JP2003133401A - Electrostatic chuck - Google Patents

Electrostatic chuck

Info

Publication number
JP2003133401A
JP2003133401A JP2001332425A JP2001332425A JP2003133401A JP 2003133401 A JP2003133401 A JP 2003133401A JP 2001332425 A JP2001332425 A JP 2001332425A JP 2001332425 A JP2001332425 A JP 2001332425A JP 2003133401 A JP2003133401 A JP 2003133401A
Authority
JP
Japan
Prior art keywords
wafer
outer peripheral
peripheral portion
ceramic body
electrostatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001332425A
Other languages
Japanese (ja)
Other versions
JP3810300B2 (en
Inventor
Yasushi Uda
靖 右田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001332425A priority Critical patent/JP3810300B2/en
Publication of JP2003133401A publication Critical patent/JP2003133401A/en
Application granted granted Critical
Publication of JP3810300B2 publication Critical patent/JP3810300B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an electrostatic chuck which is capable of firmly attracting a wafer even if it is warped or deformed, keeping the surface of the wafer uniform in temperature distribution, restraining a heat conductive gas from leaking out, and excellent in response for releasing the wafer. SOLUTION: A recessed part 3 of a depth of 3 to 10 μm is provided to the one main surface of a platelike ceramic body 2 while its peripheral part 4 is left unremoved, undulations of the top surface of the peripheral part 4 are each set at 1 to 3 μm in length, a gas groove 5 is provided to the periphery of the bottom of the recessed part 3, and an electrostatic attraction electrode 7 is arranged inside the platelike ceramic body 2 beneath the recessed part 3 for the formation of an electrostatic chuck 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、PVD、CVD、
プラズマCVD等の成膜装置や、プラズマエッチング、
光励起エッチング等のエッチング装置に使用され、半導
体ウェハ等のウェハを吸着保持する静電チャックに関す
るものである。
TECHNICAL FIELD The present invention relates to PVD, CVD,
Film forming equipment such as plasma CVD, plasma etching,
The present invention relates to an electrostatic chuck that is used in an etching apparatus such as photoexcited etching and that holds a wafer such as a semiconductor wafer by suction.

【0002】[0002]

【従来の技術】従来、PVD、CVD、プラズマCVD
等の成膜装置や、プラズマエッチング、光エッチング等
のエッチング装置などの主に半導体製造装置において
は、半導体ウェハ(以下、単にウェハという)を精度良
く保持する手段として静電気力により吸着保持する静電
チャックが用いられている。
2. Description of the Related Art Conventionally, PVD, CVD, plasma CVD
In a semiconductor manufacturing apparatus such as a film forming apparatus such as a plasma etching apparatus and an etching apparatus such as a plasma etching method, a semiconductor wafer (hereinafter, simply referred to as a wafer) is accurately held as an electrostatic holding force by electrostatic force. A chuck is used.

【0003】半導体製造装置の多くは真空中での処理が
多く、成膜装置では、成膜時の反応ガスによりウェハが
加熱され、ウェハ表面の温度分布が不均一になり、その
結果、ウェハの不良が発生するという問題があった。ま
た、エッチング装置においても、プラズマエッチングガ
スや光励起エッチング時の紫外線や可視光によりウェハ
が加熱され、ウェハ表面の温度分布が不均一になり、そ
の結果、エッチングレートが温度分布によりばらつき、
ウェハの全面を均一にエッチングできないといった問題
があった。その為、如何にウェハ表面の温度分布を均一
にするかが課題となっていた。
Most semiconductor manufacturing apparatuses perform a lot of processing in a vacuum, and in the film forming apparatus, the wafer is heated by the reaction gas at the time of film formation and the temperature distribution on the wafer surface becomes non-uniform. There was a problem that defects occurred. Also in the etching apparatus, the wafer is heated by the plasma etching gas or ultraviolet rays or visible light at the time of photoexcited etching, the temperature distribution on the wafer surface becomes non-uniform, and as a result, the etching rate varies depending on the temperature distribution,
There is a problem that the entire surface of the wafer cannot be uniformly etched. Therefore, how to make the temperature distribution on the wafer surface uniform has been a problem.

【0004】そこで、特開平7−153825号公報に
は、図5に示すように、板状セラミック体22中に静電
吸着用電極23を埋設してなり、上記板状セラミック体
22の上面には多数の突起24と、これらの突起24と
同じ高さを有し、かつ突起24を包囲するように設けら
れた幅sが1mm〜5mmの環状の外周凸部25を備え
た静電チャック21が開示されており、上記突起24及
び外周凸部25の頂面にウェハWを載せた状態で静電吸
着用電極23との間に電圧を印加することにより静電気
力を発現させ、ウェハWを突起24及び外周凸部25の
頂面に吸着固定させるとともに、ウェハWと板状セラミ
ック体22の上面との間に形成される空間にヘリウム等
の熱伝導性ガスを供給することでウェハWと静電チャッ
ク21との間の熱伝導特性を高め、ウェハWの温度分布
を均一にする技術が提案されている。
In view of this, in Japanese Patent Laid-Open No. 7-153825, as shown in FIG. 5, an electrostatic attraction electrode 23 is embedded in a plate-shaped ceramic body 22, and the plate-shaped ceramic body 22 is provided on the upper surface thereof. Is an electrostatic chuck 21 having a large number of protrusions 24 and an annular outer peripheral convex portion 25 having the same height as the protrusions 24 and having a width s of 1 mm to 5 mm provided so as to surround the protrusions 24. Is disclosed, electrostatic force is developed by applying a voltage between the electrostatic chucking electrode 23 and the wafer W while the wafer W is placed on the top surfaces of the protrusion 24 and the outer peripheral convex portion 25, and the wafer W is By adsorbing and fixing to the top surfaces of the protrusions 24 and the outer peripheral protrusions 25, and supplying a thermally conductive gas such as helium to the space formed between the wafer W and the upper surface of the plate-shaped ceramic body 22, Heat between the electrostatic chuck 21 Enhanced electric characteristics, a technique for the uniform temperature distribution of the wafer W has been proposed.

【0005】また、特開平7−86385号公報には、
図6に示すように、静電吸着用電極として機能する板状
金属体32の上面に、その外周部34を残して凹部33
を形成するとともに、上記板状金属体32の凹部33を
含む上面及び側面に誘電体層35を被着し、外周部34
頂面上の誘電体層表面35aから凹部33底面上の誘電
体層表面35bまでの深さrを数10μm〜0.1乃至
0.2mmとした静電チャック31が開示されており、
上記外周部34頂面上の誘電体層表面35aにウェハW
の周縁部を載せた状態で板状金属体32との間に電圧を
印加することにより静電気力を発現させ、ウェハWの周
縁部のみを外周部34頂面上の誘電体層表面35aに吸
着固定させるとともに、ウェハWと凹部33とで形成さ
れる空間に熱伝導性ガスを供給することでウェハWと静
電チャック31との間の熱伝導特性を高め、ウェハWの
温度分布を均一にする技術が提案されている。
Further, Japanese Patent Laid-Open No. 7-86385 discloses that
As shown in FIG. 6, a concave portion 33 is left on the upper surface of the plate-shaped metal body 32 functioning as an electrostatic attraction electrode, leaving an outer peripheral portion 34.
And the dielectric layer 35 is deposited on the upper surface and the side surface of the plate-shaped metal body 32 including the recess 33, and the outer peripheral portion 34 is formed.
An electrostatic chuck 31 is disclosed in which the depth r from the dielectric layer surface 35a on the top surface to the dielectric layer surface 35b on the bottom surface of the recess 33 is several tens of μm to 0.1 to 0.2 mm.
The wafer W is formed on the dielectric layer surface 35a on the top surface of the outer peripheral portion 34.
By applying a voltage between the peripheral edge of the wafer W and the plate-shaped metal body 32, electrostatic force is developed, and only the peripheral edge of the wafer W is attracted to the dielectric layer surface 35a on the top surface of the outer periphery 34. While being fixed, the thermally conductive gas is supplied to the space formed by the wafer W and the concave portion 33 to enhance the thermal conductivity characteristic between the wafer W and the electrostatic chuck 31, and to make the temperature distribution of the wafer W uniform. The technology to do is proposed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、特開平
7−153825号公報のように多数の突起24と外周
凸部25の頂面でウェハWを吸着保持するようにした静
電チャック21では、反りや変形したウェハWを固定す
る際、部分的にしか吸着させることができず、吸着不足
からウェハWの位置ズレや酷い場合にはウェハWが落下
する恐れがあった。
However, in the electrostatic chuck 21 in which the wafer W is suction-held by the top surfaces of the large number of projections 24 and the outer peripheral projections 25 as in Japanese Patent Laid-Open No. 7-153825, there is a warp. When the deformed wafer W is fixed, the wafer W can only be partially adsorbed, and there is a risk that the wafer W may be displaced due to insufficient adsorption or the wafer W may drop in a severe case.

