JP6782157B2 - Electrostatic chuck - Google Patents

Electrostatic chuck Download PDF

Info

Publication number
JP6782157B2
JP6782157B2 JP2016247205A JP2016247205A JP6782157B2 JP 6782157 B2 JP6782157 B2 JP 6782157B2 JP 2016247205 A JP2016247205 A JP 2016247205A JP 2016247205 A JP2016247205 A JP 2016247205A JP 6782157 B2 JP6782157 B2 JP 6782157B2
Authority
JP
Japan
Prior art keywords
convex portion
electrostatic chuck
wafer
top surface
annular convex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016247205A
Other languages
Japanese (ja)
Other versions
JP2018101705A (en
Inventor
裕明 鈴木
裕明 鈴木
北林 徹夫
徹夫 北林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2016247205A priority Critical patent/JP6782157B2/en
Publication of JP2018101705A publication Critical patent/JP2018101705A/en
Application granted granted Critical
Publication of JP6782157B2 publication Critical patent/JP6782157B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、半導体製造装置向けの静電チャックに関する。 The present invention relates to an electrostatic chuck for semiconductor manufacturing equipment.

電極上に絶縁層を設けた静電チャックは、絶縁層を介して電極と半導体ウエハ(以下、ウエハ)等の被吸着体の間に電圧を印加し、両者の間に発生した静電気力によってウエハ等の被吸着体を吸着するデバイスである。 An electrostatic chuck provided with an insulating layer on an electrode applies a voltage between the electrode and an object to be adsorbed such as a semiconductor wafer (hereinafter referred to as a wafer) via the insulating layer, and the wafer is generated by the electrostatic force generated between the two. It is a device that adsorbs an object to be adsorbed.

静電チャックの使用により、エッチングやCVD等ための半導体製造装置内で、機械的な保持具を使用せずにウエハ全面を均一に加工できる。よって、静電チャックは、ウエハの保持及び温度制御用にサセプタ等のウエハ固定用デバイスとして広く普及している。 By using the electrostatic chuck, the entire surface of the wafer can be uniformly processed in the semiconductor manufacturing apparatus for etching, CVD, etc. without using a mechanical holder. Therefore, the electrostatic chuck is widely used as a wafer fixing device such as a susceptor for holding a wafer and controlling the temperature.

静電チャックとしては、ウエハと絶縁層の間にヘリウム等の不活性ガスを流して両者間の熱伝達を高めるものが知られている(特許文献1)。 As an electrostatic chuck, one is known in which an inert gas such as helium is passed between a wafer and an insulating layer to enhance heat transfer between the two (Patent Document 1).

特許文献1に開示された静電チャックでは、ヘリウムガス用の凹凸溝を誘電体層に形成して、凹凸溝の凸部の頂面(保持面)の中心線表面粗さRa(JIS B0601_1994)を0.3μm以下にして、ウエハとの密着時のガスリーク量を小さくしている。 In the electrostatic chuck disclosed in Patent Document 1, a concavo-convex groove for helium gas is formed in a dielectric layer, and the center line surface roughness Ra (JIS B0601_1994) of the top surface (holding surface) of the convex portion of the concavo-convex groove. Is set to 0.3 μm or less to reduce the amount of gas leakage when the wafer is in close contact with the wafer.

また、ウエハ脱着の迅速化のために静電力を短時間で減衰できる静電チャックとして、静電チャックの等価回路から静電力残留時間と体積固有抵抗、比誘電率、絶縁層又は保護膜の厚さ、具体的には、ウエハと絶縁層表面との間の間隙δや絶縁層表面の最大高さRmax(JIS B0601_1982)とを一定の関係に規定するものも提案されている(特許文献2)。 In addition, as an electrostatic chuck that can attenuate the electrostatic force in a short time to speed up wafer attachment / detachment, the electrostatic force residual time and volume specific resistance, relative permittivity, thickness of the insulating layer or protective film can be obtained from the equivalent circuit of the electrostatic chuck. Specifically, it has been proposed that the gap δ between the wafer and the surface of the insulating layer and the maximum height Rmax (JIS B0601_1982) of the surface of the insulating layer are defined in a certain relationship (Patent Document 2). ..

特開平9−213777号公報Japanese Unexamined Patent Publication No. 9-23777 特開平5−63062号公報JP-A-5-63062

しかしながら、特許文献1に開示の技術のように、静電チャックの保持面の中心線表面粗さRaによって表面粗さを規定していても、ウエハと静電チャックが十分に密着せず、それらの接触界面からのガスリーク量が増えることがあった。 However, even if the surface roughness is defined by the center line surface roughness Ra of the holding surface of the electrostatic chuck as in the technique disclosed in Patent Document 1, the wafer and the electrostatic chuck do not sufficiently adhere to each other, and they The amount of gas leak from the contact interface of the

また、特許文献2に開示の技術のように、静電吸着力に影響する静電チャックとウエハの間隙δの代用特性である最大高さRzで表面粗さを規定していても、吸着力の評価が適切でなく、最大高さRzを小さくしても実際には十分な吸着力が得られない問題があった。 Further, even if the surface roughness is defined by the maximum height Rz, which is a substitute characteristic of the gap δ between the electrostatic chuck and the wafer, which affects the electrostatic attraction force, as in the technique disclosed in Patent Document 2, the attraction force. However, there is a problem that sufficient adsorption force cannot be actually obtained even if the maximum height Rz is reduced.

本発明は、以上の従来技術の問題点に鑑みなされたものであり、静電吸着力の高い静電チャックを提供することを目的とする。さらに、本発明は、ウエハとの接触界面からガスリーク量を抑制できる静電チャックを提供することを目的とする。 The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to provide an electrostatic chuck having a high electrostatic adsorption force. A further object of the present invention is to provide an electrostatic chuck capable of suppressing a gas leak amount from a contact interface with a wafer.

本発明の静電チャックは、第1面を備え且つ電極を包埋するセラミックスの基体と、前記第1面の外周縁部から環状に突出してウエハを支持する頂面を有する環状凸部と、各々が前記環状凸部に囲まれ且つ前記基体の第1面から突出して前記ウエハを支持する頂面を有する複数の凸部と、を備える静電チャックであって、少なくとも前記環状凸部の頂面は、前記環状凸部の頂面の粗さ曲線から求められる最大山高さRpと算術平均粗さRaがRp/Ra≦2.8の関係を充たす表面であり、 前記環状凸部の頂面の粗さ曲線から求められるスキューネスRskが負であり、前記複数の凸部の頂面が前記環状凸部の頂面と同一平面に位置することを特徴とする。 The electrostatic chuck of the present invention includes a ceramic substrate having a first surface and embedding an electrode, and an annular convex portion having a top surface that projects annularly from the outer peripheral edge of the first surface to support the wafer. An electrostatic chuck comprising a plurality of convex portions, each of which is surrounded by the annular convex portion and has a top surface that protrudes from the first surface of the substrate and supports the wafer, and at least the apex of the annular convex portion. surface, said annular protrusion maximum peak height Rp and the arithmetic mean roughness Ra determined from the roughness curve of the top surface of Ri surface der satisfying the relationship of Rp / Ra ≦ 2.8, the top of the annular projection The skewness Rsk obtained from the surface roughness curve is negative, and the top surfaces of the plurality of convex portions are located on the same plane as the top surfaces of the annular convex portions .

前記の本発明の静電チャックにおいて、前記最大山高さRpは、Rp≦1.5μmであることが好ましい。 In the electrostatic chuck of the present invention, the maximum peak height Rp is preferably Rp ≦ 1.5 μm.

本発明の静電チャックによれば、環状凸部の頂面の状態を(最大山高さRp)/(算術平均粗さRa)≦2.8とすることにより当該頂面の粗さ曲線の振幅分布曲線が平均線に対して非対称(粗さ曲線から求められるスキューネスRskが負)になると共に、静電吸着時、算術平均粗さRaと環状凸部の周長の積によって計算される断面積(ガスが通過する断面積)が一定以下になる故に、密着した静電チャックとウエハの間隙からのガスリーク量が抑制される。 According to the electrostatic chuck of the present invention, the amplitude of the roughness curve of the top surface is set by setting the state of the top surface of the annular convex portion to (maximum mountain height Rp) / (arithmetic mean roughness Ra) ≤ 2.8. The distribution curve becomes asymmetric with respect to the average line (skewness Rsk obtained from the roughness curve is negative), and the cross-sectional area calculated by the product of the arithmetic mean roughness Ra and the circumferential length of the annular convex portion during electrostatic adsorption. Since (the cross-sectional area through which the gas passes) becomes a certain value or less, the amount of gas leakage from the gap between the electrostatic chuck and the wafer in close contact with each other is suppressed.

本発明の静電チャックによれば、粗さ曲線の最大山高さRpを用いて環状凸部の頂面表面を仕上げ加工することによって、ガスリーク量を、従来の静電チャックより精密に調節することができるようになる。 According to the electrostatic chuck of the present invention, the amount of gas leak can be adjusted more precisely than the conventional electrostatic chuck by finishing the top surface of the annular convex portion using the maximum peak height Rp of the roughness curve. Will be able to.

本発明の実施形態の静電チャックの平面図である。It is a top view of the electrostatic chuck of embodiment of this invention. 図1のA−A線に沿った断面図である。It is sectional drawing which follows the AA line of FIG. 実施形態の静電チャックの保持面の表面仕上げ加工前後の粗さ曲線及びその振幅分布曲線の関係を説明するグラフである。It is a graph explaining the relationship between the roughness curve before and after surface finishing processing of the holding surface of the electrostatic chuck of embodiment, and the amplitude distribution curve thereof. 実施例と比較例のガスリーク量に対する算術平均粗さRaと粗さ曲線の最大山高さRpの関係を示すグラフである。It is a graph which shows the relationship between the arithmetic mean roughness Ra and the maximum mountain height Rp of a roughness curve with respect to the gas leak amount of an Example and a comparative example. 実施例と比較例のガスリーク量に対する(粗さ曲線の最大山高さRp)/(算術平均粗さRa)の比率の関係を示すグラフである。It is a graph which shows the relationship of the ratio of (maximum mountain height Rp of roughness curve) / (arithmetic mean roughness Ra) to gas leak amount of Example and comparative example.

以下に本発明による実施例を、図面を参照しつつ説明する。 Examples of the present invention will be described below with reference to the drawings.

(構成)
図1は、本実施例の静電チャック10を、図示しないウエハを吸着保持する吸着面である第1面(表面)Ob側から眺めた平面図である。静電チャック10は、円板状のセラミックス焼結体により形成されている基体11を備えている。基体11のセラミックスの材料として、窒化アルミニウム、窒化珪素、サイアロン、炭化珪素、窒化ホウ素、アルミナ等が好ましい。
(Constitution)
FIG. 1 is a plan view of the electrostatic chuck 10 of this embodiment as viewed from the first surface (surface) Ob side, which is a suction surface for sucking and holding a wafer (not shown). The electrostatic chuck 10 includes a substrate 11 formed of a disk-shaped ceramic sintered body. As the material of the ceramics of the substrate 11, aluminum nitride, silicon nitride, sialon, silicon carbide, boron nitride, alumina and the like are preferable.

基体11には、その外周縁部において第1面Obから円環状に突出している環状凸部11R(以下、リブとも称される)と、第1面Obの環状凸部11Rに囲まれる領域から突出している複数の凸部11P(以下、ピンとも称される)と、が形成されている。 The substrate 11 has an annular convex portion 11R (hereinafter, also referred to as a rib) protruding from the first surface Ob in an annular shape on the outer peripheral edge portion thereof, and a region surrounded by the annular convex portion 11R of the first surface Ob. A plurality of projecting convex portions 11P (hereinafter, also referred to as pins) are formed.

基体11には第1面の中央に開口している通気路13が形成されている。通気路13は、基体11の第1面と第2面(裏面)の間の貫通孔により構成される。通気路13は第2面側において、ヘリウム等の熱伝達用ガスの供給装置(図示せず)と接続されている。すなわち、通気路13を介して基体11の第2面側から第1面側に熱伝達用ガスを供給することが可能である。通気路13の個数や開口場所は、所望の熱伝達用ガスの流れに合わせて適宜設計される。 The substrate 11 is formed with a ventilation passage 13 that is open in the center of the first surface. The ventilation passage 13 is composed of through holes between the first surface and the second surface (back surface) of the substrate 11. The ventilation passage 13 is connected to a heat transfer gas supply device (not shown) such as helium on the second surface side. That is, it is possible to supply the heat transfer gas from the second surface side to the first surface side of the substrate 11 via the ventilation passage 13. The number and opening locations of the ventilation passages 13 are appropriately designed according to the desired flow of the heat transfer gas.

なお、基体11の平面形状は略円板状のほか、多角形板状又は楕円板状等の形状であってもよい。また、通気路13から放射方向に延びる溝を環状凸部11R及び凸部11Pを除く第1面Obに形成してもよい。 The planar shape of the substrate 11 may be a substantially disk shape, a polygonal plate shape, an elliptical plate shape, or the like. Further, a groove extending in the radial direction from the ventilation passage 13 may be formed on the first surface Ob excluding the annular convex portion 11R and the convex portion 11P.

図2は、図1のA−A線に沿った断面図であるが、半径方向と板厚方向の一部を省略して描いている。なお、図1及び図2では静電チャックの構成の明確化のため、凸部等の構成要素のそれぞれはデフォルメされており、各構成要素の図面におけるアスペクト比のほか、幅又は高さと相互の間隔との比率等は実際とは異なり得る。 FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1, but is drawn by omitting a part in the radial direction and the plate thickness direction. In addition, in FIGS. 1 and 2, in order to clarify the configuration of the electrostatic chuck, each of the components such as the convex portion is deformed, and in addition to the aspect ratio in the drawing of each component, the width or height and the mutual. The ratio with the interval may differ from the actual one.

図2に示すように、基体11の内部には、静電吸着力を生じさせるための電極12が埋設されている。なお、図では省略したが、基体11の第2面(裏面)Reには、電極12に電気的に接続されている電極端子が設けられており、この電極端子と電極12を電気的に接続する金属配線が基体11の厚さ方向に設けられている。すなわち、電極12には、当該電極端子を介して電圧を印加することが可能である。 As shown in FIG. 2, an electrode 12 for generating an electrostatic adsorption force is embedded inside the substrate 11. Although omitted in the drawing, the second surface (back surface) Re of the substrate 11 is provided with an electrode terminal electrically connected to the electrode 12, and the electrode terminal and the electrode 12 are electrically connected to each other. The metal wiring to be used is provided in the thickness direction of the substrate 11. That is, it is possible to apply a voltage to the electrode 12 via the electrode terminal.

環状凸部11Rは、ウエハ20を第1面Ob上に載置した際に、ウエハ20の外周領域に当接し、ウエハ20と基体11の第1面Obとによって囲繞される空間をその外部から封止する封止部として機能する。環状凸部11Rの頂面11RT(ウエハとの当接部分)の径方向の幅は封止部として機能を発揮できるように、例えば、1000μm以上となるように適宜設計されて形成される。なお、環状凸部11Rの幅は、ウエハに接する熱伝達用ガスの面積を確保するため狭いほうが好ましい。 When the wafer 20 is placed on the first surface Ob, the annular convex portion 11R comes into contact with the outer peripheral region of the wafer 20 and creates a space surrounded by the wafer 20 and the first surface Ob of the substrate 11 from the outside. Functions as a sealing part for sealing. The radial width of the top surface 11RT (contact portion with the wafer) of the annular convex portion 11R is appropriately designed and formed to be, for example, 1000 μm or more so that it can function as a sealing portion. The width of the annular convex portion 11R is preferably narrow in order to secure the area of the heat transfer gas in contact with the wafer.

図2に示すように、ウエハ20を基体11で静電吸着したとき、ウエハ20が基体11の凸部11Pと環状凸部11Rによって支持されることによって形成されるウエハ20と基体11の間隙が熱伝達用ガスの流路を形成する。封止部として機能に影響する環状凸部11Rの頂面11RTは、頂面11RTの粗さ曲線から求められる最大山高さRpと算術平均粗さRaの関係が、Rp/Ra≦2.8となるように形成されている。環状凸部11Rの頂面11RTは、その粗さ曲線の最大山高さRpが、Rp≦1.5μmとなるように形成されることがさらに好ましい。 As shown in FIG. 2, when the wafer 20 is electrostatically adsorbed on the substrate 11, the gap between the wafer 20 and the substrate 11 formed by the wafer 20 being supported by the convex portion 11P and the annular convex portion 11R of the substrate 11 is formed. Form a flow path for heat transfer gas. For the top surface 11RT of the annular convex portion 11R, which affects the function as a sealing portion, the relationship between the maximum mountain height Rp obtained from the roughness curve of the top surface 11RT and the arithmetic mean roughness Ra is Rp / Ra ≦ 2.8. It is formed to be. It is more preferable that the top surface 11RT of the annular convex portion 11R is formed so that the maximum mountain height Rp of the roughness curve is Rp ≦ 1.5 μm.

また、環状凸部11Rの頂面11RTの粗さ曲線から求められるスキューネスRskは負である。かかる環状凸部11Rの頂面11RTの表面状態の調整により、ウエハとの接触界面からのガスリーク量を抑制できる。なお、スキューネスRskの測定に関しては、JIS B0601_2001に準拠している。 Furthermore, the skewness Rsk determined from the roughness curve of the top surface 11RT of the annular projection 11R is Ru Makedea. By adjusting the surface state of the top surface 11RT of the annular convex portion 11R, the amount of gas leak from the contact interface with the wafer can be suppressed. The measurement of skewness Rsk conforms to JIS B0601_2001.

複数の凸部11Pは、基体11の周方向及び径方向に均等に配置されている。例えば、複数の凸部11Pは、正三角形状の頂点、正方角形状の頂点等の格子態様やそのほかの格子態様で規則的に配置される。すなわち、凸部11Pの間隔又はピッチは一定になるように形成されている。ウエハを傾かせずに保持するために、凸部11Pの高さは、凸部11Pの頂面11PTの表面が、環状凸部11Rの頂面11RTと同一平面に位置するように形成される。 The plurality of convex portions 11P are evenly arranged in the circumferential direction and the radial direction of the substrate 11. For example, the plurality of convex portions 11P are regularly arranged in a grid mode such as a regular triangular apex, a square apex, or another grid mode. That is, the intervals or pitches of the convex portions 11P are formed to be constant. To hold without tilting the wafer, the height of the convex portion 11P, the surface of the top face 11PT of the convex portion 11P is, Ru is formed to be positioned on the top surface 11RT flush with the annular convex portion 11R.

各々の凸部11Pの高さ及びその頂面11PT(ウエハとの当接部分)ついては、例えば、パーティクルの低減が主目的となるならば、頂面11PTの面積を減らした方が望ましい。しかし、頂面11PTの面積が小さい場合、ガスリーク量が増加する虞がある。ウエハと静電チャックの隙間に働く吸着力を高くするためには、凸部11Pの高さを低く設定することが好ましい。 Regarding the height of each convex portion 11P and its top surface 11PT (contact portion with the wafer), for example, if the main purpose is to reduce particles, it is desirable to reduce the area of the top surface 11PT. However, if the area of the top surface 11PT is small, the amount of gas leak may increase. In order to increase the attractive force acting on the gap between the wafer and the electrostatic chuck, it is preferable to set the height of the convex portion 11P low.

凸部11Pの各々の形状は、円柱状、角柱状等の柱状のほか、円錐台状、角錐台状等の錘台状であってもよい。また、凸部11Pの形状は、凸部11Pの下部よりも上部の断面積が小さくなるような段差付きの柱状又は錘台状等の形状であってもよい。なお、環状凸部11Rの断面形状は、矩形状でもよいが、その他、台形状、半円状又は半楕円状等、上方に行くにつれて徐々に幅狭となるような形状になるように形成されてもよい。 Each shape of the convex portion 11P may be a truncated cone such as a truncated cone or a truncated cone, as well as a columnar shape such as a columnar shape or a prismatic shape. Further, the shape of the convex portion 11P may be a columnar or pyramidal shape with a step so that the cross-sectional area of the upper portion of the convex portion 11P is smaller than that of the lower portion. The cross-sectional shape of the annular convex portion 11R may be rectangular, but is also formed to have a trapezoidal shape, a semicircular shape, a semi-elliptical shape, or the like so as to gradually narrow in width toward the upper side. You may.

(作製方法)
静電チャック10は、例えば次のような手順で作製される。
(Manufacturing method)
The electrostatic chuck 10 is manufactured by, for example, the following procedure.

まず、セラミック静電チャック用のセラミックス焼結体を用意する。例えば、原料粉末から略円板状の成形体が作製され、この成形体が焼成されることで略円板状のセラミックス焼結体が作製される。 First, a ceramic sintered body for a ceramic electrostatic chuck is prepared. For example, a substantially disk-shaped molded body is produced from the raw material powder, and the molded body is fired to produce a substantially disk-shaped ceramic sintered body.

なお、セラミックス焼結体は従前の製法で製作できる。例えば電極を包埋したホットプレス焼結法やグリーンシート積層法による常圧焼結法等が好適である。 The ceramic sintered body can be manufactured by the conventional manufacturing method. For example, a hot press sintering method in which electrodes are embedded, a normal pressure sintering method by a green sheet lamination method, or the like is suitable.

セラミックス焼結体の作製後、当該セラミックス焼結体の両主面に対して、平行研削加工及び外周の研削加工を行う。その後、セラミックス焼結体に、上記静電チャック10の基体11の保持表面(環状凸部11Rの頂面11RTや凸部11Pの頂面11PT)となる面の全面に表面仕上げ加工を行う。セラミックス焼結体の保持表面となる面に対して、その粗さ曲線から求められる最大山高さRpと算術平均粗さRaの関係がRp/Ra≦2.8となるように研削盤又はラップ盤で表面仕上げ加工が施される。 After manufacturing the ceramics sintered body, parallel grinding and outer peripheral grinding are performed on both main surfaces of the ceramics sintered body. After that, the ceramic sintered body is subjected to surface finishing processing on the entire surface of the surface of the electrostatic chuck 10 to be the holding surface (top surface 11RT of the annular convex portion 11R and the top surface 11PT of the convex portion 11P). Grinder or lapping machine so that the relationship between the maximum mountain height Rp obtained from the roughness curve and the arithmetic mean roughness Ra is Rp / Ra ≤ 2.8 with respect to the surface to be the holding surface of the ceramic sintered body. The surface is finished with.

研削盤又はラップ盤によれば、平面度維持が可能で且つ振幅分布曲線が平均線に対し非対称(すなわち、粗さ曲線から求められるスキューネスRskが負)になる。ただし、例えば、サンドブラスト等の砥粒を衝突させるような振幅分布曲線が対称(又はスキューネスRskが正)になるような加工方法は、当該表面仕上げ加工から除外され得る。 According to the grinder or the lapping machine, the flatness can be maintained and the amplitude distribution curve becomes asymmetric with respect to the average line (that is, the skewness Rsk obtained from the roughness curve is negative). However, for example, a processing method such as sandblasting in which the amplitude distribution curve that causes the abrasive grains to collide is symmetrical (or the skewness Rsk is positive) can be excluded from the surface finishing process.

次に、ブラスト加工又はミーリング加工若しくはマシニング加工等の適当な加工法によって、上記静電チャック10の環状凸部11R及び複数の凸部11Pを形成する。例えば、表面仕上げ加工後のセラミックス焼結体の表面上に、環状凸部11R及び複数の凸部11Pに対応する所定のレジストパターンを形成し、レジスト非形成部分(露出部)に、サンドブラスト処理を行い、環状凸部11R及び複数の凸部11Pを形成する。その後、レジストを除去する。 Next, the annular convex portion 11R and the plurality of convex portions 11P of the electrostatic chuck 10 are formed by an appropriate processing method such as blasting, milling, or machining. For example, a predetermined resist pattern corresponding to the annular convex portion 11R and the plurality of convex portions 11P is formed on the surface of the ceramic sintered body after the surface finishing process, and the non-resist forming portion (exposed portion) is sandblasted. This is done to form the annular convex portion 11R and the plurality of convex portions 11P. After that, the resist is removed.

Rp/Ra≦2.8で且つ算術平均粗さRaが例えば1μm以下(好ましくはRa0.7μm以下)の頂面を有する環状凸部及び複数の凸部を備えた本実施形態の静電チャックが完成する。 The electrostatic chuck of the present embodiment having an annular convex portion having a top surface having an Rp / Ra ≦ 2.8 and an arithmetic average roughness Ra of, for example, 1 μm or less (preferably Ra 0.7 μm or less) and a plurality of convex portions. Complete.

本実施形態の表面仕上げ加工された静電チャックの保持表面(環状凸部11Rの頂面11RT及び複数の凸部11Pの頂面11PT)の粗さ曲線の平均線に対する振幅分布曲線は、平均線に対して対称とならない。すなわち、表面の粗さ曲線から求められるスキューネスRskが負になっている。 The amplitude distribution curve with respect to the average line of the roughness curve of the holding surface (top surface 11RT of the annular convex portion 11R and the top surface 11PT of the plurality of convex portions 11P) of the surface-finished electrostatic chuck of the present embodiment is an average line. Not symmetrical with respect to. That is, the skewness Rsk obtained from the surface roughness curve is negative.

図3は、実施形態の静電チャックの保持面の表面仕上げ加工前(a)と該加工後(a)の粗さ曲線及びその振幅分布曲線の関係を示すグラフである。 FIG. 3 is a graph showing the relationship between the roughness curve and the amplitude distribution curve of the holding surface of the electrostatic chuck of the embodiment before (a) and after (a) surface finishing.

図3(a)に示すように、表面仕上げ加工前のセラミックス焼結体の表面(第1面)の粗さ曲線には、算術平均粗さRaは低いものの所々で周囲から突出するピーク(最大山高さRp等)がある。 As shown in FIG. 3A, the roughness curve of the surface (first surface) of the ceramic sintered body before the surface finishing process shows that the arithmetic mean roughness Ra is low, but peaks (maximum) protruding from the surroundings in some places. Mountain height Rp, etc.).

表面仕上げ加工後においては、図3(b)に示すように、当該ピーク(最大山高さRp)は比較的均一な高さとなる。この加工後においては、粗さ曲線の最大山高さRp自身が小さくなり、その振幅分布曲線は平均線に対して非対称性が顕著となる。その結果、吸着力に影響を及ぼす静電チャックとウエハの間隙δが小さくなり大きな吸着力が発現し、ウエハと静電チャックの良好な密着が実現できる。なお、図3(b)において、該加工前の粗さ曲線と振幅分布曲線を破線で描いてある。 After the surface finishing process, as shown in FIG. 3 (b), the peak (maximum mountain height Rp) becomes a relatively uniform height. After this processing, the maximum peak height Rp itself of the roughness curve becomes small, and the amplitude distribution curve becomes markedly asymmetric with respect to the average line. As a result, the gap δ between the electrostatic chuck and the wafer, which affects the attractive force, becomes small, a large attractive force is exhibited, and good adhesion between the wafer and the electrostatic chuck can be realized. In FIG. 3B, the roughness curve and the amplitude distribution curve before processing are drawn by broken lines.

このように、本実施形態では、静電チャックの吸着力を十分に発揮させるために粗さ曲線の最大山高さRpを用いて環状凸部11Rの頂面11RTの状態を規定している。 As described above, in the present embodiment, the state of the top surface 11RT of the annular convex portion 11R is defined by using the maximum peak height Rp of the roughness curve in order to sufficiently exert the attractive force of the electrostatic chuck.

ちなみに、吸着力は、一般に、最大高さRz(粗さ曲線の最大山高さRpと最大谷深さRvとの和)(JIS B0601_2001)によって決まるとされてきた。 Incidentally, the adsorption force is generally determined by the maximum height Rz (the sum of the maximum peak height Rp of the roughness curve and the maximum valley depth Rv) (JIS B0601_2001).

しかし実際には、粗さ曲線の平均線に対する高さ分布(確率密度関数:振幅分布曲線)すなわち、スキューネスRskは静電チャックの表面加工に影響されることが本発明の発明者によって見出された。 However, in reality, the inventor of the present invention has found that the height distribution of the roughness curve with respect to the average line (probability density function: amplitude distribution curve), that is, the skewness Rsk is affected by the surface processing of the electrostatic chuck. It was.

表面加工によって、静電チャックの表面は、Rsk=0では高さ分布が平均線に対し上下に対称の表面となる。また、Rsk>0では細いピークの山が平均線に対し上に多くあるが多くの山谷が平均線に対し下に多い表面となる。また、Rsk<0では狭い谷が平均線に対し下に多くあるが多くの山谷が平均線に対し上に多い表面となる。実際には非対称(Rsk>0又はRsk<0)となるため、算術平均粗さRaや最大高さRzを調節しても十分な吸着力が得られない場合(Rsk>0)が従来は存在していた。 Due to the surface processing, the surface of the electrostatic chuck becomes a surface whose height distribution is vertically symmetrical with respect to the average line at Rsk = 0. Further, when Rsk> 0, there are many peaks with thin peaks above the average line, but many peaks and valleys are below the average line. Further, when Rsk <0, there are many narrow valleys below the average line, but many peaks and valleys are above the average line. Since it is actually asymmetric (Rsk> 0 or Rsk <0), there has been a case (Rsk> 0) in which sufficient adsorption force cannot be obtained even if the arithmetic mean roughness Ra and the maximum height Rz are adjusted. Was.

そこで、本実施形態では、最大高さRzではなく、少なくとも環状凸部の頂面の粗さ曲線の最大山高さRpを調節することにより吸着力を十分発揮させると共に、該最大山高さRpと算術平均粗さRaと組み合わせたパラメータを有する表面形態にすることによってガスリーク量を調節できる静電チャックを実現している。 Therefore, in the present embodiment, the suction force is sufficiently exerted by adjusting at least the maximum mountain height Rp of the roughness curve of the top surface of the annular convex portion instead of the maximum height Rz, and the maximum mountain height Rp and the arithmetic are performed. An electrostatic chuck capable of adjusting the amount of gas leak is realized by forming a surface form having a parameter combined with the average roughness Ra.

環状凸部の頂面の粗さ曲線の最大山高さRpと算術平均粗さRaに一定の関係(Rp/Ra≦2.8)が成立するときに、局所的なハガレ等が生じないウエハと環状凸部の吸着が十分確保され、さらに、熱伝達用ガスのチャンバへの流出を一定以下に制限することができる。 When a certain relationship (Rp / Ra ≦ 2.8) is established between the maximum peak height Rp of the roughness curve of the top surface of the annular convex portion and the arithmetic mean roughness Ra, the wafer does not cause local peeling or the like. Sufficient adsorption of the annular protrusion is ensured, and the outflow of the heat transfer gas to the chamber can be restricted to a certain level or less.

なお、粗さ曲線の最大山高さRpは環状凸部上でのウエハとの静電吸着力に直接関連するパラメータである。算術平均粗さRaは静電チャックとウエハ間の間隙からのガスの通過に関するコンダクタンスに直接関連するパラメータである。 The maximum peak height Rp of the roughness curve is a parameter directly related to the electrostatic attraction force with the wafer on the annular convex portion. The arithmetic mean roughness Ra is a parameter directly related to the conductance regarding the passage of gas through the gap between the electrostatic chuck and the wafer.

(静電チャック)
実施例の素材として8インチ径(φ200mm)のAlセラミックス焼結体を用いた。予めセラミックス焼結体の表面より1000μm下方に電極が埋設された。該セラミックス焼結体の体積抵抗率は1×1011Ω・cmであった。セラミックス焼結体の表面の平面度は5μmであった。
(Electrostatic chuck)
An 8-inch diameter (φ200 mm) Al 2 O 3 ceramics sintered body was used as the material of the examples. An electrode was embedded 1000 μm below the surface of the ceramic sintered body in advance. The volume resistivity of the ceramic sintered body was 1 × 10 11 Ω · cm. The flatness of the surface of the ceramic sintered body was 5 μm.

セラミックス焼結体の表面(第1面)に、内径φ190mm、外径φ192mm及び高さ25μmの環状凸部を形成した。内径φ190mmより内側の領域には、各々が径φ1mm、高さ25μmの複数の凸部をピッチ間距離8mmの正三角形状の頂点配置で全面に形成した。 An annular convex portion having an inner diameter of φ190 mm, an outer diameter of φ192 mm, and a height of 25 μm was formed on the surface (first surface) of the ceramic sintered body. In the region inside the inner diameter of φ190 mm, a plurality of convex portions each having a diameter of φ1 mm and a height of 25 μm were formed on the entire surface in a regular triangular apex arrangement with a distance between pitches of 8 mm.

算術平均粗さRaの測定条件は測定長さ4mm、カットオフ0.8mmとした。各表面の算術平均高さRaは、市販の接触式又は非接触式の表面粗さ計を用い、JIS規格(JIS B0601_2001, JIS B0633_2001, JIS B0031-200 付属書G,F)に準拠して、測定した。また、最大山高さRpは算術平均粗さRaと同じ表面粗さ計を用いて同じ測定条件にて測定した。 The measurement conditions for the arithmetic mean roughness Ra were a measurement length of 4 mm and a cutoff of 0.8 mm. The arithmetic mean height Ra of each surface uses a commercially available contact type or non-contact type surface roughness meter, and conforms to JIS standards (JIS B0601_2001, JIS B0633_2001, JIS B0031-200 Annex G, F). It was measured. The maximum mountain height Rp was measured under the same measurement conditions using the same surface roughness meter as the arithmetic mean roughness Ra.

(加工方法)
まず、第1の表面加工として、研磨装置において、セラミックス焼結体の第1面に遊離砥粒(GC#1000)による研磨加工を行った。
(Processing method)
First, as the first surface processing, in the polishing apparatus, the first surface of the ceramic sintered body was polished with free abrasive grains (GC # 1000).

その後、第2の表面加工として、粒度9μmのダイヤを含む研磨材を用いて手加工にて研磨を実施することで、仕上がりの粗さ曲線の最大山高さRpを1〜2μm程度、特に1μm以下に達成するようにした。 Then, as the second surface processing, polishing is performed by hand using an abrasive containing a diamond having a particle size of 9 μm, so that the maximum peak height Rp of the finished roughness curve is about 1 to 2 μm, particularly 1 μm or less. I tried to achieve it.

(比較例)
比較例は、第2の表面加工を実施せず、第1の表面加工において遊離砥粒(GC#1000)の研磨加工にて表面加工し、算術平均粗さRaの1μm程度を満たしていれば加工終了とした以外、実施例と同様に加工して得た静電チャックである。
(Comparison example)
In the comparative example, if the second surface processing is not performed and the surface is processed by polishing the free abrasive grains (GC # 1000) in the first surface processing and the arithmetic average roughness Ra is about 1 μm. It is an electrostatic chuck obtained by processing in the same manner as in the embodiment except that the processing is completed.

(リーク評価方法)
真空チャンバ内に静電チャックを載置した。
(Leak evaluation method)
An electrostatic chuck was placed in the vacuum chamber.

静電チャックにベアシリコンウエハを載置し、静電チャックの電極とベアシリコンウエハ間に電位差400Vを印加して、静電チャックとウエハを静電吸着させた。 A bare silicon wafer was placed on the electrostatic chuck, and a potential difference of 400 V was applied between the electrodes of the electrostatic chuck and the bare silicon wafer to electrostatically attract the electrostatic chuck and the wafer.

静電チャックとウエハの間に、ヘリウムガスを10Torr(1333.22Pa)で供給し、圧力制御バルブで圧力制御した。ヘリウムガスを通気路よりウエハと静電チャックの間隙に放出して充填し、その一部がウエハと環状凸部との間から、それらの密着性の度合いに応じて排出するようにして、ガスリーク量を測定した。 Helium gas was supplied at 10 Torr (1333.22 Pa) between the electrostatic chuck and the wafer, and the pressure was controlled by the pressure control valve. A gas leak is made by discharging helium gas from the air passage into the gap between the wafer and the electrostatic chuck to fill it, and then discharging a part of the helium gas from between the wafer and the annular convex portion according to the degree of adhesion between them. The amount was measured.

(結果)
実施例1〜4と比較例1〜3の環状凸部の頂面の粗さ曲線の最大山高さRp、算術平均粗さRa、及びRp/Raの比率とガスリーク量とについて測定した。その結果を下記表と図4及び図5に示す。なお、粗さ曲線の最大山高さRp、算術平均粗さRa及びRp/Raについて、各比較例は第1の表面加工の後に測定し、各実施例は第2の表面加工の後に測定した。
(result)
The maximum peak height Rp, the arithmetic mean roughness Ra, the ratio of Rp / Ra, and the gas leak amount of the roughness curves of the top surfaces of the annular protrusions of Examples 1 to 4 and Comparative Examples 1 to 3 were measured. The results are shown in the table below and in FIGS. 4 and 5. The maximum peak height Rp, arithmetic mean roughness Ra and Rp / Ra of the roughness curve were measured in each Comparative Example after the first surface processing, and in each Example after the second surface processing.

結果として、実施例1の環状凸部の頂面は、Rp/Ra≦2.8の関係が成立しており、また、Rp及びRaが最も小さくなっており、ガスリーク量は最も小さかった。実施例2では、比較例1よりRaは大きいがRpは小さくガスリーク量は小さかった。実施例3では、比較例2よりRaは大きいがRpは小さくガスリーク量は小さかった。実施例4では、Raは大きいが、Rp/Raが2.8以下にて、ガスリーク量は小さかった。 As a result, the relation of Rp / Ra ≦ 2.8 was established on the top surface of the annular convex portion of Example 1, Rp and Ra were the smallest, and the gas leak amount was the smallest. In Example 2, Ra was larger than that of Comparative Example 1, but Rp was small and the amount of gas leak was small. In Example 3, Ra was larger than that of Comparative Example 2, but Rp was small and the amount of gas leak was small. In Example 4, Ra was large, but Rp / Ra was 2.8 or less, and the amount of gas leak was small.

比較例1〜3では、実施例2〜4よりRaは小さいがガスリーク量は大きくプロセスでの使用はできなかった。 In Comparative Examples 1 to 3, Ra was smaller than in Examples 2 to 4, but the amount of gas leak was large and could not be used in the process.

図4は、実施例1、2、3及び4と比較例1、2及び3の結果をこの順にプロットしたガスリーク量に対するRaとRpの関係を示すグラフである。図4から明らかなようにガスリーク量との相関は、RaよりRpの方が強いことが分かる。 FIG. 4 is a graph showing the relationship between Ra and Rp with respect to the amount of gas leak in which the results of Examples 1, 2, 3 and 4 and Comparative Examples 1, 2 and 3 are plotted in this order. As is clear from FIG. 4, it can be seen that the correlation with the gas leak amount is stronger in Rp than in Ra.

図5は、実施例1、2、3及び4と比較例1、2及び3の結果をこの順にプロットしたガスリーク量に対するRp/Raの比率の関係を示すグラフである。図5から明らかなようにRp/Raが2.8のポイントで臨界意義があることが分かる。 FIG. 5 is a graph showing the relationship between the ratio of Rp / Ra to the amount of gas leak in which the results of Examples 1, 2, 3 and 4 and Comparative Examples 1, 2 and 3 are plotted in this order. As is clear from FIG. 5, it can be seen that Rp / Ra has a critical significance at the point of 2.8.

以上の結果から明らかなように、実施例では、Rp/Ra≦2.8の範囲で、ガスリーク量は小さかった。それに対し比較例では、Rp/Ra>2.8の範囲で、ガスリーク量は大きかった。したがって、本発明による効果が確認された。 As is clear from the above results, in the examples, the amount of gas leak was small in the range of Rp / Ra ≦ 2.8. On the other hand, in the comparative example, the amount of gas leak was large in the range of Rp / Ra> 2.8. Therefore, the effect of the present invention was confirmed.

10‥静電チャック、11‥基体、11P‥凸部、11R‥環状凸部、11PT、11RT‥頂面、12‥電極、20‥ウエハ、Ob‥第1面。 10 Electrostatic chuck, 11 substrate, 11P convex, 11R annular convex, 11PT, 11RT top surface, 12 electrode, 20 wafer, Ob first surface.

Claims (2)

第1面を備え且つ電極を包埋するセラミックスの基体と、前記第1面の外周縁部から環状に突出してウエハを支持する頂面を有する環状凸部と、各々が前記環状凸部に囲まれ且つ前記基体の第1面から突出して前記ウエハを支持する頂面を有する複数の凸部と、を備える静電チャックであって、
少なくとも前記環状凸部の頂面は、前記環状凸部の頂面の粗さ曲線から求められる最大山高さRpと算術平均粗さRaがRp/Ra≦2.8の関係を充たす表面であり、 前記環状凸部の頂面の粗さ曲線から求められるスキューネスRskが負であり、前記複数の凸部の頂面が前記環状凸部の頂面と同一平面に位置することを特徴とする静電チャック。
A ceramic substrate having a first surface and embedding an electrode, and an annular convex portion having a top surface that projects annularly from the outer peripheral edge portion of the first surface to support a wafer, each of which is surrounded by the annular convex portion. An electrostatic chuck comprising a plurality of convex portions having a top surface that protrudes from the first surface of the substrate and supports the wafer.
At least a top surface of the annular convex portion, Ri surface der the maximum peak height Rp and the arithmetic mean roughness Ra determined from the roughness curve of the top surface of the annular convex portion satisfies the relationship of Rp / Ra ≦ 2.8 , The skewness Rsk obtained from the roughness curve of the top surface of the annular convex portion is negative, and the top surface of the plurality of convex portions is located on the same plane as the top surface of the annular convex portion. Electric chuck.
前記最大山高さRpは、Rp≦1.5μmであることを特徴とする請求項1に記載の静電チャック。 The electrostatic chuck according to claim 1, wherein the maximum mountain height Rp is Rp ≦ 1.5 μm.
JP2016247205A 2016-12-20 2016-12-20 Electrostatic chuck Active JP6782157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016247205A JP6782157B2 (en) 2016-12-20 2016-12-20 Electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016247205A JP6782157B2 (en) 2016-12-20 2016-12-20 Electrostatic chuck

Publications (2)

Publication Number Publication Date
JP2018101705A JP2018101705A (en) 2018-06-28
JP6782157B2 true JP6782157B2 (en) 2020-11-11

Family

ID=62715562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016247205A Active JP6782157B2 (en) 2016-12-20 2016-12-20 Electrostatic chuck

Country Status (1)

Country Link
JP (1) JP6782157B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113396535B (en) * 2019-02-21 2024-01-19 京瓷株式会社 Sample holding tool

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09174678A (en) * 1995-12-22 1997-07-08 Toray Ind Inc Thermoplastic resin film for magnetic record medium
JPH09213777A (en) * 1996-01-31 1997-08-15 Kyocera Corp Electrostatic chuck
JP3083483B2 (en) * 1996-10-14 2000-09-04 株式会社ノリタケカンパニーリミテド Grinding wheel
JPH10167859A (en) * 1996-12-05 1998-06-23 Ngk Insulators Ltd Ceramic part and its production
JP5004573B2 (en) * 2006-12-25 2012-08-22 京セラ株式会社 Corrosion resistant member for semiconductor manufacturing apparatus and method for manufacturing the same
JP4864757B2 (en) * 2007-02-14 2012-02-01 東京エレクトロン株式会社 Substrate mounting table and surface treatment method thereof
JP5126662B2 (en) * 2007-10-31 2013-01-23 Toto株式会社 Electrostatic chuck

Also Published As

Publication number Publication date
JP2018101705A (en) 2018-06-28

Similar Documents

Publication Publication Date Title
JP6404296B2 (en) Method for repairing aluminum nitride dielectric in electrostatic chuck
US7068489B2 (en) Electrostatic chuck for holding wafer
JP4417197B2 (en) Susceptor device
JP4739039B2 (en) Electrostatic chuck device
US9543187B2 (en) Electrostatic chuck
TWI496240B (en) Electrostatic chuck with polymer protrusions
KR101142000B1 (en) Electrostatic chuck
US10068790B2 (en) Electrostatic chuck device
JPH09213777A (en) Electrostatic chuck
TWI660247B (en) Substrate holding member
JP5011736B2 (en) Electrostatic chuck device
JP3810300B2 (en) Electrostatic chuck
CN112514046B (en) Electrostatic chuck device and method for manufacturing electrostatic chuck device
JP6782157B2 (en) Electrostatic chuck
JP2004179364A (en) Electrostatic chuck
JP4439135B2 (en) Electrostatic chuck
KR102230222B1 (en) A method of filling an adhesive layer of electrostatic chuck
JP2002329776A (en) Electrostatic chuck
WO2020170514A1 (en) Electrostatic chuck device
JPWO2020170514A1 (en) Electrostatic chuck device
JP7096133B2 (en) Manufacturing method of electrostatic chuck
US20220102186A1 (en) Wafer placement table and method of manufacturing the same
JP2008288288A (en) Device for placing board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200812

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201019

R150 Certificate of patent or registration of utility model

Ref document number: 6782157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250