material, e.g. ceramic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/68Heating arrangements specially adapted for cooking plates or analogous hot-plates
    • H05B3/74Non-metallic plates, e.g. vitroceramic, ceramic or glassceramic hobs, also including power or control circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/2007Holding mechanisms

Description

本開示は、半導体集積回路の製造工程または液晶表示装置の製造工程等において用いられる、半導体ウエハ等の試料を保持する試料保持具に関するものである。 The present disclosure relates to a sample holder for holding a sample such as a semiconductor wafer, which is used in a manufacturing process of semiconductor integrated circuits, a manufacturing process of liquid crystal display devices, or the like.

従来技術の一例は、特許文献1に記載されている。 An example of the prior art is described in US Pat.

特開2011-222978号公報JP 2011-222978 A

本開示の試料保持具は、試料保持面である第1面および該第1面と反対側の第2面を有する板状の絶縁基体と、
前記絶縁基体の前記第2面に設けられた発熱抵抗体と、を備え、
前記第2面は、前記発熱抵抗体が位置する第1部分と、前記第1部分の周囲を取り囲む第2部分と、前記第1部分と前記第2部分との間に設けられた溝部と、を有し、
前記第1部分の表面粗さが、前記第2部分の表面粗さより大きい構成である。
A sample holder of the present disclosure comprises a plate-like insulating substrate having a first surface as a sample holding surface and a second surface opposite to the first surface;
a heating resistor provided on the second surface of the insulating base,
The second surface includes a first portion where the heating resistor is located, a second portion surrounding the first portion, a groove provided between the first portion and the second portion, has
The surface roughness of the first portion is larger than the surface roughness of the second portion.

本開示の目的、特色、および利点は、下記の詳細な説明と図面とからより明確になるであろう。 Objects, features and advantages of the present disclosure will become more apparent from the following detailed description and drawings.

第1実施形態の試料保持具を示す断面図である。Fig. 2 is a cross-sectional view showing the sample holder of the first embodiment; 図1の領域Aで示す外周部分周辺を拡大した部分拡大断面図である。FIG. 2 is a partially enlarged cross-sectional view enlarging the periphery of the outer peripheral portion indicated by area A in FIG. 1; 第2実施形態の外周部分周辺を拡大した部分拡大断面図である。It is a partially enlarged sectional view enlarging the periphery of the outer peripheral portion of the second embodiment. 第3実施形態の外周部分周辺を拡大した部分拡大断面図である。FIG. 11 is a partially enlarged cross-sectional view enlarging the periphery of the outer peripheral portion of the third embodiment; 第4実施形態の外周部分周辺を拡大した部分拡大断面図である。FIG. 14 is a partially enlarged cross-sectional view enlarging the periphery of the outer peripheral portion of the fourth embodiment; 第5実施形態の外周部分周辺を拡大した部分拡大断面図である。FIG. 12 is a partially enlarged cross-sectional view enlarging the periphery of the outer peripheral portion of the fifth embodiment; 第6実施形態の第1貫通孔周辺を拡大した部分拡大断面図である。FIG. 21 is a partially enlarged cross-sectional view enlarging the periphery of the first through hole of the sixth embodiment;

本開示の試料保持具が基礎とする構成である、半導体製造装置等に用いられる試料保持具として、静電チャックが知られている。静電チャックは、セラミック板の主面に凹部が設けられており、この凹部内に電極が設けられている。 An electrostatic chuck is known as a sample holder used in a semiconductor manufacturing apparatus or the like, on which the sample holder of the present disclosure is based. The electrostatic chuck is provided with a concave portion on the main surface of a ceramic plate, and an electrode is provided inside this concave portion.

この静電チャックでは、電極に高周波信号を印加すると、電極(発熱抵抗体)とセラミック板(絶縁基体)の外周部との間に発生したプラズマによって、絶縁破壊が生じるおそれがある。 In this electrostatic chuck, when a high-frequency signal is applied to the electrode, plasma generated between the electrode (heating resistor) and the outer peripheral portion of the ceramic plate (insulating substrate) may cause dielectric breakdown.

以下、試料保持具100について、図面を参照して説明する。図1は、第1実施形態の試料保持具を示す断面図である。図2は、図1の領域Aで示す外周部分周辺を拡大した部分拡大断面図である。試料保持具100は、絶縁基体1と、発熱抵抗体4と、を備え、さらに、支持体2と、接合材3と、を備える。 The sample holder 100 will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing the sample holder of the first embodiment. FIG. 2 is a partially enlarged cross-sectional view enlarging the periphery of the outer peripheral portion indicated by area A in FIG. The sample holder 100 includes an insulating substrate 1 and a heating resistor 4 , and further includes a support 2 and a bonding material 3 .

絶縁基体1は、第1面1aおよび該第1面1aと反対側の第2面1bを有するセラミック体であり、第1面1aが、試料を保持するために一様に平坦な試料保持面である。絶縁基体1は、板状の部材であって、外形状は限定されず、例えば円板状または角板状などであってもよい。 The insulating substrate 1 is a ceramic body having a first surface 1a and a second surface 1b opposite the first surface 1a, the first surface 1a being a uniformly flat sample holding surface for holding a sample. is. The insulating base 1 is a plate-like member, and its outer shape is not limited, and may be, for example, a disk-like shape or a rectangular plate-like shape.

絶縁基体1は、例えばセラミック材料で構成される。セラミック材料としては、例えばアルミナ、窒化アルミニウム、窒化珪素またはイットリア等とすることができる。絶縁基体1の外形寸法は、例えば直径(または辺長)を200~500mm、厚みを2~15mmにすることができる。 The insulating base 1 is made of, for example, a ceramic material. The ceramic material may be, for example, alumina, aluminum nitride, silicon nitride, yttria, or the like. The outer dimensions of the insulating substrate 1 can be, for example, a diameter (or side length) of 200 to 500 mm and a thickness of 2 to 15 mm.

発熱抵抗体4は、絶縁基体1の第2面1bに設けられている。発熱抵抗体4は、例えば白金、AgPb、タングステンまたはモリブデン等の金属材料で構成されており、通電によって発熱するように、電気抵抗値が調整されている。電気抵抗値は、例えば金属材料中にセラミックス材料などの非導電性材料を混合し、混合割合によって調整することができる。発熱抵抗体4の形状は、たとえば、帯状、ミアンダ状、格子状(グリッド状)などであってもよい。 The heating resistor 4 is provided on the second surface 1 b of the insulating base 1 . The heating resistor 4 is made of a metal material such as platinum, AgPb, tungsten, or molybdenum, and has an electrical resistance value adjusted so that it generates heat when energized. The electrical resistance value can be adjusted, for example, by mixing a non-conductive material such as a ceramic material into the metal material and adjusting the mixing ratio. The shape of the heating resistor 4 may be, for example, strip-like, meander-like, lattice-like (grid-like), or the like.

試料保持具100は、例えば、試料保持面である絶縁基体1の第1面1aよりも上方においてプラズマを発生させて用いられる。プラズマは、例えば、外部に設けられた複数の電極間に高周波を印加することによって、電極間に位置するガスを励起させ、発生させることができる。 The sample holder 100 is used, for example, by generating plasma above the first surface 1a of the insulating substrate 1, which is the sample holding surface. Plasma can be generated by, for example, applying high frequency waves between a plurality of externally provided electrodes to excite the gas positioned between the electrodes.

支持体2は、金属製であり、絶縁基体1を支持するための部材である。金属材料としては、例えば、アルミニウムを用いることができる。支持体2の外形状は特に限定されず、円形状または四角形状であってもよい。支持体2の外形寸法は、例えば直径(または辺長)を200~500mmに、厚さを10~100mmにすることができる。支持体2は、絶縁基体1と同じ外形状であってもよく、異なる外形状であってもよく、同じ外形寸法であってもよく、異なる外形寸法であってもよい。 The support 2 is made of metal and is a member for supporting the insulating base 1 . Aluminum, for example, can be used as the metal material. The outer shape of the support 2 is not particularly limited, and may be circular or rectangular. The outer dimensions of the support 2 can be, for example, a diameter (or side length) of 200-500 mm and a thickness of 10-100 mm. The support 2 may have the same outer shape as the insulating base 1, may have a different outer shape, may have the same outer dimensions, or may have different outer dimensions.

支持体2と絶縁基体1とは、接合材3を介して接合されている。具体的には、一様に平坦である支持体2の第1面2aと絶縁基体1の第2面1bとが、接合材3によって接合されている。支持体2の第1面2aの外形と絶縁基体1の第2面1bの外形とは、例えば、同じであり、接合材3は、支持体2の第1面2aおよび絶縁基体1の第2面1bの全面にわたって接合している。接合材3としては、例えば、樹脂材料の接着剤を用いることができる。樹脂材料としては、例えば、シリコーン樹脂などを用いることができる。また、接合材3が、絶縁基体1の第2面1bに設けられた発熱抵抗体4と支持体2の第1面2aとの間に介在することで、発熱抵抗体4と支持体2との電気絶縁性を確保することができる。 The support 2 and the insulating base 1 are bonded together via a bonding material 3 . Specifically, the uniformly flat first surface 2 a of the support 2 and the second surface 1 b of the insulating substrate 1 are bonded together by the bonding material 3 . The outer shape of the first surface 2a of the support 2 and the outer shape of the second surface 1b of the insulating base 1 are, for example, the same, and the bonding material 3 is formed between the first surface 2a of the support 2 and the second surface 1b of the insulating base 1. It is bonded over the entire surface 1b. As the bonding material 3, for example, an adhesive made of a resin material can be used. For example, a silicone resin or the like can be used as the resin material. In addition, since the bonding material 3 is interposed between the heating resistor 4 provided on the second surface 1b of the insulating substrate 1 and the first surface 2a of the support 2, the heating resistor 4 and the support 2 are bonded together. of electrical insulation can be ensured.

図1に示すように、絶縁基体1には、第1面1aから第2面1bまで貫通する貫通孔(以下では、「第1貫通孔」と呼ぶ)9が設けられている。また、支持体2には、第1面(一方の主面)2aから該第1面2aと反対側の第2面(他方の主面)2bまで貫通する第2貫通孔7が設けられている。第2貫通孔7と第1貫通孔9とは連通しており、絶縁基体1の第1面1aから、接合材3を通って、支持体2の第2面2bまで連続した孔となっている。第2貫通孔7および第1貫通孔9は、例えば、ヘリウム等のガスを、支持体2の第2面2b側から試料保持面である絶縁基体1の第1面1a側に流入させるためのガス流入孔として設けられている。 As shown in FIG. 1, the insulating substrate 1 is provided with a through hole (hereinafter referred to as a "first through hole") 9 penetrating from the first surface 1a to the second surface 1b. Further, the support 2 is provided with a second through-hole 7 penetrating from the first surface (one principal surface) 2a to the second surface (the other principal surface) 2b opposite to the first surface 2a. there is The second through-hole 7 and the first through-hole 9 communicate with each other, forming a continuous hole from the first surface 1a of the insulating substrate 1 through the bonding material 3 to the second surface 2b of the support 2. there is The second through-hole 7 and the first through-hole 9 are for allowing a gas such as helium to flow from the second surface 2b side of the support 2 to the first surface 1a side of the insulating substrate 1, which is the sample holding surface. It is provided as a gas inflow hole.

試料保持面である第1面1aより上方においてプラズマを発生させたときに、プラズマが第1貫通孔9を通って支持体2側にまで入り込まないようにするために、支持体2の第2貫通孔7内部に多孔質部材5を設けてもよい。多孔質部材5としては、例えば、アルミナ等のセラミック多孔質材料を用いることができる。多孔質部材5は、上面から下面に気体を流すことが可能な程度の気孔率を有している。そのため、第2貫通孔7の内部に多孔質部材5を位置させることによって、第1貫通孔9に気体を流しつつも、プラズマが支持体2側に到達してしまうおそれを低減する。多孔質部材5の気孔率としては、例えば、40~60%に設定できる。 In order to prevent the plasma from entering the support 2 side through the first through holes 9 when plasma is generated above the first surface 1a which is the sample holding surface, the second A porous member 5 may be provided inside the through hole 7 . As the porous member 5, for example, a ceramic porous material such as alumina can be used. The porous member 5 has a porosity that allows gas to flow from the upper surface to the lower surface. Therefore, by locating the porous member 5 inside the second through-hole 7 , it is possible to reduce the risk of plasma reaching the support 2 side while allowing the gas to flow through the first through-hole 9 . The porosity of the porous member 5 can be set to 40 to 60%, for example.

本実施形態の絶縁基体1の第2面1bは、発熱抵抗体4が位置する第1部分21と、第1部分21の周囲を取り囲む第2部分22と、第1部分21と第2部分22との間に設けられた溝部(以下では、「第1溝部」と呼ぶ)23と、を有している。また、接合材3は、第1部分21と支持体2の第1面2aとを接合し、第2部分22と支持体2の第1面2aとを接合し、第1溝部23の内部にまで入り込んでいる。第1貫通孔9は、第1部分21に開口している。本実施形態では、たとえば、第2面1bが円形状であり、第2部分22が、第2面1bの外周の円環状の部分であり、第1部分21は、第2部分22に囲まれた、第2面1bと同心で小径の円形状の部分であり、第1溝部23は、第1部分21と第2部分22との間に円周状に設けられている。この第1部分21の表面粗さが、第2部分22の表面粗さより大きい。なお、第1部分21の表面粗さは、第1部分21のうち、発熱抵抗体4が設けられている部分を除き、絶縁基体1表面の露出している部分の表面粗さであって、発熱抵抗体4の表面の表面粗さは含まない。 The second surface 1b of the insulating substrate 1 of the present embodiment includes a first portion 21 where the heating resistor 4 is positioned, a second portion 22 surrounding the first portion 21, and the first portion 21 and the second portion 22. and a groove portion (hereinafter referred to as “first groove portion”) 23 provided between. The bonding material 3 bonds the first portion 21 and the first surface 2 a of the support 2 , bonds the second portion 22 and the first surface 2 a of the support 2 , and extends inside the first groove portion 23 . is entering. The first through hole 9 opens to the first portion 21 . In the present embodiment, for example, the second surface 1b is circular, the second portion 22 is an annular portion on the outer circumference of the second surface 1b, and the first portion 21 is surrounded by the second portion 22. The first groove portion 23 is a small-diameter circular portion that is concentric with the second surface 1 b and is circumferentially provided between the first portion 21 and the second portion 22 . The surface roughness of the first portion 21 is greater than that of the second portion 22 . The surface roughness of the first portion 21 is the surface roughness of the exposed portion of the surface of the insulating base 1, excluding the portion where the heating resistor 4 is provided, of the first portion 21, The surface roughness of the surface of the heating resistor 4 is not included.

上記のように第1面1aより上方において発生したプラズマが、第1貫通孔9を通って絶縁基体1の第2面1b付近で漏れ出したり、絶縁基体1の外周から第2面1bまで回り込んだりすることで、プラズマによって、発熱抵抗体4と絶縁基体1の第2部分22との間の絶縁破壊が生じるおそれがある。本実施形態では、第1部分21と第2部分22との間に第1溝部23を設けることで、発熱抵抗体4と第2面1bの第2部分22との沿面距離を大きくし、第1部分21の表面粗さを、第2部分22の表面粗さより大きくすることで、発熱抵抗体4と第2面1bの第2部分22との沿面距離を、さらに大きくすることができ、絶縁破壊の発生を抑制することができる。 The plasma generated above the first surface 1a as described above leaks out near the second surface 1b of the insulating substrate 1 through the first through holes 9, or circulates from the outer periphery of the insulating substrate 1 to the second surface 1b. If the plasma gets into the heat generating resistor 4 and the second portion 22 of the insulating substrate 1, the dielectric breakdown may occur. In this embodiment, by providing the first groove portion 23 between the first portion 21 and the second portion 22, the creeping distance between the heat generating resistor 4 and the second portion 22 of the second surface 1b is increased. By making the surface roughness of the first portion 21 larger than the surface roughness of the second portion 22, the creepage distance between the heat generating resistor 4 and the second portion 22 of the second surface 1b can be further increased, thereby improving the insulation. It is possible to suppress the occurrence of destruction.

第1部分21および第2部分22の表面粗さは、例えば、JISB0601に準拠したRa(算術平均粗さ)で表され、第1部分21の表面粗さRaは、例えば1.0~2.0μmであり、第2部分22の表面粗さRaは、例えば0.1~0.5μmである。 The surface roughness of the first portion 21 and the second portion 22 is represented by Ra (arithmetic mean roughness) conforming to JISB0601, for example, and the surface roughness Ra of the first portion 21 is, for example, 1.0 to 2.0. 0 μm, and the surface roughness Ra of the second portion 22 is, for example, 0.1 to 0.5 μm.

第1溝部23の表面粗さについては、特に限定されないが、第2部分22の表面粗さより大きくしてもよい。なお、第1溝部23の表面粗さRaは、底面部分の表面粗さRaであり、例えば1.0~2.0μmである。第1溝部23の表面粗さを第2部分22の表面粗さより大きくすることで、沿面距離をさらに大きくし、絶縁破壊の発生を抑制することができる。 The surface roughness of the first groove portion 23 is not particularly limited, but may be greater than the surface roughness of the second portion 22 . The surface roughness Ra of the first groove portion 23 is the surface roughness Ra of the bottom portion, and is, for example, 1.0 to 2.0 μm. By making the surface roughness of the first groove portion 23 larger than the surface roughness of the second portion 22, the creepage distance can be further increased and the occurrence of dielectric breakdown can be suppressed.

図3は、第2実施形態の外周部分周辺を拡大した部分拡大断面図である。本実施形態の試料保持具100は、外周部分の構成のみが第1実施形態と異なっており、第1実施形態と同様の構成については詳細な説明を省略している。 FIG. 3 is a partially enlarged sectional view enlarging the periphery of the outer peripheral portion of the second embodiment. The sample holder 100 of this embodiment differs from that of the first embodiment only in the configuration of the outer peripheral portion, and detailed description of the same configuration as that of the first embodiment is omitted.

第1実施形態では、第1部分21の第1面1aからの距離と、第2部分22の第1面1aからの距離とを同じとしている。これに対して本実施形態では、第1部分21の第1面1aからの距離を、第2部分22Aの第1面1aからの距離より大きくしている。絶縁基体1の第1面1aは、一様に平坦な面であり、第1面1aから、第1部分21および第2部分22Aまでの距離とは、第1部分21における絶縁基体1の厚さおよび第2部分22Aにおける絶縁基体1の厚さである。すなわち、本実施形態では、第1部分21における絶縁基体1の厚さを、第2部分22Aにおける絶縁基体1の厚さより大きくしている。言い換えると、外周の第2部分22Aの厚さを、第1部分21の厚さより小さくしている。 In the first embodiment, the distance from the first surface 1a of the first portion 21 and the distance from the first surface 1a of the second portion 22 are the same. In contrast, in the present embodiment, the distance from the first surface 1a of the first portion 21 is made greater than the distance from the first surface 1a of the second portion 22A. The first surface 1a of the insulating substrate 1 is a uniformly flat surface, and the distance from the first surface 1a to the first portion 21 and the second portion 22A is the thickness of the insulating substrate 1 at the first portion 21. and the thickness of the insulating base 1 in the second portion 22A. That is, in this embodiment, the thickness of the insulating base 1 in the first portion 21 is made larger than the thickness of the insulating base 1 in the second portion 22A. In other words, the thickness of the outer peripheral second portion 22A is made smaller than the thickness of the first portion 21 .

また、支持体2の第1面2aからの距離は、第2部分22Aまでの距離が、第1部分21までの距離より大きい。そうすると、接合材3の厚さは、第1部分21の内側に比べて、第2部分22Aの外周側のほうが大きくなる。接合材3が厚いほど伝熱抵抗が大きくなるので、元々支持体2へ熱移動しやすい外周側に対して、接合材3の厚さを大きくし、第2部分22Aから支持体2への熱移動を抑制する。これにより、試料保持面において、外周側と内側との表面温度の温度差を小さくして均熱性を向上することができる。 Further, regarding the distance from the first surface 2a of the support 2, the distance to the second portion 22A is greater than the distance to the first portion 21. As shown in FIG. As a result, the thickness of the bonding material 3 is greater on the outer peripheral side of the second portion 22A than on the inner side of the first portion 21 . The thicker the bonding material 3, the greater the heat transfer resistance. restrain movement. As a result, it is possible to reduce the difference in surface temperature between the outer peripheral side and the inner side of the sample holding surface, thereby improving heat uniformity.

図4は、第3実施形態の外周部分周辺を拡大した部分拡大断面図である。本実施形態の試料保持具100は、外周部分の構成のみが第1実施形態と異なっており、第1実施形態と同様の構成については詳細な説明を省略している。 FIG. 4 is a partially enlarged sectional view enlarging the periphery of the outer peripheral portion of the third embodiment. The sample holder 100 of this embodiment differs from that of the first embodiment only in the configuration of the outer peripheral portion, and detailed description of the same configuration as that of the first embodiment is omitted.

第1実施形態では、第1部分21の第1面1aからの距離と、第2部分22の第1面1aからの距離とを同じとしている。これに対して本実施形態では、第1部分21の第1面1aからの距離を、第2部分22Bの第1面1aからの距離より小さくしている。すなわち、本実施形態では、第1部分21における絶縁基体1の厚さを、第2部分22Bにおける絶縁基体1の厚さより小さくしている。言い換えると、外周の第2部分22Bの厚さを、第1部分21の厚さより大きくしている。 In the first embodiment, the distance from the first surface 1a of the first portion 21 and the distance from the first surface 1a of the second portion 22 are the same. On the other hand, in this embodiment, the distance from the first surface 1a of the first portion 21 is made smaller than the distance from the first surface 1a of the second portion 22B. That is, in this embodiment, the thickness of the insulating base 1 in the first portion 21 is made smaller than the thickness of the insulating base 1 in the second portion 22B. In other words, the thickness of the outer peripheral second portion 22B is made larger than the thickness of the first portion 21 .

第1部分21に設けられた発熱抵抗体4から外周の第2部分22に向かってアーク放電が生じるおそれがあるが、第2部分22Bの厚さが大きいので、放電経路が非直線的になり、アーク放電の発生を抑制することができる。 Arc discharge may occur from the heating resistor 4 provided in the first portion 21 toward the second portion 22 on the outer periphery, but the second portion 22B is thick, so the discharge path is non-linear. , the occurrence of arc discharge can be suppressed.

図5は、第4実施形態の外周部分周辺を拡大した部分拡大断面図である。本実施形態の試料保持具100は、外周部分の構成のみが第1実施形態と異なっており、第1実施形態と同様の構成については詳細な説明を省略している。 FIG. 5 is a partially enlarged sectional view enlarging the periphery of the outer peripheral portion of the fourth embodiment. The sample holder 100 of this embodiment differs from that of the first embodiment only in the configuration of the outer peripheral portion, and detailed description of the same configuration as that of the first embodiment is omitted.

第1実施形態では、第1溝部23の縁部分および第1溝部23の内壁面と底面とが交差する交差部分は、いずれも角部となっており、例えば、外部からの機械的な衝撃または熱などによる衝撃で生じた応力がこの角部に集中し、クラックや欠けが生じたりするおそれがある。これに対して本実施形態では、第1溝部23Aの縁部分および第1溝部23Aの内壁面と底面とが交差する交差部分を、R形状としており、生じた応力を分散させてクラックや欠けの発生を抑制することができる。 In the first embodiment, both the edge portion of the first groove portion 23 and the intersection portion where the inner wall surface and the bottom surface of the first groove portion 23 intersect are corner portions. The stress generated by the impact due to heat concentrates on this corner, which may cause cracks or chipping. On the other hand, in the present embodiment, the edge portion of the first groove portion 23A and the intersection portion where the inner wall surface and the bottom surface of the first groove portion 23A intersect are rounded to disperse the generated stress and prevent cracks and chipping. The occurrence can be suppressed.

図6は、第5実施形態の外周部分周辺を拡大した部分拡大断面図である。本実施形態の試料保持具100は、外周部分の構成のみが第1実施形態と異なっており、第1実施形態と同様の構成については詳細な説明を省略している。 FIG. 6 is a partially enlarged sectional view enlarging the periphery of the outer peripheral portion of the fifth embodiment. The sample holder 100 of this embodiment differs from that of the first embodiment only in the configuration of the outer peripheral portion, and detailed description of the same configuration as that of the first embodiment is omitted.

第1実施形態では、第1溝部23の幅は、開口から底面まで一定としている。これに対して本実施形態では、第1溝部23Aの幅を、開口から底面に向かうにつれて小さくなるようにしている。第1溝部23Aの内部空間の大きさが、相対的に小さくなり、充填される接合材3の量も小さくなる。前述のとおり、接合材3は、熱抵抗を大きくする材料であるので、充填される接合材3の量が小さくなれば、熱抵抗は小さくなる。第1溝部23Aに対向する第1面1aの部分は、発熱抵抗体4で発生した熱によって過熱され易いが、第1溝部23A内の熱抵抗が小さいので、熱は支持体2へと移動し、過熱が抑えられる。 In the first embodiment, the width of the first groove portion 23 is constant from the opening to the bottom surface. On the other hand, in this embodiment, the width of the first groove portion 23A is made smaller from the opening toward the bottom surface. The size of the internal space of the first groove portion 23A becomes relatively small, and the amount of the bonding material 3 to be filled becomes small. As described above, since the bonding material 3 is a material that increases the thermal resistance, the smaller the amount of the bonding material 3 to be filled, the smaller the thermal resistance. The portion of the first surface 1a facing the first groove 23A is easily overheated by the heat generated by the heating resistor 4, but the heat is transferred to the support 2 because the thermal resistance in the first groove 23A is small. , overheating is suppressed.

図7は、第6実施形態の第1貫通孔周辺を拡大した部分拡大断面図である。本実施形態の試料保持具100は、第1貫通孔周辺の構成のみが第1実施形態と異なっており、第1実施形態と同様の構成については詳細な説明を省略している。 FIG. 7 is a partially enlarged sectional view enlarging the vicinity of the first through hole of the sixth embodiment. The sample holder 100 of this embodiment differs from that of the first embodiment only in the configuration around the first through hole, and detailed description of the same configuration as that of the first embodiment is omitted.

本実施形態の絶縁基体1の第2面1bは、第1貫通孔9の開口周囲に位置する第3部分24と、第1部分21と第3部分24との間に設けられた第2溝部25と、をさらに有している。第3部分24は、上記の実施形態においては、第1部分21の一部に相当していた部分であって、第1貫通孔9の開口周囲に当たる環状部分である。環状の第3部分24は、第1部分21によって取り囲まれており、第2溝部25が、第1部分21と第3部分24との間に位置している。 The second surface 1b of the insulating substrate 1 of this embodiment includes a third portion 24 positioned around the opening of the first through hole 9 and a second groove provided between the first portion 21 and the third portion 24. 25 and . The third portion 24 corresponds to a portion of the first portion 21 in the above embodiment, and is an annular portion around the opening of the first through hole 9 . An annular third portion 24 is surrounded by the first portion 21 and a second groove 25 is located between the first portion 21 and the third portion 24 .

本実施形態では、第1部分21の表面粗さが、第3部分24の表面粗さより大きい。上記のようにプラズマが、第1貫通孔9を通って絶縁基体1の第2面1b付近で漏れ出すことで、プラズマによって、発熱抵抗体4と絶縁基体1の第3部分24との間の絶縁破壊が生じるおそれがある。本実施形態では、第1部分21と第3部分24との間に第2溝部25を設けることで、発熱抵抗体4と第2面1bの第3部分24との沿面距離を大きくし、第1部分21の表面粗さを、第3部分24の表面粗さより大きくすることで、発熱抵抗体4と第2面1bの第3部分24との沿面距離を、さらに大きくすることができ、絶縁破壊の発生を抑制することができる。第3部分24の表面粗さRaは、例えば0.1~0.5μmである。 In this embodiment, the surface roughness of the first portion 21 is greater than that of the third portion 24 . As described above, the plasma leaks out near the second surface 1b of the insulating base 1 through the first through-hole 9, so that the plasma creates a gap between the heating resistor 4 and the third portion 24 of the insulating base 1. Dielectric breakdown may occur. In the present embodiment, by providing the second groove portion 25 between the first portion 21 and the third portion 24, the creeping distance between the heating resistor 4 and the third portion 24 of the second surface 1b is increased. By making the surface roughness of the first portion 21 larger than the surface roughness of the third portion 24, the creeping distance between the heat generating resistor 4 and the third portion 24 of the second surface 1b can be further increased, thereby improving the insulation. It is possible to suppress the occurrence of destruction. The surface roughness Ra of the third portion 24 is, for example, 0.1-0.5 μm.

第2溝部25の表面粗さについては、特に限定されないが、第3部分24の表面粗さより大きくしてもよい。なお、第2溝部25の表面粗さRaは、第1溝部23と同様に底面部分の表面粗さRaであり、例えば1.0~2.0μmである。第2溝部25の表面粗さを第3部分24の表面粗さより大きくすることで、沿面距離をさらに大きくし、絶縁破壊の発生を抑制することができる。 The surface roughness of the second groove portion 25 is not particularly limited, but may be greater than the surface roughness of the third portion 24 . Note that the surface roughness Ra of the second groove portion 25 is the surface roughness Ra of the bottom portion, like the first groove portion 23, and is, for example, 1.0 to 2.0 μm. By making the surface roughness of the second groove portion 25 larger than the surface roughness of the third portion 24, the creepage distance can be further increased and the occurrence of dielectric breakdown can be suppressed.

本開示は次の実施の形態が可能である。 The present disclosure enables the following embodiments.

本開示の試料保持具は、試料保持面である第1面および該第1面と反対側の第2面を有する板状の絶縁基体と、
前記絶縁基体の前記第2面に設けられた発熱抵抗体と、を備え、
前記第2面は、前記発熱抵抗体が位置する第1部分と、前記第1部分の周囲を取り囲む第2部分と、前記第1部分と前記第2部分との間に設けられた溝部と、を有し、
前記第1部分の表面粗さが、前記第2部分の表面粗さより大きい構成である。
A sample holder of the present disclosure comprises a plate-like insulating substrate having a first surface as a sample holding surface and a second surface opposite to the first surface;
a heating resistor provided on the second surface of the insulating base,
The second surface includes a first portion where the heating resistor is located, a second portion surrounding the first portion, a groove provided between the first portion and the second portion, has
The surface roughness of the first portion is larger than the surface roughness of the second portion.

本開示の試料保持具によれば、発熱抵抗体と第2面の第2部分との沿面距離を大きくすることができ、絶縁破壊の発生を抑制することができる。 According to the sample holder of the present disclosure, it is possible to increase the creepage distance between the heating resistor and the second portion of the second surface, thereby suppressing the occurrence of dielectric breakdown.

以上、本開示について詳細に説明したが、本開示は上述の実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲内において種々の変更、改良等が可能である。例えば、接合材3は、絶縁基体1の第2面1bと支持体2の第1面2aとの間の全体に位置している必要はなく、一部に設けられていればよい。 Although the present disclosure has been described in detail above, the present disclosure is not limited to the above-described embodiments, and various modifications and improvements are possible without departing from the gist of the present disclosure. For example, the bonding material 3 does not need to be positioned entirely between the second surface 1b of the insulating substrate 1 and the first surface 2a of the support 2, but only needs to be partially provided.

1 絶縁基体
1a 第1面
1b 第2面
2 支持体
2a 第1面
2b 第2面
3 接合材
4 発熱抵抗体
5 多孔質部材
7 第2貫通孔
9 第1貫通孔
21 第1部分
22 第2部分
22A 第2部分
22B 第2部分
23 第1溝部
23A 第1溝部
24 第3部分
25 第2溝部
100 試料保持具
REFERENCE SIGNS LIST 1 insulating substrate 1a first surface 1b second surface 2 support 2a first surface 2b second surface 3 bonding material 4 heating resistor 5 porous member 7 second through hole 9 first through hole 21 first portion 22 second second Part 22A Second part 22B Second part 23 First groove 23A First groove 24 Third part 25 Second groove 100 Sample holder

Claims (8)

試料保持面である第1面および該第1面と反対側の第2面を有する板状の絶縁基体と、
前記絶縁基体の前記第2面に設けられた発熱抵抗体と、を備え、
前記第2面は、前記発熱抵抗体が位置する第1部分と、前記第1部分の周囲を取り囲む第2部分と、前記第1部分と前記第2部分との間に設けられた溝部と、を有し、
前記第1部分の表面粗さが、前記第2部分の表面粗さより大きい試料保持具。
a plate-shaped insulating substrate having a first surface serving as a sample holding surface and a second surface opposite to the first surface;
a heating resistor provided on the second surface of the insulating base,
The second surface includes a first portion where the heating resistor is located, a second portion surrounding the first portion, a groove provided between the first portion and the second portion, has
A sample holder in which the surface roughness of the first portion is greater than the surface roughness of the second portion.
前記溝部の表面粗さが、前記第2部分の表面粗さより大きい、請求項1記載の試料保持具。 2. The sample holder according to claim 1, wherein the surface roughness of said groove is greater than the surface roughness of said second portion. 前記第1部分の前記第1面からの距離は、前記第2部分の前記第1面からの距離より大きい、請求項1または2記載の試料保持具。 3. The sample holder according to claim 1, wherein the distance of said first portion from said first surface is greater than the distance of said second portion from said first surface. 前記第1部分の前記第1面からの距離は、前記第2部分の前記第1面からの距離より小さい、請求項1または2記載の試料保持具。 3. The specimen holder according to claim 1, wherein the distance of said first portion from said first surface is smaller than the distance of said second portion from said first surface. 前記溝部の縁部分および前記溝部の内壁面と底面とが交差する交差部分は、R形状である、請求項1~4のいずれか1つに記載の試料保持具。 The sample holder according to any one of claims 1 to 4, wherein an edge portion of said groove portion and an intersection portion where an inner wall surface and a bottom surface of said groove portion intersect are R-shaped. 前記溝部の幅は、開口から底面に向かうにつれて小さくなる、請求項1~5のいずれか1つに記載の試料保持具。 The sample holder according to any one of claims 1 to 5, wherein the width of said groove portion decreases from the opening toward the bottom surface. 前記絶縁基体は、前記第1面から前記第2面まで貫通する貫通孔を有し、
前記第2面は、前記貫通孔の開口周囲に位置する第3部分と、前記第1部分と前記第3部分との間に設けられた第2溝部と、をさらに有し、
前記第1部分の表面粗さが、前記第3部分の表面粗さより大きい、請求項1~6のいずれか1つに記載の試料保持具。
The insulating base has a through hole penetrating from the first surface to the second surface,
the second surface further includes a third portion located around the opening of the through hole, and a second groove portion provided between the first portion and the third portion;
A sample holder according to any one of claims 1 to 6, wherein the surface roughness of said first portion is greater than the surface roughness of said third portion.
前記絶縁基体の前記第2面を支持する、金属製の支持体をさらに備える、請求項1~7のいずれか1つに記載の試料保持具。 A sample holder according to any one of claims 1 to 7, further comprising a metallic support that supports said second surface of said insulating substrate.
JP2021502147A 2019-02-21 2020-02-20 sample holder Active JP7116241B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019029711 2019-02-21
JP2019029711 2019-02-21
PCT/JP2020/006876 WO2020171179A1 (en) 2019-02-21 2020-02-20 Sample holder

Publications (2)

Publication Number Publication Date
JPWO2020171179A1 JPWO2020171179A1 (en) 2021-12-09
JP7116241B2 true JP7116241B2 (en) 2022-08-09

Family

ID=72143599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021502147A Active JP7116241B2 (en) 2019-02-21 2020-02-20 sample holder

Country Status (5)

Country Link
US (1) US20220148901A1 (en)
JP (1) JP7116241B2 (en)
KR (1) KR102611059B1 (en)
CN (1) CN113396535B (en)
WO (1) WO2020171179A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252353A (en) 1999-02-26 2000-09-14 Toshiba Ceramics Co Ltd Electrostatic chuck and its manufacture
WO2001091166A1 (en) 2000-05-26 2001-11-29 Ibiden Co., Ltd. Semiconductor manufacturing and inspecting device
WO2014119637A1 (en) 2013-01-30 2014-08-07 京セラ株式会社 Sample holder and plasma etching apparatus using same
WO2017033738A1 (en) 2015-08-27 2017-03-02 住友大阪セメント株式会社 Electrostatic chuck device
WO2017163409A1 (en) 2016-03-25 2017-09-28 株式会社日立国際電気 Substrate supporting table, substrate processing apparatus, and method for manufacturing semiconductor device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07307377A (en) * 1993-12-27 1995-11-21 Shin Etsu Chem Co Ltd Ceramic heater with electrostatic chuck
JP5267603B2 (en) * 2010-03-24 2013-08-21 Toto株式会社 Electrostatic chuck
JP2014027207A (en) * 2012-07-30 2014-02-06 Hitachi Chemical Co Ltd Dielectric body and electrostatic chuck using the same
JP6782157B2 (en) * 2016-12-20 2020-11-11 日本特殊陶業株式会社 Electrostatic chuck

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252353A (en) 1999-02-26 2000-09-14 Toshiba Ceramics Co Ltd Electrostatic chuck and its manufacture
WO2001091166A1 (en) 2000-05-26 2001-11-29 Ibiden Co., Ltd. Semiconductor manufacturing and inspecting device
WO2014119637A1 (en) 2013-01-30 2014-08-07 京セラ株式会社 Sample holder and plasma etching apparatus using same
WO2017033738A1 (en) 2015-08-27 2017-03-02 住友大阪セメント株式会社 Electrostatic chuck device
WO2017163409A1 (en) 2016-03-25 2017-09-28 株式会社日立国際電気 Substrate supporting table, substrate processing apparatus, and method for manufacturing semiconductor device

Also Published As

Publication number Publication date
WO2020171179A1 (en) 2020-08-27
KR20210109609A (en) 2021-09-06
US20220148901A1 (en) 2022-05-12
KR102611059B1 (en) 2023-12-07
CN113396535A (en) 2021-09-14
JPWO2020171179A1 (en) 2021-12-09
CN113396535B (en) 2024-01-19

Similar Documents

Publication Publication Date Title
US20180269097A1 (en) Electrostatic chuck device
JP4881319B2 (en) Device for temperature control of a substrate spatially and temporally
JP6442296B2 (en) Mounting table and plasma processing apparatus
JP6686879B2 (en) Electrostatic chuck device
US20240063046A1 (en) Electrostatic chuck
JP7157822B2 (en) sample holder
JP7116241B2 (en) sample holder
JP7296869B2 (en) Electrostatic chuck, substrate fixing device
JP2019091827A (en) Electrostatic chuck device
JP7430489B2 (en) Electrostatic chuck, electrostatic chuck device
JP7261151B2 (en) sample holder
JP7303899B2 (en) sample holder
JP2020109806A (en) Sample holding tool
JP7252378B2 (en) sample holder
JP7433857B2 (en) sample holder
JP2023000165A (en) Ceramic heater and holding member
JP7214868B2 (en) Wafer table
JP2023146282A (en) electrostatic chuck device
JP2023177720A (en) holding device
JP2024004894A (en) holding device
JP2022154252A (en) Electrostatic chuck member and electrostatic chuck device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220728

R150 Certificate of patent or registration of utility model

Ref document number: 7116241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150