【0007】また、同公報には外周凸部25の内側領域
が吸着領域であると記載され、外周凸部25の下方にま
で静電吸着用電極23が埋設されていないことから、外
周凸部25とウェハWとの間には静電気力が発生してお
らず、その結果、反りや変形したウェハWを固定する
と、外周凸部25の頂面との間に多数の隙間ができ、こ
れらの隙間より熱伝導性ガスが漏れ出して半導体製造装
置内の真空度を低下させ、成膜精度やエッチング精度に
悪影響を与える恐れがあった。
Further, in the publication, it is described that the inner area of the outer peripheral convex portion 25 is an adsorption area, and since the electrostatic adsorption electrode 23 is not buried below the outer peripheral convex portion 25, the outer peripheral convex portion 25 is not embedded. No electrostatic force is generated between the wafer 25 and the wafer W. As a result, when the warped or deformed wafer W is fixed, a large number of gaps are created between the wafer W and the top surface of the outer peripheral protrusion 25. There is a possibility that the thermally conductive gas may leak out from the gap to lower the degree of vacuum in the semiconductor manufacturing apparatus, which may adversely affect the film forming accuracy and the etching accuracy.

【0008】一方、特開平7−86385号公報のよう
に中央部に大きな凹部33を設け、その外周部34の凸
部のみでウェハWを吸着保持するようにした静電チャッ
ク31では、吸着力が小さいため、ウェハWと凹部33
とで形成される空間に供給される熱伝導性ガスの供給圧
によってウェハWの周縁と外周部34の頂面との間に部
分的に隙間ができ、この隙間より熱伝導性ガスが漏れて
加工中の真空度を低下させ、その結果、各種加工精度に
悪影響を与えるといった課題があった。
On the other hand, in the electrostatic chuck 31 in which a large concave portion 33 is provided in the central portion and the wafer W is attracted and held only by the convex portion of the outer peripheral portion 34 thereof as in JP-A-7-86385, the attraction force is Is small, the wafer W and the recess 33
Due to the supply pressure of the heat conductive gas supplied to the space formed by and, a gap is partially formed between the peripheral edge of the wafer W and the top surface of the outer peripheral portion 34, and the heat conductive gas leaks from this gap. There is a problem that the degree of vacuum during processing is lowered, and as a result, various processing accuracy is adversely affected.

【0009】[0009]

【発明の目的】本発明の目的は、反りや変形したウェハ
でも強固に吸着し、ウェハ表面の温度分布を均一にする
ことができるとともに、冷却ガスのガス漏れが少なく、
さらにはウェハの離脱応答性に優れた静電チャックを提
供することにある。
It is an object of the present invention to firmly adsorb even a warped or deformed wafer, to make the temperature distribution on the wafer surface uniform, and to reduce the leakage of cooling gas.
Another object is to provide an electrostatic chuck having excellent responsiveness for wafer separation.

【0010】[0010]

【課題を解決するための手段】そこで、上記課題に鑑
み、本発明の静電チャックは、板状セラミック体の一方
の主面に、その外周部を残して深さが3〜10μmの凹
部を形成し、上記外周部頂面におけるうねりを1〜3μ
mとするとともに、上記凹部底面の周縁部にガス溝を設
け、上記凹部底面下方の板状セラミック体中又は板状セ
ラミック体の他方の主面に静電吸着用電極を配置したこ
とを特徴とする。
In view of the above problems, therefore, the electrostatic chuck of the present invention has a concave portion having a depth of 3 to 10 μm on one main surface of a plate-shaped ceramic body while leaving the outer peripheral portion thereof. Formed, and the undulation on the top surface of the outer peripheral portion is 1 to 3 μm.
m, a gas groove is provided in the peripheral portion of the bottom surface of the recess, and the electrostatic attraction electrode is arranged in the plate-shaped ceramic body below the bottom surface of the recess or on the other main surface of the plate-shaped ceramic body. To do.

【0011】また、好ましくは、静電吸着用電極の占有
領域における最外周部から上記外周部の内壁面までの距
離を5〜10mmとすることが良い。
Further, it is preferable that the distance from the outermost peripheral portion in the area occupied by the electrostatic attraction electrode to the inner wall surface of the outer peripheral portion is 5 to 10 mm.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施形態について
説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.

【0013】図1は本発明の静電チャックの一例を示す
図で、(a)は平面図、(b)は断面図である。また図
2は図1(b)のA部を拡大した断面図である。
1A and 1B are views showing an example of an electrostatic chuck of the present invention. FIG. 1A is a plan view and FIG. 1B is a sectional view. Further, FIG. 2 is an enlarged cross-sectional view of the portion A of FIG.

【0014】この静電チャック1は、ウェハと略同じ大
きさを有する円板状をした板状セラミック体2の一方の
主面に、その外周部4を残して平面形状が円形をした凹
部3を有し、上記外周部4の頂面を第二の保持面4aと
するとともに、上記凹部底面の周縁部にガス溝5を備
え、ガス溝5で囲まれた凹部底面を第一の保持面3aと
したもので、凹部底面下方の板状セラミック体2の他方
の主面6には一対の半円状をした静電吸着用電極7を配
置してある。
The electrostatic chuck 1 has a concave portion 3 having a circular planar shape with an outer peripheral portion 4 left on one main surface of a disk-shaped plate-shaped ceramic body 2 having substantially the same size as a wafer. And the top surface of the outer peripheral portion 4 serves as a second holding surface 4a, and a gas groove 5 is provided in the peripheral portion of the bottom surface of the recess, and the bottom surface of the recess surrounded by the gas groove 5 is the first holding surface. 3a, a pair of semicircular electrostatic attraction electrodes 7 are arranged on the other main surface 6 of the plate-shaped ceramic body 2 below the bottom surface of the recess.

【0015】板状セラミック体2を形成する材質として
は、アルミナ質焼結体、窒化珪素質焼結体、窒化アルミ
ニウム質焼結体、イットリウム−アルミニウム−ガーネ
ット質焼結体(以下、YAG質焼結体という)、単結晶
アルミナ(サファイア)を用いることができ、これらの
中でも窒化アルミニウム質焼結体は熱伝達率が50W/
m・k以上、高いものでは熱伝達率100W/m・k以
上を有し、熱伝導性に優れることから、ウエハの均熱性
を高める点で好ましい。また、単結晶アルミナ(サファ
イア)を用いれば、セラミック焼結体と違いボイドや脱
粒がないため、パーティクルの発生を極力嫌う場合に好
適である。
As the material for forming the plate-shaped ceramic body 2, an alumina sintered body, a silicon nitride sintered body, an aluminum nitride sintered body, a yttrium-aluminum-garnet sintered body (hereinafter referred to as YAG sintered body) And a single crystal alumina (sapphire) can be used. Among them, the aluminum nitride sintered body has a heat transfer coefficient of 50 W /
A material having a heat transfer coefficient of m · k or higher, having a heat transfer coefficient of 100 W / m · k or more, is excellent in thermal conductivity, which is preferable from the viewpoint of enhancing the thermal uniformity of the wafer. Further, the use of single crystal alumina (sapphire) does not cause voids or shedding unlike the ceramic sintered body, which is suitable when the generation of particles is avoided as much as possible.

【0016】第一の保持面3aは板状セラミック体2の
他方の主面6と平行な平坦面としてあり、静電気力に影
響を与える第一の保持面3aから静電吸着用電極7まで
の距離が一定となるようにしてある。
The first holding surface 3a is a flat surface parallel to the other main surface 6 of the plate-shaped ceramic body 2, and extends from the first holding surface 3a which affects the electrostatic force to the electrostatic attraction electrode 7. The distance is kept constant.

【0017】凹部3の深さh(第二の保持面4aから第
一の保持面3aまでの距離)は3μm〜10μmとし、
板状セラミック体2の一方の主面外周に微小凸部を形成
するとともに、第二の保持面4aである外周部4の頂面
におけるうねりを1μm〜3μmとしてある。
The depth h of the recess 3 (the distance from the second holding surface 4a to the first holding surface 3a) is 3 μm to 10 μm,
A minute convex portion is formed on the outer periphery of one main surface of the plate-shaped ceramic body 2, and the waviness on the top surface of the outer peripheral portion 4 which is the second holding surface 4a is set to 1 μm to 3 μm.

【0018】さらに、板状セラミック体2にはガス溝5
に開口する複数個のガス導入孔8を穿孔してあり、これ
らのガス導入孔8よりガス溝5を介してヘリウムガス等
の熱伝達性ガスをウェハと凹部3とで形成される空間に
供給するようになっている。
Further, gas grooves 5 are formed in the plate-shaped ceramic body 2.
A plurality of gas introduction holes 8 opening in the hole are bored, and a heat transfer gas such as helium gas is supplied to the space formed by the wafer and the recess 3 from the gas introduction holes 8 through the gas grooves 5. It is supposed to do.

【0019】また、この静電チャック1には、板状セラ
ミック体2の他方の主面側にガラスや樹脂系接着剤から
なる絶縁性の接合層14を介してアルミニウムやステン
レス等の金属からなるベース部材9を接合してあり、こ
のベース部材9には、板状セラミック体2のガス導入孔
8とそれぞれ連通するガス供給孔10を備えるととも
に、一対の静電吸着用電極7と電気的に接続された給電
端子12を取り出すための電極取出孔11を備えてい
る。なお、13は電極取出孔11内に設けられた絶縁管
で、細長い給電端子12が金属製のベース部材9と接触
し、短絡を起こすのを防止してある。
The electrostatic chuck 1 is made of a metal such as aluminum or stainless steel with an insulating bonding layer 14 made of glass or a resin adhesive on the other main surface side of the plate-shaped ceramic body 2. A base member 9 is bonded to the base member 9. The base member 9 is provided with gas supply holes 10 that communicate with the gas introduction holes 8 of the plate-shaped ceramic body 2, respectively, and is electrically connected to the pair of electrostatic attraction electrodes 7. An electrode extraction hole 11 for extracting the connected power supply terminal 12 is provided. Reference numeral 13 is an insulating tube provided in the electrode extraction hole 11 to prevent the elongated power supply terminal 12 from coming into contact with the metal base member 9 and causing a short circuit.

【0020】この静電チャック1によりウェハWを固定
するには、図3(a)に示すように、ウェハWの周縁部
が板状セラミック体2の外周部4の頂面である第二の保
持面4aと当接するように載せた状態で、給電端子12
間に通電すると、静電吸着用電極7とウェハWとの間に
静電気力が発現し、図3(b)に示すように、ウェハW
の周縁を板状セラミック体2の外周部4の頂面である第
二の保持面4aと当接させた状態で、ウェハWの中央を
板状セラミック体2の凹部底面である第一の保持面3a
と接触するように吸着させることができ、反りや変形し
たウェハWでも同様に吸着させることができる。
In order to fix the wafer W by the electrostatic chuck 1, as shown in FIG. 3 (a), the peripheral portion of the wafer W is the top surface of the outer peripheral portion 4 of the plate-shaped ceramic body 2, and the second surface is the second surface. In a state where the power supply terminal 12 is placed so as to be in contact with the holding surface 4a,
When a current is applied between them, an electrostatic force is developed between the electrostatic attraction electrode 7 and the wafer W, and as shown in FIG.
With the peripheral edge of the wafer W in contact with the second holding surface 4a which is the top surface of the outer peripheral portion 4 of the plate-shaped ceramic body 2. Surface 3a
It can be adsorbed so as to come into contact with, and the warped or deformed wafer W can also be adsorbed similarly.

【0021】そして、ガス導入孔8よりガス溝5を介し
てヘリウムガス等の熱伝達性ガスをウェハWと凹部3と
で形成される空間に供給することにより、ウェハWの周
縁と第二の保持面4aとの間からの熱伝導性ガスの漏れ
を抑え、かつウェハW表面の温度分布を均一にすること
ができ、この状態で成膜加工を施せば、ウェハW上に均
一な膜厚を有し、かつ均質な薄膜を形成することがで
き、また、エッチング加工を施せば、ウェハW上の薄膜
を精度良く加工することができるというように各種加工
精度を高めることができる。
Then, a heat transfer gas such as helium gas is supplied to the space formed by the wafer W and the concave portion 3 from the gas introduction hole 8 through the gas groove 5, so that the peripheral edge of the wafer W and the second portion. Leakage of the thermally conductive gas from between the holding surface 4a can be suppressed, and the temperature distribution on the surface of the wafer W can be made uniform. If film formation processing is performed in this state, a uniform film thickness on the wafer W can be obtained. It is possible to form a uniform thin film having the above-mentioned characteristics, and it is possible to improve various processing accuracy such that the thin film on the wafer W can be processed with high accuracy by performing etching processing.

【0022】即ち、本発明によれば、板状セラミック体
2の一方の主面における外周部4を残してその大部分を
凹部3とし、この凹部底面を吸着領域としたことから、
反りや変形したウェハWでも強固に吸着固定することが
できる。そして、吸着時にはウェハWの中央を第一の保
持面3aと接触させ、ウェハWの周縁を第二の保持面4
aと接触させるとともに、ウェハWと凹部3とで形成さ
れる空間には熱伝導性ガスを供給することができるた
め、ウェハWの中央及び周縁の熱伝達特性を近似させる
ことができ、ウェハW表面の温度分布を均一にすること
ができる。しかも、ウェハWの中央は第二の保持面4a
より低い位置にある第一の保持面3aに吸着されるた
め、ウェハWを第二の保持面4aの内周エッジ部に密着
させることができるとともに、第二の保持面4aとも接
触させることができるため、ウェハWと凹部3とで形成
される空間に供給した熱伝導性ガスがウェハWの周縁と
第二の保持面4aとの間から漏れることを効果的に防止
することができるため、加工中の真空度を低下させるよ
うなことがない。
That is, according to the present invention, the outer peripheral portion 4 on one main surface of the plate-shaped ceramic body 2 is left, and most of the outer peripheral portion 4 is the recessed portion 3, and the bottom surface of this recessed portion is the adsorption area.
Even a warped or deformed wafer W can be firmly adsorbed and fixed. Then, at the time of adsorption, the center of the wafer W is brought into contact with the first holding surface 3a, and the peripheral edge of the wafer W is held at the second holding surface 4a.
Since the heat conductive gas can be supplied to the space formed by the wafer W and the concave portion 3 while being brought into contact with a, the heat transfer characteristics of the center and the periphery of the wafer W can be approximated. The temperature distribution on the surface can be made uniform. Moreover, the center of the wafer W is the second holding surface 4a.
Since the wafer W is attracted to the first holding surface 3a located at a lower position, the wafer W can be brought into close contact with the inner peripheral edge portion of the second holding surface 4a, and can also be brought into contact with the second holding surface 4a. Therefore, it is possible to effectively prevent the thermally conductive gas supplied to the space formed by the wafer W and the recess 3 from leaking between the peripheral edge of the wafer W and the second holding surface 4a. It does not lower the degree of vacuum during processing.

【0023】さらに、本発明によれば、凹部底面下方の
板状セラミック体2の他方の主面6にのみ静電吸着用電
極7を配置し、凹部底面を吸着領域としたことから、第
二の保持面4aとウェハWとの間には静電気力が働か
ず、静電吸着用電極7への通電を止めた時の残留吸着力
が少なく、また、強制的に下凸に湾曲させられていたウ
ェハWの弾性力によってウェハWを直ちに離脱させるこ
とができる。
Further, according to the present invention, the electrostatic attraction electrode 7 is arranged only on the other main surface 6 of the plate-shaped ceramic body 2 below the bottom surface of the recess, and the bottom surface of the recess is used as the adsorption area. The electrostatic force does not work between the holding surface 4a and the wafer W, the residual attraction force when the electrification to the electrostatic attraction electrode 7 is stopped is small, and it is forcibly curved downward. The elastic force of the wafer W allows the wafer W to be immediately released.

【0024】なお、本発明の静電チャック1を用いてウ
ェハWを吸着させると、図3(b)に示すように、ウェ
ハWはその中央が下凸となるように湾曲した状態で固定
されることになるが、本件発明者の研究によれば、吸着
時のウェハWの平面度を高めるよりも、ウェハW表面の
温度分布を一様にする方が重要であることを突き止め、
本発明に至った。
When the wafer W is attracted by using the electrostatic chuck 1 of the present invention, the wafer W is fixed in a curved state so that its center is convex downward as shown in FIG. 3B. However, according to the research by the present inventor, it is found that it is more important to make the temperature distribution on the surface of the wafer W uniform than to increase the flatness of the wafer W during adsorption.
The present invention has been completed.

【0025】ところで、このような作用効果を奏するた
めには、前述したように、凹部3の深さhを3μm〜1
0μmとするとともに、第二の保持面4aである外周部
4の頂面におけるうねりを1μm〜3μmとすることが
重要である。
By the way, in order to obtain such an effect, as described above, the depth h of the concave portion 3 is 3 μm to 1 μm.
It is important to set the undulation on the top surface of the outer peripheral portion 4 which is the second holding surface 4a to 1 μm to 3 μm in addition to 0 μm.

【0026】即ち、凹部3の深さhが10μmを超える
と、吸着時におけるウェハWの平面度が悪くなりすぎる
ため、成膜時には膜厚みが不均一となり、エッチング時
には形状悪化を引き起こすなど各種加工精度に悪影響を
与えるとともに、ウェハWを吸着保持するのに十分な静
電吸着力が得られなくなるからであり、逆に凹部3の深
さhが3μm未満となると、第二の保持面4aにおける
うねりが3μmである場合、第二の保持面4aの最も窪
んだ箇所の高さが第一の保持面3aと同等程度となり、
吸着時にウェハWの周縁と第二の保持面4aとの間に大
きな隙間ができ、熱伝導性ガスの漏れ量が多くなり過ぎ
て成膜時やエッチング時における真空度を低下させてし
まうため、成膜精度やエッチング精度に悪影響を与えて
しまうからである。
That is, if the depth h of the concave portion 3 exceeds 10 μm, the flatness of the wafer W becomes too poor at the time of adsorption, so that the film thickness becomes non-uniform during film formation and the shape deteriorates during etching. This is because the accuracy is adversely affected and the electrostatic attraction force sufficient to attract and hold the wafer W cannot be obtained. On the contrary, when the depth h of the recess 3 is less than 3 μm, the second holding surface 4a has When the waviness is 3 μm, the height of the most recessed portion of the second holding surface 4a becomes approximately the same as that of the first holding surface 3a,
Since a large gap is formed between the peripheral edge of the wafer W and the second holding surface 4a during adsorption, the amount of leakage of the thermally conductive gas becomes too large, and the degree of vacuum during film formation or etching is reduced. This is because the film forming accuracy and the etching accuracy are adversely affected.

【0027】また、外周部4の頂面におけるうねりが1
μm未満になると、吸着時にウェハWが貼り付き、ウェ
ハWの離脱時には直ちに切り離すことができなくなるか
らであり、逆に、外周部4の頂面におけるうねりが3μ
mを超えると、ウェハWの周縁を外周部4のうねりに沿
って変形させることができないために部分的な隙間がで
き、熱伝導性ガスが漏れ易くなるからである。
The waviness on the top surface of the outer peripheral portion 4 is 1
This is because if the thickness is less than μm, the wafer W sticks during adsorption and cannot be separated immediately when the wafer W is detached. Conversely, the waviness on the top surface of the outer peripheral portion 4 is 3 μm.
When it exceeds m, the peripheral edge of the wafer W cannot be deformed along the waviness of the outer peripheral portion 4, so that a partial gap is formed and the thermally conductive gas easily leaks.

【0028】なお、外周部4の頂面におけるうねりと
は、真円度測定器で第二の保持面4aである外周部4の
頂面全周の変位を測定し、この変位の最大値と最小値の
差のことである。
The waviness on the top surface of the outer peripheral portion 4 is the maximum value of this displacement measured by measuring the displacement of the entire top surface of the outer peripheral portion 4 which is the second holding surface 4a with a roundness measuring device. It is the difference between the minimum values.

【0029】さらに、外周部4の幅tは1mm〜10m
mとすることが好ましい。なぜなら、外周部4の幅tが
1mm未満となると、凹部3の形成時に外周部4の頂面
内周エッジ部に欠けや割れが生じ易く、また、欠けや割
れが生じると幅tが狭いことからウェハWとの間に隙間
ができ、この隙間より熱伝導性ガスが漏れ易くなるから
であり、逆に、外周部4の幅tが10mmを超えると、
吸着時にウェハWの中央が下凸に湾曲し難くなり、第一
の保持面3aである凹部底面に吸着させることができな
くなり、ウェハWの保持力が小さくなるとともに、ウェ
ハWと凹部3とで形成される空間に供給された熱伝導性
ガスがウェハWの周縁と第二の保持面4aとの間より漏
れ易くなるからである。ただし、外周部4の幅tは全周
にわたって必ずしも一様である必要性はなく、部分的に
狭い箇所や広い箇所があっても良いが、このような場
合、外周部4の狭い箇所の幅tは1mm以上、外周部4
の広い箇所の幅tは10mm以下となるようにすれば良
い。
Further, the width t of the outer peripheral portion 4 is 1 mm to 10 m.
It is preferably m. This is because when the width t of the outer peripheral portion 4 is less than 1 mm, the top inner peripheral edge portion of the outer peripheral portion 4 is likely to be chipped or cracked when the recess 3 is formed, and when the chipped or cracked portion is formed, the width t is narrow. This is because a gap is formed between the wafer W and the wafer W, and the heat conductive gas easily leaks from the gap. Conversely, when the width t of the outer peripheral portion 4 exceeds 10 mm,
At the time of adsorption, the center of the wafer W is less likely to curve downwardly convex, and the wafer W cannot be adsorbed to the bottom surface of the concave portion that is the first holding surface 3a, the holding force of the wafer W is reduced, and the wafer W and the concave portion 3 are separated from each other. This is because the thermally conductive gas supplied to the formed space is more likely to leak between the peripheral edge of the wafer W and the second holding surface 4a. However, the width t of the outer peripheral portion 4 does not necessarily need to be uniform over the entire circumference, and a narrow portion or a wide portion may be partially present. In such a case, the width of the narrow portion of the outer peripheral portion 4 is small. t is 1 mm or more, the outer peripheral portion 4
The width t of the wide area may be 10 mm or less.

【0030】また、熱伝導性ガスの漏れをより効果的に
防止するには、第二の保持面4aである外周部4の頂面
における表面粗さを滑らかに仕上げ、ウェハWが吸着保
持された時に隙間ができないようにすることが良く、具
体的には算術平均表面粗さ(Ra)で0.6μm以下と
することが良い。
In order to prevent the heat conductive gas from leaking more effectively, the surface roughness of the top surface of the outer peripheral portion 4 which is the second holding surface 4a is finished to be smooth so that the wafer W is held by suction. It is preferable to prevent the formation of a gap at the time of exposure, and specifically, it is preferable that the arithmetic average surface roughness (Ra) is 0.6 μm or less.

【0031】一方、第一の保持面3aである凹部底面は
ウェハWと接することから、できるだけ平滑に仕上げる
ことが好ましく、具体的には算術平均表面粗さ(Ra)
で1.2μm以下とすることが良い。
On the other hand, since the bottom surface of the recess, which is the first holding surface 3a, contacts the wafer W, it is preferable to finish the surface as smooth as possible. Specifically, the arithmetic average surface roughness (Ra) is used.
Therefore, it is preferable that the thickness is 1.2 μm or less.

【0032】また、静電吸着用電極7の占有領域におけ
る最外周部から外周部4の内壁面までの距離kは5〜1
0mmとすることが好ましい。なぜなら、この距離kが
5mm未満となると、静電吸着用電極7が外周部4の下
方近傍にまで位置することになり、ウエハWを吸着させ
るとウェハWと第二の保持面4aとの間にも静電気力が
発生し、ウエハWの離脱時における残留吸着力が大きく
なるために、ウエハWの離脱応答性が損なわれるからで
あり、逆に上記距離kが10mmを超えると、ウエハW
と第一の保持面3aとの距離が離れすぎるために大きな
静電気力が得られず、ウエハWの周縁を第二の保持面4
aに押し付ける力が小さくなるため、ウェハWと凹部3
とで構成される空間に供給される熱伝導性ガスの供給圧
によってウエハWの周縁と第二の保持面4aとの間に部
分的に隙間ができ、この隙間より熱伝導性ガスが漏れ易
くなるからである。
The distance k from the outermost peripheral portion to the inner wall surface of the outer peripheral portion 4 in the area occupied by the electrostatic attraction electrode 7 is 5 to 1
It is preferably 0 mm. This is because when the distance k is less than 5 mm, the electrostatic attraction electrode 7 is located near the lower portion of the outer peripheral portion 4, and when the wafer W is attracted, the distance between the wafer W and the second holding surface 4a is increased. This is also because electrostatic force is generated, and the residual adsorption force when the wafer W is detached becomes large, so that the detachment response of the wafer W is impaired. Conversely, when the distance k exceeds 10 mm, the wafer W
Since a large electrostatic force cannot be obtained because the distance between the first holding surface 3a and the first holding surface 3a is too large, the peripheral edge of the wafer W is not moved to the second holding surface 4a.
Since the force pressing against a becomes small, the wafer W and the recess 3
Due to the supply pressure of the heat conductive gas supplied to the space constituted by and, a gap is partially formed between the peripheral edge of the wafer W and the second holding surface 4a, and the heat conductive gas easily leaks from this gap. Because it will be.

【0033】ところで、図1に示す静電チャック1を製
作するには、上下面が平滑に仕上げられた板状セラミッ
ク体2を用意し、板状セラミック体2の他方の主面6
に、イオンプレーティング法、PVD法、CVD法、ス
パッタリング法、メッキ法等の膜形成手段により、T
i、W、Mo、Ni等の金属やその炭化物等からなる導
体層を被着し、次いでエッチング加工により不要な箇所
を除去することにより、半円状した一対の静電吸着用電
極7を形成する。
In order to manufacture the electrostatic chuck 1 shown in FIG. 1, a plate-shaped ceramic body 2 whose upper and lower surfaces are finished to be smooth is prepared, and the other main surface 6 of the plate-shaped ceramic body 2 is prepared.
By a film forming means such as an ion plating method, a PVD method, a CVD method, a sputtering method, and a plating method.
A pair of semi-circular electrodes 7 for electrostatic adsorption are formed by depositing a conductor layer made of a metal such as i, W, Mo, or Ni or a carbide thereof, and then removing unnecessary portions by etching. To do.

【0034】この時、後述する凹部3形成時に、静電吸
着用電極7の占有領域の最外周部が外周部4の内壁面よ
り5mm〜10mm離れた距離kに位置するようにする
ことが好ましい。
At this time, it is preferable that the outermost peripheral portion of the area occupied by the electrostatic attraction electrode 7 is located at a distance k which is 5 mm to 10 mm away from the inner wall surface of the outer peripheral portion 4 when the concave portion 3 described later is formed. .

【0035】次に、板状セラミック体2の一方の主面の
所定位置にマシニング加工やブラスト加工によってガス
溝5及びガス導入孔8を形成するとともに、静電吸着用
電極7には給電端子12を導電性接着剤等で接着固定す
る。
Next, a gas groove 5 and a gas introduction hole 8 are formed at a predetermined position on one main surface of the plate-shaped ceramic body 2 by machining or blasting, and the electrostatic attraction electrode 7 is provided with a power supply terminal 12. Are fixed with a conductive adhesive or the like.

【0036】そして、板状セラミック体2の他方の主面
側にガラスや樹脂系接着剤等の絶縁性を有する接合層1
4を介してベース部材9を接合した後、板状セラミック
体2の一方の主面に、その外周部4を残して深さhが3
μm〜10μmの凹部3を形成するとともに、外周部4
の頂面におけるうねりが1μm〜3μmとなるように仕
上げることにより図1に示す静電チャック1を得ること
ができる。
On the other main surface side of the plate-shaped ceramic body 2, a bonding layer 1 having an insulating property, such as glass or resin adhesive.
After the base member 9 is joined via 4 and the depth h is 3 on one main surface of the plate-shaped ceramic body 2, the outer peripheral portion 4 is left.
The outer peripheral part 4 is formed while forming the concave part 3 of 10 μm to 10 μm.
The electrostatic chuck 1 shown in FIG. 1 can be obtained by finishing so that the undulations on the top surface of the are 1 μm to 3 μm.

【0037】ここで、板状セラミック体2に凹部3を形
成する手段としては、ブラスト加工やエッチング加工に
て形成することができるが、ロータリー加工機を用いた
研削加工にて製作することが好ましい。なぜなら、ロー
タリー加工機を用いれば、研磨代が残った粗加工の状態
から外周部4と凹部3を同時に仕上げ加工まで一貫して
加工することができ、また、精度良く仕上げることがで
きる。
Here, as the means for forming the concave portion 3 in the plate-shaped ceramic body 2, it is possible to form it by blasting or etching, but it is preferable to produce it by grinding using a rotary machine. . This is because if a rotary processing machine is used, it is possible to consistently process from the state of rough processing where the polishing allowance remains to the outer peripheral portion 4 and the concave portion 3 to the finishing processing at the same time, and the finishing can be performed with high accuracy.

【0038】また、外周部4は凹部3を仕上げ加工する
際に、外周部4の仕上げ代を残しておき、外周部4のみ
ラップ研磨により加工することができる。このラップ研
磨条件としては、板状セラミック体2が窒化アルミニウ
ム質焼結体からなる場合、平面度10μm以下の鋳鉄の
ラップ盤を用い、10μm以下のダイヤモンド砥粒を用
いることで、外周部4の頂面におけるうねりを1μm〜
3μmとすることができる。
Further, the outer peripheral portion 4 can be processed by lapping only the outer peripheral portion 4 while leaving a finishing allowance for the outer peripheral portion 4 when finishing the recess 3. As the lapping conditions, when the plate-like ceramic body 2 is made of an aluminum nitride sintered body, a cast iron lapping machine having a flatness of 10 μm or less is used, and diamond abrasive grains of 10 μm or less are used, so that the peripheral portion 4 Undulation on the top surface is 1 μm ~
It can be 3 μm.

【0039】以上、本実施形態では板状セラミック体2
の他方の主面6に静電吸着用電極7を備えた静電チャッ
ク1を例にとって説明したが、図4に示すように、凹部
底面下方の板状セラミック体2中に静電吸着用電極7を
埋設した静電チャック1にも適用できることは言う迄も
ない。
As described above, in this embodiment, the plate-shaped ceramic body 2 is used.
Although the electrostatic chuck 1 having the electrostatic attraction electrode 7 on the other main surface 6 of the above has been described as an example, as shown in FIG. 4, the electrostatic attraction electrode is provided in the plate-shaped ceramic body 2 below the bottom surface of the recess. It goes without saying that it is also applicable to the electrostatic chuck 1 in which 7 is embedded.

【0040】また、本発明は前述した実施形態だけに限
定されるものではなく、本発明の要旨を逸脱しない範囲
で、改良や変更したものでも良いことは言う迄もない。
Further, it is needless to say that the present invention is not limited to the above-mentioned embodiments, and that modifications and changes may be made without departing from the gist of the present invention.

【0041】[0041]

【実施例】(実施例1)図1に示す静電チャック1を製
作し、凹部の深さhを異ならせた時のウェハ表面の温度
バラツキ、熱伝導性ガスの漏れ量、及び離脱応答性につ
いて調べる実験を行った。
EXAMPLES Example 1 The electrostatic chuck 1 shown in FIG. 1 was manufactured, and the temperature variation of the wafer surface, the amount of leakage of the heat conductive gas, and the release response when the depth h of the recess was varied. An experiment was conducted to investigate

【0042】本実験では、窒化アルミニウム質焼結体か
らなる直径200mm、厚み1mmの円板状をした板状
セラミックス体2を用意し、この板状セラミック体2の
他方の主面にメッキ法にてNi膜を被着した後、エッチ
ング加工により不要箇所を除去することにより、一対の
半円状をした静電吸着用電極7を円を構成するように形
成した。
In this experiment, a disk-shaped plate-shaped ceramic body 2 having a diameter of 200 mm and a thickness of 1 mm made of an aluminum nitride sintered body was prepared, and the other main surface of the plate-shaped ceramic body 2 was plated. After depositing the Ni film by means of etching, unnecessary portions are removed by etching to form a pair of semi-circular electrostatic attraction electrodes 7 so as to form a circle.

【0043】次に、各静電吸着用電極7に給電端子12
を導電性接着剤によって固着した後、板状セラミック体
2の他方の主面側にアルミニウム製のベース部材9をシ
リコン系接着剤からなる接合層14を介して接合した。
Next, the power supply terminal 12 is attached to each electrostatic attraction electrode 7.
After being fixed with a conductive adhesive, the aluminum-based base member 9 was bonded to the other main surface side of the plate-shaped ceramic body 2 via a bonding layer 14 made of a silicon-based adhesive.

【0044】次いで、板状セラミック体2の一方の主面
の所定位置にブラスト加工にてガス溝5と、このガス溝
5に連通するガス導入口8を形成した後、板状セラミッ
ク体2の一方の主面の外周部4を残して深さhを異なら
せた凹部3を形成することにより各試料としての静電チ
ャックを製作した。
Next, after the gas groove 5 and the gas introduction port 8 communicating with the gas groove 5 are formed at a predetermined position on one main surface of the plate-shaped ceramic body 2 by the blasting process, the plate-shaped ceramic body 2 is formed. An electrostatic chuck as each sample was manufactured by forming a concave portion 3 having a different depth h while leaving the outer peripheral portion 4 of one main surface.

【0045】なお、外周部4の頂面の幅tは4mm、ガ
ス溝5で囲まれた凹部底面の直径は190mm、静電吸
着用電極7の占有領域における最外周部から外周部4の
内壁面までの距離kは5mmとした。
The width t of the top surface of the outer peripheral portion 4 is 4 mm, the diameter of the bottom surface of the recess surrounded by the gas groove 5 is 190 mm, and the outer peripheral portion 4 to the outer peripheral portion 4 in the area occupied by the electrostatic attraction electrode 7 is from the outermost portion. The distance k to the wall surface was 5 mm.

【0046】そして、得られた静電チャック1を真空容
器内に設置し、図3(a)に示すように、8インチのシ
リコンウェハを外周部4の頂面の載せた後、一対の静電
吸着用電極7に通電することにより静電気力を発現さ
せ、図3(b)に示すようにシリコンウェハを静電チャ
ック1に吸着させるようにした状態で、ガス導入孔8か
ら熱伝導性ガスとしてヘリウムガスを2666Paの圧
力で供給し、ヘリウムガスの漏れ量をヘリウムの供給量
と真空容器内の差圧で測定した。また、その時のシリコ
ンウェハ表面の温度バラツキを測定した。ただし、ウェ
ハ表面の設定温度は100℃とし、また温度バラツキ
は、任意に選んだウェハ表面の測定点10点の最高温度
と最低温度の温度差ΔTとして測定した。
Then, the obtained electrostatic chuck 1 is placed in a vacuum container, and as shown in FIG. 3 (a), an 8-inch silicon wafer is placed on the top surface of the outer peripheral portion 4, and then a pair of static chucks are placed. An electrostatic force is generated by energizing the electrode 7 for electroadsorption, and a silicon wafer is adsorbed to the electrostatic chuck 1 as shown in FIG. As a result, helium gas was supplied at a pressure of 2666 Pa, and the leak amount of helium gas was measured by the supply amount of helium and the differential pressure in the vacuum container. Further, the temperature variation on the surface of the silicon wafer at that time was measured. However, the set temperature of the wafer surface was 100 ° C., and the temperature variation was measured as a temperature difference ΔT between the highest temperature and the lowest temperature at 10 measurement points on the wafer surface that were arbitrarily selected.

【0047】さらに、ヘリウムガスを供給してから60
秒後に静電吸着用電極7への通電を止め、ウェハが離脱
するまでの時間、つまり離脱応答時間を測定し、離脱応
答性を評価した。ただし、ウェハが離脱するまでの時間
はウェハが離脱した瞬間にヘリウムの漏れ量が急激に増
大し始めることから、静電吸着用電極7への通電を止め
てからヘリウムガスの漏れ量が急激に増大し、10SC
CMとなるまでの時間を測定し評価した。
Further, after supplying helium gas, 60
After a second, the current to the electrostatic attraction electrode 7 was stopped and the time until the wafer was detached, that is, the detachment response time was measured, and the detachment responsiveness was evaluated. However, in the time until the wafer is released, the leakage amount of helium starts to increase rapidly at the moment when the wafer is released. Therefore, the leakage amount of helium gas increases rapidly after the energization of the electrostatic attraction electrode 7 is stopped. Increased, 10 SC
The time until it became CM was measured and evaluated.

【0048】それぞれの結果は表1に示す通りである。The respective results are shown in Table 1.

【0049】[0049]

【表1】 [Table 1]

【0050】表1より判るように、まずいずれの試料も
ウェハの離脱時間が10秒以下と離脱応答性は良好であ
ることが判る。
As can be seen from Table 1, it is understood that the release response time of each sample is 10 seconds or less and the release response is good.

【0051】ただし、ヘリウムガスの漏れ具合について
見てみると、凹部3の深さhが0μmである試料No.
1は、ウェハを吸着固定した際に、凹部底面と外周部4
の頂面との間に段差が無いため、ウェハの周縁を外周部
4の頂面に強く密着させることができず、8.3SCC
Mものヘリウムガスの漏れが発生した。
However, looking at the degree of helium gas leakage, the sample No. 3 in which the depth h of the recess 3 was 0 μm.
1 is the bottom surface of the concave portion and the outer peripheral portion 4 when the wafer is sucked and fixed.
Since there is no step between it and the top surface of the wafer, the peripheral edge of the wafer cannot be strongly adhered to the top surface of the outer peripheral portion 4.
Leakage of M helium gas occurred.

【0052】また、凹部3の深さhが15μmである試
料No.5は、ウェハから凹部底面までの距離が離れす
ぎているため、静電吸着用電極7に通電しても大きな静
電気力を発生させることができず、強固に吸着させるこ
とができないため、ヘリウムガスの供給圧によりウェハ
と外周部4の頂面との間に隙間ができ、この隙間より
7.8SCCMものヘリウムガスの漏れが発生した。
Sample No. 3 having a depth h of the recess 3 of 15 μm. No. 5 is too distant from the wafer to the bottom surface of the concave portion, so that a large electrostatic force cannot be generated even when the electrostatic attraction electrode 7 is energized, and strong adsorption is not possible. By the supply pressure of 1, a gap was created between the wafer and the top surface of the outer peripheral portion 4, and 7.8 SCCM of helium gas leaked from this gap.

【0053】一方、ウェハ表面の温度バラツキについて
見てみると、凹部3の深さhが0μmである試料No.
1は、ヘリウムガスの漏れのためにウェハの中央まで充
分に行き渡らず、ウェハの中央における熱伝達特性を高
めることができなかった。その結果、ウェハ表面の温度
バラツキが12℃と大きいかった。
On the other hand, looking at the temperature variation on the wafer surface, the sample No. 3 in which the depth h of the recess 3 was 0 μm.
No. 1 could not sufficiently reach the center of the wafer due to the leakage of helium gas and could not enhance the heat transfer characteristics in the center of the wafer. As a result, the temperature variation on the wafer surface was as large as 12 ° C.

【0054】これに対し、凹部3の深さhが3μm〜1
0μmの範囲にある試料No.2〜4は、ヘリウムガス
の漏れ量を5SCCM以下に抑えることができるととも
に、ウェハ表面の温度バラツキを5℃以下と均一にする
ことができ、優れていた。
On the other hand, the depth h of the recess 3 is 3 μm to 1
Sample No. in the range of 0 μm Nos. 2 to 4 were excellent in that the leakage amount of helium gas could be suppressed to 5 SCCM or less and the temperature variation on the wafer surface could be made uniform to 5 ° C. or less.

【0055】この結果、凹部3の深さhは3〜10μm
とすれば良いことが判る。 (実施例2)次に、凹部3の深さhを5μmに固定し、
外周部4の頂面におけるうねりを異ならせる以外は実施
例1と同様の条件にてウェハ表面の温度バラツキ、熱伝
導性ガスの漏れ量、及び離脱応答性について調べる実験
を行った。
As a result, the depth h of the recess 3 is 3 to 10 μm.
It turns out that (Example 2) Next, the depth h of the concave portion 3 is fixed to 5 μm,
An experiment was carried out under the same conditions as in Example 1 except that the undulations on the top surface of the outer peripheral portion 4 were changed to examine the temperature variation on the wafer surface, the leak amount of the thermally conductive gas, and the release response.

【0056】結果は表2に示す通りである。The results are shown in Table 2.

【0057】[0057]

【表2】 [Table 2]

【0058】表2より判るように、外周部4の頂面にお
けるうねりが0.5μmである試料No.6は、離脱応
答時間が13.5秒と長かった。この原因は、外周部4
の頂面のうねりが小さいため、吸着時にウェハの周縁が
外周部4の頂面に押し付けられ、その結果、真空密着し
たリンギング状態となり、離脱し難くなったものと思わ
れる。
As can be seen from Table 2, Sample No. 6 having a waviness of 0.5 μm on the top surface of the outer peripheral portion 4 had a long detachment response time of 13.5 seconds. The cause is the outer peripheral part 4
It is considered that since the undulation of the top surface of the wafer is small, the peripheral edge of the wafer is pressed against the top surface of the outer peripheral portion 4 at the time of adsorption, resulting in a vacuum tightly contacted ringing state, which makes separation difficult.

【0059】また、外周部4の頂面におけるうねりが5
μmである試料No.9は、吸着時にうねりに沿ってウ
ェハを密着させることができないため、ウェハと外周部
4の頂面との間に隙間ができ、この隙間より12.7S
CCMものヘリウムガスの漏れが発生した。
Further, the waviness on the top surface of the outer peripheral portion 4 is 5
The sample No. 9 having a thickness of μm cannot adhere the wafer along the undulation at the time of adsorption, so that a gap is formed between the wafer and the top surface of the outer peripheral portion 4, and 12.7 S is obtained from this gap.
CCM and helium gas leaked.

【0060】これに対し、外周部4の頂面におけるうね
りが1μm〜3μmの範囲にある試料No.7,8は、
ヘリウムガスの漏れ量を5SCCM以下に抑えることが
できるとともに、ウェハ表面の温度バラツキを5℃以下
と均一にすることができ、さらにはウェハの離脱応答性
にも優れていた。
On the other hand, sample Nos. 7 and 8 in which the waviness on the top surface of the outer peripheral portion 4 is in the range of 1 μm to 3 μm,
The amount of helium gas leaked could be suppressed to 5 SCCM or less, the temperature variation on the wafer surface could be made uniform to 5 ° C. or less, and the wafer release response was excellent.

【0061】この結果、外周部4の頂面におけるうねり
は1μm〜3μmとすれば良いことが判る。
As a result, it is understood that the waviness on the top surface of the outer peripheral portion 4 should be 1 μm to 3 μm.

【0062】そして、実施例1及び実施例2の結果よ
り、凹部3の深さhを3μm〜10μmとするととも
に、外周部4の頂面におけるうねりを1μm〜3μmと
し、凹部底面下方の板状セラミック体2の他方の主面6
に静電吸着用電極7を配置することにより、熱伝導性ガ
スのガス漏れを抑えつつ、ウェハ表面の温度分布を均一
にすることができるとともに、ウェハの離脱応答性にも
優れた静電チャック1を提供できることが判る。また、
このような静電チャック1は大きな吸着力が得られるた
め、反りや変形したウェハでも強固に吸着して固定する
ことができる。 (実施例3)さらに、凹部3の深さhを5μm、外周部
4の頂面におけるうねりを1μmに固定し、静電吸着用
電極7の占有領域における最外周部から外周部4の内壁
面までの距離kを異ならせる以外は実施例1と同様の条
件にてウェハ表面の温度バラツキ、熱伝導性ガスの漏れ
量、及び離脱応答性について調べる実験を行った。
From the results of Example 1 and Example 2, the depth h of the recess 3 was set to 3 μm to 10 μm, the undulation on the top surface of the outer peripheral portion 4 was set to 1 μm to 3 μm, and the plate shape below the bottom surface of the recess was set. The other main surface 6 of the ceramic body 2
By disposing the electrostatic attraction electrode 7 on the wafer, the temperature distribution on the wafer surface can be made uniform while suppressing the gas leakage of the heat conductive gas, and the electrostatic chuck is excellent in the responsiveness of the wafer detachment. It turns out that 1 can be provided. Also,
Since such an electrostatic chuck 1 can obtain a large attraction force, even a warped or deformed wafer can be firmly attracted and fixed. (Embodiment 3) Further, the depth h of the concave portion 3 is fixed to 5 μm, and the undulation on the top surface of the outer peripheral portion 4 is fixed to 1 μm, and the outer peripheral portion to the inner wall surface of the outer peripheral portion 4 in the area occupied by the electrostatic attraction electrode 7 are fixed. An experiment was conducted under the same conditions as in Example 1 except that the distance k to was varied with respect to the temperature variation of the wafer surface, the amount of leak of the thermally conductive gas, and the detachment response.

【0063】結果は表3に示す通りである。The results are shown in Table 3.

【0064】[0064]

【表3】 [Table 3]

【0065】表3より判るように、静電吸着用電極7の
占有領域における最外周部から外周部4の内壁面までの
距離kが3mmである試料No.10は、ウェハの離脱
応答性が15.3秒と長かった。この原因としては、静
電吸着用電極7が外周部4の下方近くまで形成されてい
ることにより、静電気力が外周部4にまで影響し、ウェ
ハの離脱時に外周部4に残留吸着力が働き、離脱にかか
る時間がかかったものと思われる。
As can be seen from Table 3, the sample No. 3 having a distance k from the outermost peripheral portion to the inner wall surface of the outer peripheral portion 4 in the area occupied by the electrostatic attraction electrode 7 is 3 mm. No. 10 had a long wafer detachment response of 15.3 seconds. The reason for this is that since the electrostatic attraction electrode 7 is formed near the lower part of the outer peripheral portion 4, the electrostatic force also affects the outer peripheral portion 4, and when the wafer is detached, the residual attractive force acts on the outer peripheral portion 4. , It seems that it took a long time to leave.

【0066】また、静電吸着用電極7の占有領域におけ
る最外周部から外周部4の内壁面までの距離kが15m
mである試料No.13は、静電吸着用電極7の占有領
域が狭くなり過ぎるために凹部底面でのウェハの吸着力
が小さく、ウェハの周縁を外周部4の頂面に押し付ける
力が弱くなり、その結果、ヘリウムガスの圧力により、
ウェハの周縁と外周部4の頂面との間に部分的な隙間が
でき、7.7SCCMものヘリウムガスの漏れが発生し
た。
Further, the distance k from the outermost peripheral portion to the inner wall surface of the outer peripheral portion 4 in the area occupied by the electrostatic attraction electrode 7 is 15 m.
Sample No. In No. 13, since the area occupied by the electrostatic attraction electrode 7 becomes too narrow, the attraction force of the wafer on the bottom surface of the recess is small, and the force of pressing the peripheral edge of the wafer against the top surface of the outer peripheral portion 4 becomes weak. Depending on the gas pressure,
A partial gap was created between the peripheral edge of the wafer and the top surface of the outer peripheral portion 4, causing a leak of 7.7 SCCM of helium gas.

【0067】これに対し、静電吸着用電極7の占有領域
における最外周部から外周部4の内壁面までの距離kが
5mm〜10mmの範囲にある試料No.11,12
は、ヘリウムガスの漏れ量が5SCCM以下と少なく、
ウェハの離脱にかかる時間も10秒以下と短かく良好な
結果であった。また、ウェハ表面の温度バラツキも5℃
以下と良好であった。
On the other hand, in the sample No. 5 in which the distance k from the outermost peripheral portion to the inner wall surface of the outer peripheral portion 4 in the area occupied by the electrostatic attraction electrode 7 is in the range of 5 mm to 10 mm. 11, 12
Has a small helium gas leakage of less than 5 SCCM,
The time required for detaching the wafer was 10 seconds or less, which was a short and good result. Also, the temperature variation on the wafer surface is 5 ° C.
It was good as below.

【0068】この結果、静電吸着用電極7の占有領域に
おける最外周部から外周部4の内壁面までの距離kは5
mm〜10mmとすれば良いことが判る。
As a result, the distance k from the outermost peripheral portion in the area occupied by the electrostatic attraction electrode 7 to the inner wall surface of the outer peripheral portion 4 is 5.
It can be seen that it is good if it is set to mm to 10 mm.

【0069】[0069]

【発明の効果】以上のように、本発明の静電チャック
は、板状セラミック体の一方の主面に、その外周部を残
して深さが3〜10μmの凹部を形成し、上記外周部頂
面におけるうねりを1〜3μmとするとともに、上記凹
部底面の周縁部にガス溝を設け、上記凹部底面下方の板
状セラミック体中又は板状セラミック体の他方の主面に
静電吸着用電極を配置したことによって、反りや変形し
たウェハでも強固に吸着固定することができる。
As described above, according to the electrostatic chuck of the present invention, a concave portion having a depth of 3 to 10 μm is formed on one main surface of a plate-shaped ceramic body while leaving the outer peripheral portion thereof. An undulation on the top surface is set to 1 to 3 μm, a gas groove is provided in the peripheral portion of the bottom surface of the recess, and an electrostatic adsorption electrode is provided in the plate-shaped ceramic body below the bottom surface of the recess or on the other main surface of the plate-shaped ceramic body. By disposing, the warped or deformed wafer can be firmly adsorbed and fixed.

【0070】また、吸着時にはウェハの中央を第一の保
持面である凹部底面と接触させ、ウェハの周縁を第二の
保持面である外周部の頂面と接触させるとともに、ウェ
ハと凹部とで形成される空間には熱伝導性ガスを供給す
ることができるため、ウェハの中央及び周縁の熱伝達特
性を近似させることができ、ウェハ表面の温度分布を均
一にすることができる。
During adsorption, the center of the wafer is brought into contact with the bottom surface of the recess, which is the first holding surface, and the peripheral edge of the wafer is brought into contact with the top surface of the outer peripheral portion, which is the second holding surface. Since the heat conductive gas can be supplied to the formed space, the heat transfer characteristics at the center and the periphery of the wafer can be approximated, and the temperature distribution on the wafer surface can be made uniform.

【0071】しかも、ウェハの中央は第二の保持面より
低い位置にある第一の保持面に吸着されるため、ウェハ
を第二の保持面の内周エッジ部に密着させることができ
るとともに、第二の保持面とも接触させることができる
ため、ウェハと凹部とで形成される空間に供給した熱伝
導性ガスがウェハの周縁と第二の保持面との間から漏れ
ることを効果的に防止することができ、各種加工中の真
空度を低下させることがない。
Moreover, since the center of the wafer is adsorbed by the first holding surface which is lower than the second holding surface, the wafer can be brought into close contact with the inner peripheral edge portion of the second holding surface. Since the second holding surface can also be brought into contact with the second holding surface, the thermally conductive gas supplied to the space formed by the wafer and the recess is effectively prevented from leaking between the peripheral edge of the wafer and the second holding surface. It is possible to prevent the vacuum degree from being lowered during various processes.

【0072】その為、本発明の静電チャックを成膜加工
やエッチング加工等の各種加工に用いれば、ウェハに対
して精度の高い加工を施すことができる。
Therefore, when the electrostatic chuck of the present invention is used for various processes such as film forming process and etching process, the wafer can be processed with high precision.

【0073】その上、静電吸着用電極は凹部底面の下方
にしか配置していないことから、静電吸着用電極への通
電を止めれば、残留吸着力が小さく、かつ強制的に下凸
に湾曲させられていたウェハの弾性力によってウェハを
保持面より直ちに離脱させることができるため、静電チ
ャックからの離脱応答性を高めることができる。
Moreover, since the electrostatic attraction electrode is arranged only below the bottom surface of the recess, if the energization to the electrostatic attraction electrode is stopped, the residual attraction force is small and the electrode is forced to project downward. Since the wafer can be immediately released from the holding surface by the elastic force of the curved wafer, it is possible to improve the response of detachment from the electrostatic chuck.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の静電チャックの一例を示す図で、
(a)は平面図、(b)は断面図である。
FIG. 1 is a view showing an example of an electrostatic chuck of the present invention,
(A) is a plan view and (b) is a sectional view.

【図2】図1のA部を拡大した断面図である。FIG. 2 is an enlarged sectional view of a portion A of FIG.

【図3】(a)(b)は本発明の静電チャックを用いて
ウェハを吸着する時の過程を示す断面図である。
3 (a) and 3 (b) are cross-sectional views showing a process of adsorbing a wafer using the electrostatic chuck of the present invention.

【図4】本発明の静電チャックの他の例を示す断面図で
ある。
FIG. 4 is a sectional view showing another example of the electrostatic chuck of the present invention.

【図5】従来の静電チャックの一例を示す断面図であ
る。
FIG. 5 is a sectional view showing an example of a conventional electrostatic chuck.

【図6】従来の静電チャックの他の例を示す断面図であ
る。
FIG. 6 is a sectional view showing another example of a conventional electrostatic chuck.

【符号の説明】[Explanation of symbols]

1:静電チャック 2:板状セラミック体、3:凹部、
3a:第一の保持面 4:外周部、4a:第二の保持面 5:ガス溝 6:他
方の主面 7:静電吸着用電極 8:ガス導入孔 9:ベース部材
10:ガス供給孔 11:電極取出孔 12:給電端子 13:絶縁管 1
4:接合層 W:ウェハ
1: electrostatic chuck 2: plate-shaped ceramic body 3: concave portion
3a: 1st holding surface 4: Outer peripheral part, 4a: 2nd holding surface 5: Gas groove 6: Other main surface 7: Electrostatic attraction electrode 8: Gas introduction hole 9: Base member 10: Gas supply hole 11: Electrode extraction hole 12: Power supply terminal 13: Insulation tube 1
4: Bonding layer W: Wafer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】板状セラミック体の一方の主面に、その外
周部を残して深さが3μm〜10μmの凹部を備えると
ともに、該凹部底面の周縁部にガス溝を備えてなり、上
記凹部底面下方の板状セラミック体中又は板状セラミッ
ク体の他方の主面に静電吸着用電極を備えた静電チャッ
クであって、上記外周部の頂面におけるうねりが1μm
〜3μmであることを特徴とする静電チャック。
1. A plate-shaped ceramic body is provided with a recess having a depth of 3 .mu.m to 10 .mu.m while leaving an outer peripheral portion of the main surface, and a gas groove is provided at a peripheral edge of a bottom surface of the recess. An electrostatic chuck having an electrostatic attraction electrode in the plate-shaped ceramic body below the bottom surface or on the other main surface of the plate-shaped ceramic body, wherein the undulation on the top surface of the outer peripheral portion is 1 μm.
An electrostatic chuck having a thickness of 3 μm.
【請求項2】上記静電吸着用電極の占有領域における最
外周部から上記外周部の内壁面までの距離が5mm〜1
0mmであることを特徴とする請求項1に記載の静電チ
ャック。
2. The distance from the outermost peripheral portion in the area occupied by the electrostatic attraction electrode to the inner wall surface of the outer peripheral portion is 5 mm to 1.
It is 0 mm, The electrostatic chuck of Claim 1 characterized by the above-mentioned.
JP2001332425A 2001-10-30 2001-10-30 Electrostatic chuck Expired - Fee Related JP3810300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001332425A JP3810300B2 (en) 2001-10-30 2001-10-30 Electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001332425A JP3810300B2 (en) 2001-10-30 2001-10-30 Electrostatic chuck

Publications (2)

Publication Number Publication Date
JP2003133401A true JP2003133401A (en) 2003-05-09
JP3810300B2 JP3810300B2 (en) 2006-08-16

Family

ID=19147843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001332425A Expired - Fee Related JP3810300B2 (en) 2001-10-30 2001-10-30 Electrostatic chuck

Country Status (1)

Country Link
JP (1) JP3810300B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086301A (en) * 2004-09-15 2006-03-30 Ngk Insulators Ltd System and method for valuation of electrostatic chuck
JP2006270084A (en) * 2005-02-24 2006-10-05 Kyocera Corp Electrostatic chuck, wafer holding element and method of processing wafer
JP2007288157A (en) * 2006-03-24 2007-11-01 Ngk Insulators Ltd Ceramics sintered body, and its manufacturing method
JP2009188162A (en) * 2008-02-06 2009-08-20 Tokyo Electron Ltd Substrate placing table, substrate processing apparatus, and temperature control method for substrate to be processed
JP2010514213A (en) * 2006-12-19 2010-04-30 アクセリス テクノロジーズ, インコーポレイテッド Electrostatic clamp for annular fixing and backside cooling
JP2011519486A (en) * 2008-04-30 2011-07-07 アクセリス テクノロジーズ, インコーポレイテッド Gas bearing electrostatic chuck
JP5353694B2 (en) * 2007-03-22 2013-11-27 コニカミノルタ株式会社 Phosphor sheet manufacturing method and phosphor sheet manufacturing apparatus
JP2016152314A (en) * 2015-02-17 2016-08-22 パナソニックIpマネジメント株式会社 Plasma treatment apparatus and manufacturing method of electronic component
CN107591355A (en) * 2016-07-07 2018-01-16 朗姆研究公司 With the electrostatic chuck for preventing electric arc with putting the feature for improving process uniformity of fighting
WO2019163757A1 (en) * 2018-02-20 2019-08-29 住友大阪セメント株式会社 Electrostatic chuck device and method for producing electrostatic chuck device
US10896842B2 (en) 2009-10-20 2021-01-19 Tokyo Electron Limited Manufacturing method of sample table
KR20240020196A (en) 2022-08-05 2024-02-14 신꼬오덴기 고교 가부시키가이샤 Temperature adjusting member and method of manufacturing temperature adjusting member
CN117577574A (en) * 2023-11-22 2024-02-20 苏州众芯联电子材料有限公司 Electrostatic chuck structure and manufacturing process thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5112091B2 (en) * 2007-01-31 2013-01-09 太平洋セメント株式会社 Electrostatic chuck and heat treatment method for object to be adsorbed using the same
KR101405299B1 (en) * 2007-10-10 2014-06-11 주성엔지니어링(주) Substrate supporting plate and apparatus for depositing thin film having the same
JP4786693B2 (en) 2008-09-30 2011-10-05 三菱重工業株式会社 Wafer bonding apparatus and wafer bonding method
US9520315B2 (en) * 2013-12-31 2016-12-13 Applied Materials, Inc. Electrostatic chuck with internal flow adjustments for improved temperature distribution

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213777A (en) * 1996-01-31 1997-08-15 Kyocera Corp Electrostatic chuck
WO2001004945A1 (en) * 1999-07-08 2001-01-18 Lam Research Corporation Electrostatic chuck and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213777A (en) * 1996-01-31 1997-08-15 Kyocera Corp Electrostatic chuck
WO2001004945A1 (en) * 1999-07-08 2001-01-18 Lam Research Corporation Electrostatic chuck and its manufacturing method

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086301A (en) * 2004-09-15 2006-03-30 Ngk Insulators Ltd System and method for valuation of electrostatic chuck
JP2006270084A (en) * 2005-02-24 2006-10-05 Kyocera Corp Electrostatic chuck, wafer holding element and method of processing wafer
JP2007288157A (en) * 2006-03-24 2007-11-01 Ngk Insulators Ltd Ceramics sintered body, and its manufacturing method
JP2010514213A (en) * 2006-12-19 2010-04-30 アクセリス テクノロジーズ, インコーポレイテッド Electrostatic clamp for annular fixing and backside cooling
JP5353694B2 (en) * 2007-03-22 2013-11-27 コニカミノルタ株式会社 Phosphor sheet manufacturing method and phosphor sheet manufacturing apparatus
JP2009188162A (en) * 2008-02-06 2009-08-20 Tokyo Electron Ltd Substrate placing table, substrate processing apparatus, and temperature control method for substrate to be processed
US8696862B2 (en) 2008-02-06 2014-04-15 Tokyo Electron Limited Substrate mounting table, substrate processing apparatus and substrate temperature control method
JP2011519486A (en) * 2008-04-30 2011-07-07 アクセリス テクノロジーズ, インコーポレイテッド Gas bearing electrostatic chuck
US10896842B2 (en) 2009-10-20 2021-01-19 Tokyo Electron Limited Manufacturing method of sample table
JP2016152314A (en) * 2015-02-17 2016-08-22 パナソニックIpマネジメント株式会社 Plasma treatment apparatus and manufacturing method of electronic component
CN105895488A (en) * 2015-02-17 2016-08-24 松下知识产权经营株式会社 Plasma processing apparatus and method for manufacturing electronic component
CN107591355A (en) * 2016-07-07 2018-01-16 朗姆研究公司 With the electrostatic chuck for preventing electric arc with putting the feature for improving process uniformity of fighting
JP2018014492A (en) * 2016-07-07 2018-01-25 ラム リサーチ コーポレーションLam Research Corporation Electrostatic chuck having features for preventing arc discharge and ignition and improving process uniformity
KR20180006307A (en) * 2016-07-07 2018-01-17 램 리써치 코포레이션 Electrostatic chuck with features for preventing electrical arcing and light-up and improving process uniformity
JP7062383B2 (en) 2016-07-07 2022-05-06 ラム リサーチ コーポレーション Electrostatic chuck with features to prevent arc discharge and ignition and improve process uniformity
KR102454532B1 (en) * 2016-07-07 2022-10-13 램 리써치 코포레이션 Electrostatic chuck with features for preventing electrical arcing and light-up and improving process uniformity
CN107591355B (en) * 2016-07-07 2023-09-08 朗姆研究公司 Electrostatic chuck with features to prevent arcing and ignition and improve process uniformity
WO2019163757A1 (en) * 2018-02-20 2019-08-29 住友大阪セメント株式会社 Electrostatic chuck device and method for producing electrostatic chuck device
JPWO2019163757A1 (en) * 2018-02-20 2021-02-04 住友大阪セメント株式会社 Manufacturing method of electrostatic chuck device and electrostatic chuck device
JP7140183B2 (en) 2018-02-20 2022-09-21 住友大阪セメント株式会社 Electrostatic chuck device and method for manufacturing electrostatic chuck device
KR20240020196A (en) 2022-08-05 2024-02-14 신꼬오덴기 고교 가부시키가이샤 Temperature adjusting member and method of manufacturing temperature adjusting member
CN117577574A (en) * 2023-11-22 2024-02-20 苏州众芯联电子材料有限公司 Electrostatic chuck structure and manufacturing process thereof

Also Published As

Publication number Publication date
JP3810300B2 (en) 2006-08-16

Similar Documents

Publication Publication Date Title
US7068489B2 (en) Electrostatic chuck for holding wafer
JP3810300B2 (en) Electrostatic chuck
KR100522977B1 (en) Holding apparatus for clamping a workpiece
TWI601192B (en) Method and apparatus for plasma dicing a semi-conductor wafer
TWI496240B (en) Electrostatic chuck with polymer protrusions
JPH09213777A (en) Electrostatic chuck
US20050045106A1 (en) Electrostatic chuck having a low level of particle generation and method of fabricating same
US5825607A (en) Insulated wafer spacing mask for a substrate support chuck and method of fabricating same
EP2286448A1 (en) Electrostatic chuck
JP7012454B2 (en) Manufacturing method of electrostatic suction chuck and manufacturing method of semiconductor device
JP6627936B1 (en) Electrostatic chuck device and method of manufacturing electrostatic chuck device
EP0856882A2 (en) Stand-off pad for supporting a wafer on a substrate support chuck and method of fabricating same
JP4444843B2 (en) Electrostatic chuck
JP2000114354A (en) Heater for supporting and heating wafer
JP2004179364A (en) Electrostatic chuck
KR20050054950A (en) Electrostatic chuck having a low level of particle generation and method of fabricating same
JP4439135B2 (en) Electrostatic chuck
JP3784274B2 (en) Electrostatic chuck
JP4308564B2 (en) Plasma processing apparatus and plasma processing tray
JP6782157B2 (en) Electrostatic chuck
JP2002170872A (en) Electrostatic chuck
KR20050102378A (en) Electrostatic chuck structure in semiconductor fabrication equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees