JP3810300B2 - Electrostatic chuck - Google Patents

Electrostatic chuck Download PDF

Info

Publication number
JP3810300B2
JP3810300B2 JP2001332425A JP2001332425A JP3810300B2 JP 3810300 B2 JP3810300 B2 JP 3810300B2 JP 2001332425 A JP2001332425 A JP 2001332425A JP 2001332425 A JP2001332425 A JP 2001332425A JP 3810300 B2 JP3810300 B2 JP 3810300B2
Authority
JP
Japan
Prior art keywords
wafer
peripheral portion
outer peripheral
electrostatic
electrostatic chuck
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001332425A
Other languages
Japanese (ja)
Other versions
JP2003133401A (en
Inventor
靖 右田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001332425A priority Critical patent/JP3810300B2/en
Publication of JP2003133401A publication Critical patent/JP2003133401A/en
Application granted granted Critical
Publication of JP3810300B2 publication Critical patent/JP3810300B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、PVD、CVD、プラズマCVD等の成膜装置や、プラズマエッチング、光励起エッチング等のエッチング装置に使用され、半導体ウェハ等のウェハを吸着保持する静電チャックに関するものである。
【0002】
【従来の技術】
従来、PVD、CVD、プラズマCVD等の成膜装置や、プラズマエッチング、光エッチング等のエッチング装置などの主に半導体製造装置においては、半導体ウェハ(以下、単にウェハという)を精度良く保持する手段として静電気力により吸着保持する静電チャックが用いられている。
【0003】
半導体製造装置の多くは真空中での処理が多く、成膜装置では、成膜時の反応ガスによりウェハが加熱され、ウェハ表面の温度分布が不均一になり、その結果、ウェハの不良が発生するという問題があった。また、エッチング装置においても、プラズマエッチングガスや光励起エッチング時の紫外線や可視光によりウェハが加熱され、ウェハ表面の温度分布が不均一になり、その結果、エッチングレートが温度分布によりばらつき、ウェハの全面を均一にエッチングできないといった問題があった。その為、如何にウェハ表面の温度分布を均一にするかが課題となっていた。
【0004】
そこで、特開平7−153825号公報には、図5に示すように、板状セラミック体22中に静電吸着用電極23を埋設してなり、上記板状セラミック体22の上面には多数の突起24と、これらの突起24と同じ高さを有し、かつ突起24を包囲するように設けられた幅sが1mm〜5mmの環状の外周凸部25を備えた静電チャック21が開示されており、上記突起24及び外周凸部25の頂面にウェハWを載せた状態で静電吸着用電極23との間に電圧を印加することにより静電気力を発現させ、ウェハWを突起24及び外周凸部25の頂面に吸着固定させるとともに、ウェハWと板状セラミック体22の上面との間に形成される空間にヘリウム等の熱伝導性ガスを供給することでウェハWと静電チャック21との間の熱伝導特性を高め、ウェハWの温度分布を均一にする技術が提案されている。
【0005】
また、特開平7−86385号公報には、図6に示すように、静電吸着用電極として機能する板状金属体32の上面に、その外周部34を残して凹部33を形成するとともに、上記板状金属体32の凹部33を含む上面及び側面に誘電体層35を被着し、外周部34頂面上の誘電体層表面35aから凹部33底面上の誘電体層表面35bまでの深さrを数10μm〜0.1乃至0.2mmとした静電チャック31が開示されており、上記外周部34頂面上の誘電体層表面35aにウェハWの周縁部を載せた状態で板状金属体32との間に電圧を印加することにより静電気力を発現させ、ウェハWの周縁部のみを外周部34頂面上の誘電体層表面35aに吸着固定させるとともに、ウェハWと凹部33とで形成される空間に熱伝導性ガスを供給することでウェハWと静電チャック31との間の熱伝導特性を高め、ウェハWの温度分布を均一にする技術が提案されている。
【0006】
【発明が解決しようとする課題】
しかしながら、特開平7−153825号公報のように多数の突起24と外周凸部25の頂面でウェハWを吸着保持するようにした静電チャック21では、反りや変形したウェハWを固定する際、部分的にしか吸着させることができず、吸着不足からウェハWの位置ズレや酷い場合にはウェハWが落下する恐れがあった。
【0007】
また、同公報には外周凸部25の内側領域が吸着領域であると記載され、外周凸部25の下方にまで静電吸着用電極23が埋設されていないことから、外周凸部25とウェハWとの間には静電気力が発生しておらず、その結果、反りや変形したウェハWを固定すると、外周凸部25の頂面との間に多数の隙間ができ、これらの隙間より熱伝導性ガスが漏れ出して半導体製造装置内の真空度を低下させ、成膜精度やエッチング精度に悪影響を与える恐れがあった。
【0008】
一方、特開平7−86385号公報のように中央部に大きな凹部33を設け、その外周部34の凸部のみでウェハWを吸着保持するようにした静電チャック31では、吸着力が小さいため、ウェハWと凹部33とで形成される空間に供給される熱伝導性ガスの供給圧によってウェハWの周縁と外周部34の頂面との間に部分的に隙間ができ、この隙間より熱伝導性ガスが漏れて加工中の真空度を低下させ、その結果、各種加工精度に悪影響を与えるといった課題があった。
【0009】
【発明の目的】
本発明の目的は、反りや変形したウェハでも強固に吸着し、ウェハ表面の温度分布を均一にすることができるとともに、冷却ガスのガス漏れが少なく、さらにはウェハの離脱応答性に優れた静電チャックを提供することにある。
【0010】
【課題を解決するための手段】
そこで、上記課題に鑑み、本発明の静電チャックは、板状セラミック体の一方の主面に、ウェハの第二の保持面となる頂面を有する外周部を残して深さが3μm〜10μmで、周縁部を除く中央領域の底面が上記ウェハの吸着領域である第一の保持面となる凹部を形成し、該凹部底面の上記周縁部にガス溝を備えてなり、上記第一の保持面の下方であって、上記第二の保持面より内側の板状セラミック体中又は板状セラミック体の他方の主面に静電吸着用電極を備えた静電チャックであって、上記第二の保持面におけるうねりを1μm〜3μmとするとともに、上記凹部底面の周縁部にガス溝を設け、上記凹部底面下方の板状セラミック体中又は板状セラミック体の他方の主面に静電吸着用電極を配置したことを特徴とする。
【0011】
また、好ましくは、静電吸着用電極の占有領域における最外周部から上記外周部の内壁面までの距離を5〜10mmとすることが良い。
【0012】
【発明の実施の形態】
以下、本発明の実施形態について説明する。
【0013】
図1は本発明の静電チャックの一例を示す図で、(a)は平面図、(b)は断面図である。また図2は図1(b)のA部を拡大した断面図である。
【0014】
この静電チャック1は、ウェハと略同じ大きさを有する円板状をした板状セラミック体2の一方の主面に、その外周部4を残して平面形状が円形をした凹部3を有し、上記外周部4の頂面を第二の保持面4aとするとともに、上記凹部底面の周縁部にガス溝5を備え、ガス溝5で囲まれた凹部底面を第一の保持面3aとしたもので、凹部底面下方の板状セラミック体2の他方の主面6には一対の半円状をした静電吸着用電極7を配置してある。
【0015】
板状セラミック体2を形成する材質としては、アルミナ質焼結体、窒化珪素質焼結体、窒化アルミニウム質焼結体、イットリウム−アルミニウム−ガーネット質焼結体(以下、YAG質焼結体という)、単結晶アルミナ(サファイア)を用いることができ、これらの中でも窒化アルミニウム質焼結体は熱伝達率が50W/m・k以上、高いものでは熱伝達率100W/m・k以上を有し、熱伝導性に優れることから、ウエハの均熱性を高める点で好ましい。また、単結晶アルミナ(サファイア)を用いれば、セラミック焼結体と違いボイドや脱粒がないため、パーティクルの発生を極力嫌う場合に好適である。
【0016】
第一の保持面3aは板状セラミック体2の他方の主面6と平行な平坦面としてあり、静電気力に影響を与える第一の保持面3aから静電吸着用電極7までの距離が一定となるようにしてある。
【0017】
凹部3の深さh(第二の保持面4aから第一の保持面3aまでの距離)は3μm〜10μmとし、板状セラミック体2の一方の主面外周に微小凸部を形成するとともに、第二の保持面4aである外周部4の頂面におけるうねりを1μm〜3μmとしてある。
【0018】
さらに、板状セラミック体2にはガス溝5に開口する複数個のガス導入孔8を穿孔してあり、これらのガス導入孔8よりガス溝5を介してヘリウムガス等の熱伝達性ガスをウェハと凹部3とで形成される空間に供給するようになっている。
【0019】
また、この静電チャック1には、板状セラミック体2の他方の主面側にガラスや樹脂系接着剤からなる絶縁性の接合層14を介してアルミニウムやステンレス等の金属からなるベース部材9を接合してあり、このベース部材9には、板状セラミック体2のガス導入孔8とそれぞれ連通するガス供給孔10を備えるとともに、一対の静電吸着用電極7と電気的に接続された給電端子12を取り出すための電極取出孔11を備えている。なお、13は電極取出孔11内に設けられた絶縁管で、細長い給電端子12が金属製のベース部材9と接触し、短絡を起こすのを防止してある。
【0020】
この静電チャック1によりウェハWを固定するには、図3(a)に示すように、ウェハWの周縁部が板状セラミック体2の外周部4の頂面である第二の保持面4aと当接するように載せた状態で、給電端子12間に通電すると、静電吸着用電極7とウェハWとの間に静電気力が発現し、図3(b)に示すように、ウェハWの周縁を板状セラミック体2の外周部4の頂面である第二の保持面4aと当接させた状態で、ウェハWの中央を板状セラミック体2の凹部底面である第一の保持面3aと接触するように吸着させることができ、反りや変形したウェハWでも同様に吸着させることができる。
【0021】
そして、ガス導入孔8よりガス溝5を介してヘリウムガス等の熱伝達性ガスをウェハWと凹部3とで形成される空間に供給することにより、ウェハWの周縁と第二の保持面4aとの間からの熱伝導性ガスの漏れを抑え、かつウェハW表面の温度分布を均一にすることができ、この状態で成膜加工を施せば、ウェハW上に均一な膜厚を有し、かつ均質な薄膜を形成することができ、また、エッチング加工を施せば、ウェハW上の薄膜を精度良く加工することができるというように各種加工精度を高めることができる。
【0022】
即ち、本発明によれば、板状セラミック体2の一方の主面における外周部4を残してその大部分を凹部3とし、この凹部底面を吸着領域としたことから、反りや変形したウェハWでも強固に吸着固定することができる。そして、吸着時にはウェハWの中央を第一の保持面3aと接触させ、ウェハWの周縁を第二の保持面4aと接触させるとともに、ウェハWと凹部3とで形成される空間には熱伝導性ガスを供給することができるため、ウェハWの中央及び周縁の熱伝達特性を近似させることができ、ウェハW表面の温度分布を均一にすることができる。しかも、ウェハWの中央は第二の保持面4aより低い位置にある第一の保持面3aに吸着されるため、ウェハWを第二の保持面4aの内周エッジ部に密着させることができるとともに、第二の保持面4aとも接触させることができるため、ウェハWと凹部3とで形成される空間に供給した熱伝導性ガスがウェハWの周縁と第二の保持面4aとの間から漏れることを効果的に防止することができるため、加工中の真空度を低下させるようなことがない。
【0023】
さらに、本発明によれば、凹部底面下方の板状セラミック体2の他方の主面6にのみ静電吸着用電極7を配置し、凹部底面を吸着領域としたことから、第二の保持面4aとウェハWとの間には静電気力が働かず、静電吸着用電極7への通電を止めた時の残留吸着力が少なく、また、強制的に下凸に湾曲させられていたウェハWの弾性力によってウェハWを直ちに離脱させることができる。
【0024】
なお、本発明の静電チャック1を用いてウェハWを吸着させると、図3(b)に示すように、ウェハWはその中央が下凸となるように湾曲した状態で固定されることになるが、本件発明者の研究によれば、吸着時のウェハWの平面度を高めるよりも、ウェハW表面の温度分布を一様にする方が重要であることを突き止め、本発明に至った。
【0025】
ところで、このような作用効果を奏するためには、前述したように、凹部3の深さhを3μm〜10μmとするとともに、第二の保持面4aである外周部4の頂面におけるうねりを1μm〜3μmとすることが重要である。
【0026】
即ち、凹部3の深さhが10μmを超えると、吸着時におけるウェハWの平面度が悪くなりすぎるため、成膜時には膜厚みが不均一となり、エッチング時には形状悪化を引き起こすなど各種加工精度に悪影響を与えるとともに、ウェハWを吸着保持するのに十分な静電吸着力が得られなくなるからであり、逆に凹部3の深さhが3μm未満となると、第二の保持面4aにおけるうねりが3μmである場合、第二の保持面4aの最も窪んだ箇所の高さが第一の保持面3aと同等程度となり、吸着時にウェハWの周縁と第二の保持面4aとの間に大きな隙間ができ、熱伝導性ガスの漏れ量が多くなり過ぎて成膜時やエッチング時における真空度を低下させてしまうため、成膜精度やエッチング精度に悪影響を与えてしまうからである。
【0027】
また、外周部4の頂面におけるうねりが1μm未満になると、吸着時にウェハWが貼り付き、ウェハWの離脱時には直ちに切り離すことができなくなるからであり、逆に、外周部4の頂面におけるうねりが3μmを超えると、ウェハWの周縁を外周部4のうねりに沿って変形させることができないために部分的な隙間ができ、熱伝導性ガスが漏れ易くなるからである。
【0028】
なお、外周部4の頂面におけるうねりとは、真円度測定器で第二の保持面4aである外周部4の頂面全周の変位を測定し、この変位の最大値と最小値の差のことである。
【0029】
さらに、外周部4の幅tは1mm〜10mmとすることが好ましい。なぜなら、外周部4の幅tが1mm未満となると、凹部3の形成時に外周部4の頂面内周エッジ部に欠けや割れが生じ易く、また、欠けや割れが生じると幅tが狭いことからウェハWとの間に隙間ができ、この隙間より熱伝導性ガスが漏れ易くなるからであり、逆に、外周部4の幅tが10mmを超えると、吸着時にウェハWの中央が下凸に湾曲し難くなり、第一の保持面3aである凹部底面に吸着させることができなくなり、ウェハWの保持力が小さくなるとともに、ウェハWと凹部3とで形成される空間に供給された熱伝導性ガスがウェハWの周縁と第二の保持面4aとの間より漏れ易くなるからである。ただし、外周部4の幅tは全周にわたって必ずしも一様である必要性はなく、部分的に狭い箇所や広い箇所があっても良いが、このような場合、外周部4の狭い箇所の幅tは1mm以上、外周部4の広い箇所の幅tは10mm以下となるようにすれば良い。
【0030】
また、熱伝導性ガスの漏れをより効果的に防止するには、第二の保持面4aである外周部4の頂面における表面粗さを滑らかに仕上げ、ウェハWが吸着保持された時に隙間ができないようにすることが良く、具体的には算術平均表面粗さ(Ra)で0.6μm以下とすることが良い。
【0031】
一方、第一の保持面3aである凹部底面はウェハWと接することから、できるだけ平滑に仕上げることが好ましく、具体的には算術平均表面粗さ(Ra)で1.2μm以下とすることが良い。
【0032】
また、静電吸着用電極7の占有領域における最外周部から外周部4の内壁面までの距離kは5〜10mmとすることが好ましい。なぜなら、この距離kが5mm未満となると、静電吸着用電極7が外周部4の下方近傍にまで位置することになり、ウエハWを吸着させるとウェハWと第二の保持面4aとの間にも静電気力が発生し、ウエハWの離脱時における残留吸着力が大きくなるために、ウエハWの離脱応答性が損なわれるからであり、逆に上記距離kが10mmを超えると、ウエハWと第一の保持面3aとの距離が離れすぎるために大きな静電気力が得られず、ウエハWの周縁を第二の保持面4aに押し付ける力が小さくなるため、ウェハWと凹部3とで構成される空間に供給される熱伝導性ガスの供給圧によってウエハWの周縁と第二の保持面4aとの間に部分的に隙間ができ、この隙間より熱伝導性ガスが漏れ易くなるからである。
【0033】
ところで、図1に示す静電チャック1を製作するには、上下面が平滑に仕上げられた板状セラミック体2を用意し、板状セラミック体2の他方の主面6に、イオンプレーティング法、PVD法、CVD法、スパッタリング法、メッキ法等の膜形成手段により、Ti、W、Mo、Ni等の金属やその炭化物等からなる導体層を被着し、次いでエッチング加工により不要な箇所を除去することにより、半円状した一対の静電吸着用電極7を形成する。
【0034】
この時、後述する凹部3形成時に、静電吸着用電極7の占有領域の最外周部が外周部4の内壁面より5mm〜10mm離れた距離kに位置するようにすることが好ましい。
【0035】
次に、板状セラミック体2の一方の主面の所定位置にマシニング加工やブラスト加工によってガス溝5及びガス導入孔8を形成するとともに、静電吸着用電極7には給電端子12を導電性接着剤等で接着固定する。
【0036】
そして、板状セラミック体2の他方の主面側にガラスや樹脂系接着剤等の絶縁性を有する接合層14を介してベース部材9を接合した後、板状セラミック体2の一方の主面に、その外周部4を残して深さhが3μm〜10μmの凹部3を形成するとともに、外周部4の頂面におけるうねりが1μm〜3μmとなるように仕上げることにより図1に示す静電チャック1を得ることができる。
【0037】
ここで、板状セラミック体2に凹部3を形成する手段としては、ブラスト加工やエッチング加工にて形成することができるが、ロータリー加工機を用いた研削加工にて製作することが好ましい。なぜなら、ロータリー加工機を用いれば、研磨代が残った粗加工の状態から外周部4と凹部3を同時に仕上げ加工まで一貫して加工することができ、また、精度良く仕上げることができる。
【0038】
また、外周部4は凹部3を仕上げ加工する際に、外周部4の仕上げ代を残しておき、外周部4のみラップ研磨により加工することができる。このラップ研磨条件としては、板状セラミック体2が窒化アルミニウム質焼結体からなる場合、平面度10μm以下の鋳鉄のラップ盤を用い、10μm以下のダイヤモンド砥粒を用いることで、外周部4の頂面におけるうねりを1μm〜3μmとすることができる。
【0039】
以上、本実施形態では板状セラミック体2の他方の主面6に静電吸着用電極7を備えた静電チャック1を例にとって説明したが、図4に示すように、凹部底面下方の板状セラミック体2中に静電吸着用電極7を埋設した静電チャック1にも適用できることは言う迄もない。
【0040】
また、本発明は前述した実施形態だけに限定されるものではなく、本発明の要旨を逸脱しない範囲で、改良や変更したものでも良いことは言う迄もない。
【0041】
【実施例】
(実施例1)
図1に示す静電チャック1を製作し、凹部の深さhを異ならせた時のウェハ表面の温度バラツキ、熱伝導性ガスの漏れ量、及び離脱応答性について調べる実験を行った。
【0042】
本実験では、窒化アルミニウム質焼結体からなる直径200mm、厚み1mmの円板状をした板状セラミックス体2を用意し、この板状セラミック体2の他方の主面にメッキ法にてNi膜を被着した後、エッチング加工により不要箇所を除去することにより、一対の半円状をした静電吸着用電極7を円を構成するように形成した。
【0043】
次に、各静電吸着用電極7に給電端子12を導電性接着剤によって固着した後、板状セラミック体2の他方の主面側にアルミニウム製のベース部材9をシリコン系接着剤からなる接合層14を介して接合した。
【0044】
次いで、板状セラミック体2の一方の主面の所定位置にブラスト加工にてガス溝5と、このガス溝5に連通するガス導入口8を形成した後、板状セラミック体2の一方の主面の外周部4を残して深さhを異ならせた凹部3を形成することにより各試料としての静電チャックを製作した。
【0045】
なお、外周部4の頂面の幅tは4mm、ガス溝5で囲まれた凹部底面の直径は190mm、静電吸着用電極7の占有領域における最外周部から外周部4の内壁面までの距離kは5mmとした。
【0046】
そして、得られた静電チャック1を真空容器内に設置し、図3(a)に示すように、8インチのシリコンウェハを外周部4の頂面の載せた後、一対の静電吸着用電極7に通電することにより静電気力を発現させ、図3(b)に示すようにシリコンウェハを静電チャック1に吸着させるようにした状態で、ガス導入孔8から熱伝導性ガスとしてヘリウムガスを2666Paの圧力で供給し、ヘリウムガスの漏れ量をヘリウムの供給量と真空容器内の差圧で測定した。また、その時のシリコンウェハ表面の温度バラツキを測定した。ただし、ウェハ表面の設定温度は100℃とし、また温度バラツキは、任意に選んだウェハ表面の測定点10点の最高温度と最低温度の温度差ΔTとして測定した。
【0047】
さらに、ヘリウムガスを供給してから60秒後に静電吸着用電極7への通電を止め、ウェハが離脱するまでの時間、つまり離脱応答時間を測定し、離脱応答性を評価した。ただし、ウェハが離脱するまでの時間はウェハが離脱した瞬間にヘリウムの漏れ量が急激に増大し始めることから、静電吸着用電極7への通電を止めてからヘリウムガスの漏れ量が急激に増大し、10SCCMとなるまでの時間を測定し評価した。
【0048】
それぞれの結果は表1に示す通りである。
【0049】
【表1】

Figure 0003810300
【0050】
表1より判るように、まずいずれの試料もウェハの離脱時間が10秒以下と離脱応答性は良好であることが判る。
【0051】
ただし、ヘリウムガスの漏れ具合について見てみると、凹部3の深さhが0μmである試料No.1は、ウェハを吸着固定した際に、凹部底面と外周部4の頂面との間に段差が無いため、ウェハの周縁を外周部4の頂面に強く密着させることができず、8.3SCCMものヘリウムガスの漏れが発生した。
【0052】
また、凹部3の深さhが15μmである試料No.5は、ウェハから凹部底面までの距離が離れすぎているため、静電吸着用電極7に通電しても大きな静電気力を発生させることができず、強固に吸着させることができないため、ヘリウムガスの供給圧によりウェハと外周部4の頂面との間に隙間ができ、この隙間より7.8SCCMものヘリウムガスの漏れが発生した。
【0053】
一方、ウェハ表面の温度バラツキについて見てみると、凹部3の深さhが0μmである試料No.1は、ヘリウムガスの漏れのためにウェハの中央まで充分に行き渡らず、ウェハの中央における熱伝達特性を高めることができなかった。その結果、ウェハ表面の温度バラツキが12℃と大きいかった。
【0054】
これに対し、凹部3の深さhが3μm〜10μmの範囲にある試料No.2〜4は、ヘリウムガスの漏れ量を5SCCM以下に抑えることができるとともに、ウェハ表面の温度バラツキを5℃以下と均一にすることができ、優れていた。
【0055】
この結果、凹部3の深さhは3〜10μmとすれば良いことが判る。
(実施例2)
次に、凹部3の深さhを5μmに固定し、外周部4の頂面におけるうねりを異ならせる以外は実施例1と同様の条件にてウェハ表面の温度バラツキ、熱伝導性ガスの漏れ量、及び離脱応答性について調べる実験を行った。
【0056】
結果は表2に示す通りである。
【0057】
【表2】
Figure 0003810300
【0058】
表2より判るように、外周部4の頂面におけるうねりが0.5μmである試料No.6は、離脱応答時間が13.5秒と長かった。この原因は、外周部4の頂面のうねりが小さいため、吸着時にウェハの周縁が外周部4の頂面に押し付けられ、その結果、真空密着したリンギング状態となり、離脱し難くなったものと思われる。
【0059】
また、外周部4の頂面におけるうねりが5μmである試料No.9は、吸着時にうねりに沿ってウェハを密着させることができないため、ウェハと外周部4の頂面との間に隙間ができ、この隙間より12.7SCCMものヘリウムガスの漏れが発生した。
【0060】
これに対し、外周部4の頂面におけるうねりが1μm〜3μmの範囲にある試料No.7,8は、ヘリウムガスの漏れ量を5SCCM以下に抑えることができるとともに、ウェハ表面の温度バラツキを5℃以下と均一にすることができ、さらにはウェハの離脱応答性にも優れていた。
【0061】
この結果、外周部4の頂面におけるうねりは1μm〜3μmとすれば良いことが判る。
【0062】
そして、実施例1及び実施例2の結果より、凹部3の深さhを3μm〜10μmとするとともに、外周部4の頂面におけるうねりを1μm〜3μmとし、凹部底面下方の板状セラミック体2の他方の主面6に静電吸着用電極7を配置することにより、熱伝導性ガスのガス漏れを抑えつつ、ウェハ表面の温度分布を均一にすることができるとともに、ウェハの離脱応答性にも優れた静電チャック1を提供できることが判る。また、このような静電チャック1は大きな吸着力が得られるため、反りや変形したウェハでも強固に吸着して固定することができる。
(実施例3)
さらに、凹部3の深さhを5μm、外周部4の頂面におけるうねりを1μmに固定し、静電吸着用電極7の占有領域における最外周部から外周部4の内壁面までの距離kを異ならせる以外は実施例1と同様の条件にてウェハ表面の温度バラツキ、熱伝導性ガスの漏れ量、及び離脱応答性について調べる実験を行った。
【0063】
結果は表3に示す通りである。
【0064】
【表3】
Figure 0003810300
【0065】
表3より判るように、静電吸着用電極7の占有領域における最外周部から外周部4の内壁面までの距離kが3mmである試料No.10は、ウェハの離脱応答性が15.3秒と長かった。この原因としては、静電吸着用電極7が外周部4の下方近くまで形成されていることにより、静電気力が外周部4にまで影響し、ウェハの離脱時に外周部4に残留吸着力が働き、離脱にかかる時間がかかったものと思われる。
【0066】
また、静電吸着用電極7の占有領域における最外周部から外周部4の内壁面までの距離kが15mmである試料No.13は、静電吸着用電極7の占有領域が狭くなり過ぎるために凹部底面でのウェハの吸着力が小さく、ウェハの周縁を外周部4の頂面に押し付ける力が弱くなり、その結果、ヘリウムガスの圧力により、ウェハの周縁と外周部4の頂面との間に部分的な隙間ができ、7.7SCCMものヘリウムガスの漏れが発生した。
【0067】
これに対し、静電吸着用電極7の占有領域における最外周部から外周部4の内壁面までの距離kが5mm〜10mmの範囲にある試料No.11,12は、ヘリウムガスの漏れ量が5SCCM以下と少なく、ウェハの離脱にかかる時間も10秒以下と短かく良好な結果であった。また、ウェハ表面の温度バラツキも5℃以下と良好であった。
【0068】
この結果、静電吸着用電極7の占有領域における最外周部から外周部4の内壁面までの距離kは5mm〜10mmとすれば良いことが判る。
【0069】
【発明の効果】
以上のように、本発明の静電チャックは、板状セラミック体の一方の主面に、ウェハの第二の保持面となる頂面を有する外周部を残して深さが3μm〜10μmで、周縁部を除く中央領域の底面が上記ウェハの吸着領域である第一の保持面となる凹部を形成し、該凹部底面の上記周縁部にガス溝を備えてなり、上記第一の保持面の下方であって、上記第二の保持面より内側の板状セラミック体中又は板状セラミック体の他方の主面に静電吸着用電極を備えた静電チャックであって、上記第二の保持面におけるうねりを1μm〜3μmとするとともに、上記凹部底面の周縁部にガス溝を設け、上記凹部底面下方の板状セラミック体中又は板状セラミック体の他方の主面に静電吸着用電極を配置したことによって、反りや変形したウェハでも強固に吸着固定することができる。
【0070】
また、吸着時にはウェハの中央を第一の保持面である凹部底面と接触させ、ウェハの周縁を第二の保持面である外周部の頂面と接触させるとともに、ウェハと凹部とで形成される空間には熱伝導性ガスを供給することができるため、ウェハの中央及び周縁の熱伝達特性を近似させることができ、ウェハ表面の温度分布を均一にすることができる。
【0071】
しかも、ウェハの中央は第二の保持面より低い位置にある第一の保持面に吸着されるため、ウェハを第二の保持面の内周エッジ部に密着させることができるとともに、第二の保持面とも接触させることができるため、ウェハと凹部とで形成される空間に供給した熱伝導性ガスがウェハの周縁と第二の保持面との間から漏れることを効果的に防止することができ、各種加工中の真空度を低下させることがない。
【0072】
その為、本発明の静電チャックを成膜加工やエッチング加工等の各種加工に用いれば、ウェハに対して精度の高い加工を施すことができる。
【0073】
その上、静電吸着用電極は凹部底面の下方にしか配置していないことから、静電吸着用電極への通電を止めれば、残留吸着力が小さく、かつ強制的に下凸に湾曲させられていたウェハの弾性力によってウェハを保持面より直ちに離脱させることができるため、静電チャックからの離脱応答性を高めることができる。
【図面の簡単な説明】
【図1】本発明の静電チャックの一例を示す図で、(a)は平面図、(b)は断面図である。
【図2】図1のA部を拡大した断面図である。
【図3】(a)(b)は本発明の静電チャックを用いてウェハを吸着する時の過程を示す断面図である。
【図4】本発明の静電チャックの他の例を示す断面図である。
【図5】従来の静電チャックの一例を示す断面図である。
【図6】従来の静電チャックの他の例を示す断面図である。
【符号の説明】
1:静電チャック 2:板状セラミック体、3:凹部、3a:第一の保持面
4:外周部、4a:第二の保持面 5:ガス溝 6:他方の主面
7:静電吸着用電極 8:ガス導入孔 9:ベース部材 10:ガス供給孔
11:電極取出孔 12:給電端子 13:絶縁管 14:接合層
W:ウェハ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrostatic chuck that is used in film forming apparatuses such as PVD, CVD, and plasma CVD, and etching apparatuses such as plasma etching and photoexcited etching, and holds a wafer such as a semiconductor wafer by suction.
[0002]
[Prior art]
Conventionally, as a means for accurately holding a semiconductor wafer (hereinafter simply referred to as a wafer) in a semiconductor manufacturing apparatus such as a film forming apparatus such as PVD, CVD, or plasma CVD, or an etching apparatus such as plasma etching or photoetching. An electrostatic chuck that is attracted and held by electrostatic force is used.
[0003]
Many semiconductor manufacturing equipment is processed in a vacuum, and in the film formation equipment, the wafer is heated by the reaction gas during film formation, resulting in uneven temperature distribution on the wafer surface, resulting in wafer defects. There was a problem to do. Also in the etching apparatus, the wafer is heated by plasma etching gas, ultraviolet light or visible light during photoexcited etching, and the temperature distribution on the wafer surface becomes non-uniform. As a result, the etching rate varies depending on the temperature distribution, and the entire surface of the wafer is changed. There is a problem that the film cannot be etched uniformly. Therefore, how to make the temperature distribution on the wafer surface uniform has been a problem.
[0004]
Therefore, in JP-A-7-153825, as shown in FIG. 5, an electrostatic chucking electrode 23 is embedded in a plate-like ceramic body 22, and a large number of electrodes are formed on the upper surface of the plate-like ceramic body 22. An electrostatic chuck 21 having protrusions 24 and an annular outer peripheral convex part 25 having the same height as these protrusions 24 and provided so as to surround the protrusions 24 and having a width s of 1 mm to 5 mm is disclosed. In the state where the wafer W is placed on the top surfaces of the protrusions 24 and the outer peripheral projections 25, a voltage is applied between the protrusions 24 and the electrostatic chucking electrode 23 to develop an electrostatic force. The wafer W and the electrostatic chuck are fixed by adsorbing and fixing to the top surface of the outer peripheral convex portion 25 and supplying a heat conductive gas such as helium to a space formed between the wafer W and the upper surface of the plate-like ceramic body 22. High heat conduction characteristics with 21 , Techniques to make uniform the temperature distribution of the wafer W has been proposed.
[0005]
Further, in JP-A-7-86385, as shown in FIG. 6, a concave portion 33 is formed on the upper surface of a plate-like metal body 32 that functions as an electrode for electrostatic adsorption, leaving its outer peripheral portion 34, and A dielectric layer 35 is deposited on the top and side surfaces of the plate-like metal body 32 including the recess 33, and the depth from the dielectric layer surface 35a on the top surface of the outer peripheral portion 34 to the dielectric layer surface 35b on the bottom surface of the recess 33. An electrostatic chuck 31 having a thickness r of several tens of μm to 0.1 to 0.2 mm is disclosed, and a plate with the peripheral edge of the wafer W placed on the dielectric layer surface 35a on the top surface of the outer peripheral portion 34 is disclosed. An electrostatic force is developed by applying a voltage between the wafer-like metal body 32 and only the peripheral edge portion of the wafer W is attracted and fixed to the dielectric layer surface 35a on the top surface of the outer peripheral portion 34. Supplying thermally conductive gas to the space formed by Enhance thermal conductivity between the wafer W and the electrostatic chuck 31 in Rukoto, techniques to make uniform the temperature distribution of the wafer W has been proposed.
[0006]
[Problems to be solved by the invention]
However, in the electrostatic chuck 21 in which the wafer W is attracted and held by the top surfaces of the numerous protrusions 24 and the outer peripheral convex portion 25 as in JP-A-7-153825, when the warped or deformed wafer W is fixed. The wafer W can only be partially adsorbed, and the wafer W may fall if the wafer W is misaligned or severe due to insufficient adsorption.
[0007]
Further, the publication describes that the inner region of the outer peripheral convex portion 25 is an attracting region, and the electrostatic attracting electrode 23 is not buried below the outer peripheral convex portion 25. No electrostatic force is generated with respect to W, and as a result, when the warped or deformed wafer W is fixed, a large number of gaps are formed between the top surfaces of the outer peripheral projections 25, and heat is generated from these gaps. The conductive gas leaks and lowers the degree of vacuum in the semiconductor manufacturing apparatus, which may adversely affect film formation accuracy and etching accuracy.
[0008]
On the other hand, the electrostatic chuck 31 in which a large concave portion 33 is provided in the central portion and the wafer W is attracted and held only by the convex portion of the outer peripheral portion 34 as disclosed in JP-A-7-86385 has a small attractive force. A gap is partially formed between the peripheral edge of the wafer W and the top surface of the outer peripheral portion 34 by the supply pressure of the heat conductive gas supplied to the space formed by the wafer W and the recess 33, and heat is generated from the gap. There was a problem that the conductive gas leaked to lower the degree of vacuum during processing, and as a result, various processing accuracy was adversely affected.
[0009]
OBJECT OF THE INVENTION
The object of the present invention is to firmly adsorb even a warped or deformed wafer, to make the temperature distribution on the wafer surface uniform, to reduce the leakage of cooling gas, and to provide a static response with excellent wafer detachment response. It is to provide an electric chuck.
[0010]
[Means for Solving the Problems]
Therefore, in view of the above problems, the electrostatic chuck of the present invention is provided on one main surface of the plate-shaped ceramic body. Having a top surface to be a second holding surface of the wafer Leaving the outer periphery , Depth 3μm ~ 10μm Thus, the bottom surface of the central region excluding the peripheral portion becomes the first holding surface which is the suction region of the wafer. Forming a recess, A gas groove is provided in the peripheral edge portion of the bottom surface of the recess, and is located below the first holding surface and inside the second holding surface or in the other main part of the plate ceramic body. An electrostatic chuck having an electrostatic chuck electrode on its surface, the above Second holding surface And a gas groove is provided at the peripheral edge of the bottom surface of the recess, and an electrode for electrostatic attraction is arranged in the plate ceramic body below the bottom surface of the recess or on the other main surface of the plate ceramic body It is characterized by that.
