JP7113684B2 - 移動式含水比測定装置、及び転圧方法 - Google Patents

移動式含水比測定装置、及び転圧方法 Download PDF

Info

Publication number
JP7113684B2
JP7113684B2 JP2018127271A JP2018127271A JP7113684B2 JP 7113684 B2 JP7113684 B2 JP 7113684B2 JP 2018127271 A JP2018127271 A JP 2018127271A JP 2018127271 A JP2018127271 A JP 2018127271A JP 7113684 B2 JP7113684 B2 JP 7113684B2
Authority
JP
Japan
Prior art keywords
water content
content ratio
embankment
compaction
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018127271A
Other languages
English (en)
Other versions
JP2020007730A (ja
Inventor
裕之 永井
勇 三反畑
竜文 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hazama Ando Corp
Original Assignee
Hazama Ando Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hazama Ando Corp filed Critical Hazama Ando Corp
Priority to JP2018127271A priority Critical patent/JP7113684B2/ja
Publication of JP2020007730A publication Critical patent/JP2020007730A/ja
Application granted granted Critical
Publication of JP7113684B2 publication Critical patent/JP7113684B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Road Paving Machines (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本願発明は、宅地造成や、道路、河川堤防などにおいて構築される盛土に関する技術であり、より具体的には、測定した含水比に応じた転圧条件(振動ローラの起振力及び走行速度を含む)を決定する移動式含水比測定装置と、これを用いた転圧方法に関するものである。
盛土は、宅地造成や、道路、河川堤防などその用途に応じてあらかじめ要求性能(強度や、変形・圧縮特性、透水性など)が設定されており、この要求性能を満足するため盛土は適切な締固めが行われる。具体的には、盛土材をあらかじめ定めた所定厚(以下、「計画撒き出し厚」という。)だけ撒き出し、これを振動ローラなどの転圧機械があらかじめ定めた回数(以下、「計画転圧回数」という。)だけ転圧する。
転圧は、要求性能を満たす盛土となるように行われるが、この要求性能を直接的に確認することは難しく、一般的には転圧された盛土の品質として締固めの程度を確認している。締固めの程度を表すには、乾燥単位体積重量(乾燥密度)が用いられることが多く、この値が大きいほど強度が増大し、透水係数は小さくなり、すなわち締固めの程度が向上する。同じ締固め条件でも含有する水量によって得られる乾燥単位体積重量は異なるため、最大の乾燥単位体積重量を与える最適含水比を基準とした品質管理を行うこともある。あるいは、施工現場での乾燥密度を最大乾燥密度で除した「締固め度」という概念で品質管理を行うこともあり。例えば締固め度が90%以上であれば要求品質を満たすとするケースもある。
また、転圧後の盛土の品質(施工乾燥密度や締固め度など)を確認することなく、工法規定方式によって盛土の品質管理を行うことも多い。この工程規定方式は、試験施工を行うことによって、盛土の転圧作業に用いる転圧機械や、計画撒き出し厚、計画転圧回数といった施工法そのものを規定する方法であり、これらの仕様で転圧を行えば目的の品質が達成されると考えるわけである。
盛土の品質管理を行う手法としては、工法規定方式のほかにも様々な手法がこれまで提案されている。例えば特許文献1では、あらかじめ試験施工を行うことにより補正係数を求め、この補正係数を用いて締固め後の盛土層の密度を算出し、目標密度と照らし合わせることで品質管理を行う技術について提案している。
特開2009-114691号公報
振動ローラで転圧を行う場合、盛土の締固めの程度、すなわち盛土の品質は、振動ローラの締固め性能(走行速度や起振力、振幅など)と盛土材の含水比の組み合わせによって大きく異なることが知られている。ところが工法規定方式をはじめとする従来手法では、試験施工によって振動ローラの規格や計画撒き出し厚、計画転圧回数を規定するに留まり、振動ローラの締固め性能を規定することはなかった。振動ローラの締固め性能は、重機オペレータの感覚に委ねているのが現状であり、そのため盛土の品質が一定しないという問題が指摘されていた。
また含水比に関しても、従来手法では、試験施工等で測定された値をそのまま本施工の盛土に適用して品質管理を行っており、しかも本施工の盛土全体が同じ含水比として扱う品質管理が主流であった。しかしながら試験施工における盛土の含水比と本施工における盛土の含水比は相違することも多く、特に施工の盛土全体が同じ含水比となることはむしろ稀である。そのため実際の施工現場では、過転圧や転圧不足が生じた、いわば品質不良の盛土が構築されることも少なくなかった。
このように、盛土の品質が、振動ローラの締固め性能と盛土材の含水比の組み合わせに依存するにもかかわらず、従来手法では、本施工における盛土の含水比分布を測定することも、事前に振動ローラの締固め性能を計画することも、ましてや含水比分布に応じて振動ローラの締固め性能を適宜設定することも行われることはなかった。
本願発明の課題は、従来技術が抱える問題を解決することであり、すなわち盛土の含水比分布を測定するとともに、含水比分布に応じて振動ローラなど転圧機械の締固め性能を適宜設定することができる移動式含水比測定装置と、これを用いた転圧方法を提供することである。
本願発明は、含水比測定手段によって盛土の含水比を移動測定し、あらかじめ設定した転圧条件と盛土材の含水比との関係に基づいて、施工領域ごとに転圧機械の転圧条件を決定する、という点に着目してなされたものであり、これまでにない発想に基づいて行われた発明である。
本願発明の移動式含水比測定装置は、撒き出された盛土の含水比を移動しながら測定する移動式含水比測定装置であって、盛土上を移動し得る移動体と、移動体に搭載された含水比測定手段、そして転圧条件決定手段を備えたものである。このうち含水比測定手段は、非接触で盛土の含水比を測定する手段である。また転圧条件決定手段は、含水比測定手段で測定された盛土の含水比に応じて転圧機械の転圧条件(起振力及び走行速度を含む)を決定する手段であり、より詳しくは、あらかじめ設定した「転圧条件と盛土材の含水比との関係」に基づいて、含水比測定手段で測定された盛土の含水比から転圧機械の転圧条件を施工領域(盛土の全体領域を複数に分割した領域)ごとに決定する手段である。
本願発明の移動式含水比測定装置は、小領域含水比設定手段と施工領域設定手段をさらに備えたものとすることもできる。このうち小領域含水比設定手段は、含水比測定手段で測定された盛土の含水比に基づいて、小領域(盛土の全体領域を複数に分割した領域)ごとに含水比を設定する手段である。また施工領域設定手段は、含水比測定手段で測定された盛土の含水比に応じて施工領域を設定する手段であり、より詳しくは、隣接する2以上の小領域であって、近似する(同一も含む)含水比が測定された2以上の小領域を、1の施工領域として設定する手段である。また施工領域設定手段は、盛土の全体領域における含水比のばらつき(分散や標準偏差)に応じて施工領域の数を決定したうえで、施工領域を設定することもできる。
本願発明の移動式含水比測定装置は、振動ローラを移動体とするものとすることもできる。振動ローラは、転圧条件決定手段によって決定された転圧条件で盛土の転圧を行う。
本願発明の転圧方法は、撒き出された盛土の含水比を移動測定した結果に応じて盛土の転圧を行う方法であって、含水比測定工程と転圧条件決定工程を備えた方法である。このうち含水比測定工程では、移動体で移動しながら含水比測定手段によって非接触で盛土の含水比を測定する。また転圧条件決定工程では、あらかじめ設定した「転圧条件と盛土材の含水比との関係」に基づいて、含水比測定工程で測定された盛土の含水比から転圧機械の転圧条件(起振力及び走行速度を含む)を施工領域ごとに決定する。そして、転圧条件決定工程で決定された転圧条件で、転圧機械が盛土の転圧を行う。
本願発明の転圧方法は、試験転圧工程と適応転圧条件設定工程をさらに備えた方法とすることもできる。このうち試験転圧工程では、異なる含水比を有する2種類以上の試験盛土材に対して、それぞれ異なる転圧条件で転圧機械が試験盛土材の転圧を行うとともに、転圧後における試験盛土材の品質を測定する。また適応転圧条件設定工程では、試験転圧工程で得られた「試験盛土材の品質と転圧条件と含水比との関係」から、要求品質を満たす適応転圧条件を含水比ごとに定める。この場合、転圧条件決定工程では、適応転圧条件設定工程で定められた含水比ごとの適応転圧条件に基づいて、転圧条件を決定する。
本願発明の移動式含水比測定装置、及び転圧方法には、次のような効果がある。
(1)含水比に適した締固め性能で転圧を行うことができる。その結果、従来に比べ過転圧や転圧不足を回避することができ、より高品質の盛土を構築することができる。
(2)盛土上を移動しながら含水比を測定することから、リアルタイムかつ面的に含水比を得ることができる。これにより、含水比分布に応じて適切な締固め性能を選択しながら転圧することができ、従来に比べ高い品質の盛土を構築することができる。
(3)高精度かつ短時間で含水比分布に応じた適切な締固め性能を決定することができることから、低品質や出来形不足による施工の手戻りを防ぐことができるうえ、品質保証(トレーサビリティ)を確保することができる。
本願発明の移動式含水比測定装置の主な構成を示すブロック図。 (a)は振動ローラを移動体とした移動式含水比測定装置を示す斜視図、(b)は振動ローラを移動体とした移動式含水比測定装置を示す正面図と側面図。 スペクトルカメラを利用した含水比測定手段で測定した含水比と、実際の含水比との相関を示すグラフ図。 盛土の全体領域と複数の小領域を説明する平面図。 盛土全体の形状と寸法に基づいて設定された施工領域を説明する平面図。 含水比測定手段が測定した含水比に応じて設定された施工領域を説明する平面図。 「転圧条件と盛土材の含水比との関係」を設定する手順を示すフロー図。 (a)は4パターンの転圧条件と締固め度の関係を示すグラフ図、(b)は4パターンの転圧条件と試験盛土材の品質との関係を示す説明図。 本願発明の転圧方法の主な工程を示すフロー図。
本願発明の移動式含水比測定装置、及び転圧方法の実施形態の例を図に基づいて説明する。なお本願発明は、種々の転圧機械を対象としてその転圧条件を決定することができるが、便宜上ここでは、転圧機械が振動ローラの場合で説明することとする。
1.全体概要
本願発明は、撒き出された盛土を振動ローラで転圧するに当たって、あらかじめ振動ローラの転圧条件を決定することをひとつの技術的特徴としている。ここで振動ローラの「転圧条件」とは、振動ローラの転圧性能である走行速度や起振力、振幅を含み、そのほか転圧回数や撒き出し厚などを含めることもできる。
既述したとおり、締固め度等で表される盛土の品質は、振動ローラの締固め性能と盛土の含水比の組み合わせに大きく依存する。そのため本願発明では、撒き出された盛土の含水比を測定し、その結果に応じて転圧条件を決定することとした。さらに本願発明では、盛土全体に対して1通りの転圧条件を決定するのではなく、盛土の含水比分布に応じた転圧条件を決定することとしている。つまり、同一の転圧条件で盛土全体を転圧するのではなく、盛土のうち含水比が大きい領域と小さい領域で転圧条件を変えて転圧できるようにしたわけである。なお転圧条件は、盛土の全体領域(以下、単に「盛土全体」という。)を2以上に分割した領域ごとに決定され、便宜上ここでは転圧条件が決定される領域のことを「施工領域」ということとする。換言すれば、盛土全体は2以上の施工領域によって構成される。
2.移動式含水比測定装置
本願発明の移動式含水比測定装置について、図を参照しながら詳しく説明する。なお、本願発明の転圧方法は、本願発明の移動式含水比測定装置を用いて転圧を行う方法であり、したがってまずは本願発明の移動式含水比測定装置について説明し、その後に本願発明の転圧方法について説明することとする。
図1は、本願発明の移動式含水比測定装置100の主な構成を示すブロック図である。この図に示すように本願発明の移動式含水比測定装置100は、移動体101と含水比測定手段102、転圧条件決定手段103を含んで構成され、さらに測位手段104や含水比データ記憶手段105、小領域含水比設定手段106、小領域記憶手段107、施工領域設定手段108、施工領域記憶手段109、施工領域含水比設定手段110、適応転圧条件記憶手段111、ディスプレイやプリンタといった出力手段112を含んで構成することもできる。
移動式含水比測定装置100のうち転圧条件決定手段103と小領域含水比設定手段106、施工領域設定手段108、施工領域含水比設定手段110は、専用のものとして製造することもできるし、汎用的なコンピュータ装置を利用することもできる。このコンピュータ装置は、パーソナルコンピュータ(PC)や、iPad(登録商標)といったタブレット型PC、スマートフォンを含む携帯端末、あるいはPDA(Personal Data Assistance)などによって構成することができる。コンピュータ装置は、CPU等のプロセッサ、ROMやRAMといったメモリを具備しており、さらにマウスやキーボード等の入力手段やディスプレイを含むものもある。また、含水比データ記憶手段105と小領域記憶手段107、施工領域記憶手段109、適応転圧条件記憶手段111は、例えばデータベースサーバに構築することができ、ローカルなネットワーク(LAN:Local Area Network)に置くこともできるし、インターネット経由(つまり無線通信)で保存するクラウドサーバとすることもできる。
以下、移動式含水比測定装置100を構成する主な要素ごとに説明する。
(移動体)
図2は、振動ローラを移動体101とした移動式含水比測定装置100を示す図であり、(a)はその斜視図、(b)はその正面図と側面図である。この図に示すように移動式含水比測定装置100を構成する移動体101は、振動ローラを利用することができる。振動ローラを利用することによって、移動式含水比測定装置100を移動させる移動体101としての機能と、実際に盛土の転圧を行う転圧機械としての機能を兼用することができるわけである。もちろん、撒き出された盛土上を移動することができれば、ダンプトラックやバックホウなど種々のものを移動式含水比測定装置100の移動体101として利用することができる。
図2(a)に示すように移動体101には、測位手段104を設置することができる。この測位手段104は、移動体101の現在位置を計測する手段であり、例えば測位衛星STからの電波を受信するGNSS(Global Navigation Satellite System)受信機を利用するとよい。あるいは、移動体101の走行距離をカウントする距離計や、トータルステーションのターゲット(ミラー)など、移動体101の位置を測定するための様々な機器を測位手段104として用いることができる。
転圧機械としての振動ローラ(この場合、移動体101としてではない)のオペレータには、転圧条件決定手段103によって決定された転圧条件が示される。図2(a)では、転圧条件決定手段103が構築されたコンピュータPCが、振動ローラとは異なる場所に配置されており、そして無線通信によってコンピュータPCから転圧条件が振動ローラの受信手段に送信されるとともに、受信した転圧条件を振動ローラ内の出力手段112で表示している。これに限らず、転圧条件決定手段103が構築されたコンピュータPCを振動ローラ内に配置し、そのコンピュータPCが有する出力手段112に転圧条件を表示することもできる。
(含水比測定手段)
含水比測定手段102は、撒き出された盛土の含水比を測定し得る手段であり、移動体101に搭載される。すなわち、移動体101の移動に伴って任意位置の含水比を取得することができ、そのため測定した含水比の値とその測定位置は関連付けて記録するとよい。例えば、含水比測定手段102で測定した時刻と、測位手段104が移動体101の現在位置(つまり測定位置)を計測した時刻に基づいて(例えば同期させて)、含水比の値と測定位置を関連付けて記録することができる。便宜上ここでは、含水比の値と測定位置を関連付けた情報のことを「含水比データ(図1)」ということとする。この含水比データは、含水比データ記憶手段105に記憶される。
含水比測定手段102は、移動体101に搭載された状態で盛土の含水比を測定し、すなわち移動しながら盛土の含水比を測定する。そのため、移動式含水比測定装置100で利用される含水比測定手段102は、非接触形式のものが望ましい。例えば図(b)では、電磁波を利用した含水比測定手段102を示しており、発信側含水比測定手段102aから出力された電磁波を、受信側含水比測定手段102bで受信し、その受信信号から含水比を推定している。
また、含水比測定手段102としてスペクトルカメラを利用することもできる。以下、スペクトルカメラを利用して盛土材の含水比を推定する手法について説明する。まず種々の含水比を有する盛土試料を用意し、それぞれの盛土試料に対してスペクトルカメラでスペクトル強度を取得する。さらにその結果を分析することで、スペクトル強度と盛土材の含水比との関係を示す含水比推定式を設定する。そして、実際に撒き出された盛土のスペクトル強度をスペクトルカメラで取得し、含水比推定式に基づいて、スペクトル強度から盛土の含水比を推定するわけである。なお、本願発明者らがスペクトルカメラを利用した含水比測定手段102で盛土材の含水比を測定したところ、図3に示すように、その測定値が実際の含水比と極めて高い相関(相関係数の2乗が0.9447)を示すことを確認することができた。
移動式含水比測定装置100を構成する含水比測定手段102は、移動しながら盛土の含水比を非接触で測定することができるものであれば、電磁波を利用したものや、スペクトルカメラを利用したもののほか、レーダーを利用したものや、加速度応答値CCV(Compaction Control Value)を利用したものなど、様々な方式のものを利用することができる。
(小領域と小領域含水比)
一般的に、転圧対象となる盛土は比較的広い範囲で計画されることから、移動しながら含水比測定手段102で測定していくと多数の含水比データが得られ、しかもこれら含水比データの測定点は不規則な配置となることが多い。そこで、含水比データの取り扱いを容易にするため、盛土全体を複数に分割した領域を設定し、その分割された領域ごとに含水比を与えるとよい。なお便宜上ここでは、盛土全体が分割された領域のことを「小領域」ということとし、小領域ごとに付与された含水比のことを「小領域含水比」ということとする。以下、小領域と小領域含水比を設定する処理について詳しく説明する。
まず小領域含水比設定手段106が、盛土全体の形状と寸法に基づいて設定された小領域を、小領域記憶手段107から読み出す。あるいは小領域含水比設定手段106が、小領域を設定する仕様としてもよい。例えば図4では、盛土全体Awをいわゆるメッシュ分割することで複数(図では8×11)の小領域Msを設定している。この小領域Msは、数10cm×数10cm(例えば50cm×50cm)程度で設定することができるが、これに限らず施工現場の状況に応じて任意寸法の小領域Msを設定することもできるし、図4に示す形状に限らず種々の形状で小領域Msを設定することができる。
小領域記憶手段107から小領域Msを読み出すと、小領域含水比設定手段106は、小領域Ms内に含まれる含水比データに基づいて小領域含水比を設定する。このとき、小領域Ms内に1のみの含水比データが含まれる場合はその含水比データの含水比を小領域含水比とし、小領域Ms内に2以上含水比データが含まれる場合は平均値や中央値、最頻値など種々の統計値に基づいて小領域含水比を設定することができる。なお、小領域Ms内に含水比データが含まれない場合は、周辺の小領域Msで設定された小領域含水比を利用するとよい。盛土全体Aw内にある小領域Msに対して小領域含水比を設定すると、盛土全体Awにおける含水比の分布を示す「含水比分布図」としてディスプレイ等の出力手段112に出力し、振動ローラのオペレータに示すとよい。
(施工領域と施工領域含水比)
本願発明の移動式含水比測定装置100は盛土全体の含水比分布に応じた転圧条件を適宜決定するわけであるが、通常の振動ローラは相当の転圧幅を有することから、例えば50cm×50cmで設定された小領域ごとに転圧条件を決定するのは現実的でない。そこで本願発明では、振動ローラの施工寸法を勘案した「施工領域」を設定し、この施工領域ごとに転圧条件を設定することとしている。したがって施工領域は、振動ローラの走行方向(転圧方向)における幅寸法を、振動ローラの転圧幅(つまり転圧レーンの幅)と同程度、あるいはそれ以上として設定するとよい。
施工領域を設定する手法としては、盛土全体の形状と寸法に基づいて設定する手法と、含水比測定手段102が測定した含水比に応じて設定する手法に大別することができる。以下、それぞれの設定手法について説明する。
図5は、盛土全体の形状と寸法に基づいて設定された施工領域Adを説明する平面図である。この図では、長方形の盛土全体Awを縦横に2等分して4つの施工領域Adを設定している。もちろん盛土全体Awの大きさに応じて、6等分や9等分あるいはそれ以上に等分した分とした施工領域Adを設定することもできるし、盛土全体Awが不規則な形状である場合などそれぞれの寸法や形状が異なるように複数の施工領域Adを設定することもできる。
図6は、含水比測定手段102が測定した含水比に応じて設定された施工領域Adを説明する平面図である。含水比に応じて施工領域Adを設定する場合、隣接する(周辺にある)こと、小領域含水比が同一又は近似する(以下、「同等の」という。)値であること、という2つの条件を満足する小領域Msをまとめて1の施工領域Adを設定する。なお「近似する値」とは、小領域含水比の差が事前に設定した閾値未満となる値のことである。図6では、網掛けされた18個の小領域Msがそれぞれ同等の小領域含水比を示しており、その結果、これら18個の小領域Msを含む20個の小領域Ms(破線で示す領域)をまとめて施工領域Adを設定している。このように、周囲の小領域Msとは異なる(同等ではない)小領域含水比を示す小領域Ms(図6では施工領域Ad内の網掛けされていない2個の小領域Ms)であっても、周囲に同等の小領域含水比を示す小領域Msが数多く配置されていれば(あるいは囲まれていれば)、同等ではない小領域含水比を示す小領域Msを含めて施工領域Adを設定することもできる。これにより振動ローラによる転圧施工が容易となり好適である。
また、含水比に応じて施工領域Adを設定する場合、「設定する施工領域Adの数」をあらかじめ定めておくこともできる。具体的には、盛土全体Awにある小領域Msの小領域含水比に基づいて、分散や標準偏差といったばらつきを示す統計値を求め、その標準偏差等に応じて施工領域Adの設定数を定める。例えば、事前に標準偏差等を「ばらつきが大きいレンジ」と「ばらつきが中程度のレンジ」、「ばらつきが小さいレンジ」の3つのレンジに分けておき、実際に得られた標準偏差等が「ばらつきが中程度のレンジ」であれば標準的な設定数とし、「ばらつきが大きいレンジ」であればそれより多い設定数、「ばらつきが小さいレンジ」であればそれより少ない設定数とする。盛土全体Awをみたとき、含水比がばらついていればよりこまめに転圧条件を変更して転圧し、含水比がばらついていなければそれほど転圧条件を変更することなく転圧できるようにするわけである。もちろん、事前に分ける標準偏差等のレンジ数や、レンジに応じた施工領域Adの設定数は、施工現場に合わせて適宜設計することができる。
盛土全体Awに対して設定された施工領域Adは、小領域記憶手段107に記憶される。そして、施工領域含水比設定手段110が、この小領域記憶手段107から施工領域Adを読み出し、それぞれの施工領域Adに対して代表的な含水比(以下、「施工領域含水比」という。)を設定する。具体的には、施工領域Ad内にある複数の小領域Msの小領域含水比(あるいは含水比データ)から、平均値や中央値、最頻値など種々の統計値を求め、その値を施工領域含水比として設定することができる。
(転圧条件決定手段)
転圧条件決定手段103は、盛土全体Aw内の施工領域Adごとに転圧条件を決定する手段である。なお既述したとおり転圧条件は、振動ローラが転圧する際の施工条件であり、振動ローラの転圧性能である走行速度や起振力、振幅を含み、そのほか転圧回数や撒き出し厚などを含めることもできる。以下、転圧条件決定手段103が転圧条件を決定する処理について詳しく説明する。
転圧条件決定手段103は、施工領域含水比設定手段110で設定された施工領域含水比に基づいて施工領域Adごとに転圧条件を決定する。例えば、適応転圧条件記憶手段111に対して施工領域含水比を照会することによって、その施工領域含水比に適した転圧条件を取得し、これを当該施工領域Adにおける転圧条件として決定する。ここで、施工領域含水比に適した転圧条件は、あらかじめ設定した「転圧条件と盛土材の含水比との関係」に基づいて選定することができる。
「転圧条件と盛土材の含水比との関係」は、試験施工を行うなどあらかじめ設定されるものであり、例えば図7に示す手順で設定することができる。この場合、まず試験盛土材を用意する(Step101)。このとき、それぞれ含水比が異なる2種類以上の試験盛土材を用意する。試験盛土材を用意すると、そのうちの1の試験盛土材を撒き出し(Step102)、その状態でその試験盛土材の含水比を測定する(Step103)。ただし、あらかじめ用意した試験盛土材の含水比が既知であり、撒き出した後もその値が大きく変わらないと判断できるときは、試験盛土材の含水比測定工程(Step103)を省略してもよい。
試験盛土材を撒き出すと、転圧条件を変えながら試験盛土材に対して転圧を行う(Step104~Step105)。このとき、本施工で転圧する際に可変条件としたい条件を転圧条件に含めるとよい。例えば、本施工において走行速度と起振力を変更しながら転圧しようとするときは、ここでの転圧工程(Step104~Step105)でも走行速度と起振力の組み合わせを変えながら転圧を行い、本施工において走行速度と起振力に加え振幅も変更しながら転圧しようとするときは、ここでの転圧工程でも走行速度と起振力と振幅からなる組み合わせを変えながら転圧を行うとよい。あるいは、転圧機械の規格や撒き出し厚、転圧回数といった条件を変えながら、ここでの転圧工程を行うこともできる。
当該転圧条件で試験盛土材に対して転圧を行うと、転圧後の盛土の品質を確認する(Step106)。具体的には、施工乾燥密度や締固め度などを用いた評価手法により、「最もよく締まる」、「締まる」、「締まりが弱い」、「締まらない」のように段階的にその品質を評価することができる。当該転圧条件で転圧後の盛土の品質を確認すると、次の転圧条件に変更して(Step104)、転圧工程(Step105)~品質確認工程(Step106)を行う。
1の試験盛土材に対して予定したすべての転圧条件で一連の工程(Step104~Step106)を行うと、次の試験盛土材に対して試験盛土材の撒き出し工程(Step102)~品質確認工程(Step106)を繰り返し行う。そして予定したすべての試験盛土材に対して一連の工程(Step102~Step106)を行うと、用意した試験盛土材の含水比に適した転圧条件を設定する。ここで設定される転圧条件のことを、便宜上ここでは「適応転圧条件」ということとする。すなわち「転圧条件と盛土材の含水比との関係」は、換言すれば「その含水比における適応転圧条件を定めたもの」である。
適応転圧条件は、それぞれ試験盛土材で確認した品質に基づいて設定される。図8は、適応転圧条件を設定する過程を説明するための図であり、(a)は4パターンの転圧条件と締固め度の関係を示すグラフ図、(b)は4パターンの転圧条件と試験盛土材の品質との関係を示す説明図である。なお、図8(a)と図8(b)は、特定の含水比における関係を示すものである。したがって図8(a)と図8(b)は、用意された試験盛土材の数(つまり含水比の数)だけ作成される。また図8(a)と図8(b)の例では、転圧条件として走行速度と起振力が選択されており、さらに走行速度は高速と低速に、起振力はLowとHighに変更可能であるとされ、すなわち4パターンの転圧条件で行われた結果に基づいて作成されたものである。
要求される締固め度と、計画された転圧回数が与えられると、その含水比における適応転圧条件が設定される。例えば図8(a)において、要求される締固め度が95%以上、計画転圧回数が4回とされた場合、第1の転圧条件(起振力High-低速)と第3の転圧条件(起振力Low-低速)は要求品質(締固め度が95%以上)を満たしているが、第2の転圧条件(起振力High-高速)と第4の転圧条件(起振力Low-高速)は要求品質を満たしていないことが分かる。そして、この結果をまとめた 図8(b)を見ると、第1の転圧条件は「最もよく締まる」と評価されており、第2の転圧条件は「締まりが悪い」、第3の転圧条件は「締まる」、第4の転圧条件は「締まらない」とそれぞれ評価されている。
適応転圧条件を設定するときの要件は、施工現場の条件に応じて適宜設計できる。例えば「最もよく締まる」を適応転圧条件の設定要件とした場合、図8の例では、その含水比における適応転圧条件としては第1の転圧条件(起振力High-低速)が設定される。また、「締まる」を適応転圧条件の設定要件とした場合、その含水比における適応転圧条件としては第3の転圧条件(起振力Low-低速)が設定される。このように適応転圧条件の設定要件として「最もよく締まる」ではなく「締まる」を採用することもできるし、場合によっては「締りが弱い」を採用することもできる。施工性や経済性を考えたとき、必ずしも最高の転圧条件(最高性能)が最善の転圧条件とはならないからである。
ここまで説明したように「転圧条件と盛土材の含水比との関係」、すなわち「その含水比における適応転圧条件」が設定される。そして転圧条件決定手段103は、施工領域含水比設定手段110で設定された施工領域Adごとの施工領域含水比から、それぞれの含水比に対応する適応転圧条件を抽出し、施工領域Adごとに転圧条件を決定する。
(出力手段)
施工領域Adごとに決定された転圧条件は、ディスプレイ等の出力手段112に出力され、転圧機械としての振動ローラ(この場合、移動体101としてではない)のオペレータに示される。このとき、測位手段104によって計測された振動ローラの位置情報を利用し、音声によって転圧条件を出力することもできる。具体的には、振動ローラの位置情報と施工領域(位置情報)を照らし合わせ、現在の施工領域Adから出ようとするときに(あるいは出る直前に)、後続の(次工程の)の施工領域Adの転圧条件をオペレータに案内するわけである。
3.転圧方法
次に本願発明の転圧方法について図を参照しながら説明する。なお、本願発明の転圧方法は、ここまで説明した移動式含水比測定装置100を使用して行う方法であり、したがって移動式含水比測定装置100で説明した内容と重複する説明は避け、本願発明の転圧方法に特有の内容のみ説明することとする。すなわち、ここに記載されていない内容は、「2.移動式含水比測定装置」で説明したものと同様である。
図9は、本願発明の転圧方法の主な工程を示すフロー図である。この図に示すように、まず盛土全体Awに盛土材を撒き出し(Step201)、そして本願発明の移動式含水比測定装置100で移動しながら、盛土全体Awにわたって含水比を測定する(Step202)。ここで測定された含水比は、測位手段104によって計測された測定位置と関連付けた含水比データとして記録するとよい。
盛土全体Awにわたって含水比を測定すると、小領域Msごとに小領域含水比を設定し(Step203)、小領域含水比や含水比データに基づいて(あるいは盛土全体Awの形状と寸法に基づいて)施工領域Adを設定するとともに(Step204)、施工領域Adごとに施工領域含水比を設定し(Step205)、さらに施工領域Adごとに転圧条件を決定する(Step206)。なお、施工領域Adごとの転圧条件を決定するにあたっては、図7に示す手順によって「転圧条件と盛土材の含水比との関係」、すなわち「その含水比における適応転圧条件」をあらかじめ設定しておくとよい。
施工領域Adごとの転圧条件が決定されると、いよいよ本施工を行う。まずオペレータが最初の施工領域Adに対応する転圧条件を設定した(Step207)うえで、当該施工領域Adの転圧を行う(Step208)。そして測位手段104によって振動ローラの位置情報を計測し(Step209)、施工領域(位置情報)と照らし合わせることで、当該施工領域Adの転圧作業が完了したと判断されると、オペレータは後続の(次工程の)の施工領域Adの転圧条件に変更して(Step207)、その施工領域Adの転圧を行う(Step208)。そして、すべての施工領域Adに対して、計画された回数だけ転圧が行われると、その施工領域Adにおける転圧施工が完了する。
本願発明の移動式含水比測定装置、及び転圧方法は、造成盛土に利用できるほか、道路、河川堤防、海岸堤防、ダム、堰堤などの盛土構造物や地盤改良等に広く利用することができる。本願発明が、社会インフラストラクチャーとして高品質の土構造物を提供することを考えれば、産業上利用できるばかりでなく社会的にも大きな貢献を期待し得る発明といえる。
100 移動式含水比測定装置
101 (移動式含水比測定装置の)移動体
102 (移動式含水比測定装置の)含水比測定手段
103 (移動式含水比測定装置の)転圧条件決定手段
104 (移動式含水比測定装置の)測位手段
105 (移動式含水比測定装置の)含水比データ記憶手段
106 (移動式含水比測定装置の)小領域含水比設定手段
107 (移動式含水比測定装置の)小領域記憶手段
108 (移動式含水比測定装置の)施工領域設定手段
109 (移動式含水比測定装置の)施工領域記憶手段
110 (移動式含水比測定装置の)施工領域含水比設定手段
111 (移動式含水比測定装置の)適応転圧条件記憶手段
112 (移動式含水比測定装置の)出力手段
PC コンピュータ
ST 測位衛星
Aw 盛土全体
Ms 小領域
Ad 施工領域

Claims (5)

  1. 撒き出された盛土の含水比を、移動しながら測定する移動式含水比測定装置であって、
    前記盛土上を移動する移動体と、
    前記移動体に搭載され、非接触で前記盛土の含水比を測定する含水比測定手段と、
    前記含水比測定手段で測定された前記盛土の含水比に基づいて、前記盛土の全体領域を複数に分割した小領域ごとに含水比を設定する小領域含水比設定手段と、
    前記含水比測定手段で測定された前記盛土の含水比に応じて、施工領域を設定する施工領域設定手段と、
    前記含水比測定手段で測定された前記盛土の含水比に応じて、転圧機械の転圧条件を決定する転圧条件決定手段と、を備え、
    前記施工領域設定手段は、隣接する2以上の前記小領域であって、同一又は近似する含水比が測定された2以上の前記小領域を、1の前記施工領域として設定し、
    前記転圧条件決定手段は、あらかじめ設定した前記転圧条件と盛土材の含水比との関係に基づいて、前記含水比測定手段で測定された前記盛土の含水比から、起振力及び走行速度を含む該転圧条件を、前記施工領域ごとに決定する、
    ことを特徴とする移動式含水比測定装置。
  2. 前記施工領域設定手段は、前記盛土の全体領域における含水比の分散又は標準偏差に応じて、設定する前記施工領域の数を決定する、
    ことを特徴とする請求項1記載の移動式含水比測定装置。
  3. 前記移動体が振動ローラであり、該振動ローラは前記転圧条件決定手段によって決定された前記転圧条件で前記盛土の転圧を行う、
    ことを特徴とする請求項1又は請求項2記載の移動式含水比測定装置。
  4. 撒き出された盛土の含水比を移動測定した結果に応じて、該盛土の転圧を行う方法であって、
    移動体で移動しながら、該移動体に搭載された含水比測定手段によって非接触で前記盛土の含水比を測定する含水比測定工程と、
    前記含水比測定手段で測定された前記盛土の含水比に基づいて、前記盛土の全体領域を複数に分割した小領域ごとに含水比を設定する小領域含水比設定工程と、
    前記含水比測定手段で測定された前記盛土の含水比に応じて、施工領域を設定する施工領域設定工程と、
    前記含水比測定工程で測定された前記盛土の含水比に応じて、転圧機械の起振力及び走行速度を含む転圧条件を決定する転圧条件決定工程と、を備え、
    前記施工領域設定工程では、隣接する2以上の前記小領域であって、同一又は近似する含水比が測定された2以上の前記小領域を、1の前記施工領域として設定し、
    前記転圧条件決定工程では、あらかじめ設定した前記転圧条件と盛土材の含水比との関係に基づいて、前記含水比測定手段で測定された前記盛土の含水比から、前記施工領域ごとに該転圧条件を決定し、
    前記転圧条件決定工程で決定された前記転圧条件で、転圧機械が前記盛土の転圧を行う、
    ことを特徴とする転圧方法。
  5. 撒き出された盛土の含水比を移動測定した結果に応じて、該盛土の転圧を行う方法であって、
    異なる含水比を有する2種類以上の盛土材に対して、それぞれ異なる転圧条件で転圧機械が該盛土材の転圧を行うとともに、転圧後における該盛土材の品質を測定する試験転圧工程と、
    前記試験転圧工程で得られた前記盛土材の品質と、前記転圧条件と、含水比と、の関係から、要求品質を満たす適応転圧条件を含水比ごとに定める適応転圧条件設定工程と、
    移動体で移動しながら、該移動体に搭載された含水比測定手段によって非接触で前記盛土の含水比を測定する含水比測定工程と、
    前記含水比測定工程で測定された前記盛土の含水比から、転圧機械の起振力及び走行速度を含む前記転圧条件を、前記盛土の全体領域を複数に分割した施工領域ごとに決定する転圧条件決定工程と、を備え、
    前記転圧条件決定工程では、前記適応転圧条件設定工程で定められた含水比ごとの前記適応転圧条件に基づいて、前記転圧条件を決定し、
    前記転圧条件決定工程で決定された前記転圧条件で、転圧機械が前記盛土の転圧を行う、
    ことを特徴とする転圧方法。
JP2018127271A 2018-07-04 2018-07-04 移動式含水比測定装置、及び転圧方法 Active JP7113684B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018127271A JP7113684B2 (ja) 2018-07-04 2018-07-04 移動式含水比測定装置、及び転圧方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018127271A JP7113684B2 (ja) 2018-07-04 2018-07-04 移動式含水比測定装置、及び転圧方法

Publications (2)

Publication Number Publication Date
JP2020007730A JP2020007730A (ja) 2020-01-16
JP7113684B2 true JP7113684B2 (ja) 2022-08-05

Family

ID=69151007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018127271A Active JP7113684B2 (ja) 2018-07-04 2018-07-04 移動式含水比測定装置、及び転圧方法

Country Status (1)

Country Link
JP (1) JP7113684B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN213013779U (zh) * 2020-06-24 2021-04-20 福建省铁拓机械股份有限公司 一种沥青发泡系统
FI20206380A1 (en) * 2020-12-29 2022-06-30 Novatron Oy A method for compacting the soil and a soil compactor
CN114016521B (zh) * 2021-11-22 2022-05-24 中建鸿腾建设集团有限公司 建筑施工中回填区振动压实方法
CN114813509B (zh) * 2022-04-21 2024-06-11 西南石油大学 一种利用声波时差计算岩石孔隙度的压实校正系数确定方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000352044A (ja) 1999-06-09 2000-12-19 Ohbayashi Corp 盛土転圧管理システム
JP2002327429A (ja) 2001-05-02 2002-11-15 Fudo Constr Co Ltd 締固め管理方法
JP2003193416A (ja) 2001-12-27 2003-07-09 Maeda Corp 盛土転圧管理方法及び装置
JP2003253663A (ja) 2002-03-04 2003-09-10 Ohbayashi Corp 土工事における締固め管理システム
JP2004257171A (ja) 2003-02-27 2004-09-16 Tokyo Electric Power Co Inc:The 盛立面の転圧管理方法及び装置
JP2005030073A (ja) 2003-07-04 2005-02-03 Fudo Constr Co Ltd 締固め品質管理方法
JP2009114691A (ja) 2007-11-05 2009-05-28 Hazama Corp 盛土密度の管理方法
JP2018154975A (ja) 2017-03-15 2018-10-04 株式会社安藤・間 土の品質管理方法、及び土の品質モニタリングシステム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000352044A (ja) 1999-06-09 2000-12-19 Ohbayashi Corp 盛土転圧管理システム
JP2002327429A (ja) 2001-05-02 2002-11-15 Fudo Constr Co Ltd 締固め管理方法
JP2003193416A (ja) 2001-12-27 2003-07-09 Maeda Corp 盛土転圧管理方法及び装置
JP2003253663A (ja) 2002-03-04 2003-09-10 Ohbayashi Corp 土工事における締固め管理システム
JP2004257171A (ja) 2003-02-27 2004-09-16 Tokyo Electric Power Co Inc:The 盛立面の転圧管理方法及び装置
JP2005030073A (ja) 2003-07-04 2005-02-03 Fudo Constr Co Ltd 締固め品質管理方法
JP2009114691A (ja) 2007-11-05 2009-05-28 Hazama Corp 盛土密度の管理方法
JP2018154975A (ja) 2017-03-15 2018-10-04 株式会社安藤・間 土の品質管理方法、及び土の品質モニタリングシステム

Also Published As

Publication number Publication date
JP2020007730A (ja) 2020-01-16

Similar Documents

Publication Publication Date Title
JP7113684B2 (ja) 移動式含水比測定装置、及び転圧方法
Li et al. A gully erosion assessment model for the Chinese Loess Plateau based on changes in gully length and area
Alexakis et al. GIS and remote sensing techniques for the assessment of land use change impact on flood hydrology: the case study of Yialias basin in Cyprus
Pickert et al. Breaching of overtopped river embankments controlled by apparent cohesion
Zribi et al. Characterisation of the soil structure and microwave backscattering based on numerical three-dimensional surface representation: Analysis with a fractional Brownian model
De Lima et al. Can infrared thermography be used to estimate soil surface microrelief and rill morphology?
Rahardjo et al. Sensing and monitoring for assessment of rainfall-induced slope failures in residual soil
Zare et al. Simulation of soil erosion under the influence of climate change scenarios
Sun et al. Discharge estimation in small irregular river using LSPIV
Abban et al. Quantifying the changes of soil surface microroughness due to rainfall impact on a smooth surface
Wang et al. Impacts of horizontal resolution and downscaling on the USLE LS factor for different terrains
Lian et al. Terrestrial laser scanning monitoring and spatial analysis of ground disaster in Gaoyang coal mine in Shanxi, China: a technical note
JP2018154975A (ja) 土の品質管理方法、及び土の品質モニタリングシステム
Paniagua et al. The spatial statistics formalism applied to mapping electromagnetic radiation in urban areas
Barca et al. Integration of electromagnetic induction sensor data in soil sampling scheme optimization using simulated annealing
US11609322B2 (en) Ground material density measurement system
Bozza et al. Potential of remote sensing and open street data for flood mapping in poorly gauged areas: a case study in Gonaives, Haiti
Afrasiab et al. Assessing the risk of soil vulnerability to wind erosion through conditional simulation of soil water content in Sistan plain, Iran
JP2020176401A (ja) 締固め管理方法及び締固め管理システム
White et al. Power-based compaction monitoring using vibratory padfoot roller
JP2003166232A (ja) 締め固め管理装置
JP6965489B2 (ja) 転圧回数予測システム、及び転圧方法
JP6309715B2 (ja) 盛立工事における土量自動算定システム
Rezzoug et al. Field measurement of soil moisture dynamics and numerical simulation using the kinematic wave approximation
Evans et al. Detecting gilgai relief beneath sealed flexible pavements using road profile and road roughness measurements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220726

R150 Certificate of patent or registration of utility model

Ref document number: 7113684

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150