JP7112430B2 - Stretched porous film and manufacturing method thereof - Google Patents

Stretched porous film and manufacturing method thereof Download PDF

Info

Publication number
JP7112430B2
JP7112430B2 JP2019562894A JP2019562894A JP7112430B2 JP 7112430 B2 JP7112430 B2 JP 7112430B2 JP 2019562894 A JP2019562894 A JP 2019562894A JP 2019562894 A JP2019562894 A JP 2019562894A JP 7112430 B2 JP7112430 B2 JP 7112430B2
Authority
JP
Japan
Prior art keywords
porous film
mass
stretched porous
less
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019562894A
Other languages
Japanese (ja)
Other versions
JPWO2019130990A1 (en
Inventor
邦男 鎌田
伸幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Publication of JPWO2019130990A1 publication Critical patent/JPWO2019130990A1/en
Application granted granted Critical
Publication of JP7112430B2 publication Critical patent/JP7112430B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/20Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Molding Of Porous Articles (AREA)

Description

本発明は延伸多孔性フィルムおよびその製造方法に関する。 The present invention relates to stretched porous films and methods of making the same.

従来、おむつ等の個人ケアー製品は、蒸れ等を防止するため空気および蒸気等を通過させ、液体を通過させないことが求められている。そのため、おむつ等の個人ケアー製品には通気性および耐水性が要求される。その要求に答えるため、ポリオレフィン系樹脂のような撥水性を有する樹脂をフィルム状に成形し、微細な孔を形成させた多孔性フィルムが利用されている。このような多孔性フィルムは空気等を通過させるが、液体を通過させない構造をしている。 Conventionally, personal care products such as diapers are required to allow passage of air and steam, but not liquid, in order to prevent stuffiness. Therefore, personal care products such as diapers are required to be breathable and water resistant. In order to meet this demand, a porous film is used in which a water-repellent resin such as a polyolefin resin is formed into a film and fine pores are formed therein. Such a porous film allows passage of air and the like, but has a structure that does not allow passage of liquid.

特許文献1には、ポリエチレン系樹脂と、流動パラフィンと、無機充填剤とを含有する樹脂組成物を溶融成形して得られる通気性フィルムが開示されている。 Patent Document 1 discloses a breathable film obtained by melt-molding a resin composition containing a polyethylene resin, liquid paraffin, and an inorganic filler.

日本国公開特許公報「特開昭62-250038号」Japanese Unexamined Patent Publication "JP-A-62-250038"

しかしながら、上述の通気性フィルムは、柔軟性の面で改善の余地があった。 However, the aforementioned breathable film has room for improvement in terms of flexibility.

本発明の一態様は、前記の問題点に鑑みてなされたものであり、その目的はおむつ等の個人ケアー製品へ好適な通気性、耐水性および柔軟性を兼ね備えた延伸多孔性フィルムを実現することである。 One aspect of the present invention has been made in view of the above problems, and the object thereof is to realize a stretched porous film having air permeability, water resistance and flexibility suitable for personal care products such as diapers. That is.

上述の課題を解決するために、本発明者が鋭意研究を行った結果、特定のメルトマスフローレイトを有するポリオレフィン系樹脂を使用すること、該ポリオレフィン系樹脂に対して流動パラフィンを特定の質量比にて含む樹脂組成物を用いること、そして透湿度を特定の範囲に調整すること、これらの組み合わせにより、通気性、耐水性および柔軟性を兼ね備えた延伸多孔性フィルムを実現できることを見出した。即ち、本発明は以下の構成を含む。 In order to solve the above-mentioned problems, the present inventors conducted extensive research and found that a polyolefin resin having a specific melt mass flow rate was used, and liquid paraffin was added to the polyolefin resin at a specific mass ratio. The inventors have found that a stretched porous film having air permeability, water resistance and flexibility can be realized by using a resin composition containing a resin composition and adjusting the moisture permeability to a specific range. That is, the present invention includes the following configurations.

密度が0.900g/cm以上、0.940g/cm以下であるポリオレフィン系樹脂と、前記ポリオレフィン系樹脂100質量部に対し、5.0質量部以上、20質量部以下である流動パラフィンと、無機充填剤と、を含有する樹脂組成物より構成され、JIS K 7210に準じて190℃で測定される前記樹脂組成物のメルトマスフローレイトが2.0g/10min.以上であり、ASTM E96に準じて40℃、相対湿度60%の条件で測定される透湿度が1400g/m・24h以上であることを特徴とする延伸多孔性フィルム。a polyolefin resin having a density of 0.900 g/cm 3 or more and 0.940 g/cm 3 or less; , an inorganic filler, and a melt mass flow rate of the resin composition measured at 190° C. according to JIS K 7210 of 2.0 g/10 min. A stretched porous film characterized by having a moisture permeability of 1400 g/m 2 ·24 h or more measured under conditions of 40°C and 60% relative humidity according to ASTM E96.

密度が0.900g/cm以上、0.940g/cm以下であるポリオレフィン系樹脂と、前記ポリオレフィン系樹脂100質量部に対し、5.0質量部以上、20質量部以下である流動パラフィンと、無機充填剤と、を混合して樹脂組成物を得る混合工程と、前記樹脂組成物をフィルム状に成形する成形工程と、前記成形工程によって得られたフィルムを少なくとも機械方向に延伸することで多孔化させる多孔化工程と、を含み、 JIS K 7210に準じて190℃で測定される前記樹脂組成物のメルトマスフローレイトが2.0g/10min.以上であることを特徴とする延伸多孔性フィルムの製造方法。a polyolefin resin having a density of 0.900 g/cm 3 or more and 0.940 g/cm 3 or less; , a mixing step of obtaining a resin composition by mixing an inorganic filler, a molding step of molding the resin composition into a film, and stretching the film obtained by the molding step at least in the machine direction. and a porosification step of making the resin composition porous, wherein the melt mass flow rate of the resin composition measured at 190° C. according to JIS K 7210 is 2.0 g/10 min. A method for producing a stretched porous film characterized by the above.

本発明の一態様によれば、通気性、透湿性および柔軟性を兼ね備えた延伸多孔性フィルムが得られるという効果を奏する。 According to one aspect of the present invention, there is an effect that a stretched porous film having air permeability, moisture permeability and flexibility can be obtained.

本発明の一実施形態について以下に説明するが、本発明はこれに限定されるものではない。 An embodiment of the invention will be described below, but the invention is not limited thereto.

本発明者が鋭意検討したところ、上述した従来技術には以下の問題点があることがわかった。例えば、特許文献1に示されたフィルムは、メルトインデックスの低いポリエチレン樹脂を用いているため柔軟性に乏しいと考えられる。 As a result of intensive studies by the inventors of the present invention, it has been found that the above-described prior art has the following problems. For example, the film shown in Patent Document 1 is considered to have poor flexibility because it uses a polyethylene resin with a low melt index.

そこで、本発明の一実施形態に係る延伸多孔質フィルムは、上述した従来技術の問題点を解決するものであり、通気性、透湿性および柔軟性を兼ね備える。以下、詳説する。 Therefore, the stretched porous film according to one embodiment of the present invention solves the above-described problems of the prior art, and has air permeability, moisture permeability and flexibility. A detailed description will be given below.

〔1.延伸多孔性フィルム〕
本発明の一実施形態に係る延伸多孔性フィルムは、密度が0.900g/cm以上、0.940g/cm以下であるポリオレフィン系樹脂と、前記ポリオレフィン系樹脂100質量部に対し、5.0質量部以上、20質量部以下の流動パラフィンと、無機充填剤と、を含有する樹脂組成物より構成され、JIS K 7210に準じて190℃で測定される前記樹脂組成物のメルトマスフローレイトが2.0g/10min.以上であり、ASTM E96に準じて40℃、相対湿度60%の条件で測定される透湿度が1400g/m・24h以上である。このように特定の物性を有するポリオレフィン系樹脂に対して、流動パラフィンを特定の質量比にて組み合わせることにより、耐水性に加えて所望の柔軟性が得られる。また、透湿度を特定の範囲とすることにより、所望の通気性が得られる。それゆえ、通気性、耐水性および柔軟性を兼ね備えた延伸多孔性フィルムを実現できる。
[1. Stretched porous film]
The stretched porous film according to one embodiment of the present invention comprises a polyolefin resin having a density of 0.900 g/cm 3 or more and 0.940 g/cm 3 or less, and 5.5 parts per 100 parts by mass of the polyolefin resin. A resin composition containing 0 parts by mass or more and 20 parts by mass or less of liquid paraffin and an inorganic filler, and the melt mass flow rate of the resin composition measured at 190 ° C. according to JIS K 7210 is 2.0g/10min. Thus, the moisture permeability measured under the conditions of 40° C. and 60% relative humidity according to ASTM E96 is 1400 g/m 2 ·24 h or more. By combining liquid paraffin in a specific mass ratio with a polyolefin resin having specific physical properties, water resistance and desired flexibility can be obtained. Moreover, desired air permeability can be obtained by setting the moisture permeability to a specific range. Therefore, a stretched porous film having air permeability, water resistance and flexibility can be realized.

なお、延伸多孔性フィルムは、ポリオレフィン系樹脂と流動パラフィンと無機充填剤とを含む樹脂組成物からなるものであってもよいし、例えば、樹脂組成物の他に別の材質のシート等が積層されているものであってもよい。 The stretched porous film may be made of a resin composition containing a polyolefin resin, liquid paraffin, and an inorganic filler. It may be one that has been

<1-1.ポリオレフィン系樹脂>
前記ポリオレフィン系樹脂は、密度が0.900g/cm以上、0.940g/cm以下であり、より好ましくは0.905g/cm以上、0.935g/cm以下である。密度が前記範囲であれば、後述する流動パラフィンと組み合わせることにより所望の柔軟性を有する延伸多孔性フィルムが得られる。また、密度と融点とはある程度相関する。密度が前記範囲であれば、熱固定温度が融点とある程度離れているため、熱固定と同時にポリオレフィン系樹脂が融解して延伸多孔性フィルムの孔が塞がることを防ぐことができる。従って、通気性の低下を防ぐことができる。
<1-1. Polyolefin Resin>
The polyolefin resin has a density of 0.900 g/cm 3 or more and 0.940 g/cm 3 or less, more preferably 0.905 g/cm 3 or more and 0.935 g/cm 3 or less. When the density is within the above range, a stretched porous film having the desired flexibility can be obtained by combining with liquid paraffin, which will be described later. Also, density and melting point are correlated to some extent. When the density is within the above range, the heat setting temperature is somewhat apart from the melting point, so that it is possible to prevent the pores of the stretched porous film from being clogged due to melting of the polyolefin resin at the same time as the heat setting. Therefore, deterioration of air permeability can be prevented.

前記ポリオレフィン系樹脂としては、線形低密度ポリエチレン(LLDPE)および分岐状低密度ポリエチレン(LDPE)が挙げられる。なお、複数種類のポリオレフィン系樹脂を用いると、メルトマスフローレイトを容易に調整することができるため好ましい。ポリオレフィン系樹脂として、線形低密度ポリエチレンと分岐状低密度ポリエチレンとを組み合わせてもよい。なお、耐熱性を向上させる観点から、ポリオレフィン系樹脂100質量部に対し、密度が0.930g/cm以上、0.970g/cm以下のポリオレフィン系樹脂を含んでもよい。その場合、用いたポリオレフィン系樹脂全体の密度(複数種類のポリオレフィン系樹脂の混合物の密度)が0.940g/cm以下であればよい。より好ましくは用いるポリオレフィン系樹脂の密度がすべて0.900g/cm以上、0.940g/cm以下である。The polyolefin resins include linear low density polyethylene (LLDPE) and branched low density polyethylene (LDPE). In addition, it is preferable to use a plurality of types of polyolefin-based resins because the melt mass flow rate can be easily adjusted. A combination of linear low-density polyethylene and branched low-density polyethylene may be used as the polyolefin resin. From the viewpoint of improving heat resistance, a polyolefin resin having a density of 0.930 g/cm 3 or more and 0.970 g/cm 3 or less may be included with respect to 100 parts by mass of the polyolefin resin. In that case, the density of the entire polyolefin resin used (the density of a mixture of a plurality of types of polyolefin resin) should be 0.940 g/cm 3 or less. More preferably, all the polyolefin resins used have a density of 0.900 g/cm 3 or more and 0.940 g/cm 3 or less.

<1-2.流動パラフィン>
流動パラフィンとは、原油から得られる、常温で液状の炭素数15~35程度の広い範囲を持つ炭化水素の混合物であり、密度が0.790g/cm以上、0.920g/cm以下のものをいう。
<1-2. Liquid paraffin>
Liquid paraffin is a mixture of hydrocarbons having a wide range of carbon numbers of about 15 to 35 that is liquid at room temperature obtained from crude oil, and has a density of 0.790 g/cm 3 or more and 0.920 g/cm 3 or less. say something

流動パラフィンは柔軟性を向上させる目的で加えられる。流動パラフィンの含有割合は、ポリオレフィン系樹脂100質量部に対して、5.0質量部以上、20質量部以下であることが好ましく、7.0質量部以上、30質量部以下であることがより好ましい。流動パラフィンの含有割合が5.0質量部以上であれば、延伸多孔性フィルムに、より柔軟性を付与することができる。また、流動パラフィンの含有割合が20質量部以下であれば、延伸多孔性フィルムの強度を高めることができる。またドローレゾナンス現象の発生を抑制することができるため、生産性を向上することができる。 Liquid paraffin is added for the purpose of improving flexibility. The content of liquid paraffin is preferably 5.0 parts by mass or more and 20 parts by mass or less, more preferably 7.0 parts by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the polyolefin resin. preferable. When the liquid paraffin content is 5.0 parts by mass or more, the stretched porous film can be made more flexible. Moreover, if the content of liquid paraffin is 20 parts by mass or less, the strength of the stretched porous film can be increased. Moreover, since the occurrence of the draw resonance phenomenon can be suppressed, the productivity can be improved.

<1-3.無機充填剤>
無機充填剤は、フィルムを多孔化させるために加えられている。無機充填剤は公知のものが際限なく使用でき、例えば炭酸カルシウム、硫酸バリウム、硫酸カルシウム、炭酸バリウム、水酸化マグネシウムおよび水酸化アルミニウム等の無機塩類、酸化亜鉛、酸化マグネシウムおよびシリカ等の無機酸化物、マイカ、バーミキュライトおよびタルク等のケイ酸塩類、並びに有機金属塩が挙げられる。前記無機充填剤のうち、炭酸カルシウムが、コストパフォーマンスおよびポリオレフィン系樹脂との解離性の観点から好ましい。
<1-3. Inorganic filler>
Inorganic fillers are added to make the film porous. Known inorganic fillers can be used without limitation, for example, inorganic salts such as calcium carbonate, barium sulfate, calcium sulfate, barium carbonate, magnesium hydroxide and aluminum hydroxide, and inorganic oxides such as zinc oxide, magnesium oxide and silica. , silicates such as mica, vermiculite and talc, and organometallic salts. Among the inorganic fillers, calcium carbonate is preferable from the viewpoint of cost performance and dissociation with the polyolefin resin.

樹脂組成物において、無機充填剤の配合割合は、ポリオレフィン系樹脂および流動パラフィン合計100質量部に対し、80質量部以上、200質量部以下であることが好ましく、85質量部以上、150質量部以下であることがより好ましい。無機充填剤の配合割合が80質量部以上であれば、ポリオレフィン系樹脂と無機充填剤とが乖離してできる、単位面積あたりのボイド発生頻度を高めることができる。よって、近接したボイド同士が連通しやすくなり、通気性が良好となる。無機充填剤の配合割合が200質量部以下であれば、フィルム延伸時の伸びが良好であり、延伸が容易である。 In the resin composition, the mixing ratio of the inorganic filler is preferably 80 parts by mass or more and 200 parts by mass or less, and 85 parts by mass or more and 150 parts by mass or less with respect to the total of 100 parts by mass of the polyolefin resin and liquid paraffin. is more preferable. When the blending ratio of the inorganic filler is 80 parts by mass or more, the frequency of occurrence of voids per unit area caused by separation between the polyolefin resin and the inorganic filler can be increased. Therefore, adjacent voids are easily communicated with each other, and air permeability is improved. If the blending ratio of the inorganic filler is 200 parts by mass or less, the elongation at the time of film stretching is good and the stretching is easy.

<1-4.その他の成分>
樹脂組成物にはさらに、通常の樹脂組成物に用いられる添加物が含まれていてもよい。かかる添加物としては、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、中和剤、滑剤、防曇剤、アンチブロッキング剤、帯電防止剤、スリップ剤、着色剤、可塑剤等が挙げられる。なお、樹脂組成物には、本発明の効果を損なわない範囲で、ポリオレフィン系樹脂および流動パラフィンを構成する以外の樹脂成分が少量配合されていてもよい。具体的には、ポリオレフィン系樹脂および流動パラフィンの合計100質量部に対して5.0質量部以内、より好ましくは2.5質量部以内であれば、他の樹脂成分を配合しても許容される。なお、本発明の一実施形態に係る延伸多孔性フィルムおよび樹脂組成物は、熱可塑性エラストマーを含まないものであってもよい。
<1-4. Other Ingredients>
The resin composition may further contain additives that are commonly used in resin compositions. Such additives include antioxidants, heat stabilizers, light stabilizers, ultraviolet absorbers, neutralizers, lubricants, antifog agents, antiblocking agents, antistatic agents, slip agents, colorants, plasticizers, and the like. mentioned. The resin composition may contain a small amount of resin components other than the polyolefin-based resin and the liquid paraffin as long as the effects of the present invention are not impaired. Specifically, other resin components may be blended within 5.0 parts by mass, more preferably within 2.5 parts by mass, per 100 parts by mass of polyolefin resin and liquid paraffin in total. be. Note that the stretched porous film and the resin composition according to one embodiment of the present invention may not contain a thermoplastic elastomer.

<1-5.延伸多孔性フィルムの物性>
延伸多孔性フィルムの透湿度は、1400g/m・24h以上であることが好ましく、1600g/m・24h以上であることがより好ましい。透湿度が上記範囲にあることにより、通気性および透湿性に優れる。例えば、延伸多孔性フィルムを紙おむつのバックシートとして用いた場合には、着用時の蒸れを防止することができる。なお、透湿度の上限は、機械特性、耐水性および耐液漏れ性の観点から、10000g/m・24h以下であることが好ましく、4000g/m・24h以下であることがより好ましい。透湿度の上限を4000g/m・24h以下とすることにより、上記延伸多孔性フィルムを用いたおむつは着用時に液漏れが発生するおそれがより低くなる。また、特許文献1に示されたフィルムの透湿度はいずれも4000g/m・24hを超えているため、おむつなどに用いると着用時に液漏れが発生するおそれがあると考えられる。
<1-5. Physical Properties of Stretched Porous Film>
The moisture permeability of the stretched porous film is preferably 1400 g/m 2 ·24h or more, more preferably 1600 g/m 2 ·24h or more. When the moisture permeability is within the above range, air permeability and moisture permeability are excellent. For example, when the stretched porous film is used as the back sheet of a paper diaper, it can prevent the diaper from getting stuffy when worn. The upper limit of moisture permeability is preferably 10,000 g/m 2 ·24h or less, more preferably 4,000 g/m 2 ·24h or less, from the viewpoint of mechanical properties, water resistance, and liquid leakage resistance. By setting the upper limit of the moisture permeability to 4000 g/m 2 ·24 h or less, the diaper using the stretched porous film is less likely to leak when worn. In addition, since the moisture permeability of all the films disclosed in Patent Document 1 exceeds 4000 g/m 2 ·24 h, it is thought that liquid leakage may occur when used for diapers or the like.

透湿度は、ASTM E96に準じて、40℃、相対湿度60%、測定時間24時間、純水法の条件で測定される。なお、本明細書において、透湿度は、延伸多孔性フィルムから採取した10cm×10cmのサンプル10枚の平均値である。 The moisture permeability is measured according to ASTM E96 under the conditions of 40° C., 60% relative humidity, 24 hours of measurement time, and the pure water method. In this specification, the moisture permeability is the average value of 10 samples of 10 cm×10 cm taken from the stretched porous film.

延伸多孔性フィルムの5%伸張強度は、0.3N/25mm以上、2.5N/25mm未満であることが好ましく、0.5N/25mm以上、2.3N/25mm以下であることがより好ましい。5%伸張強度が小さいほど、柔軟である。5%伸張強度が2.5N/25mm未満であれば、より柔軟性を付与することができる。5%伸張強度が0.3N/25mm以上であれば、二次加工時に機械方向にかかるライン張力に対するフィルムの伸びを抑えることができる。 The 5% tensile strength of the stretched porous film is preferably 0.3 N/25 mm or more and less than 2.5 N/25 mm, more preferably 0.5 N/25 mm or more and 2.3 N/25 mm or less. The lower the 5% tensile strength, the more flexible. If the 5% tensile strength is less than 2.5 N/25 mm, more flexibility can be imparted. If the 5% elongation strength is 0.3 N/25 mm or more, the elongation of the film against the line tension applied in the machine direction during secondary processing can be suppressed.

5%伸張強度は、JIS K 7127に準じて、サンプルをチャック間距離50mm、引張り速度200mm/min.で機械方向に引張り、サンプルが5%伸びた時の機械方向の強度として測定される。すなわち、5%伸張強度は、チャック間距離が2.5mm伸びた時の機械方向の応力として測定される。また、本明細書において、5%伸張強度は、延伸多孔性フィルムから採取された幅25mm、機械方向の長さ150mmのサンプルについて測定された値である。 The 5% tensile strength was measured according to JIS K 7127 by subjecting the sample to a chuck distance of 50 mm and a tensile speed of 200 mm/min. is measured as the strength in the machine direction when the sample is stretched by 5%. That is, the 5% tensile strength is measured as the stress in the machine direction when the chuck-to-chuck distance is extended by 2.5 mm. In this specification, the 5% tensile strength is a value measured for a sample of 25 mm width and 150 mm length in the machine direction taken from the stretched porous film.

樹脂組成物のメルトマスフローレイトは、2.0g/10min.以上であることが好ましく、2.0g/10min.以上、6.0g/10min.以下であることがより好ましく、2.0g/10min.以上、5.0g/10min.以下であることがさらに好ましい。メルトマスフローレイトが上記範囲であれば、より安定した製膜を行うことが可能である。メルトマスフローレイトが2.0g/10min.以上であれば、製膜時押出機の樹脂圧力が抑えられ、製膜への悪影響を防ぐことができる。また、メルトマスフローレイトが6.0g/10min.以下であれば、Tダイで製膜する際のネックインをより抑えることができる。そのため、必要とされる製品幅を容易に得ることができる。また、メルトマスフローレイトと5%伸張強度とは相関する傾向がある。メルトマスフローレイトを小さくすると、5%伸張強度が高くなり、それゆえに柔軟性に乏しい延伸多孔性フィルムとなりやすい。樹脂組成物のメルトマスフローレイトは、JIS K 7210に準じて、190℃でA法にて測定される。 The melt mass flow rate of the resin composition was 2.0 g/10 min. 2.0 g/10 min. Above, 6.0g/10min. It is more preferably 2.0 g/10 min. Above, 5.0g/10min. More preferably: If the melt mass flow rate is within the above range, it is possible to form a more stable film. A melt mass flow rate of 2.0 g/10 min. If it is above, the resin pressure of the extruder at the time of film formation can be suppressed, and an adverse effect on film formation can be prevented. Also, the melt mass flow rate is 6.0 g/10 min. If it is below, it is possible to further suppress neck-in when forming a film with a T-die. Therefore, the required product width can be easily obtained. Also, melt mass flow rate and 5% tensile strength tend to correlate. When the melt mass flow rate is decreased, the 5% tensile strength is increased, and therefore the stretched porous film tends to be poor in flexibility. The melt mass flow rate of the resin composition is measured by A method at 190° C. according to JIS K 7210.

延伸多孔性フィルムの通気度は、300秒/100mL以上、2000秒/100mL以下であることが好ましく、400秒/100mL以上、1600秒/100mL以下であることがより好ましく、400秒/100mL以上、1100秒/100mL以下であることがさらに好ましい。通気度は値が小さいほど、気体を通過させやすいことを表す。通気度が上記範囲であれば、延伸多孔性フィルムを紙おむつのバックシートとして用いた場合に、着用時の蒸れを防止することができる。通気度は、JIS P 8117に準じて、王研式試験機法で測定される。 The air permeability of the stretched porous film is preferably 300 seconds/100 mL or more and 2000 seconds/100 mL or less, more preferably 400 seconds/100 mL or more and 1600 seconds/100 mL or less, 400 seconds/100 mL or more, It is more preferably 1100 seconds/100 mL or less. The smaller the air permeability, the easier it is for gas to pass through. If the air permeability is within the above range, when the stretched porous film is used as the back sheet of a paper diaper, stuffiness during wearing can be prevented. Air permeability is measured according to JIS P 8117 by the Oken test method.

延伸多孔性フィルムの機械方向の熱収縮率は、5.0%以下であることが好ましく、3.5%以下であることがより好ましい。5%伸張強度が大きいとともに、機械方向の熱収縮率が5.0%以下であれば、二次加工時に機械方向にかかるライン張力に対するフィルムの伸びを、より抑えることができる。機械方向の熱収縮率は0%に近いほど好ましいが、実用的には0.5%以上である。 The heat shrinkage of the stretched porous film in the machine direction is preferably 5.0% or less, more preferably 3.5% or less. If the 5% elongation strength is high and the heat shrinkage rate in the machine direction is 5.0% or less, the elongation of the film against the line tension applied in the machine direction during secondary processing can be further suppressed. Although the heat shrinkage in the machine direction is preferably close to 0%, it is practically 0.5% or more.

機械方向の熱収縮率は、以下の方法によって測定される。延伸多孔性フィルムから、15cm×15cmのサンプルを採取する。機械方向に標線間が10cmとなるよう、このサンプルに標線を入れる。このサンプルを50℃で24時間放置した後、室温に冷却して標線間の長さを測定する。機械方向の熱収縮率は下記式Iより求められる。
式I:機械方向の熱収縮率(%)={(10cm-冷却後の標線間の長さ(cm))/10cm}×100。
The heat shrinkage in the machine direction is measured by the following method. A 15 cm x 15 cm sample is taken from the stretched porous film. The sample is marked with 10 cm between the marks in the machine direction. After leaving this sample at 50° C. for 24 hours, it is cooled to room temperature and the length between marked lines is measured. The heat shrinkage rate in the machine direction is obtained from Formula I below.
Formula I: Heat shrinkage (%) in the machine direction={(10 cm-Length between marked lines after cooling (cm))/10 cm}×100.

目付は、10g/m以上、35g/m以下であることが好ましく、11g/m以上、32g/m以下であることがより好ましく、12g/m以上、30g/m以下であることがさらに好ましい。目付が上記範囲であることにより、通気性、透湿性および機械強度に優れる延伸多孔性フィルムが得られる。目付が10g/m以上であれば、フィルムの機械強度を高めることができる。また、目付が35g/m以下であれば、十分な透湿性を得ることができる。The basis weight is preferably 10 g/m 2 or more and 35 g/m 2 or less, more preferably 11 g/m 2 or more and 32 g/m 2 or less, and 12 g/m 2 or more and 30 g/m 2 or less. It is even more preferable to have When the basis weight is within the above range, a stretched porous film having excellent air permeability, moisture permeability and mechanical strength can be obtained. If the basis weight is 10 g/m 2 or more, the mechanical strength of the film can be enhanced. Also, if the basis weight is 35 g/m 2 or less, sufficient moisture permeability can be obtained.

〔2.延伸多孔性フィルムの製造方法〕
本発明の一実施形態に係る延伸多孔性フィルムの製造方法は、密度が0.900g/cm以上、0.940g/cm以下であるポリオレフィン系樹脂と、前記ポリオレフィン系樹脂100質量部に対し、5.0質量部以上、20質量部以下である流動パラフィンと、無機充填剤と、を混合して樹脂組成物を得る混合工程と、前記樹脂組成物をフィルム状に成形する成形工程と、前記成形工程によって得られたフィルムを少なくとも機械方向に延伸することで多孔化させる多孔化工程と、を含む。このように特定の物性を有するポリオレフィン系樹脂に対して、流動パラフィンを特定の質量比にて組み合わせることにより、耐水性に加えて所望の柔軟性を有する延伸多孔性フィルムが得られる。特定の範囲のメルトマスフローレイトを備えた樹脂組成物は、樹脂組成物の流動性が良好となり、柔軟性を有した延伸多孔性フィルムが得られる。また、特定の組成の樹脂組成物を含むフィルムを延伸して多孔化することにより、所望の通気性を有する延伸多孔性フィルムが得られる。それゆえ、通気性、耐水性および柔軟性を兼ね備えた延伸多孔性フィルムを実現できる。なお、〔1.延伸多孔性フィルム〕で既に説明した事項については、以下では説明を省略し、適宜、上述の記載を援用する。
[2. Method for producing stretched porous film]
A method for producing a stretched porous film according to an embodiment of the present invention comprises a polyolefin resin having a density of 0.900 g/cm 3 or more and 0.940 g/cm 3 or less, and , a mixing step of mixing 5.0 parts by mass or more and 20 parts by mass or less of liquid paraffin and an inorganic filler to obtain a resin composition; a molding step of molding the resin composition into a film; and a porosification step of stretching the film obtained by the forming step at least in the machine direction to make the film porous. By combining liquid paraffin at a specific mass ratio with a polyolefin resin having specific physical properties, a stretched porous film having water resistance and desired flexibility can be obtained. A resin composition having a melt mass flow rate within a specific range has good fluidity, and a stretched porous film having flexibility can be obtained. Also, by stretching a film containing a resin composition having a specific composition to make it porous, a stretched porous film having desired air permeability can be obtained. Therefore, a stretched porous film having air permeability, water resistance and flexibility can be realized. In addition, [1. Stretched porous film] will be omitted below, and the above description will be incorporated as appropriate.

<2-1.混合工程>
混合工程は、密度が0.900g/cm以上、0.940g/cm以下であるポリオレフィン系樹脂と、前記ポリオレフィン系樹脂100質量部に対し、5.0質量部以上、20質量部以下である流動パラフィンと、無機充填剤と、を混合して樹脂組成物を得る工程である。まず、ポリオレフィン系樹脂、流動パラフィン、無機充填剤、さらには必要に応じて配合する添加剤を混合する。混合方法は特に限定されず、公知の方法が採用できる。例えば、ヘンシェルミキサー、スーパーミキサー、またはタンブラーミキサー等の混合機を用いて5分~1時間程度混合することが好ましい。
<2-1. Mixing process>
In the mixing step, a polyolefin resin having a density of 0.900 g/cm 3 or more and 0.940 g/cm 3 or less and 5.0 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the polyolefin resin. This is a step of mixing a certain liquid paraffin and an inorganic filler to obtain a resin composition. First, a polyolefin resin, liquid paraffin, an inorganic filler, and, if necessary, additives are mixed. A mixing method is not particularly limited, and a known method can be adopted. For example, it is preferable to mix for about 5 minutes to 1 hour using a mixer such as a Henschel mixer, a super mixer, or a tumbler mixer.

得られた混合物は一般に高混練タイプの2軸押出機、またはタンデム型混練機等の混練機を用いて、ストランドカット、ホットカット、またはアンダーウォーターカット等の方法で混練し、ペレット化できる。予め混合および混練し、ペレット化することにより、樹脂組成物の均一な分散を促すことができるため、好ましい。また、樹脂組成物の配合によっては、混合なしに直接混練機に投入し、ペレット化することもできる。 The resulting mixture is generally kneaded by a method such as strand cutting, hot cutting, or underwater cutting using a kneader such as a high kneading type twin-screw extruder or a tandem kneader, and pelletized. Mixing, kneading, and pelletizing in advance is preferable because uniform dispersion of the resin composition can be promoted. Moreover, depending on the formulation of the resin composition, the resin composition can be directly put into a kneader without mixing and pelletized.

<2-2.成形工程>
成形工程は、前記樹脂組成物をフィルム状に成形する工程である。上述のように得られたペレットを、押出機の先端に装着したサーキュラダイまたはTダイによってフィルム状に成形することが好ましい。このとき、Tダイ法を用いる場合の冷却方法は、特に制限されず、ニップルロール法、エアナイフ法、またはエアチャンバー法等の公知の方法が採用できる。なお、樹脂組成物の配合次第によっては、混合および混練なしに直接押出機に樹脂組成物を投入し、フィルムを成形することもできる。
<2-2. Molding process>
The molding step is a step of molding the resin composition into a film. It is preferable to form the pellets obtained as described above into a film by using a circular die or a T-die attached to the tip of the extruder. At this time, the cooling method when using the T-die method is not particularly limited, and a known method such as a nipple roll method, an air knife method, or an air chamber method can be employed. Depending on the composition of the resin composition, the resin composition can be directly charged into an extruder without mixing and kneading to form a film.

<2-3.多孔化工程>
多孔化工程は、前記成形工程によって得られたフィルムを少なくとも機械方向に延伸することで多孔化させる工程である。成形工程によって得られたフィルムを、延伸することにより、樹脂成分(前記ポリオレフィン系樹脂および前記流動パラフィン)と無機充填剤との界面が剥離する。そして、剥離した界面に微小な空隙ができ、該空隙がフィルムの厚さ方向に貫通した連通孔を形成することにより延伸多孔性フィルムとなる。延伸は、ロール延伸法またはテンター延伸法等の公知の方法により行うことができる。また、延伸は、一軸延伸であってもよく、二軸延伸であってもよい。
<2-3. Porosification step>
The porous-making step is a step of stretching the film obtained by the forming step at least in the machine direction to make the film porous. By stretching the film obtained by the molding step, the interfaces between the resin components (the polyolefin resin and the liquid paraffin) and the inorganic filler are separated. Then, minute voids are formed at the peeled interface, and the voids form continuous pores penetrating in the thickness direction of the film to form a stretched porous film. Stretching can be performed by a known method such as a roll stretching method or a tenter stretching method. Moreover, the stretching may be uniaxial stretching or biaxial stretching.

なお、前記多孔化工程における機械方向の延伸倍率が以下式IIにて示されることが好ましい:
1.4≦Y≦0.075X+1.8 ・・・(式II)
(式中、Xはポリオレフィン系樹脂100質量部に対する流動パラフィンの配合割合(質量部)を示し、Yは延伸倍率(倍)を示す)。
In addition, the draw ratio in the machine direction in the porosification step is preferably represented by the following formula II:
1.4≦Y≦0.075X+1.8 (formula II)
(In the formula, X represents the blending ratio (parts by mass) of liquid paraffin with respect to 100 parts by mass of polyolefin resin, and Y represents the draw ratio (fold).

上記式IIが成立する条件において延伸を実施することにより、得られるフィルムは、柔軟性を有したまま十分に延伸され、厚みのムラが発生し難く、かつ、引裂強度が良好であり、十分な数およびサイズの孔が形成される。従って、このような延伸倍率であれば、通気性、透湿性および柔軟性を兼ね備えた延伸多孔性フィルムをより容易に得ることができる。前記延伸は一段延伸でも多段延伸でもよい。 By performing the stretching under the condition that the above formula II is established, the obtained film is sufficiently stretched while maintaining flexibility, is less likely to have thickness unevenness, and has good tear strength and sufficient A number and size of holes are formed. Therefore, with such a draw ratio, a stretched porous film having air permeability, moisture permeability and flexibility can be obtained more easily. The stretching may be single-stage stretching or multi-stage stretching.

延伸温度は、常温以上、樹脂組成物の軟化点未満の温度範囲であることが好ましい。延伸温度が常温以上であれば、延伸ムラが生じ難いため、厚みが均一になりやすい。また、延伸温度が軟化点未満であれば、延伸多孔性フィルムが融解することを防ぐことができる。よって、延伸多孔性フィルムの孔が潰れ、通気性および透湿性が低下することを防ぐことができる。延伸温度は用いる樹脂組成物の物性と延伸倍率との組合せにより適宜調整することができる。 The stretching temperature is preferably in the temperature range of normal temperature or higher and lower than the softening point of the resin composition. If the stretching temperature is room temperature or higher, uneven stretching is less likely to occur, and the thickness tends to be uniform. Also, if the stretching temperature is lower than the softening point, it is possible to prevent the stretched porous film from melting. Therefore, it is possible to prevent the pores of the stretched porous film from being crushed and the air permeability and moisture permeability to decrease. The stretching temperature can be appropriately adjusted by combining the physical properties of the resin composition to be used and the stretching ratio.

<2-4.熱固定工程>
前記製造方法は、熱固定工程を含んでいてもよい。熱固定工程は、延伸方向の熱収縮を抑えるために、延伸後の延伸多孔性フィルムを熱固定する工程である。熱固定とは、延伸後のフィルムに延伸による緊張状態を維持した状態で、寸法を変化させない環境下で行う加熱処理のことである。その結果、熱固定により、保管時の弾性回復、並びに熱による収縮および巻き絞まり等を抑制することができる。
<2-4. Heat setting process>
The manufacturing method may include a heat setting step. The heat setting step is a step of heat setting the stretched porous film after stretching in order to suppress heat shrinkage in the stretching direction. Heat setting is a heat treatment performed in an environment where the stretched film is maintained in a tensioned state due to stretching and the dimensions are not changed. As a result, the thermal fixation can suppress elastic recovery during storage and shrinkage, winding, and the like due to heat.

延伸方法としてロール延伸法を採用した場合の熱固定方法として、延伸後のフィルムを、加熱したロール(アニールロール)により加熱する方法が挙げられる。また、延伸方法としてテンター延伸法を採用した場合の熱固定方法として、延伸後のフィルムをテンター出口付近でフィルムを加熱する方法が挙げられる。 As a heat setting method when a roll stretching method is employed as the stretching method, a method of heating the stretched film with a heated roll (annealing roll) can be mentioned. Moreover, as a heat setting method when the tenter stretching method is adopted as the stretching method, there is a method of heating the film after stretching near the exit of the tenter.

熱固定の温度は、70℃以上、95℃以下であることが好ましく、80℃以上、95℃以下であることが好ましい。熱固定温度が70℃以上であれば、十分な熱固定により、熱収縮を抑えることができる。また、熱固定温度が95℃以下であれば、熱によって延伸多孔性フィルムの孔が潰れることを、より防ぐことができる。 The heat setting temperature is preferably 70° C. or higher and 95° C. or lower, and preferably 80° C. or higher and 95° C. or lower. If the heat setting temperature is 70° C. or higher, thermal shrinkage can be suppressed by sufficient heat setting. Moreover, if the heat setting temperature is 95° C. or less, it is possible to further prevent the pores of the stretched porous film from being crushed by heat.

熱固定の時間は、0.2秒以上であることが好ましく、0.5秒以上であることがより好ましく、1.0秒以上であることがさらに好ましい。熱固定の時間が0.2秒以上であれば、十分な熱固定により、熱収縮を抑えることができる。また、熱固定の時間は、20秒以下であることが好ましく、15秒以下であることがより好ましい。熱固定温度との組合せにもよるため一概には言えないが、熱固定の時間が20秒以下であれば、延伸多孔性フィルムが融解することによって孔が潰れることを、より防ぐことができる。従って通気性および透湿性が低下することを防ぐことができる。 The heat setting time is preferably 0.2 seconds or longer, more preferably 0.5 seconds or longer, and even more preferably 1.0 seconds or longer. If the heat setting time is 0.2 seconds or more, thermal shrinkage can be suppressed by sufficient heat setting. Moreover, the heat setting time is preferably 20 seconds or less, more preferably 15 seconds or less. Although it depends on the combination with the heat setting temperature, it cannot be generalized, but if the heat setting time is 20 seconds or less, it is possible to further prevent the pores from being crushed due to melting of the stretched porous film. Therefore, it is possible to prevent deterioration of air permeability and moisture permeability.

前記熱固定の時間は、延伸多孔性フィルムが熱固定温度で保持される時間である。例えば、ロール延伸法を採用した場合、フィルムがアニールロールと接している時間をいう。アニールロールの本数は特に制限されないが、2本以上ある場合、熱固定の時間は延伸多孔性フィルムが各アニールロールに接する時間の和である。また、テンター延伸法を採用した場合、熱固定の時間はテンター出口において熱固定温度で加熱され、維持される時間を示す。熱固定を複数回に分割して加熱する場合、各々加熱された時間の和である。 The heat setting time is the time the stretched porous film is held at the heat setting temperature. For example, when the roll stretching method is adopted, it refers to the time during which the film is in contact with the annealing roll. The number of annealing rolls is not particularly limited, but when there are two or more, the heat-setting time is the sum of the times during which the stretched porous film is in contact with each annealing roll. Further, when the tenter stretching method is employed, the heat setting time indicates the time during which the film is heated at the heat setting temperature at the exit of the tenter and maintained. When heat setting is divided into multiple times and heated, it is the sum of each heating time.

本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, but can be modified in various ways within the scope of the claims, and can be obtained by appropriately combining technical means disclosed in different embodiments. is also included in the technical scope of the present invention.

以下、実施例に基づいて本発明をより詳細に説明するが、本発明は以下の実施例に限定されるものではない。 EXAMPLES The present invention will be described in more detail based on examples below, but the present invention is not limited to the following examples.

〔評価方法〕
後述の実施例および比較例の延伸多孔性フィルムの物性値は以下に示す方法によって測定したものである。
〔Evaluation method〕
The physical properties of the stretched porous films of Examples and Comparative Examples described later were measured by the methods described below.

(1)メルトマスフローレイト
樹脂組成物のメルトマスフローレイトはJIS K 7210に従い、測定温度として190℃を選択し、A法で測定した。なお、以下では、メルトマスフローレイトをMI(メルト・インデックス)とも称する。
(1) Melt mass flow rate The melt mass flow rate of the resin composition was measured according to JIS K 7210, selecting 190°C as the measurement temperature and using the A method. The melt mass flow rate is hereinafter also referred to as MI (melt index).

(2)目付
延伸多孔性フィルムから10cm×10cmのサンプルを切り取り、天秤で質量を測定した。このサンプルの面積および質量から、目付を求めた。
(2) Fabric weight A sample of 10 cm x 10 cm was cut from the stretched porous film, and the mass was measured with a balance. The basis weight was obtained from the area and weight of this sample.

(3)透湿度
延伸多孔性フィルムから、10cm×10cmのサンプルを10枚採取した。これらについて、ASTM E96に準じて、40℃、相対湿度60%、測定時間24時間、純水法の条件で透湿度を測定し、その平均値を求めた。
(3) Moisture Permeability Ten samples of 10 cm×10 cm were taken from the stretched porous film. The moisture permeability of these samples was measured according to ASTM E96 under the conditions of 40° C., 60% relative humidity, 24 hours of measurement time, and the pure water method, and the average value was obtained.

(4)通気度
通気度はJIS P 8117に準じて、王研式試験機法で測定した。
(4) Air permeability The air permeability was measured according to JIS P 8117 by the Oken test method.

(5)5%伸張強度
JIS K 7127に準じて、延伸多孔性フィルムから、幅25mm、機械方向の長さ150mmのサンプルを採取した。このサンプルをチャック間距離50mm、引張り速度200mm/min.で機械方向に引張り、サンプルが5%伸びた時の機械方向の強度を5%伸張強度として測定した。すなわち、チャック間距離が2.5mm伸びた時の機械方向の応力を測定した。
(5) 5% tensile strength According to JIS K 7127, a sample having a width of 25 mm and a length of 150 mm in the machine direction was taken from the stretched porous film. This sample was pulled at a chuck-to-chuck distance of 50 mm and a pulling speed of 200 mm/min. The strength in the machine direction when the sample was stretched by 5% was measured as the 5% tensile strength. That is, the stress in the machine direction was measured when the chuck-to-chuck distance was extended by 2.5 mm.

(6)機械方向の熱収縮率
延伸多孔性フィルムから、15cm×15cmのサンプルを採取した。機械方向に標線間が10cmとなるよう、このサンプルに標線を入れた。このサンプルを50℃で24時間放置した後、室温に冷却して標線間の長さを測定した。機械方向の熱収縮率を下記数式(式I)より求めた。
式I:機械方向の熱収縮率(%)={(10cm-冷却後の標線間の長さ(cm))/10cm}×100。
(6) Heat Shrinkage in Machine Direction A 15 cm×15 cm sample was taken from the stretched porous film. The sample was marked with 10 cm between the marks in the machine direction. After leaving this sample at 50° C. for 24 hours, it was cooled to room temperature and the length between marked lines was measured. The heat shrinkage rate in the machine direction was obtained from the following formula (Formula I).
Formula I: Heat shrinkage (%) in the machine direction={(10 cm-Length between marked lines after cooling (cm))/10 cm}×100.

〔用いた成分〕
A:線形低密度ポリエチレン[ダウケミカル(株)製、商品名:ダウレックス2047、密度:0.917g/cm、MI:2.3g/10min.]
B:線形低密度ポリエチレン[ダウケミカル(株)製、商品名:ダウレックス2035G、密度:0.919g/cm、MI:6.0g/10min.]
C:線形低密度ポリエチレン[ダウケミカル(株)製、商品名:ダウレックス2036P、密度:0.935g/cm、MI:2.5g/10min.]
D:線形低密度ポリエチレン[ダウケミカル(株)製、商品名:ダウレックス2045G、密度:0.920g/cm、MI:1.0g/10min.]
E:分岐状低密度ポリエチレン[三井・デュポンポリケミカル(株)製、商品名:ミラソン16P、密度:0.917g/cm、MI:3.7g/10min.]
F:超低密度ポリエチレン[ダウケミカル(株)製、商品名:アテイン4607GC、密度0.904g/cm、MI:4.0g/10min.]
G:高密度ポリエチレン[東ソー(株)製、商品名:ニポロンハード4200、密度:0.961g/cm、MI:2.3g/10min.]
H:流動パラフィン[和光純薬工業(株)製、商品名:流動パラフィン、密度:0.860~0.890g/cm
I:流動パラフィン[和光純薬工業(株)製、商品名:流動パラフィン、密度:0.825~0.850g/cm
J:流動パラフィン[和光純薬工業(株)製、商品名:流動パラフィン、密度:0.800~0.835g/cm
K:パラフィン[和光純薬工業(株)製、商品名:パラフィン、融点:42~44℃、密度:0.900g/cm
L:水素添加ポリブタジエン[日本曹達(株)製、商品名:Nisso-PB BI-2000、密度:0.860g/cm
M:ポリブテン[日油(株)製、商品名:ポリブテン3N、密度:0.880g/cm]
N:水素添加ポリブテン[日油(株)製、商品名:パールリーム4、密度:0.793g/cm]
O:炭酸カルシウム[(株)イメリスミネラルズ製、商品名:FL-520]
P:添加剤[酸化チタン(ハンツマン(株)製、商品名:TR28)50質量%と、ヒンダードフェノール系熱安定剤(チバ・ジャパン(株)製、商品名:IRGANOX3114)20質量%と、リン系熱安定剤(チバ・ジャパン(株)製、商品名:IRGAFOS168)30質量%との混合物]。
[Ingredients Used]
A: Linear low-density polyethylene [manufactured by Dow Chemical Co., trade name: Dowlex 2047, density: 0.917 g/cm 3 , MI: 2.3 g/10 min. ]
B: Linear low-density polyethylene [manufactured by Dow Chemical Co., trade name: Dowlex 2035G, density: 0.919 g/cm 3 , MI: 6.0 g/10 min. ]
C: linear low-density polyethylene [manufactured by Dow Chemical Co., trade name: Dowlex 2036P, density: 0.935 g/cm 3 , MI: 2.5 g/10 min. ]
D: Linear low-density polyethylene [manufactured by Dow Chemical Co., trade name: Dowlex 2045G, density: 0.920 g/cm 3 , MI: 1.0 g/10 min. ]
E: branched low-density polyethylene [manufactured by DuPont Mitsui Polychemicals, trade name: Milathon 16P, density: 0.917 g/cm 3 , MI: 3.7 g/10 min. ]
F: ultra-low density polyethylene [manufactured by Dow Chemical Co., Ltd., trade name: Attain 4607GC, density 0.904 g/cm 3 , MI: 4.0 g/10 min. ]
G: High-density polyethylene [manufactured by Tosoh Corporation, trade name: Nipolon Hard 4200, density: 0.961 g/cm 3 , MI: 2.3 g/10 min. ]
H: Liquid paraffin [manufactured by Wako Pure Chemical Industries, Ltd., trade name: liquid paraffin, density: 0.860 to 0.890 g/cm 3 ]
I: Liquid paraffin [manufactured by Wako Pure Chemical Industries, Ltd., trade name: liquid paraffin, density: 0.825 to 0.850 g/cm 3 ]
J: Liquid paraffin [manufactured by Wako Pure Chemical Industries, Ltd., trade name: liquid paraffin, density: 0.800 to 0.835 g/cm 3 ]
K: paraffin [manufactured by Wako Pure Chemical Industries, Ltd., trade name: paraffin, melting point: 42 to 44°C, density: 0.900 g/cm 3 ]
L: Hydrogenated polybutadiene [manufactured by Nippon Soda Co., Ltd., trade name: Nisso-PB BI-2000, density: 0.860 g/cm 3 ]
M: polybutene [manufactured by NOF Corporation, trade name: polybutene 3N, density: 0.880 g/cm 3 ]
N: Hydrogenated polybutene [manufactured by NOF Corporation, trade name: Pearlream 4, density: 0.793 g/cm 3 ]
O: Calcium carbonate [manufactured by Imerys Minerals Co., Ltd., trade name: FL-520]
P: additive [titanium oxide (manufactured by Huntsman Co., Ltd., trade name: TR28) 50% by mass, hindered phenol-based heat stabilizer (manufactured by Ciba Japan Co., Ltd., trade name: IRGANOX3114) 20% by mass, A mixture with 30% by mass of a phosphorus-based heat stabilizer (manufactured by Ciba Japan Co., Ltd., trade name: IRGAFOS168)].

〔実施例1〕
表1に記載のポリオレフィン系樹脂、炭化水素、無機充填剤および添加剤を混合した樹脂組成物とした。それを造粒し、次いで、フィルム形成を行った。
[Example 1]
A resin composition was prepared by mixing the polyolefin resin, hydrocarbon, inorganic filler and additive shown in Table 1. It was granulated and then film-formed.

造粒(ペレットの作製)は、以下のように行った。ベント付φ30mm二軸押出機を用いて、シリンダー温度160℃で前記樹脂組成物をストランド状に押し出し、水槽で冷却した。その後、押し出された樹脂組成物を約5mmにカットし、乾燥してペレットを作製した。 Granulation (preparation of pellets) was performed as follows. Using a vented φ30 mm twin-screw extruder, the resin composition was extruded in a strand at a cylinder temperature of 160° C. and cooled in a water tank. After that, the extruded resin composition was cut into pieces of about 5 mm and dried to produce pellets.

次に、前記ペレットからφ400mmTダイ製膜機を用いてフィルムを成形した。ここで、リップクリアランス:1.5mm、ダイ温度:200℃、エアギャップ:105mm、引取速度:10m/min.、キャストロール温度:20℃であった。得られたフィルムをさらに、40℃に設定したロール延伸機で機械方向のみ一軸延伸(延伸倍率:1.8倍)し、次いで90℃に設定した熱セットロールでインラインアニーリングした(熱固定時間4秒)。その熱固定時の機械方向の熱収縮率は8%であった。 Next, a film was formed from the pellets using a φ400 mm T-die film forming machine. Here, lip clearance: 1.5 mm, die temperature: 200°C, air gap: 105 mm, take-up speed: 10 m/min. , Cast roll temperature: 20°C. The obtained film was further uniaxially stretched (stretch ratio: 1.8 times) only in the machine direction with a roll stretching machine set at 40°C, and then in-line annealed with heat set rolls set at 90°C (heat setting time: 4 seconds). The heat shrinkage in the machine direction during heat setting was 8%.

実施例2~13および比較例1~8においては、各成分の配合割合または延伸条件(延伸倍率もしくは熱固定温度)を表1および表2に記載のように変更した以外は、実施例1と同様にフィルムを形成した。

Figure 0007112430000001
In Examples 2 to 13 and Comparative Examples 1 to 8, the blending ratio of each component or the stretching conditions (stretch ratio or heat setting temperature) were changed as shown in Tables 1 and 2. A film was formed in the same manner.
Figure 0007112430000001

Figure 0007112430000002
なお、「ポリオレフィン系樹脂:配合割合(質量%)」は樹脂組成物に含まれるポリオレフィン系樹脂100質量%に対する各ポリエチレン系樹脂の配合割合を表す。「炭化水素:配合割合(質量部)」は、ポリオレフィン系樹脂100質量部に対する炭化水素の配合割合を表す。炭酸カルシウムおよび添加剤の配合割合は、ポリオレフィン系樹脂と炭化水素との合計100質量部に対する配合割合として記載されている。
Figure 0007112430000002
"Polyolefin-based resin: mixing ratio (% by mass)" represents the mixing ratio of each polyethylene-based resin to 100% by mass of the polyolefin-based resin contained in the resin composition. "Hydrocarbon: compounding ratio (parts by mass)" represents the compounding ratio of the hydrocarbon to 100 parts by mass of the polyolefin resin. The blending ratio of calcium carbonate and additives is described as a blending ratio with respect to a total of 100 parts by mass of the polyolefin resin and the hydrocarbon.

また、延伸条件※1は延伸倍率1.8倍、熱固定温度90℃を表す。延伸条件※2は延伸倍率3.2倍、熱固定温度90℃を表す。延伸条件※3は延伸倍率2.5倍、熱固定温度90℃を示す。延伸条件※4は延伸条件1.3倍、熱固定温度90℃を示す。 In addition, stretching conditions *1 represent a stretching ratio of 1.8 times and a heat setting temperature of 90°C. Stretching condition *2 represents a stretching ratio of 3.2 times and a heat setting temperature of 90°C. Stretching condition *3 indicates a stretching ratio of 2.5 times and a heat setting temperature of 90°C. Stretching condition *4 indicates a stretching condition of 1.3 times and a heat setting temperature of 90°C.

〔結果〕
実施例1~13および比較例1~8で得られた延伸多孔性フィルムの目付、透湿度、通気度、5%伸張強度および熱収縮率の測定を行い、表3に示した。
〔result〕
The basis weight, moisture permeability, air permeability, 5% tensile strength and thermal shrinkage of the stretched porous films obtained in Examples 1 to 13 and Comparative Examples 1 to 8 were measured.

Figure 0007112430000003
実施例1~13の延伸多孔性フィルムは、いずれも1400g/m・24h以上の良好な透湿度を示すとともに、良好な風合いを有していた。また、実施例1~8、および10~12の延伸多孔性フィルムは、5%伸張強度および熱収縮率について低い値を保持していた。さらに、本実施例1~8、および10~12の延伸多孔性フィルムは、いずれの延伸倍率も式IIを満たす。
Figure 0007112430000003
The stretched porous films of Examples 1 to 13 all exhibited good moisture permeability of 1400 g/m 2 ·24 h or more and had good texture. Also, the stretched porous films of Examples 1-8 and 10-12 retained low values for 5% tensile strength and heat shrinkage. Furthermore, the stretched porous films of Examples 1 to 8 and 10 to 12 satisfy formula II at any stretch ratio.

実施例3と4とでは、密度の違うポリオレフィン系樹脂を用いた。実施例4では、密度が0.961g/cmのポリエチレンを用いた。密度の高いポリエチレンを加えた実施例4では実施例3に比べ透湿度が高く、通気度が低い。また、実施例4は、5%伸長強度が高い結果になったが、比較例に比べて良好であった。In Examples 3 and 4, polyolefin resins having different densities were used. In Example 4, polyethylene with a density of 0.961 g/cm 3 was used. Example 4, in which high-density polyethylene is added, has higher moisture permeability and lower air permeability than Example 3. In addition, although Example 4 had a high 5% elongation strength, it was better than Comparative Examples.

実施例6~8を比較すると、流動パラフィンの密度の低下に伴い、通気度が低下し、透湿度および5%伸張強度が増加することがわかる。 Comparing Examples 6 to 8, it can be seen that as the density of liquid paraffin decreases, air permeability decreases, and moisture permeability and 5% tensile strength increase.

なお、延伸倍率が式IIを満たさない実施例9および13は、式IIを満たす実施例1~8、および10~12に比べて、5%伸張強度が高いが、比較例に比べて透湿度、通気度、5%伸張強度および熱収縮率のバランスが良好であった。 In addition, Examples 9 and 13, in which the draw ratio does not satisfy Formula II, have a 5% tensile strength higher than Examples 1 to 8 and 10 to 12, which satisfy Formula II, but the moisture permeability is higher than that in Comparative Examples. , air permeability, 5% tensile strength and heat shrinkage were well balanced.

また、実施例2、9、および12は、同じ組成の延伸多孔性フィルムの延伸倍率を変更した。これらから、延伸倍率を上げることにより、透湿度が増加し、通気度および熱収縮率が低下していることがわかる。 In Examples 2, 9, and 12, stretch ratios of stretched porous films of the same composition were changed. From these, it can be seen that by increasing the draw ratio, the moisture permeability increases, and the air permeability and the heat shrinkage decrease.

比較例1では、炭化水素を用いなかった。その結果、得られた延伸多孔性フィルムは5%伸張強度が高く、柔軟性に乏しい延伸多孔性フィルムが得られた。 In Comparative Example 1, no hydrocarbon was used. As a result, the obtained stretched porous film had a high tensile strength of 5% and poor flexibility.

比較例2~5では、炭化水素として流動パラフィン以外の炭化水素を用いた。その結果、炭化水素としてパラフィンを用いた比較例2、および炭化水素として水素添加ポリブテンを用いた比較例5では、5%伸張強度が高く、柔軟性に乏しい延伸多孔性フィルムが得られた。炭化水素として水素添加ポリブタジエンを用いた比較例3、および炭化水素としてポリブテンを用いた比較例4では、いずれも透湿度が低く、蒸れやすい延伸多孔性フィルムが得られた。 In Comparative Examples 2 to 5, hydrocarbons other than liquid paraffin were used as hydrocarbons. As a result, in Comparative Example 2 using paraffin as the hydrocarbon and Comparative Example 5 using hydrogenated polybutene as the hydrocarbon, stretched porous films with high 5% tensile strength and poor flexibility were obtained. In Comparative Example 3, in which hydrogenated polybutadiene was used as the hydrocarbon, and in Comparative Example 4, in which polybutene was used as the hydrocarbon, stretched porous films with low moisture permeability and easy to get stuffy were obtained.

比較例6では、ポリオレフィン系樹脂100質量部に対して、密度が0.961g/cmのポリエチレンを75質量%用いた。その結果、通気度が低く、透湿度および5%伸張強度が高い、柔軟性に乏しい延伸多孔性フィルムが得られた。In Comparative Example 6, 75% by mass of polyethylene having a density of 0.961 g/cm 3 was used with respect to 100 parts by mass of the polyolefin resin. As a result, a stretched porous film having low air permeability, high moisture permeability and high 5% tensile strength and poor flexibility was obtained.

比較例7では、メルトマスフローレイトの低いポリオレフィン系樹脂を用いた。その結果、得られた延伸多孔性フィルムは透湿度が低く、蒸れやすい延伸多孔性フィルムが得られた。 In Comparative Example 7, a polyolefin resin with a low melt mass flow rate was used. As a result, the obtained stretched porous film had a low moisture permeability and was easily stuffy.

比較例8は、透湿度が低いため、通気度に劣る延伸多孔性フィルムとなった。 Comparative Example 8 had a low water vapor permeability, so that the stretched porous film was inferior in air permeability.

〔まとめ〕
〔1〕密度が0.900g/cm以上、0.940g/cm以下であるポリオレフィン系樹脂と、前記ポリオレフィン系樹脂100質量部に対し、5.0質量部以上、20質量部以下である流動パラフィンと、無機充填剤と、を含有する樹脂組成物より構成され、JIS K 7210に準じて190℃で測定される前記樹脂組成物のメルトマスフローレイトが2.0g/10min.以上であり、ASTM E96に準じて40℃、相対湿度60%の条件で測定される透湿度が1400g/m・24h以上であることを特徴とする延伸多孔性フィルム。
〔summary〕
[1] A polyolefin resin having a density of 0.900 g/cm 3 or more and 0.940 g/cm 3 or less, and 5.0 parts by mass or more and 20 parts by mass or less per 100 parts by mass of the polyolefin resin. It is composed of a resin composition containing liquid paraffin and an inorganic filler, and the melt mass flow rate of the resin composition measured at 190° C. according to JIS K 7210 is 2.0 g/10 min. A stretched porous film characterized by having a moisture permeability of 1400 g/m 2 ·24 h or more measured under conditions of 40°C and 60% relative humidity according to ASTM E96.

〔2〕JIS K 7127に準じて、チャック間距離50mm、引張り速度200mm/min.で機械方向に引張り、チャック間距離が5%伸びた時の機械方向の強度が0.3N/25mm以上、2.5N/25mm未満であることを特徴とする〔1〕に記載の延伸多孔性フィルム。 [2] According to JIS K 7127, the distance between chucks is 50 mm, the pulling speed is 200 mm/min. The stretched porosity according to [1], wherein the strength in the machine direction when the chuck-to-chuck distance is stretched by 5% is 0.3 N/25 mm or more and less than 2.5 N/25 mm. the film.

〔3〕JIS P 8117に準じて王研式試験機法で測定される通気度が300秒/100mL以上、2000秒/100mL以下であることを特徴とする〔1〕または〔2〕に記載の延伸多孔性フィルム。 [3] The air permeability of 300 seconds/100 mL or more and 2000 seconds/100 mL or less as measured by the Oken type tester method according to JIS P 8117. [1] or [2] Stretched porous film.

〔4〕密度が0.900g/cm以上、0.940g/cm以下であるポリオレフィン系樹脂と、前記ポリオレフィン系樹脂100質量部に対し、5.0質量部以上、20質量部以下である流動パラフィンと、無機充填剤と、を混合して樹脂組成物を得る混合工程と、前記樹脂組成物をフィルム状に成形する成形工程と、前記成形工程によって得られたフィルムを少なくとも機械方向に延伸することで多孔化させる多孔化工程と、を含み、 JIS K 7210に準じて190℃で測定される前記樹脂組成物のメルトマスフローレイトが2.0g/10min.以上であることを特徴とする延伸多孔性フィルムの製造方法。[4] A polyolefin resin having a density of 0.900 g/cm 3 or more and 0.940 g/cm 3 or less, and 5.0 parts by mass or more and 20 parts by mass or less per 100 parts by mass of the polyolefin resin. A mixing step of mixing liquid paraffin and an inorganic filler to obtain a resin composition, a molding step of molding the resin composition into a film, and stretching the film obtained by the molding step at least in the machine direction. a melt mass flow rate of the resin composition measured at 190° C. according to JIS K 7210 is 2.0 g/10 min. A method for producing a stretched porous film characterized by the above.

〔5〕前記多孔化工程における機械方向の延伸倍率が以下の式IIにて示されることを特徴とする〔4〕に記載の延伸多孔性フィルムの製造方法:
1.4≦Y≦0.075X+1.8 ・・・(式II)
(式中、Xはポリオレフィン系樹脂100質量部に対する流動パラフィンの配合割合(質量部)を示し、Yは延伸倍率(倍)を示す)。
[5] The method for producing a stretched porous film according to [4], wherein the draw ratio in the machine direction in the porosification step is represented by the following formula II:
1.4≦Y≦0.075X+1.8 (formula II)
(In the formula, X represents the blending ratio (parts by mass) of liquid paraffin with respect to 100 parts by mass of polyolefin resin, and Y represents the draw ratio (fold).

本発明は、例えば、おむつ等の個人ケアー製品に好適に利用することができる。 INDUSTRIAL APPLICABILITY The present invention can be suitably used, for example, in personal care products such as diapers.

Claims (4)

密度が0.900g/cm以上、0.940g/cm以下であるポリオレフィン系樹脂と、
前記ポリオレフィン系樹脂100質量部に対し、5.0質量部以上、20質量部以下である流動パラフィンと、
無機充填剤と、を含有する樹脂組成物より構成され、
JIS K 7210に準じて190℃で測定される前記樹脂組成物のメルトマスフローレイトが2.0g/10min.以上であり、
ASTM E96に準じて40℃、相対湿度60%の条件で測定される透湿度が1400g/m・24h以上であり、
JIS K 7127に準じて、チャック間距離50mm、引張り速度200mm/min.で機械方向に引張り、チャック間距離が5%伸びた時の機械方向の強度が0.3N/25mm以上、2.5N/25mm以下であることを特徴とする延伸多孔性フィルム。
a polyolefin resin having a density of 0.900 g/cm 3 or more and 0.940 g/cm 3 or less;
A liquid paraffin that is 5.0 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the polyolefin resin;
Consists of a resin composition containing an inorganic filler,
The melt mass flow rate of the resin composition measured at 190° C. according to JIS K 7210 is 2.0 g/10 min. and
The moisture permeability measured under the conditions of 40° C. and 60% relative humidity according to ASTM E96 is 1400 g/m 2 · 24 h or more ,
According to JIS K 7127, the distance between chucks is 50 mm, the pulling speed is 200 mm/min. and having a strength in the machine direction of 0.3 N/25 mm or more and 2.5 N/25 mm or less when the chuck-to-chuck distance is elongated by 5% .
JIS P 8117に準じて王研式試験機法で測定される通気度が300秒/100mL以上、2000秒/100mL以下であることを特徴とする請求項に記載の延伸多孔性フィルム。 2. The stretched porous film according to claim 1 , which has an air permeability of 300 seconds/100 mL or more and 2000 seconds/100 mL or less, as measured by the Oken type tester method according to JIS P 8117. 延伸多孔性フィルムの製造方法であって、
密度が0.900g/cm以上、0.940g/cm以下であるポリオレフィン系樹脂と、前記ポリオレフィン系樹脂100質量部に対し、5.0質量部以上、20質量部以下である流動パラフィンと、無機充填剤と、を混合して樹脂組成物を得る混合工程と、
前記樹脂組成物をフィルム状に成形する成形工程と、
前記成形工程によって得られたフィルムを少なくとも機械方向に延伸することで多孔化させる多孔化工程と、を含み、
JIS K 7210に準じて190℃で測定される前記樹脂組成物のメルトマスフローレイトが2.0g/10min.以上であり、
前記延伸多孔性フィルムは、ASTM E96に準じて40℃、相対湿度60%の条件で測定される透湿度が1400g/m ・24h以上であり、
前記延伸多孔性フィルムは、JIS K 7127に準じて、チャック間距離50mm、引張り速度200mm/min.で機械方向に引張り、チャック間距離が5%伸びた時の機械方向の強度が0.3N/25mm以上、2.5N/25mm以下であることを特徴とする延伸多孔性フィルムの製造方法。
A method for producing a stretched porous film, comprising:
a polyolefin resin having a density of 0.900 g/cm 3 or more and 0.940 g/cm 3 or less; , an inorganic filler, and a mixing step of obtaining a resin composition;
A molding step of molding the resin composition into a film;
a porosification step of stretching the film obtained by the forming step at least in the machine direction to make the film porous,
The melt mass flow rate of the resin composition measured at 190° C. according to JIS K 7210 is 2.0 g/10 min. and
The stretched porous film has a moisture permeability of 1400 g/m 2 · 24 h or more measured under conditions of 40 ° C. and 60% relative humidity according to ASTM E96 ,
The stretched porous film was stretched according to JIS K 7127 with a distance between chucks of 50 mm and a pulling speed of 200 mm/min. and the strength in the machine direction when the distance between chucks is elongated by 5% is 0.3 N/25 mm or more and 2.5 N/25 mm or less .
前記多孔化工程における機械方向の延伸倍率が以下の式IIにて示されることを特徴とする請求項に記載の延伸多孔性フィルムの製造方法:
1.4≦Y≦0.075X+1.8 ・・・(式II)
(式中、Xはポリオレフィン系樹脂100質量部に対する流動パラフィンの配合割合(質量部)を示し、Yは延伸倍率(倍)を示す)。
4. The method for producing a stretched porous film according to claim 3 , wherein the draw ratio in the machine direction in the porosification step is represented by Formula II below:
1.4≦Y≦0.075X+1.8 (formula II)
(In the formula, X represents the blending ratio (parts by mass) of liquid paraffin with respect to 100 parts by mass of polyolefin resin, and Y represents the draw ratio (fold).
JP2019562894A 2017-12-26 2018-11-30 Stretched porous film and manufacturing method thereof Active JP7112430B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017250004 2017-12-26
JP2017250004 2017-12-26
PCT/JP2018/044257 WO2019130990A1 (en) 2017-12-26 2018-11-30 Stretched porous film and method for producing same

Publications (2)

Publication Number Publication Date
JPWO2019130990A1 JPWO2019130990A1 (en) 2020-12-10
JP7112430B2 true JP7112430B2 (en) 2022-08-03

Family

ID=67067145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019562894A Active JP7112430B2 (en) 2017-12-26 2018-11-30 Stretched porous film and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP7112430B2 (en)
WO (1) WO2019130990A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6810924B2 (en) 2015-05-11 2021-01-13 ユニリーバー・ナームローゼ・ベンノートシヤープ Body cleansing composition
CN117916294A (en) * 2021-10-29 2024-04-19 株式会社德山 Stretched porous film and method for producing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017175878A1 (en) 2016-04-08 2017-10-12 株式会社トクヤマ Stretched porous film, and production method therefor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250038A (en) * 1986-04-22 1987-10-30 Ube Ind Ltd Porous film
JPS6312645A (en) * 1986-07-03 1988-01-20 Ube Ind Ltd Film for skin packaging
JP3157581B2 (en) * 1992-02-19 2001-04-16 花王株式会社 Porous sheet and method for producing the same
JPH0926823A (en) * 1995-07-11 1997-01-28 Nikon Corp Moving device
JP3649508B2 (en) * 1996-04-01 2005-05-18 花王株式会社 Porous sheet and absorbent article using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017175878A1 (en) 2016-04-08 2017-10-12 株式会社トクヤマ Stretched porous film, and production method therefor

Also Published As

Publication number Publication date
JPWO2019130990A1 (en) 2020-12-10
WO2019130990A1 (en) 2019-07-04

Similar Documents

Publication Publication Date Title
CN111417676B (en) Stretched porous film and method for producing same
JP6859324B2 (en) Stretched porous film and its manufacturing method
JP6250495B2 (en) Polypropylene microporous membrane and method for producing the same
EP1245620A2 (en) Polypropylene base porous film and production process for the same
JP7112430B2 (en) Stretched porous film and manufacturing method thereof
JP2008179757A (en) Air-permeable film
CN105235336B (en) A kind of low temperature resistant bidirectional stretching polypropylene film and preparation method thereof
JPH10292059A (en) Production of air-permeable film
KR20190063668A (en) Resin compositions of polyethylene for air-cap film and film manufactured by using the same
JP2016089009A (en) Moisture permeable film and moisture permeable film laminate
JP2008291246A (en) Resin composition, retardation film and method for producing retardation film
JP2008150628A (en) Polyolefin resin porous film
JP5069423B2 (en) Film and manufacturing method thereof
JP2006289888A (en) Manufacturing method of propylene film
KR101909577B1 (en) Manufacturing method of polypropylene composition for higher transparency, softness and shrinkage
EP4122675A1 (en) Stretch film and method for producing same
KR20010012600A (en) Unstretched polypropylene molding
KR20160059184A (en) Manufacturing method of polypropylene resin composition for higher shrinkage film
JP2004131590A (en) Polyethylene-based porous film
JP2001261868A (en) Porous film and process for producing the same
JP2005145999A (en) Porous film made of polyolefin resin
JP2019127580A (en) Polyolefin resin composition
WO2023074731A1 (en) Stretched porous film and method for producing same
KR101669206B1 (en) Breathable film composition improved printability and manufacturing method of breathable film including thereof
JP4742214B2 (en) Polyolefin resin porous membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220722

R150 Certificate of patent or registration of utility model

Ref document number: 7112430

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150