[0011]
Preferably, the distance from the outermost peripheral portion to the inner wall surface of the outer peripheral portion in the occupation region of the electrostatic chucking electrode is 5 to 10 mm.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0013]
1A and 1B are views showing an example of an electrostatic chuck according to the present invention. FIG. 1A is a plan view and FIG. 1B is a cross-sectional view. FIG. 2 is an enlarged cross-sectional view of a portion A in FIG.
[0014]
The electrostatic chuck 1 has a concave portion 3 having a circular planar shape, leaving the outer peripheral portion 4 on one main surface of a disk-shaped plate-like ceramic body 2 having substantially the same size as the wafer. The top surface of the outer peripheral portion 4 is the second holding surface 4a, the gas groove 5 is provided in the peripheral portion of the bottom surface of the recess, and the bottom surface of the recess surrounded by the gas groove 5 is the first holding surface 3a. Therefore, a pair of semi-circular electrostatic attraction electrodes 7 are arranged on the other main surface 6 of the plate-like ceramic body 2 below the bottom of the recess.
[0015]
Examples of the material for forming the plate-like ceramic body 2 include an alumina sintered body, a silicon nitride sintered body, an aluminum nitride sintered body, an yttrium-aluminum-garnet sintered body (hereinafter referred to as a YAG sintered body). ), Single crystal alumina (sapphire) can be used. Among these, the aluminum nitride sintered body has a heat transfer coefficient of 50 W / m · k or higher, and a high one has a heat transfer coefficient of 100 W / m · k or higher. From the viewpoint of improving thermal uniformity of the wafer, it is excellent in thermal conductivity. In addition, if single crystal alumina (sapphire) is used, unlike ceramic sintered bodies, there are no voids and grain loss, which is suitable when the generation of particles is hated as much as possible.
[0016]
The first holding surface 3a is a flat surface parallel to the other main surface 6 of the plate-like ceramic body 2, and the distance from the first holding surface 3a that affects the electrostatic force to the electrostatic adsorption electrode 7 is constant. It is supposed to be.
[0017]
The depth h of the concave portion 3 (distance from the second holding surface 4a to the first holding surface 3a) is 3 μm to 10 μm, and a minute convex portion is formed on the outer periphery of one main surface of the plate-like ceramic body 2, The waviness on the top surface of the outer peripheral portion 4 which is the second holding surface 4a is set to 1 μm to 3 μm.
[0018]
Further, the plate-like ceramic body 2 is provided with a plurality of gas introduction holes 8 opened to the gas groove 5, and heat transfer gas such as helium gas is supplied from these gas introduction holes 8 through the gas groove 5. A space formed by the wafer and the recess 3 is supplied.
[0019]
Further, the electrostatic chuck 1 has a base member 9 made of a metal such as aluminum or stainless steel via an insulating bonding layer 14 made of glass or resin adhesive on the other main surface side of the plate-like ceramic body 2. The base member 9 is provided with gas supply holes 10 communicating with the gas introduction holes 8 of the plate-like ceramic body 2 and is electrically connected to the pair of electrostatic adsorption electrodes 7. An electrode extraction hole 11 for taking out the power supply terminal 12 is provided. Reference numeral 13 denotes an insulating tube provided in the electrode extraction hole 11 to prevent the elongated power supply terminal 12 from contacting the metal base member 9 and causing a short circuit.
[0020]
In order to fix the wafer W by the electrostatic chuck 1, as shown in FIG. 3A, the second holding surface 4 a in which the peripheral portion of the wafer W is the top surface of the outer peripheral portion 4 of the plate-like ceramic body 2. 3, when an electric current is applied between the power supply terminals 12, an electrostatic force is generated between the electrostatic chucking electrode 7 and the wafer W, and as shown in FIG. The first holding surface which is the bottom surface of the concave portion of the plate-like ceramic body 2 with the center thereof being in contact with the second holding surface 4a which is the top surface of the outer peripheral portion 4 of the plate-like ceramic body 2 The wafer W can be adsorbed so as to come into contact with 3a, and even a warped or deformed wafer W can be adsorbed in the same manner.
[0021]
Then, by supplying a heat transfer gas such as helium gas from the gas introduction hole 8 to the space formed by the wafer W and the recess 3 through the gas groove 5, the peripheral edge of the wafer W and the second holding surface 4a. The temperature distribution on the surface of the wafer W can be made uniform, and if the film formation is performed in this state, the wafer W has a uniform film thickness. In addition, a uniform thin film can be formed, and if the etching process is performed, various processing precisions can be improved such that the thin film on the wafer W can be processed with high accuracy.
[0022]
In other words, according to the present invention, the outer peripheral portion 4 on one main surface of the plate-like ceramic body 2 is left as the concave portion 3 and the bottom surface of the concave portion is used as an adsorption region. However, it can be firmly adsorbed and fixed. At the time of adsorption, the center of the wafer W is brought into contact with the first holding surface 3 a, the periphery of the wafer W is brought into contact with the second holding surface 4 a, and heat conduction is performed in the space formed by the wafer W and the recess 3. Since the property gas can be supplied, the heat transfer characteristics of the center and the periphery of the wafer W can be approximated, and the temperature distribution on the surface of the wafer W can be made uniform. Moreover, since the center of the wafer W is attracted to the first holding surface 3a located at a position lower than the second holding surface 4a, the wafer W can be brought into close contact with the inner peripheral edge portion of the second holding surface 4a. At the same time, since the second holding surface 4a can be brought into contact with the second holding surface 4a, the thermally conductive gas supplied to the space formed by the wafer W and the concave portion 3 is from between the peripheral edge of the wafer W and the second holding surface 4a. Since leakage can be effectively prevented, the degree of vacuum during processing is not reduced.
[0023]
Furthermore, according to the present invention, since the electrostatic chucking electrode 7 is disposed only on the other main surface 6 of the plate-like ceramic body 2 below the bottom surface of the recess, and the bottom surface of the recess is the suction region, the second holding surface The wafer W that does not have an electrostatic force between 4a and the wafer W, has a small residual adsorption force when the energization of the electrostatic adsorption electrode 7 is stopped, and has been forced to curve downward. The wafer W can be immediately detached by the elastic force of.
[0024]
When the wafer W is attracted using the electrostatic chuck 1 of the present invention, as shown in FIG. 3B, the wafer W is fixed in a curved state so that the center thereof is downwardly convex. However, according to the research of the present inventors, it has been found that it is more important to make the temperature distribution on the surface of the wafer W uniform than to increase the flatness of the wafer W at the time of adsorption, and the present invention has been achieved. .
[0025]
By the way, in order to exhibit such an effect, as described above, the depth h of the recess 3 is set to 3 μm to 10 μm, and the undulation at the top surface of the outer peripheral portion 4 which is the second holding surface 4a is 1 μm. It is important that the thickness is ˜3 μm.
[0026]
That is, if the depth h of the recess 3 exceeds 10 μm, the flatness of the wafer W at the time of adsorption becomes too bad, so that the film thickness becomes nonuniform during film formation and the shape deteriorates during etching, which adversely affects various processing accuracy. In addition, when the depth h of the concave portion 3 is less than 3 μm, the undulation on the second holding surface 4a is 3 μm. In this case, the height of the most depressed portion of the second holding surface 4a is approximately the same as that of the first holding surface 3a, and a large gap is formed between the peripheral edge of the wafer W and the second holding surface 4a during suction. This is because the amount of leakage of the heat conductive gas becomes excessive and the degree of vacuum at the time of film formation or etching is lowered, which adversely affects film formation accuracy and etching accuracy.
[0027]
Further, if the undulation on the top surface of the outer peripheral portion 4 is less than 1 μm, the wafer W sticks at the time of suction and cannot be immediately separated when the wafer W is detached. Conversely, the undulation at the top surface of the outer peripheral portion 4 occurs. If the thickness exceeds 3 μm, the peripheral edge of the wafer W cannot be deformed along the waviness of the outer peripheral portion 4, so that a partial gap is formed and the heat conductive gas is likely to leak.
[0028]
The waviness on the top surface of the outer peripheral portion 4 is a measurement of the displacement of the entire circumference of the top surface of the outer peripheral portion 4 which is the second holding surface 4a with a roundness measuring device, and the maximum value and the minimum value of this displacement. It is a difference.
[0029]
Furthermore, the width t of the outer peripheral portion 4 is preferably 1 mm to 10 mm. This is because when the width t of the outer peripheral portion 4 is less than 1 mm, chipping or cracking is likely to occur at the inner peripheral edge portion of the top surface of the outer peripheral portion 4 when the concave portion 3 is formed, and the width t is narrow when chipping or cracking occurs. This is because a gap is formed between the outer peripheral portion 4 and the wafer W, and the heat conductive gas is more likely to leak through the gap. Conversely, if the width t of the outer peripheral portion 4 exceeds 10 mm, the center of the wafer W protrudes downward during adsorption. The wafer W cannot be adsorbed to the bottom surface of the recess, which is the first holding surface 3a, the holding power of the wafer W is reduced, and the heat supplied to the space formed by the wafer W and the recess 3 is reduced. This is because the conductive gas is more likely to leak between the periphery of the wafer W and the second holding surface 4a. However, the width t of the outer peripheral portion 4 does not necessarily have to be uniform over the entire circumference, and there may be a partially narrow portion or a wide portion. In such a case, the width of the narrow portion of the outer peripheral portion 4 What is necessary is just to make t into 1 mm or more and the width t of the wide location of the outer peripheral part 4 to be 10 mm or less.
[0030]
Further, in order to more effectively prevent leakage of the heat conductive gas, the surface roughness on the top surface of the outer peripheral portion 4 that is the second holding surface 4a is smoothly finished, and a gap is formed when the wafer W is adsorbed and held. In particular, the arithmetic average surface roughness (Ra) is preferably 0.6 μm or less.
[0031]
On the other hand, since the bottom surface of the recess, which is the first holding surface 3a, is in contact with the wafer W, it is preferably finished as smooth as possible. Specifically, the arithmetic average surface roughness (Ra) is preferably 1.2 μm or less. .
[0032]
In addition, the distance k from the outermost peripheral portion to the inner wall surface of the outer peripheral portion 4 in the occupation region of the electrostatic attraction electrode 7 is preferably 5 to 10 mm. This is because when the distance k is less than 5 mm, the electrostatic chucking electrode 7 is positioned near the lower portion of the outer peripheral portion 4, and when the wafer W is sucked, the gap between the wafer W and the second holding surface 4a is reached. This is also because electrostatic force is generated and the residual attracting force at the time of detachment of the wafer W is increased, so that the detachment response of the wafer W is impaired. Conversely, if the distance k exceeds 10 mm, Since the distance from the first holding surface 3a is too large, a large electrostatic force cannot be obtained, and the force pressing the peripheral edge of the wafer W against the second holding surface 4a is reduced. This is because a gap is partially formed between the peripheral edge of the wafer W and the second holding surface 4a due to the supply pressure of the heat conductive gas supplied to the space, and the heat conductive gas is more likely to leak from the gap. .
[0033]
By the way, in order to manufacture the electrostatic chuck 1 shown in FIG. 1, a plate-like ceramic body 2 having smooth upper and lower surfaces is prepared, and an ion plating method is applied to the other main surface 6 of the plate-like ceramic body 2. A conductor layer made of a metal such as Ti, W, Mo, Ni or a carbide thereof is deposited by film forming means such as PVD, CVD, sputtering, or plating, and then unnecessary portions are removed by etching. By removing, a pair of semi-circular electrodes for electrostatic attraction 7 is formed.
[0034]
At this time, it is preferable that the outermost peripheral portion of the occupied area of the electrostatic attraction electrode 7 is located at a distance k that is 5 mm to 10 mm away from the inner wall surface of the outer peripheral portion 4 when the concave portion 3 described later is formed.
[0035]
Next, the gas groove 5 and the gas introduction hole 8 are formed at a predetermined position on one main surface of the plate-like ceramic body 2 by machining or blasting, and the power feeding terminal 12 is made conductive to the electrostatic adsorption electrode 7. Glue and fix with an adhesive.
[0036]
And after joining the base member 9 to the other main surface side of the plate-shaped ceramic body 2 via the bonding layer 14 which has insulation, such as glass and a resin-type adhesive agent, one main surface of the plate-shaped ceramic body 2 In addition, the concave portion 3 having a depth h of 3 μm to 10 μm is formed while leaving the outer peripheral portion 4, and the undulation on the top surface of the outer peripheral portion 4 is finished to be 1 μm to 3 μm, whereby the electrostatic chuck shown in FIG. 1 can be obtained.
[0037]
Here, as a means for forming the recess 3 in the plate-like ceramic body 2, it can be formed by blasting or etching, but is preferably manufactured by grinding using a rotary processing machine. This is because if the rotary processing machine is used, the outer peripheral portion 4 and the concave portion 3 can be processed consistently from the rough processing state where the polishing allowance remains to the finishing processing at the same time, and can be finished with high accuracy.
[0038]
Further, the outer peripheral portion 4 can be processed by lapping only the outer peripheral portion 4 while leaving the finishing allowance of the outer peripheral portion 4 when finishing the recess 3. As this lapping condition, when the plate-like ceramic body 2 is made of an aluminum nitride sintered body, a cast iron lapping machine having a flatness of 10 μm or less is used, and diamond abrasive grains of 10 μm or less are used. The waviness on the top surface can be 1 μm to 3 μm.
[0039]
As described above, in the present embodiment, the electrostatic chuck 1 including the electrostatic chucking electrode 7 on the other main surface 6 of the plate-like ceramic body 2 has been described as an example. However, as shown in FIG. Needless to say, the present invention can also be applied to the electrostatic chuck 1 in which the electrostatic chucking electrode 7 is embedded in the ceramic body 2.
[0040]
Further, the present invention is not limited to the above-described embodiments, and it goes without saying that improvements and modifications may be made without departing from the gist of the present invention.
[0041]
【Example】
Example 1
The electrostatic chuck 1 shown in FIG. 1 was manufactured, and an experiment was conducted to examine the temperature variation of the wafer surface, the amount of leakage of the heat conductive gas, and the release response when the depth h of the concave portion was varied.
[0042]
In this experiment, a plate-like ceramic body 2 made of an aluminum nitride sintered body having a diameter of 200 mm and a thickness of 1 mm is prepared, and a Ni film is formed on the other main surface of the plate-like ceramic body 2 by plating. Then, unnecessary portions were removed by etching to form a pair of semicircular electrostatic attraction electrodes 7 so as to form a circle.
[0043]
Next, after the feeding terminal 12 is fixed to each electrostatic adsorption electrode 7 with a conductive adhesive, an aluminum base member 9 is joined to the other main surface side of the plate-like ceramic body 2 with a silicon-based adhesive. Joined through layer 14.
[0044]
Next, after the gas groove 5 and the gas inlet 8 communicating with the gas groove 5 are formed at a predetermined position on one main surface of the plate-like ceramic body 2 by blasting, one main surface of the plate-like ceramic body 2 is formed. An electrostatic chuck as each sample was manufactured by forming the concave portion 3 having a different depth h while leaving the outer peripheral portion 4 of the surface.
[0045]
The width t of the top surface of the outer peripheral portion 4 is 4 mm, the diameter of the bottom surface of the recess surrounded by the gas groove 5 is 190 mm, and from the outermost peripheral portion to the inner wall surface of the outer peripheral portion 4 in the occupation region of the electrode 7 for electrostatic adsorption. The distance k was 5 mm.
[0046]
Then, the obtained electrostatic chuck 1 is placed in a vacuum vessel, and an 8-inch silicon wafer is placed on the top surface of the outer peripheral portion 4 as shown in FIG. When the electrode 7 is energized, an electrostatic force is generated, and the silicon wafer is adsorbed to the electrostatic chuck 1 as shown in FIG. Was supplied at a pressure of 2666 Pa, and the amount of helium gas leaked was measured by the amount of helium supplied and the differential pressure in the vacuum vessel. Moreover, the temperature variation of the silicon wafer surface at that time was measured. However, the set temperature of the wafer surface was 100 ° C., and the temperature variation was measured as a temperature difference ΔT between the maximum temperature and the minimum temperature at 10 measurement points on the wafer surface selected arbitrarily.
[0047]
Further, the energization of the electrostatic attraction electrode 7 was stopped 60 seconds after the helium gas was supplied, and the time until the wafer was detached, that is, the separation response time was measured to evaluate the separation response. However, since the amount of helium leakage begins to increase abruptly at the moment when the wafer is detached, the amount of helium gas leakage suddenly stops after the energization of the electrostatic chucking electrode 7 is stopped. The time to increase and reach 10 SCCM was measured and evaluated.
[0048]
Each result is as shown in Table 1.
[0049]
[Table 1]
Figure 0003810300
[0050]
As can be seen from Table 1, first, it can be seen that the detachment response of each sample is good because the detachment time of the wafer is 10 seconds or less.
[0051]
However, looking at the degree of helium gas leakage, the sample No. 1 in which the depth h of the recess 3 is 0 μm. No. 1 has no step between the bottom surface of the recess and the top surface of the outer peripheral portion 4 when the wafer is sucked and fixed, so that the peripheral edge of the wafer cannot be strongly adhered to the top surface of the outer peripheral portion 4. As much as 3 SCCM of helium gas leaked.
[0052]
Further, the sample No. 1 in which the depth h of the recess 3 is 15 μm. No. 5 is too far away from the bottom surface of the recess, so that even if the electrostatic chucking electrode 7 is energized, a large electrostatic force cannot be generated and cannot be firmly adsorbed. With this supply pressure, a gap was formed between the wafer and the top surface of the outer peripheral portion 4, and 7.8 SCCM of helium gas leaked from this gap.
[0053]
On the other hand, looking at the temperature variation on the wafer surface, the sample No. 1 in which the depth h of the recess 3 is 0 μm is shown. No. 1 did not sufficiently reach the center of the wafer due to leakage of helium gas, and the heat transfer characteristics at the center of the wafer could not be improved. As a result, the temperature variation on the wafer surface was as large as 12 ° C.
[0054]
On the other hand, the sample No. in which the depth h of the recess 3 is in the range of 3 μm to 10 μm. Nos. 2 to 4 were excellent in that the leakage amount of helium gas could be suppressed to 5 SCCM or less, and the temperature variation on the wafer surface could be made uniform at 5 ° C. or less.
[0055]
As a result, it can be seen that the depth h of the recess 3 may be 3 to 10 μm.
(Example 2)
Next, except that the depth h of the concave portion 3 is fixed to 5 μm and the waviness on the top surface of the outer peripheral portion 4 is changed, the temperature variation on the wafer surface and the leakage amount of the heat conductive gas are the same as in the first embodiment. Experiments were conducted to investigate withdrawal responsiveness.
[0056]
The results are as shown in Table 2.
[0057]
[Table 2]
Figure 0003810300
[0058]
As can be seen from Table 2, the sample No. 6 in which the undulation on the top surface of the outer peripheral portion 4 was 0.5 μm had a long release response time of 13.5 seconds. The cause is that the waviness of the top surface of the outer peripheral portion 4 is small, so that the periphery of the wafer is pressed against the top surface of the outer peripheral portion 4 at the time of adsorption, and as a result, it is in a ring contact state that is in close contact with the vacuum. It is.
[0059]
Sample No. 9 having a waviness of 5 μm on the top surface of the outer peripheral portion 4 cannot adhere the wafer along the waviness during adsorption, so that there is a gap between the wafer and the top surface of the outer peripheral portion 4. Through this gap, 12.7 SCCM of helium gas leaked.
[0060]
On the other hand, sample Nos. 7 and 8 in which the waviness on the top surface of the outer peripheral portion 4 is in the range of 1 μm to 3 μm can suppress the amount of helium gas leakage to 5 SCCM or less and the temperature variation on the wafer surface is 5 It was possible to make the temperature uniform at a temperature equal to or lower than 0.degree. C., and it was excellent in wafer release response.
[0061]
As a result, it can be seen that the waviness on the top surface of the outer peripheral portion 4 may be 1 μm to 3 μm.
[0062]
And from the result of Example 1 and Example 2, while making the depth h of the recessed part 3 3 micrometers-10 micrometers, the wave | undulation in the top face of the outer peripheral part 4 shall be 1 micrometer-3 micrometers, and the plate-shaped ceramic body 2 below a recessed part bottom face is set. By disposing the electrostatic adsorption electrode 7 on the other main surface 6 of the wafer, it is possible to make the temperature distribution on the wafer surface uniform while suppressing gas leakage of the heat conductive gas, and to improve the wafer detachment response. It can be seen that an excellent electrostatic chuck 1 can be provided. In addition, since the electrostatic chuck 1 has a large attracting force, even a warped or deformed wafer can be firmly attracted and fixed.
Example 3
Further, the depth h of the concave portion 3 is fixed to 5 μm, and the undulation at the top surface of the outer peripheral portion 4 is fixed to 1 μm. The distance k from the outermost peripheral portion to the inner wall surface of the outer peripheral portion 4 An experiment was conducted to investigate the temperature variation of the wafer surface, the leakage amount of the heat conductive gas, and the detachment response under the same conditions as in Example 1 except that they were different.
[0063]
The results are as shown in Table 3.
[0064]
[Table 3]
Figure 0003810300
[0065]
As can be seen from Table 3, a sample No. 2 in which the distance k from the outermost peripheral portion to the inner wall surface of the outer peripheral portion 4 in the occupation region of the electrostatic attraction electrode 7 is 3 mm. No. 10 had a long wafer detachment response of 15.3 seconds. This is because the electrostatic chucking electrode 7 is formed close to the lower portion of the outer peripheral portion 4, so that the electrostatic force affects the outer peripheral portion 4, and the residual attracting force acts on the outer peripheral portion 4 when the wafer is detached. It seems that it took time to leave.
[0066]
In addition, in sample No. 1 in which the distance k from the outermost peripheral portion to the inner wall surface of the outer peripheral portion 4 in the occupation region of the electrostatic attraction electrode 7 is 15 mm. 13, the occupation area of the electrostatic attraction electrode 7 becomes too narrow, so that the attracting force of the wafer on the bottom surface of the recess is small, and the force for pressing the peripheral edge of the wafer against the top surface of the outer peripheral portion 4 becomes weak. Due to the pressure of the gas, a partial gap was formed between the peripheral edge of the wafer and the top surface of the outer peripheral portion 4, and as much as 7.7 SCCM of helium gas leaked.
[0067]
On the other hand, the sample k in which the distance k from the outermost peripheral portion to the inner wall surface of the outer peripheral portion 4 in the occupation region of the electrostatic attraction electrode 7 is in the range of 5 mm to 10 mm. In Nos. 11 and 12, the amount of helium gas leaked was as small as 5 SCCM or less, and the time required for detaching the wafer was as short as 10 seconds or less. Also, the temperature variation on the wafer surface was as good as 5 ° C. or less.
[0068]
As a result, it can be seen that the distance k from the outermost peripheral portion to the inner wall surface of the outer peripheral portion 4 in the occupation region of the electrostatic attraction electrode 7 may be 5 mm to 10 mm.
[0069]
【The invention's effect】
As described above, the electrostatic chuck of the present invention has one main surface of the plate-like ceramic body, Having a top surface to be a second holding surface of the wafer Leaving the outer periphery , Depth 3μm ~ 10μm Thus, the bottom surface of the central region excluding the peripheral portion becomes the first holding surface which is the suction region of the wafer. Forming a recess, A gas groove is provided in the peripheral edge portion of the bottom surface of the recess, and is located below the first holding surface and inside the second holding surface or in the other main part of the plate ceramic body. An electrostatic chuck having an electrostatic chuck electrode on its surface, the above Second holding surface And a gas groove is provided at the peripheral edge of the bottom surface of the recess, and an electrode for electrostatic attraction is arranged in the plate ceramic body below the bottom surface of the recess or on the other main surface of the plate ceramic body As a result, even a warped or deformed wafer can be firmly adsorbed and fixed.
[0070]
Further, at the time of suction, the center of the wafer is brought into contact with the bottom surface of the concave portion that is the first holding surface, the peripheral edge of the wafer is brought into contact with the top surface of the outer peripheral portion that is the second holding surface, and the wafer and the concave portion are formed. Since heat conductive gas can be supplied to the space, the heat transfer characteristics of the center and the periphery of the wafer can be approximated, and the temperature distribution on the wafer surface can be made uniform.
[0071]
Moreover, since the center of the wafer is attracted to the first holding surface at a position lower than the second holding surface, the wafer can be brought into close contact with the inner peripheral edge portion of the second holding surface, and the second Since it can be brought into contact with the holding surface, it is possible to effectively prevent the heat conductive gas supplied to the space formed by the wafer and the recess from leaking between the peripheral edge of the wafer and the second holding surface. And the vacuum degree during various processing is not reduced.
[0072]
Therefore, if the electrostatic chuck of the present invention is used for various processes such as a film forming process and an etching process, it is possible to perform highly accurate processing on the wafer.
[0073]
In addition, since the electrostatic adsorption electrode is disposed only below the bottom surface of the recess, if the energization to the electrostatic adsorption electrode is stopped, the residual adsorption force is small and it is forced to bend downward. Since the wafer can be immediately detached from the holding surface by the elastic force of the wafer, the release response from the electrostatic chuck can be improved.
[Brief description of the drawings]
1A and 1B are diagrams showing an example of an electrostatic chuck according to the present invention, in which FIG. 1A is a plan view and FIG. 1B is a cross-sectional view.
FIG. 2 is an enlarged cross-sectional view of a portion A in FIG.
3A and 3B are cross-sectional views showing a process when a wafer is attracted using the electrostatic chuck of the present invention.
FIG. 4 is a cross-sectional view showing another example of the electrostatic chuck of the present invention.
FIG. 5 is a cross-sectional view showing an example of a conventional electrostatic chuck.
FIG. 6 is a cross-sectional view showing another example of a conventional electrostatic chuck.
[Explanation of symbols]
1: Electrostatic chuck 2: Plate-shaped ceramic body, 3: Recess, 3a: First holding surface
4: outer peripheral portion, 4a: second holding surface 5: gas groove 6: other main surface
7: Electrode for electrostatic attraction 8: Gas introduction hole 9: Base member 10: Gas supply hole
11: Electrode extraction hole 12: Feeding terminal 13: Insulating tube 14: Bonding layer
W: Wafer

Claims (2)

板状セラミック体の一方の主面に、ウェハの第二の保持面となる頂面を有する外周部を残して深さが3μm〜10μmで、周縁部を除く中央領域の底面が上記ウェハの吸着領域である第一の保持面となる凹部を備えるとともに、該凹部底面の上記周縁部にガス溝を備えてなり、上記第一の保持面の下方であって、上記第二の保持面より内側の板状セラミック体中又は板状セラミック体の他方の主面に静電吸着用電極を備えた静電チャックであって、上記第二の保持面におけるうねりが1μm〜3μmであることを特徴とする静電チャック。On one main surface of the ceramic plate, leaving a peripheral portion having a top surface comprising a second holding surface of the wafer, at a depth of 3Myuemu~10myuemu, the bottom surface of the central region of the wafer except the peripheral portion provided with a recess serving as a first holding surface is a suction region, it includes a gas groove in the periphery of the recess bottom, a lower of said first holding surface, than the second retaining surface An electrostatic chuck provided with an electrode for electrostatic attraction in the inner plate-shaped ceramic body or on the other main surface of the plate-shaped ceramic body, wherein the waviness on the second holding surface is 1 μm to 3 μm Electrostatic chuck. 上記静電吸着用電極の占有領域における最外周部から上記外周部の内壁面までの距離が5mm〜10mmであることを特徴とする請求項1に記載の静電チャック。  2. The electrostatic chuck according to claim 1, wherein a distance from an outermost peripheral portion to an inner wall surface of the outer peripheral portion in the occupation region of the electrostatic adsorption electrode is 5 mm to 10 mm.
JP2001332425A 2001-10-30 2001-10-30 Electrostatic chuck Expired - Fee Related JP3810300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001332425A JP3810300B2 (en) 2001-10-30 2001-10-30 Electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001332425A JP3810300B2 (en) 2001-10-30 2001-10-30 Electrostatic chuck

Publications (2)

Publication Number Publication Date
JP2003133401A JP2003133401A (en) 2003-05-09
JP3810300B2 true JP3810300B2 (en) 2006-08-16

Family

ID=19147843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001332425A Expired - Fee Related JP3810300B2 (en) 2001-10-30 2001-10-30 Electrostatic chuck

Country Status (1)

Country Link
JP (1) JP3810300B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008211200A (en) * 2007-01-31 2008-09-11 Taiheiyo Cement Corp Electrostatic chuck and method of heat-treating attracted object using the same
KR101405299B1 (en) * 2007-10-10 2014-06-11 주성엔지니어링(주) Substrate supporting plate and apparatus for depositing thin film having the same
WO2015103047A1 (en) * 2013-12-31 2015-07-09 Applied Materials, Inc. Electrostatic chuck with internal flow adjustments for improved temperature distribution
US9130000B2 (en) 2008-09-30 2015-09-08 Mitsubishi Heavy Industries Wafer bonding device and wafer bonding method

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086301A (en) * 2004-09-15 2006-03-30 Ngk Insulators Ltd System and method for valuation of electrostatic chuck
JP4942364B2 (en) * 2005-02-24 2012-05-30 京セラ株式会社 Electrostatic chuck, wafer holding member, and wafer processing method
JP4796523B2 (en) * 2006-03-24 2011-10-19 日本碍子株式会社 Method for manufacturing ceramic fired body
US8422193B2 (en) * 2006-12-19 2013-04-16 Axcelis Technologies, Inc. Annulus clamping and backside gas cooled electrostatic chuck
WO2008114629A1 (en) * 2007-03-22 2008-09-25 Konica Minolta Medical & Graphic, Inc. Method for producing phosphor sheet and apparatus for producing phosphor sheet
JP5222442B2 (en) * 2008-02-06 2013-06-26 東京エレクトロン株式会社 Substrate mounting table, substrate processing apparatus, and temperature control method for substrate to be processed
US9036326B2 (en) * 2008-04-30 2015-05-19 Axcelis Technologies, Inc. Gas bearing electrostatic chuck
US10896842B2 (en) 2009-10-20 2021-01-19 Tokyo Electron Limited Manufacturing method of sample table
JP6555656B2 (en) * 2015-02-17 2019-08-07 パナソニックIpマネジメント株式会社 Plasma processing apparatus and electronic component manufacturing method
US10340171B2 (en) 2016-05-18 2019-07-02 Lam Research Corporation Permanent secondary erosion containment for electrostatic chuck bonds
US11069553B2 (en) * 2016-07-07 2021-07-20 Lam Research Corporation Electrostatic chuck with features for preventing electrical arcing and light-up and improving process uniformity
US10910195B2 (en) 2017-01-05 2021-02-02 Lam Research Corporation Substrate support with improved process uniformity
US11848223B2 (en) * 2018-02-20 2023-12-19 Sumitomo Osaka Cement Co., Ltd. Electrostatic chuck device and method for producing electrostatic chuck device
JP2024022214A (en) 2022-08-05 2024-02-16 新光電気工業株式会社 Temperature control member and method for manufacturing temperature control member
CN117577574B (en) * 2023-11-22 2024-05-17 苏州众芯联电子材料有限公司 Electrostatic chuck structure and manufacturing process thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213777A (en) * 1996-01-31 1997-08-15 Kyocera Corp Electrostatic chuck
JP4402862B2 (en) * 1999-07-08 2010-01-20 ラム リサーチ コーポレーション Electrostatic chuck and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008211200A (en) * 2007-01-31 2008-09-11 Taiheiyo Cement Corp Electrostatic chuck and method of heat-treating attracted object using the same
KR101405299B1 (en) * 2007-10-10 2014-06-11 주성엔지니어링(주) Substrate supporting plate and apparatus for depositing thin film having the same
US9130000B2 (en) 2008-09-30 2015-09-08 Mitsubishi Heavy Industries Wafer bonding device and wafer bonding method
WO2015103047A1 (en) * 2013-12-31 2015-07-09 Applied Materials, Inc. Electrostatic chuck with internal flow adjustments for improved temperature distribution
US9520315B2 (en) 2013-12-31 2016-12-13 Applied Materials, Inc. Electrostatic chuck with internal flow adjustments for improved temperature distribution

Also Published As

Publication number Publication date
JP2003133401A (en) 2003-05-09

Similar Documents

Publication Publication Date Title
JP3810300B2 (en) Electrostatic chuck
US7068489B2 (en) Electrostatic chuck for holding wafer
JP3859937B2 (en) Electrostatic chuck
EP2430654B1 (en) Electrostatic chuck with polymer protrusions
JP4349952B2 (en) Wafer support member and manufacturing method thereof
JPH09213777A (en) Electrostatic chuck
JP6968120B2 (en) Electrostatic carrier for handling thin substrates
JP4942471B2 (en) Susceptor and wafer processing method using the same
JP4739039B2 (en) Electrostatic chuck device
JP6627936B1 (en) Electrostatic chuck device and method of manufacturing electrostatic chuck device
CN110690096B (en) Electrostatic chuck, plasma processing apparatus, and method of manufacturing semiconductor device
JPH1022184A (en) Substrate bonding device
JP4444843B2 (en) Electrostatic chuck
JP2000114354A (en) Heater for supporting and heating wafer
WO2020170514A1 (en) Electrostatic chuck device
JP2004179364A (en) Electrostatic chuck
JP2002170868A (en) Electrostatic chuck
JP4439135B2 (en) Electrostatic chuck
JP3784274B2 (en) Electrostatic chuck
JP6702526B1 (en) Electrostatic chuck device
JP4308564B2 (en) Plasma processing apparatus and plasma processing tray
JP6782157B2 (en) Electrostatic chuck
JP7096133B2 (en) Manufacturing method of electrostatic chuck
JP2003023062A (en) Wafer-mounting stage and apparatus for manufacturing semiconductor using the same
KR20050102378A (en) Electrostatic chuck structure in semiconductor fabrication equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees