JP2008150628A - Polyolefin resin porous film - Google Patents

Polyolefin resin porous film Download PDF

Info

Publication number
JP2008150628A
JP2008150628A JP2008070899A JP2008070899A JP2008150628A JP 2008150628 A JP2008150628 A JP 2008150628A JP 2008070899 A JP2008070899 A JP 2008070899A JP 2008070899 A JP2008070899 A JP 2008070899A JP 2008150628 A JP2008150628 A JP 2008150628A
Authority
JP
Japan
Prior art keywords
polyolefin resin
film
mfr
stretching
crystalline polypropylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008070899A
Other languages
Japanese (ja)
Other versions
JP4894794B2 (en
Inventor
Shuji Sakamoto
秀志 坂本
Takashi Niifuku
隆志 新福
Junichi Yamauchi
淳一 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
JNC Petrochemical Corp
Original Assignee
Chisso Petrochemical Corp
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Petrochemical Corp, Chisso Corp filed Critical Chisso Petrochemical Corp
Priority to JP2008070899A priority Critical patent/JP4894794B2/en
Publication of JP2008150628A publication Critical patent/JP2008150628A/en
Application granted granted Critical
Publication of JP4894794B2 publication Critical patent/JP4894794B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyolefin resin porous film which has a function suitable for cell separators, separating films, air-permeable waterproofing materials and the like having an excellent function as a porous film and, simultaneously, is at a low cost. <P>SOLUTION: The polyolefin resin porous film is prepared by melt-extruding a resin composition comprising a polyolefin resin (C), as a main component, comprising 30-90 wt.% of a crystalline polypropylene (A) and 10-70 wt.% of a propylene-α-olefin copolymer (B) dispersed in the crystalline polypropylene (A) in which the ratio MFR<SB>PP</SB>/MFR<SB>RC</SB>between the melt flow rate of the crystalline polypropylene (A) MFR<SB>PP</SB>, and the melt flow rate of the propylene-α-olefin copolymer (B) MFR<SB>RC</SB>, is ≤10, and obtained by a multi-stage polymerization method including a first stage of producing the crystalline polypropylene (A) and continuously a second stage of producing the propylene-α-olefin copolymer (B); molding the melt-extruded resin composition into a film-like formed product at a draft ratio of 1-10; and stretching the film-like formed product at least in one direction at a temperature of ≤100°C, whereby open cell pores are formed by cleavage generated in a region occupied by the copolymer (B) per se. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はポリオレフィン樹脂多孔膜に関する。詳しくは、分離膜や電池セパレータ等に好適なポリオレフィン樹脂多孔膜に関する。   The present invention relates to a polyolefin resin porous membrane. Specifically, the present invention relates to a polyolefin resin porous membrane suitable for a separation membrane, a battery separator and the like.

連通した細孔を有するプラスチック多孔膜は様々な用途に用いられており、医療用、工業用の濾過、分離等に用いられる分離膜や、電池セパレータ、電解コンデンサー用セパレータ等のセパレータ、更に紙おむつ用バッグシート等の衛生材料、ハウスラップや屋根下地材等の建材等に広く使用されている。特に、ポリオレフィン樹脂多孔膜は有機溶剤やアルカリ性または酸性の溶液に対する耐性を有するため、これら用途に広く好適に使用されている。 Plastic porous membranes with continuous pores are used in a variety of applications. Separation membranes used for medical and industrial filtration and separation, separators for battery separators, electrolytic capacitor separators, and paper diapers It is widely used for sanitary materials such as bag sheets, building materials such as house wraps and roof base materials. In particular, since the polyolefin resin porous membrane has resistance to an organic solvent or an alkaline or acidic solution, it is widely used for these applications.

ポリオレフィン樹脂多孔膜の製造方法としては次のものが知られている。
(a)ポリオレフィン樹脂にシリカやタルク等の無機質充填剤やポリオレフィンと非相溶性のナイロンやポリエチレンテレフタレート等の有機質充填剤を混合して成形したシートを、少なくとも一方向に延伸し、マトリックスポリマーと充填剤の界面に空隙(細孔)を生じさせる方法(以下「多成分延伸法」という)が開示されている(例えば、特許文献1、2及び3参照)。
(b)高ドラフト比で製膜した結晶性ポリプロピレンのシートを、必要に応じて加熱処理し
、少なくとも一方向に延伸し、結晶ラメラ間をフィブリル化させ多孔膜を得る方法(以
下「単成分延伸法」という)が開示されている(例えば、特許文献4、5及び6参照)。
(c)ポリオレフィン樹脂に有機液状体や無機質充填剤等を混合して成形したシートから、
該有機液状体や無機質充填剤を抽出し、必要に応じ該抽出の前後に延伸を行う方法(以
下「混合抽出法」という)が開示されている(例えば、特許文献7、8、9及び10参照)。
The following is known as a method for producing a polyolefin resin porous membrane.
(a) A sheet formed by mixing a polyolefin resin with an inorganic filler such as silica or talc, or an organic filler such as nylon or polyethylene terephthalate that is incompatible with polyolefin, is stretched in at least one direction, and filled with a matrix polymer. A method of generating voids (pores) at the interface of the agent (hereinafter referred to as “multicomponent stretching method”) is disclosed (for example, see Patent Documents 1, 2, and 3).
(b) A method of obtaining a porous film by heating a crystalline polypropylene sheet formed at a high draft ratio as needed and stretching it in at least one direction to fibrillate between crystal lamellae (hereinafter referred to as “single component stretching”). (Refer to Patent Documents 4, 5 and 6).
(c) From a sheet formed by mixing an organic liquid or an inorganic filler with a polyolefin resin,
A method of extracting the organic liquid or the inorganic filler and performing stretching before and after the extraction as necessary (hereinafter referred to as “mixed extraction method”) is disclosed (for example, Patent Documents 7, 8, 9 and 10). reference).

上記(a)の多成分延伸法には、無機質充填剤混合系と有機質充填剤混合系が知られているが、前者の場合、無機質充填剤の添加量を多くする必要があり、マトリックスポリマーであるポリオレフィン本来の物性や風合いが低下したり、酸・アルカリに弱い等の課題があった。また、後者の有機質充填剤混合系では、ポリオレフィン本来の物性や風合いが低下するだけでなく、マトリックスポリマーへの有機質充填剤の微分散が難しく、細孔の平均孔径が小さい多孔膜や空隙率の大きい多孔膜が得られ難い等の課題があった。 In the multi-component stretching method (a) described above, an inorganic filler mixed system and an organic filler mixed system are known. However, in the former case, it is necessary to increase the amount of the inorganic filler added. There were problems such as deterioration of the original physical properties and texture of certain polyolefins and weakness against acids and alkalis. Further, in the latter organic filler mixed system, not only the physical properties and texture of the polyolefin are lowered, but also fine dispersion of the organic filler in the matrix polymer is difficult, and the porous membrane having a small average pore diameter and the porosity are not good. There were problems such as difficulty in obtaining a large porous film.

上記(b)の単成分延伸法は、高ドラフト比で製膜した膜状成形物を別工程で長時間に渡り熱処理した後、特殊な条件下で多段延伸を行うものであり、方法が特殊なだけでなく、製造に長時間を要し、生産性が低いという課題があった。また、結晶ラメラ間をフィブリル化させるため、空隙率の大きい多孔膜が得られ難く、更に、高配向でかつ高結晶化されたシートを延伸するため、得られた多孔膜が裂けやすいという課題を有していた。   The single component stretching method (b) above is a method in which a film-shaped molded product formed at a high draft ratio is heat-treated in a separate process for a long time and then subjected to multistage stretching under special conditions. In addition to this, there is a problem that the production takes a long time and the productivity is low. In addition, it is difficult to obtain a porous film having a large porosity because of fibrillation between the crystalline lamellae, and further, since the highly oriented and highly crystallized sheet is stretched, the obtained porous film is easy to tear. Had.

上記(c)の混合抽出法は、シート中の有機液状体を有機溶媒にて、また、無機質充填剤をアルカリ性溶媒にて抽出する工程、抽出後のシートを洗浄及び乾燥する工程からなり、製造工程が複雑であった。また、有機液状体を用いる場合は、シート中の有機液状体の含有率が40〜60重量%にも達するため、高速製膜性や延伸性に課題がある他に、各工程でロール等への有機液状物の付着等が発生し、生産性に課題があった。   The mixed extraction method of (c) above comprises a step of extracting an organic liquid in a sheet with an organic solvent and an inorganic filler with an alkaline solvent, and a step of washing and drying the extracted sheet. The process was complicated. Moreover, when using an organic liquid, since the content rate of the organic liquid in the sheet reaches 40 to 60% by weight, in addition to the problems in high-speed film-forming properties and stretchability, rolls and the like in each step As a result, there was a problem in productivity.

特開昭52−69476号公報JP 52-69476 A 特許第1638935号明細書Japanese Patent No. 1638935 特開昭58−198536号公報JP 58-198536 A 特開昭56−106928号公報JP 56-106928 A 特許第1945346号明細書Japanese Patent No. 1945346 特許第2509030号明細書Japanese Patent No. 25009030 特許第1290422号明細書Japanese Patent No. 1290422 特許第1882898号明細書Japanese Patent No. 1882898 Specification 特許第1699207号明細書Japanese Patent No. 1699207 特許第2513768号明細書Japanese Patent No. 2513768

本発明は、従来のポリオレフィン樹脂多孔膜に関する前記課題を解決すべくなされたものであり、多孔膜としての機能に優れた電池セパレータや分離膜、通気防水材等に好適な機能を有し、かつ安価なポリオレフィン樹脂多孔膜を提供することを課題とする。   The present invention has been made in order to solve the above-mentioned problems related to conventional polyolefin resin porous membranes, and has a function suitable for battery separators, separation membranes, breathable waterproofing materials and the like excellent in functions as porous membranes, and It is an object to provide an inexpensive polyolefin resin porous membrane.

本発明者らは、鋭意検討した結果、結晶性ポリプロピレン(A)30〜90重量%と、結晶性ポリプロピレン(A)中に分散したプロピレン−α−オレフィン共重合体(B)10〜70重量%とからなり、結晶性ポリプロピレン(A)のメルトフローレートをMFRPPとし、プロピレン−α−オレフィン共重合体(B)のメルトフローレートをMFRRCとした時、メルトフローレートの比MFRPP/MFRRCが10以下であり、1段目で結晶性ポリプロピレン(A)を製造し、連続して2段目でプロピレン−α−オレフィン共重合体(B)を製造する工程を含む多段重合法により得られたポリオレフィン樹脂(C)を主成分とした樹脂組成物を溶融押出し、ドラフト比1〜10の範囲で膜状成形物に成形した後、その膜状成形物を100℃以下の温度で少なくとも一方向に延伸することにより、共重合体(B)自体が占める領域の中で生じる開裂によって形成される連通した細孔を有することを特徴とするポリオレフィン樹脂多孔膜によって本課題が解決されることを見出しこの知見に基づいて本発明を完成した。尚、本発明において連通した細孔とは、共重合体(B)自体が占める領域の中で生じる開裂によって連続的に形成され、結果的に多孔膜の両面をつなぐ経路となる細孔をいう。 As a result of intensive studies, the present inventors have found that 30 to 90% by weight of the crystalline polypropylene (A) and 10 to 70% by weight of the propylene-α-olefin copolymer (B) dispersed in the crystalline polypropylene (A). When the melt flow rate of the crystalline polypropylene (A) is MFR PP and the melt flow rate of the propylene-α-olefin copolymer (B) is MFR RC , the ratio of the melt flow rate MFR PP / MFR RC is 10 or less, obtained by a multi-stage polymerization method including a step of producing a crystalline polypropylene (A) in the first stage and continuously producing a propylene-α-olefin copolymer (B) in the second stage. The resin composition comprising the polyolefin resin (C) as a main component is melt-extruded and molded into a film-shaped molded product within a draft ratio of 1 to 10, and then the film-shaped molded product is By a polyolefin resin porous membrane characterized by having continuous pores formed by cleavage occurring in a region occupied by the copolymer (B) by stretching in at least one direction at a temperature of 00 ° C. or less Based on this finding, the present invention has been completed. In the present invention, the pores communicating with each other are pores that are continuously formed by cleavage occurring in the region occupied by the copolymer (B) itself, resulting in a path connecting both surfaces of the porous membrane. .

本発明は、以下によって構成される。
1.結晶性ポリプロピレン(A)30〜90重量%と、結晶性ポリプロピレン(A)中に分散したプロピレン−α−オレフィン共重合体(B)10〜70重量%とからなり、結晶性ポリプロピレン(A)のメルトフローレートをMFRPPとし、プロピレン−α−オレフィン共重合体(B)のメルトフローレートをMFRRCとした時、メルトフローレートの比MFRPP/MFRRCが10以下であり、1段目で結晶性ポリプロピレン(A)を製造し、連続して2段目でプロピレン−α−オレフィン共重合体(B)を製造する工程を含む多段重合法により得られたポリオレフィン樹脂(C)を主成分とした樹脂組成物を溶融押出し、ドラフト比1〜10の範囲で膜状成形物に成形した後、その膜状成形物を100℃以下の温度で少なくとも一方向に延伸することにより、共重合体(B)自体が占める領域の中で生じる開裂によって形成される連通した細孔を有することを特徴とするポリオレフィン樹脂多孔膜。
The present invention is constituted by the following.
1. The crystalline polypropylene (A) comprises 30 to 90% by weight and the propylene-α-olefin copolymer (B) dispersed in the crystalline polypropylene (A) in an amount of 10 to 70% by weight. When the melt flow rate is MFR PP and the melt flow rate of the propylene-α-olefin copolymer (B) is MFR RC , the ratio MFR PP / MFR RC of the melt flow rate is 10 or less. The main component is a polyolefin resin (C) obtained by a multistage polymerization method including a step of producing a crystalline polypropylene (A) and continuously producing a propylene-α-olefin copolymer (B) in the second stage. After the melted resin composition is melt extruded and formed into a film-shaped molded product in the range of a draft ratio of 1 to 10, the film-shaped molded product is at least at a temperature of 100 ° C. or less. By stretching in direction, the copolymer (B) a polyolefin resin porous membrane which is characterized by having pores communicating formed by cleavage occurring in the region itself occupied.

2.細孔の平均孔径が0.01〜10μm、多孔膜の空隙率が20〜90%であることを特徴とする前記1項記載のポリオレフィン樹脂多孔膜。 2. 2. The polyolefin resin porous membrane according to 1 above, wherein the average pore diameter of the pores is 0.01 to 10 μm, and the porosity of the porous membrane is 20 to 90%.

3.膜状成形物を延伸する方向が、横(TD)方向であることを特徴とする前記1項もしくは2項記載のポリオレフィン樹脂多孔膜。 3. 3. The polyolefin resin porous membrane according to item 1 or 2, wherein the direction in which the film-shaped molded product is stretched is a transverse (TD) direction.

本発明のポリオレフィン樹脂多孔膜は、結晶性ポリプロピレン(A)中にプロピレン−α−オレフィン共重合体(B)が微分散した特定のポリプロピレン樹脂を用いることにより低温時の延伸性を向上させ、共重合体(B)領域に共重合体(B)の開裂による細孔を形成させて得られた、空隙率や通気度等の多孔膜特性に優れた多孔膜である。また、本発明のポリオレフィン樹脂多孔膜は、従来のような複雑な製造工程を用いないで得られた経済的な多孔膜であり、分離膜、電池セパレータ、通気防水材等の用途に好適に使用することができる。 The polyolefin resin porous membrane of the present invention uses a specific polypropylene resin in which the propylene-α-olefin copolymer (B) is finely dispersed in the crystalline polypropylene (A), thereby improving the stretchability at low temperatures. It is a porous membrane excellent in porous membrane properties such as porosity and air permeability, obtained by forming pores by cleavage of the copolymer (B) in the polymer (B) region. The polyolefin resin porous membrane of the present invention is an economical porous membrane obtained without using a complicated manufacturing process as in the past, and is suitably used for applications such as separation membranes, battery separators, and breathable waterproof materials. can do.

以下に、本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described.

(1)ポリオレフィン樹脂
本発明のポリオレフィン樹脂多孔膜には、結晶性ポリプロピレン(A)と、プロピレン−α−オレフィン共重合体(B)とからなり、結晶性ポリプロピレン(A)のマトリックス中に共重合体(B)がドメインとして微分散しているポリオレフィン樹脂(C)が使用される。
(1) Polyolefin resin The polyolefin resin porous membrane of the present invention comprises crystalline polypropylene (A) and a propylene-α-olefin copolymer (B), and is co-polymerized in the matrix of crystalline polypropylene (A). A polyolefin resin (C) in which the coalescence (B) is finely dispersed as a domain is used.

(i)結晶性ポリプロピレン(A)
結晶性ポリプロピレン(A)は、主としてプロピレン重合単位からなる結晶性の重合体であり、好ましくはプロピレン重合単位が全体の90重量%以上であるポリプロピレンである。具体的には、プロピレンの単独重合体であってもよく、また、プロピレン重合単位90重量%以上とα−オレフィン10重量%以下とのランダムまたはブロック共重合体であってもよい。結晶性ポリプロピレン(A)が共重合体の場合に使用されるα−オレフィンとしては、エチレン、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン、1−デセン、1−ドデセン、4−メチル−1−ペンテン、3−メチル−1−ペンテン等を挙げることができる。このうち、プロピレン単独重合体またはプロピレン重合単位の含量が90重量%以上のプロピレン−エチレン共重合体を用いるのが、製造コストの点から好ましい。
(I) Crystalline polypropylene (A)
The crystalline polypropylene (A) is a crystalline polymer mainly composed of propylene polymerized units, preferably polypropylene having 90% by weight or more of propylene polymerized units. Specifically, it may be a propylene homopolymer, or may be a random or block copolymer of 90% by weight or more of propylene polymer units and 10% by weight or less of α-olefin. Examples of the α-olefin used when the crystalline polypropylene (A) is a copolymer include ethylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 4- Examples thereof include methyl-1-pentene and 3-methyl-1-pentene. Among these, it is preferable from the viewpoint of production cost to use a propylene homopolymer or a propylene-ethylene copolymer having a propylene polymer unit content of 90% by weight or more.

また、結晶性ポリプロピレン(A)のメルトフローレートMFRPPは製膜の安定性から0.1〜50g/10分の範囲のものが好ましい。 The melt flow rate MFR PP of crystalline polypropylene (A) is preferably in the range of 0.1 to 50 g / 10 min from the stability of film formation.

(ii)プロピレン−α−オレフィン共重合体(B)
プロピレン−α−オレフィン共重合体(B)は、プロピレンとプロピレン以外のα−オレフィンとのランダム共重合体である。プロピレン重合単位の含量は、共重合体(B)全体に対し重量基準で20〜80重量%の範囲にあることが好ましく、より好ましくは20〜75重量%、更に好ましくは20〜70重量%である。プロピレン重合単位の含量が80重量%を超える場合または20重量%未満の場合は、結晶性ポリプロピレン(A)のマトリックス中に存在する共重合体(B)ドメインに細孔が形成されにくく、本発明の目的とする多孔膜としての特性が得られにくい。
(ii) Propylene-α-olefin copolymer (B)
The propylene-α-olefin copolymer (B) is a random copolymer of propylene and an α-olefin other than propylene. The content of propylene polymerized units is preferably in the range of 20 to 80% by weight, more preferably 20 to 75% by weight, still more preferably 20 to 70% by weight, based on the weight of the entire copolymer (B). is there. When the content of the propylene polymer unit exceeds 80% by weight or less than 20% by weight, pores are hardly formed in the copolymer (B) domain existing in the matrix of the crystalline polypropylene (A), and the present invention. It is difficult to obtain the desired porous membrane characteristics.

共重合体(B)に使用されるプロピレン以外のα−オレフィンとしては、エチレン、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン、1−デセン、1−ドデセン、4−メチル−1−ペンテン、3−メチル−1−ペンテン等が挙げられる。このうちα−オレフィンとしてエチレンを用いたプロピレン−エチレン共重合体が、製造コストの点から好ましく用いられる。   Examples of the α-olefin other than propylene used in the copolymer (B) include ethylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, and 4-methyl-1. -Pentene, 3-methyl-1-pentene, etc. are mentioned. Among these, a propylene-ethylene copolymer using ethylene as an α-olefin is preferably used from the viewpoint of production cost.

プロピレン−α−オレフィン共重合体(B)のメルトフローレートMFRRCは特に限定されないが、0.1〜20g/10分の範囲が成形加工がしやすいため好適である。また共重合体(B)を結晶性ポリプロピレン(A)のマトリックス中に微分散させるためには、結晶性ポリプロピレン(A)と共重合体(B)とのMFRの比MFRPP/MFRRC(以下、「MFR比」という)は10以下、更に好ましくは0.2〜5の範囲となるように共重合体(B)のMFRRCを選択する。MFR比が上記の範囲であると、後述の延伸工程における低温での延伸性が向上する。 The melt flow rate MFR RC of the propylene-α-olefin copolymer (B) is not particularly limited, but a range of 0.1 to 20 g / 10 min is preferable because the molding process is easy. In order to finely disperse the copolymer (B) in the matrix of the crystalline polypropylene (A), the ratio of MFR between the crystalline polypropylene (A) and the copolymer (B) is MFR PP / MFR RC (hereinafter referred to as “FR”). The MFR RC of the copolymer (B) is selected so that the “MFR ratio” is 10 or less, more preferably in the range of 0.2-5. When the MFR ratio is in the above range, the stretchability at a low temperature in the stretching process described later is improved.

(iii)ポリオレフィン樹脂(C)
本発明のポリオレフィン樹脂(C)中の結晶性ポリプロピレン(A)の含量は、ポリオレフィン樹脂(C)全量に対し30〜90重量%、好ましくは40〜80重量%であり、プロピレン−α−オレフィン共重合体(B)の含量は10〜70重量%、好ましくは20〜60重量%である。共重合体(B)の含量が10重量%未満の場合には、共重合体(B)領域に形成された細孔の連なりが少なくなることから本発明の連通した細孔が得られにくく、70重量%を超える場合には、結晶性ポリプロピレン(A)中に存在する共重合体(B)の微分散構造が得られ難くなる。
(iii) Polyolefin resin (C)
The content of the crystalline polypropylene (A) in the polyolefin resin (C) of the present invention is 30 to 90% by weight, preferably 40 to 80% by weight, based on the total amount of the polyolefin resin (C). The content of the polymer (B) is 10 to 70% by weight, preferably 20 to 60% by weight. When the content of the copolymer (B) is less than 10% by weight, it is difficult to obtain the continuous pores of the present invention because the continuous pores formed in the copolymer (B) region is reduced. When it exceeds 70% by weight, it becomes difficult to obtain a finely dispersed structure of the copolymer (B) present in the crystalline polypropylene (A).

前記ポリオレフィン樹脂(C)の製造方法は、結晶性ポリプロピレン(A)と共重合体(B)とを多段重合により連続的に重合することによってポリオレフィン樹脂(C)を製造する方法である。例えば、複数の重合器を使用し、1段目で結晶性ポリプロピレン(A)を製造し、引続き2段目で結晶性ポリプロピレン(A)の存在下に共重合体(B)を製造し、ポリオレフィン樹脂(C)を連続的に製造する方法である。この連続重合法は、製造コストが低く、また、結晶性ポリプロピレン(A)中に共重合体(B)が均一に分散したポリオレフィン樹脂(C)が安定して得られるため好ましい。   The method for producing the polyolefin resin (C) is a method for producing the polyolefin resin (C) by continuously polymerizing the crystalline polypropylene (A) and the copolymer (B) by multistage polymerization. For example, by using a plurality of polymerization vessels, a crystalline polypropylene (A) is produced in the first stage, and then a copolymer (B) is produced in the presence of the crystalline polypropylene (A) in the second stage. This is a method for continuously producing the resin (C). This continuous polymerization method is preferable because the production cost is low and the polyolefin resin (C) in which the copolymer (B) is uniformly dispersed in the crystalline polypropylene (A) can be stably obtained.

本発明において、ポリオレフィン樹脂(C)は、上記連続重合法により製造し、前記MFR比を10以下、好ましくは0.2〜5の範囲となるように調整したものである。MFR比をこの範囲とすることにより、結晶性ポリプロピレン(A)中に共重合体(B)が均一にかつ微細に分散するため、ポリオレフィン樹脂(C)の延伸処理を行う際に、結晶性ポリプロピレン(A)中に分散した共重合体(B)領域に均一かつ微細な細孔が生じ、その結果、平均細孔径が小さく空隙率の大きい多孔膜が得られる。   In the present invention, the polyolefin resin (C) is produced by the continuous polymerization method, and the MFR ratio is adjusted to 10 or less, preferably 0.2 to 5. By setting the MFR ratio within this range, the copolymer (B) is uniformly and finely dispersed in the crystalline polypropylene (A). Therefore, when the polyolefin resin (C) is stretched, the crystalline polypropylene is used. Uniform and fine pores are generated in the copolymer (B) region dispersed in (A), and as a result, a porous membrane having a small average pore diameter and a high porosity can be obtained.

本発明のポリオレフィン樹脂多孔膜には、結晶性ポリプロピレン(A)中に微分散した共重合体(B)領域に微細な開裂が多数認められる。結晶性ポリプロピレン(A)と相溶性を有する共重合体(B)が、結晶性ポリプロピレン(A)より低強度であるため、延伸応力により共重合体(B)領域で開裂が発生したと推察される。このメカニズムは従来の無機質フィラーや異種ポリマーを混合及び延伸した多成分延伸法と根本的に異なるところであり、その結果、得られた多孔膜は、平均細孔径が小さく、空隙率や通気度が大きいものとなっている。   In the polyolefin resin porous membrane of the present invention, many fine cleavages are observed in the copolymer (B) region finely dispersed in the crystalline polypropylene (A). Since the copolymer (B) having compatibility with the crystalline polypropylene (A) has a lower strength than the crystalline polypropylene (A), it is assumed that cleavage occurred in the copolymer (B) region due to stretching stress. The This mechanism is fundamentally different from the conventional multicomponent stretching method in which inorganic fillers and different polymers are mixed and stretched. As a result, the obtained porous membrane has a small average pore diameter and a large porosity and air permeability. It has become a thing.

尚、本発明において共重合体(B)領域とは、共重合体(B)自体が占める領域をいう。従って、共重合体(B)領域に生じる細孔とは、共重合体(B)自体が占める領域の中で生じる開裂による細孔である。   In the present invention, the copolymer (B) region means a region occupied by the copolymer (B) itself. Therefore, the pore generated in the copolymer (B) region is a pore due to cleavage generated in the region occupied by the copolymer (B) itself.

前記のようなMFR比を有するポリオレフィン樹脂(C)は、具体的には国際公開WO97/19135号公報、特開平8−27238号公報等に記載されている方法により製造することができる。
尚、ポリオレフィン樹脂(C)は前記の方法で製造することができる他に、市販品の中から所望の仕様のものを選択して用いてもよい。
Specifically, the polyolefin resin (C) having the MFR ratio as described above can be produced by a method described in International Publication WO 97/19135, Japanese Patent Laid-Open No. 8-27238, or the like.
In addition, the polyolefin resin (C) can be produced by the above-described method, and one having a desired specification may be selected from commercially available products.

尚、前記MFR比は、ポリプロピレン樹脂を多段重合により連続的に製造した場合(最初に結晶性ポリプロピレン(A)を重合し、次いで共重合体(B)を重合する場合)は、共重合体(B)のMFRRCを直接測定できないため、直接測定可能な結晶性ポリプロピレン(A)のMFRPP、得られるポリオレフィン樹脂(C)のメルトフローレートMFRWHOLE及びポリオレフィン樹脂(C)中の共重合体(B)の含有量WRC(重量%)から、下記式によりMFRRCを算出して、MFR比を求めることができる。
log(MFRRC)={log(MFRWHOLE)−(1−WRC/100)log(MFRPP)}/(WRC/100)
The MFR ratio is determined when the polypropylene resin is continuously produced by multistage polymerization (when the crystalline polypropylene (A) is first polymerized and then the copolymer (B) is polymerized), the copolymer ( Since the MFR RC of B) cannot be measured directly, the MFR PP of the crystalline polypropylene (A) that can be directly measured, the melt flow rate MFR WHOLE of the resulting polyolefin resin (C), and the copolymer (C) in the polyolefin resin (C) ( The MFR ratio can be obtained by calculating MFR RC from the content W RC (% by weight) of B) by the following formula.
log (MFR RC ) = {log (MFR WHOLE ) − (1−W RC / 100) log (MFR PP )} / (W RC / 100)

(2)ポリオレフィン樹脂多孔膜形成用樹脂組成物
本発明のポリオレフィン樹脂多孔膜を形成するための膜状成形物の成形材料である樹脂組成物は、ポリオレフィン樹脂(C)を主成分とするが、更に通常のポリオレフィンに使用される酸化防止剤、中和剤、ヒンダードアミン系耐候剤、紫外線吸収剤、防曇剤や帯電防止剤等の界面活性剤、滑剤、抗菌剤、防黴剤、顔料等を必要に応じて配合することができる。尚、本発明において主成分とは最も多い成分をいう。
(2) Resin composition for forming a polyolefin resin porous film The resin composition, which is a molding material for a film-shaped molded product for forming the polyolefin resin porous film of the present invention, contains a polyolefin resin (C) as a main component. In addition, surfactants such as antioxidants, neutralizers, hindered amine-based weathering agents, UV absorbers, antifogging agents and antistatic agents used in ordinary polyolefins, lubricants, antibacterial agents, antifungal agents, pigments, etc. It can mix | blend as needed. In the present invention, the main component means the most abundant component.

酸化防止剤としては、テトラキス[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタン、2,6−ジ−t−ブチル−4−メチルフェノール、n−オクタデシル−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート、トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)イソシアヌレート等のフェノール系酸化防止剤、またはトリス(2,4−ジ−t−ブチルフェニル)フォスファイト、トリス(ノニルフェニル)フォスファイト、ジステアリルペンタエリスリトールジフォスファイト、テトラキス(2,4−ジ−t−ブチルフェニル)−4,4’−ビフェニレン−ジフォスフォナイト等のリン系酸化防止剤等が例示できる。   Antioxidants include tetrakis [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane, 2,6-di-t-butyl-4-methylphenol, Phenolic compounds such as n-octadecyl-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate and tris (3,5-di-t-butyl-4-hydroxybenzyl) isocyanurate Antioxidant, or tris (2,4-di-t-butylphenyl) phosphite, tris (nonylphenyl) phosphite, distearyl pentaerythritol diphosphite, tetrakis (2,4-di-t-butylphenyl) Examples thereof include phosphorus-based antioxidants such as -4,4'-biphenylene-diphosphonite.

中和剤としてはステアリン酸カルシウム等の高級脂肪酸塩類が例示でき、滑剤としてはステアリン酸アマイド等の高級脂肪酸アマイド類が例示でき、帯電防止剤としてはグリセリンモノステアレート等の脂肪酸エステル類が例示できる。   Examples of the neutralizing agent include higher fatty acid salts such as calcium stearate, examples of the lubricant include higher fatty acid amides such as stearic acid amide, and examples of the antistatic agent include fatty acid esters such as glycerin monostearate.

これらの添加剤の配合量は、ポリオレフィン樹脂多孔膜の使用目的等により適宜選択することができるが、通常前記樹脂組成物全量に対し0.001〜5重量%程度とするのが好ましい。   The blending amount of these additives can be appropriately selected depending on the purpose of use of the polyolefin resin porous membrane, but is usually preferably about 0.001 to 5% by weight based on the total amount of the resin composition.

また、本発明のポリオレフィン樹脂多孔膜を形成するための前記樹脂組成物には、本発明の効果を損なわない範囲で、プロピレンの単独重合体、プロピレンを主成分とするプロピレン以外の単量体との二元以上のランダム重合体やポリエチレン樹脂、ポリブテン樹脂、ポリメチルペンテン樹脂等の他のオレフィン樹脂の1種以上を併用しても構わない。   In addition, the resin composition for forming the polyolefin resin porous membrane of the present invention includes a propylene homopolymer, a monomer other than propylene containing propylene as a main component, as long as the effects of the present invention are not impaired. Two or more random polymers of the above and other olefin resins such as polyethylene resin, polybutene resin, and polymethylpentene resin may be used in combination.

更に、前記樹脂組成物の軟化温度を低下させたり柔軟性を向上させるためにシングルサイト触媒や公知のマルチサイト触媒で重合されたエチレン−ジエン弾性共重合体、エチレンープロピレン弾性共重合体、スチレン−ブタジエン弾性共重合体等の弾性共重合体を添加しても構わない。   Further, an ethylene-diene elastic copolymer, ethylene-propylene elastic copolymer, styrene polymerized with a single site catalyst or a known multi-site catalyst in order to lower the softening temperature of the resin composition or improve flexibility. -An elastic copolymer such as a butadiene elastic copolymer may be added.

前記ポリオレフィン樹脂(C)と上記添加剤を配合する方法は特に限定されず、例えばヘンシェルミキサー(商品名)等の高速撹拌機付混合機及びリボンブレンダー並びにタンブラーミキサー等の通常の配合装置により配合する方法(ドライブレンド)が例示でき、更に通常の単軸押出機または二軸押出機等を用いてペレット化する方法が例示できる。   The method of blending the polyolefin resin (C) and the additive is not particularly limited, and is blended by a usual blending device such as a mixer with a high-speed stirrer such as a Henschel mixer (trade name), a ribbon blender, and a tumbler mixer. A method (dry blending) can be exemplified, and further a pelletizing method using a normal single screw extruder or twin screw extruder can be exemplified.

(3)ポリオレフィン樹脂多孔膜の形成
本発明のポリオレフィン樹脂多孔膜は、ポリオレフィン樹脂(C)を主成分とした前記樹脂組成物を溶融押出して、低ドラフト比で膜状成形物に成形した後、その膜状成形物を100℃以下の温度で少なくとも一方向に延伸することにより形成することができる。その工程は、製膜工程と延伸工程からなる。
(3) Formation of polyolefin resin porous membrane The polyolefin resin porous membrane of the present invention is obtained by melt-extruding the resin composition containing the polyolefin resin (C) as a main component and molding it into a film-shaped molded product with a low draft ratio. The film-shaped molded product can be formed by stretching in at least one direction at a temperature of 100 ° C. or lower. The process consists of a film forming process and a stretching process.

(i)製膜工程
前記樹脂組成物から膜状成形物を得るための製膜工程には、公知のインフレーションフィルム成形法、Tダイフィルム成形法、カレンダー成形法等の方法が用いられるが、膜厚さの精度が高く多層化が容易なTダイフィルム成形法が好適に用いられる。
(i) Film-forming process In the film-forming process for obtaining a film-shaped molded product from the resin composition, methods such as a known inflation film molding method, T-die film molding method, and calendar molding method are used. A T-die film forming method with high thickness accuracy and easy multilayering is preferably used.

前記樹脂組成物は、180℃以上の押出成形温度で製膜することができるが、ダイス内圧力を低減させ後述のドラフト比を低減させる目的と、マトリックスポリマーである結晶性ポリプロピレン(A)の剛性を向上させて結晶性ポリプロピレン(A)中に分散したプロピレン−α−オレフィン共重合体(B)領域に均一かつ微細な細孔が生じさせやすくするため、220〜300℃の押出成形温度が好適に用いられる。   The resin composition can be formed at an extrusion temperature of 180 ° C. or higher. The purpose is to reduce the pressure inside the die and reduce the draft ratio described later, and the rigidity of the crystalline polypropylene (A) as the matrix polymer. The extrusion molding temperature of 220 to 300 ° C. is preferable in order to improve the viscosity and facilitate the formation of uniform and fine pores in the propylene-α-olefin copolymer (B) region dispersed in the crystalline polypropylene (A). Used for.

溶融混練された前記樹脂組成物は、ダイリップより押し出されるが、この際、ダイリップのクリアランスは、該ダイリップクリアランスCLと膜状成形物の膜厚さd0の比で定義されるドラフト比(CL/d0)が好ましくは1〜10、更に好ましくは1〜5となるように設定する。ドラフト比がこの範囲であれば所期の平均細孔径や空隙率を有する多孔膜が得られる。   The melt-kneaded resin composition is extruded from a die lip. At this time, the clearance of the die lip is a draft ratio (CL / d0) defined by the ratio of the die lip clearance CL and the film thickness d0 of the film-shaped molded product. ) Is preferably 1 to 10, more preferably 1 to 5. If the draft ratio is within this range, a porous film having the desired average pore diameter and porosity can be obtained.

また、マトリックスポリマーである結晶性ポリプロピレン(A)の剛性を向上させて結晶性ポリプロピレン(A)中に分散したプロピレン−α−オレフィン共重合体(B)領域に均一かつ微細な細孔を生じさせやすくするため、ダイリップより押出される膜状成形物の冷却は、徐冷とすることが望ましく、インフレーション成形の場合には冷却時のエアー風量を低減させ、Tダイフィルム成形法では冷却ロールの温度を60〜120℃、更に好ましくは70〜110℃の範囲で冷却することが望ましい。60℃未満のロール温度では所期の多孔化が得られ難く、120℃を超えると溶融樹脂がロールへ密着しやすく生産性に劣る等の課題がある。   Further, the rigidity of the crystalline polypropylene (A) which is the matrix polymer is improved, and uniform and fine pores are generated in the propylene-α-olefin copolymer (B) region dispersed in the crystalline polypropylene (A). In order to facilitate the cooling of the film-like molded product extruded from the die lip, it is desirable to gradually cool it. In the case of inflation molding, the air volume during cooling is reduced. In the T-die film molding method, the temperature of the cooling roll is reduced. It is desirable to cool in the range of 60 to 120 ° C, more preferably 70 to 110 ° C. When the roll temperature is less than 60 ° C., the desired porosity is difficult to obtain, and when it exceeds 120 ° C., the molten resin tends to adhere to the roll, resulting in poor productivity.

製膜工程で得られた膜状成形物の厚さは特に限定されるものではないが、次の延伸工程における延伸及び熱処理条件と多孔膜の用途の要求特性によって決定され、20μm〜2mm、好ましくは50μm〜500μm程度であって、製膜速度は1〜100m/分の範囲が好適に用いられる。これらの厚さの膜状成形物は、前記冷却ロールとエアー吹き出し口を有するエアーナイフ、前記冷却ロールと一対の金属ロール、前記冷却ロールとステンレスベルト等の組み合わせからなる各種製膜装置により得られる。   The thickness of the film-like molded product obtained in the film forming process is not particularly limited, but is determined by the stretching and heat treatment conditions in the next stretching process and the required characteristics of the use of the porous film, and is preferably 20 μm to 2 mm. Is about 50 μm to 500 μm, and the film forming speed is preferably in the range of 1 to 100 m / min. Film-shaped molded articles having these thicknesses are obtained by various film forming apparatuses composed of a combination of the cooling roll and an air knife having an air outlet, the cooling roll and a pair of metal rolls, the cooling roll and a stainless belt, and the like. .

更に、本発明のポリオレフィン樹脂多孔膜は、公知の無機質充填剤、有機質充填剤等を含有した樹脂組成物を本発明のポリオレフィン樹脂多孔膜形成用樹脂組成物と共押出しして膜状成形物としても構わない。この場合、充填剤等を含有した樹脂組成物を構成するポリマーは、ポリプロピレン樹脂やポリエチレン樹脂等のポリオレフィン樹脂が相溶性の観点から望ましい。   Furthermore, the polyolefin resin porous film of the present invention is obtained by coextruding a resin composition containing a known inorganic filler, organic filler, etc. with the resin composition for forming a polyolefin resin porous film of the present invention as a film-shaped molded product. It doesn't matter. In this case, the polymer constituting the resin composition containing a filler or the like is preferably a polyolefin resin such as a polypropylene resin or a polyethylene resin from the viewpoint of compatibility.

尚、得られた膜状成形物には、次の延伸工程に供する前に、結晶化度を更に向上させるために熱処理を施しても構わない。熱処理は、例えば、加熱空気循環オーブンまたは加熱ロールにより、80〜150℃程度の温度で1〜30分間程度加熱することにより実施される。   In addition, you may heat-process in order to further improve a crystallinity degree before using for the obtained film-form molding to the next extending process. The heat treatment is performed, for example, by heating at a temperature of about 80 to 150 ° C. for about 1 to 30 minutes with a heated air circulation oven or a heating roll.

(ii)延伸工程
前記製膜工程で製膜された膜状成形物は、次いで少なくとも縦(MD)方向もしくは横(TD)方向のいずれか一方向に延伸され、結晶性ポリプロピレン(A)中に微分散したプロピレン−α−オレフィン共重合体(B)領域に連通した0.01〜10μm程度の細孔が形成される。この点が、本発明の製造方法が、従来技術である単成分延伸法、多成分延伸法及び混合抽出法等と根本的に異なるところである。これにより本発明の製造方法は、混合抽出法のような複雑な抽出及び乾燥工程等の製造工程や、結晶性ポリオレフィン(A)のラメラ結晶間のフィブリル化により細孔を発現させる単成分延伸法に見られる製膜後の熱処理による結晶化工程等を不要とするだけでなく、マトリックスポリマーと充填剤の界面に空隙を生じさせる多成分延伸法の場合の延伸性不良や平均細孔径が大きくなりやすく空隙率が低い等の課題を大幅に改善し、任意の平均細孔径や空隙率を有する多孔膜を優れた生産性を以って提供することを可能にする。
(ii) Stretching process The film-shaped molded product formed in the film-forming process is then stretched in at least one of the machine direction (MD) direction or the transverse (TD) direction, and into the crystalline polypropylene (A). Fine pores of about 0.01 to 10 μm communicating with the finely dispersed propylene-α-olefin copolymer (B) region are formed. In this respect, the production method of the present invention is fundamentally different from the conventional single-component stretching method, multi-component stretching method, mixed extraction method and the like. Thus, the production method of the present invention is a single component stretching method in which pores are expressed by fibrillation between lamellar crystals of a crystalline polyolefin (A), such as complicated extraction and drying steps such as a mixed extraction method. In addition to eliminating the need for a crystallization step by heat treatment after film formation as seen in Fig. 1, the stretchability is poor and the average pore size is large in the case of the multicomponent stretching method that creates voids at the interface between the matrix polymer and the filler. The problems such as easy and low porosity are greatly improved, and a porous film having an arbitrary average pore diameter and porosity can be provided with excellent productivity.

延伸の方法は、一方向に延伸する一軸延伸法の他に、一方向に延伸した後、もう一方の方向に延伸する逐次二軸延伸法、縦横方向に同時に延伸する同時二軸延伸法、更に、一軸方向に多段延伸を行ったり、逐次二軸延伸や同時二軸延伸の後に更に延伸を行う方法が挙げられ、何れの方法を用いても良い。尚、膜状成形物は前記製膜工程においてドラフトされるため、例え低ドラフト比で製膜された膜状成形物であっても、結晶性ポリプロピレン(A)中に微分散するエチレン−α−オレフィン共重合体(B)は樹脂の流れ方向つまり縦(MD)方向に沿って配向しており、一段目の延伸は横方向への一軸延伸法もしくは縦横方向への同時二軸延伸法により行うことが望ましい。   In addition to the uniaxial stretching method of stretching in one direction, the stretching method includes a sequential biaxial stretching method of stretching in the other direction after stretching in one direction, a simultaneous biaxial stretching method of stretching simultaneously in the longitudinal and transverse directions, and A method of performing multi-stage stretching in a uniaxial direction or a method of further stretching after sequential biaxial stretching or simultaneous biaxial stretching may be used, and any method may be used. Since the film-shaped molded product is drafted in the film-forming step, even if the film-shaped molded product is formed at a low draft ratio, the ethylene-α- finely dispersed in the crystalline polypropylene (A) is used. The olefin copolymer (B) is oriented along the resin flow direction, that is, the longitudinal (MD) direction, and the first stage stretching is performed by a uniaxial stretching method in the transverse direction or a simultaneous biaxial stretching method in the longitudinal and transverse directions. It is desirable.

この一段目の延伸温度は、プロピレン−α−オレフィン共重合体(B)の融点Tmαより低いことが好ましく、10〜100℃の温度範囲が好適に用いられるが、更に本発明では、ポリオレフィン樹脂(C)を特定の組成とすることによりこれらの温度領域における低温延伸性に優れることを見出した。また、延伸倍率は、特に限定はなく必要に応じ行われる二段目の延伸条件や多孔膜の用途の要求特性から決定されるが、縦延伸の場合、通常1.5倍〜7倍である。延伸倍率がこの範囲であれば優れた特性を持つ多孔膜が得られ、延伸切れの多発による生産性低下の恐れもない。また、同時二軸延伸の場合には、面積倍率(=縦延伸倍率×横延伸倍率)は2〜50倍が好ましく、更に好ましくは4〜40倍である。面積倍率がこの範囲であれば優れた特性を持つ多孔膜が得られ、延伸切れの多発による生産性低下の恐れもない。 The first stage stretching temperature is preferably lower than the melting point T of the propylene-α-olefin copolymer (B), and a temperature range of 10 to 100 ° C. is preferably used. It has been found that by making (C) a specific composition, the low-temperature stretchability in these temperature regions is excellent. Further, the stretching ratio is not particularly limited and is determined from the second stage stretching conditions performed as necessary and the required characteristics of the use of the porous membrane, but in the case of longitudinal stretching, it is usually 1.5 to 7 times. . If the draw ratio is in this range, a porous film having excellent characteristics can be obtained, and there is no risk of a decrease in productivity due to frequent draw breaks. In the case of simultaneous biaxial stretching, the area ratio (= longitudinal stretching ratio × lateral stretching ratio) is preferably 2 to 50 times, and more preferably 4 to 40 times. If the area magnification is within this range, a porous film having excellent characteristics can be obtained, and there is no risk of a decrease in productivity due to frequent stretching.

本発明の多孔膜は、必要に応じ二段目の延伸を行うが、二段目の延伸温度は、結晶性ポリプロピレン(A)の融点Tmcより10℃以上低いことが好ましい。また、該延伸温度がプロピレン−α−オレフィン共重合体(B)の融点Tmαより高い場合には、空隙率がそれほど増加せず、得られる多孔膜の厚さが低減する傾向がある。更に、該延伸温度がTmαより低い場合には、空隙率が増加するが、厚さがあまり低減しない傾向がある。 The porous film of the present invention is subjected to a second-stage stretching as necessary. The second-stage stretching temperature is preferably lower by 10 ° C. or more than the melting point Tmc of the crystalline polypropylene (A). Moreover, when this extending | stretching temperature is higher than melting | fusing point Tm (alpha) of a propylene-alpha-olefin copolymer (B), there exists a tendency for the porosity not to increase so much and to reduce the thickness of the porous film obtained. Furthermore, when the stretching temperature is lower than T , the porosity increases, but the thickness tends not to decrease much.

二段目の延伸倍率は、多孔膜の用途の要求特性により決定されるが、一般に1.5〜7倍であり、延伸倍率が1.5倍未満の場合には延伸効果が不十分となり、7倍を超えると延伸切れが多発し、生産性が低下する恐れがある。   The stretching ratio of the second stage is determined by the required characteristics of the use of the porous membrane, but is generally 1.5 to 7 times, and when the stretching ratio is less than 1.5 times, the stretching effect becomes insufficient, If it exceeds 7 times, stretching breakage occurs frequently and the productivity may be lowered.

上記の延伸工程で細孔が形成され多孔質となった膜状成形物は、次いで熱処理されることが好ましい。この熱処理は、形成された細孔を保持するための熱固定を主なる目的とするものであり、通常、加熱ロール上、加熱ロール間または熱風循環炉を通すことによって行なわれる。   It is preferable that the membrane-shaped molded product that has been formed into pores by the above stretching step and then becomes porous is then heat-treated. This heat treatment is mainly intended for heat fixation for maintaining the formed pores, and is usually carried out on heating rolls, between heating rolls or through a hot air circulating furnace.

この熱処理(熱固定)は、延伸状態を保持したまま多孔質となった膜状成形物を結晶性ポリプロピレン(A)の融点Tmcより5〜60℃低い温度に加熱し、緩和率を0〜50%とすることにより実施される。加熱温度が上記の上限温度より高いと、形成された細孔が閉塞することもあり、また、温度が上記の下限温度より低いと熱固定が不十分となり易く、後に細孔が閉鎖したり、またポリオレフィン樹脂多孔膜として使用する際に温度変化により熱収縮を起こし易くなる。 In this heat treatment (heat setting), the film-like molded product that has become porous while maintaining the stretched state is heated to a temperature 5 to 60 ° C. lower than the melting point T mc of the crystalline polypropylene (A). It is carried out by setting it to 50%. When the heating temperature is higher than the above upper limit temperature, the formed pores may be clogged, and when the temperature is lower than the lower limit temperature, heat fixation tends to be insufficient, and the pores are closed later, In addition, when used as a polyolefin resin porous membrane, thermal shrinkage easily occurs due to temperature change.

本発明のポリオレフィン樹脂多孔膜の厚さは、特に限定されるものではないが、生産性の観点から10〜100μm程度が好ましい。   The thickness of the polyolefin resin porous membrane of the present invention is not particularly limited, but is preferably about 10 to 100 μm from the viewpoint of productivity.

本発明のオレフィン樹脂多孔膜には、必要に応じ、界面活性剤処理、コロナ放電処理、低温プラズマ処理、スルホン化処理、紫外線処理、放射線グラフト処理等の親水化処理を施すことができ、また各種塗膜を形成することができる。   The olefin resin porous membrane of the present invention can be subjected to hydrophilic treatment such as surfactant treatment, corona discharge treatment, low temperature plasma treatment, sulfonation treatment, ultraviolet treatment, radiation graft treatment, etc., if necessary. A coating film can be formed.

上記の方法で得られるポリオレフィン樹脂多孔膜は、従来の多孔膜と同様に、空気清浄化や水処理用の濾過膜または分離膜、電池や電気分解用のセパレータ、建材や衣料等の透湿防水用途等、各種の分野に用いることができる。   The polyolefin resin porous membrane obtained by the above method is a moisture permeable waterproof material such as a filtration membrane or separation membrane for air purification or water treatment, a separator for batteries or electrolysis, a building material or clothing, as in the case of conventional porous membranes. It can be used in various fields such as applications.

以下、実施例及び比較例によって本発明を具体的に説明するが、本発明はこれらにより限定されるものではない。尚、実施例及び比較例における測定及び評価は、下記方法により実施した。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited by these. In addition, the measurement and evaluation in an Example and a comparative example were implemented with the following method.

(1)空隙率:延伸前のフィルム多孔膜から100×100mmのサンプルを切り出し、該サンプルの重量と厚みを測定し、下記計算式より求めた。
空隙率(%)=(1−嵩比重/真比重)×100
嵩比重=サンプル重量(mg)÷{10×サンプル厚み(μm)}
なお、真比重は、延伸前の多孔化されていないサンプル100×100mmについて(株)東洋精機製作所製の自動比重計DENSIMETER,D−Sにて測定した。
(1) Porosity: A 100 × 100 mm sample was cut out from the film porous membrane before stretching, the weight and thickness of the sample were measured, and obtained from the following formula.
Porosity (%) = (1-bulk specific gravity / true specific gravity) × 100
Bulk specific gravity = sample weight (mg) ÷ {10 × sample thickness (μm)}
In addition, true specific gravity was measured by the automatic specific gravity meter DENSIMTER, DS made from Toyo Seiki Seisakusyo Co., Ltd. about the sample 100x100mm which is not made porous before extending | stretching.

(2)平均細孔径及び最大細孔径:ASTM F316−86及びASTM E128に基づいて、Perm−Porometer(PORUS MATERIALS INC.製)にて測定した。 (2) Average pore diameter and maximum pore diameter: Based on ASTM F316-86 and ASTM E128, measured by Perm-Poromometer (manufactured by PORUS MATERIALS INC.).

(3)透湿度:JIS Z 0208に準じて測定した。 (3) Moisture permeability: Measured according to JIS Z 0208.

(4)メルトフローレート(MFR):JIS K 7210に準拠し、温度230℃、荷重21.18Nの条件にて測定した。 (4) Melt flow rate (MFR): Measured in accordance with JIS K 7210 under conditions of a temperature of 230 ° C. and a load of 21.18N.

実施例1〜4及び比較例1、2
1)多孔膜形成用樹脂組成物の作成
表1に示すポリオレフィン樹脂に、フェノール系酸化防止剤としてテトラキス[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタンを0.1重量%、リン系酸化防止剤としてトリス(2,4−ジ−t−ブチルフェニル)フォスファイトを0.1重量%、中和剤としてステアリン酸カルシウムを0.1重量%配合し、ヘンシェルミキサー(商品名)で混合後、2軸押出機(口径50mm)を用いて溶融混練してペレット化し、多孔膜形成用樹脂組成物を得た。尚、ここで用いたポリオレフィン樹脂(C)は、連続重合法により1段目で結晶性ポリプロピレン(A)を重合し、2段目でプロピレン−α−オレフィン共重合体(B)(プロピレン−エチレン共重合体)を重合することによって得たものである。
Examples 1 to 4 and Comparative Examples 1 and 2
1) Preparation of porous film-forming resin composition Tetrakis [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) as a phenolic antioxidant was added to the polyolefin resin shown in Table 1. Propionate] 0.1% by weight of methane, 0.1% by weight of tris (2,4-di-t-butylphenyl) phosphite as a phosphorus antioxidant, and 0.1% by weight of calcium stearate as a neutralizing agent After blending and mixing with a Henschel mixer (trade name), the mixture was melt-kneaded and pelletized using a twin screw extruder (caliber 50 mm) to obtain a porous film forming resin composition. The polyolefin resin (C) used here was obtained by polymerizing crystalline polypropylene (A) in the first stage by a continuous polymerization method, and propylene-α-olefin copolymer (B) (propylene-ethylene in the second stage. It is obtained by polymerizing a copolymer.

2)製膜工程/未延伸膜状成形物の作成
得られたペレット状の樹脂組成物を、リップ幅120mmのTダイを装備した20mm押出機を用い、押出温度280℃、吐出量4kg/hrで溶融し押出しながらリップ幅120mmを有するTダイのリップクリアランスを0.20mmとなるように調整し、該リップより膜状に押出し、80℃の冷却ロール上で冷却固化し、幅100mm、厚さ200μmの膜状成形物を作成した。尚、溶融状態にある膜状成形物を冷却固化する際に冷却ロールとの非接触面はエアーナイフにより空冷を実施した。
2) Film-forming process / Preparation of unstretched film-shaped molded product The obtained pellet-shaped resin composition was extruded using a 20 mm extruder equipped with a T-die having a lip width of 120 mm, an extrusion temperature of 280 ° C., and a discharge rate of 4 kg / hr. The lip clearance of a T-die having a lip width of 120 mm is adjusted to 0.20 mm while being melted and extruded at 0.20 mm, extruded from the lip into a film shape, cooled and solidified on a cooling roll at 80 ° C., width 100 mm, thickness A 200 μm film-shaped molded product was prepared. When the film-like molded product in a molten state was cooled and solidified, the non-contact surface with the cooling roll was air-cooled with an air knife.

3)延伸工程
前記膜状成形物を、縦方向(MD方向)を拘束しながら、延伸温度23℃、変形速度200%/秒、延伸倍率3倍の条件で横方向(TD方向)に延伸したのち、更に、延伸温度100℃、変形速度1,000%/秒、延伸倍率3倍の条件で縦方向(MD方向)に延伸しポリオレフィン樹脂多孔膜を得た。尚、比較例2では、横方向への延伸時に、延伸倍率1.5倍未満で延伸切れが発生し延伸性に劣るものであり、横延伸倍率1.2倍程度の僅かな延伸では多孔膜としての特性は得られなかった。
3) Stretching Step The film-shaped molded product was stretched in the transverse direction (TD direction) under the conditions of a stretching temperature of 23 ° C., a deformation rate of 200% / second, and a stretching ratio of 3 times while restraining the longitudinal direction (MD direction). Thereafter, the film was further stretched in the machine direction (MD direction) under conditions of a stretching temperature of 100 ° C., a deformation rate of 1,000% / second, and a stretching ratio of 3 times to obtain a polyolefin resin porous film. Incidentally, in Comparative Example 2, during stretching in the transverse direction, stretching breakage occurs at a stretching ratio of less than 1.5 times and the stretchability is inferior, and the porous film is slightly stretched at a lateral stretching ratio of about 1.2 times. As a result, no characteristics were obtained.

比較例3
ポリオレフィン樹脂を、プロピレン単独重合体の結晶性ポリプロピレン50重量%とエチレン単独重合体50重量%とする以外は実施例1と同様に実施したが、横方向への延伸時に、延伸倍率1.5倍未満で延伸切れが発生し延伸性に劣るものであった。また、横延伸倍率1.2倍程度の僅かな延伸では多孔膜としての特性は得られなかった。
Comparative Example 3
The polyolefin resin was carried out in the same manner as in Example 1 except that the propylene homopolymer crystalline polypropylene was 50% by weight and the ethylene homopolymer was 50% by weight. If it was less than the range, stretching breakage occurred and the stretchability was poor. Moreover, the characteristic as a porous film was not acquired by the slight extending | stretching of about 1.2 times of lateral stretch ratio.

実施例5、6、比較例4
製膜工程において、ダイのリップクリアランスが0.6mm、1.2mm及び2.0mmとなるように調整した以外は実施例4と同様に実施した。
Examples 5 and 6, Comparative Example 4
The same procedure as in Example 4 was performed except that the lip clearance of the die was adjusted to 0.6 mm, 1.2 mm, and 2.0 mm in the film forming step.

実施例7
横延伸倍率を5倍、縦延伸倍率を6倍とする以外は、実施例4と同様に実施した。
Example 7
The same operation as in Example 4 was performed except that the transverse draw ratio was 5 times and the longitudinal draw ratio was 6 times.

実施例8、比較例5
横延伸温度を80℃、120℃とする以外は、実施例4と同様に実施した。
Example 8, Comparative Example 5
The same procedure as in Example 4 was performed except that the transverse stretching temperature was 80 ° C. and 120 ° C.

実施例9
縦方向への延伸は実施せず、横方向への延伸だけを行った他は、実施例4と同様に実施した。
Example 9
The stretching was performed in the same manner as in Example 4 except that the stretching in the longitudinal direction was not performed and only the stretching in the lateral direction was performed.

Figure 2008150628
Figure 2008150628

Figure 2008150628
Figure 2008150628

本発明のポリオレフィン樹脂多孔膜の観察面を示す概念図である。It is a conceptual diagram which shows the observation surface of the polyolefin resin porous film of this invention. 実施例4で得られたポリオレフィン樹脂多孔膜のMD断面の電子顕微鏡写真(倍率:5000倍)である。It is an electron micrograph (magnification: 5000 times) of MD cross section of the polyolefin resin porous membrane obtained in Example 4. 実施例4で得られたポリオレフィン樹脂多孔膜のTD断面の電子顕微鏡写真(倍率:5000倍)である。4 is an electron micrograph (magnification: 5000 times) of a TD cross section of the polyolefin resin porous film obtained in Example 4. FIG. 実施例4で得られたポリオレフィン樹脂多孔膜のポリプロピレン−α−オレフィン共重合体領域付近のTD断面の透過型電子顕微鏡写真である。4 is a transmission electron micrograph of a TD cross section in the vicinity of a polypropylene-α-olefin copolymer region of a polyolefin resin porous membrane obtained in Example 4. FIG. 図4を説明する概念図。The conceptual diagram explaining FIG.

符号の説明Explanation of symbols

A:結晶性ポリオレフィン(A)
B:プロピレン−α−オレフィン共重合体(B)
D:共重合体(B)領域に形成された細孔
A: Crystalline polyolefin (A)
B: Propylene-α-olefin copolymer (B)
D: pores formed in the copolymer (B) region

Claims (3)

結晶性ポリプロピレン(A)30〜90重量%と、結晶性ポリプロピレン(A)中に分散したプロピレン−α−オレフィン共重合体(B)10〜70重量%とからなり、結晶性ポリプロピレン(A)のメルトフローレートをMFRPPとし、プロピレン−α−オレフィン共重合体(B)のメルトフローレートをMFRRCとした時、メルトフローレートの比MFRPP/MFRRCが10以下であり、1段目で結晶性ポリプロピレン(A)を製造し、連続して2段目でプロピレン−α−オレフィン共重合体(B)を製造する工程を含む多段重合法により得られたポリオレフィン樹脂(C)を主成分とした樹脂組成物を溶融押出し、ドラフト比1〜10の範囲で膜状成形物に成形した後、その膜状成形物を100℃以下の温度で少なくとも一方向に延伸することにより、共重合体(B)自体が占める領域の中で生じる開裂によって形成される連通した細孔を有することを特徴とするポリオレフィン樹脂多孔膜。 The crystalline polypropylene (A) comprises 30 to 90% by weight and the propylene-α-olefin copolymer (B) dispersed in the crystalline polypropylene (A) in an amount of 10 to 70% by weight. When the melt flow rate is MFR PP and the melt flow rate of the propylene-α-olefin copolymer (B) is MFR RC , the ratio MFR PP / MFR RC of the melt flow rate is 10 or less. The main component is a polyolefin resin (C) obtained by a multistage polymerization method including a step of producing a crystalline polypropylene (A) and continuously producing a propylene-α-olefin copolymer (B) in the second stage. After the melted resin composition is melt extruded and formed into a film-shaped molded product in the range of a draft ratio of 1 to 10, the film-shaped molded product is at least at a temperature of 100 ° C. or less. By stretching in direction, the copolymer (B) a polyolefin resin porous membrane which is characterized by having pores communicating formed by cleavage occurring in the region itself occupied. 細孔の平均孔径が0.01〜10μm、多孔膜の空隙率が20〜90%であることを特徴とする請求項1項記載のポリオレフィン樹脂多孔膜。 2. The polyolefin resin porous membrane according to claim 1, wherein the average pore diameter is 0.01 to 10 [mu] m, and the porosity of the porous membrane is 20 to 90%. 膜状成形物を延伸する方向が、横(TD)方向であることを特徴とする請求項1または2記載のポリオレフィン樹脂多孔膜。 The polyolefin resin porous membrane according to claim 1 or 2, wherein a direction in which the film-shaped molded product is stretched is a transverse (TD) direction.
JP2008070899A 2008-03-19 2008-03-19 Polyolefin resin porous membrane Expired - Fee Related JP4894794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008070899A JP4894794B2 (en) 2008-03-19 2008-03-19 Polyolefin resin porous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008070899A JP4894794B2 (en) 2008-03-19 2008-03-19 Polyolefin resin porous membrane

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002134232A Division JP2003327731A (en) 2002-05-09 2002-05-09 Polyolefin resin porous membrane

Publications (2)

Publication Number Publication Date
JP2008150628A true JP2008150628A (en) 2008-07-03
JP4894794B2 JP4894794B2 (en) 2012-03-14

Family

ID=39653118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008070899A Expired - Fee Related JP4894794B2 (en) 2008-03-19 2008-03-19 Polyolefin resin porous membrane

Country Status (1)

Country Link
JP (1) JP4894794B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129435A (en) * 2003-10-27 2005-05-19 Chisso Corp Battery separator made of polyolefin resin
JP5979299B1 (en) * 2015-08-12 2016-08-24 宇部興産株式会社 Laminated porous film, separator for electricity storage device, and electricity storage device
JP2020063398A (en) * 2018-10-19 2020-04-23 三菱ケミカル株式会社 Porous film
JP2020084022A (en) * 2018-11-26 2020-06-04 三菱ケミカル株式会社 Porous film
CN114576436A (en) * 2022-04-12 2022-06-03 公元管道(天津)有限公司 Impact-resistant PP-R cold and hot water pipe and production method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04309546A (en) * 1990-12-21 1992-11-02 Amoco Corp Oriented high-molecular microporous film
JPH093225A (en) * 1995-06-19 1997-01-07 Kao Corp Porous sheet and absorbing material using the same
JPH11158306A (en) * 1997-11-28 1999-06-15 Mitsubishi Chemical Corp Air-permeable film and its production
JPH11158307A (en) * 1997-11-28 1999-06-15 Mitsubishi Chemical Corp Film for back sheet of disposable diaper

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04309546A (en) * 1990-12-21 1992-11-02 Amoco Corp Oriented high-molecular microporous film
JPH093225A (en) * 1995-06-19 1997-01-07 Kao Corp Porous sheet and absorbing material using the same
JPH11158306A (en) * 1997-11-28 1999-06-15 Mitsubishi Chemical Corp Air-permeable film and its production
JPH11158307A (en) * 1997-11-28 1999-06-15 Mitsubishi Chemical Corp Film for back sheet of disposable diaper

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129435A (en) * 2003-10-27 2005-05-19 Chisso Corp Battery separator made of polyolefin resin
JP5979299B1 (en) * 2015-08-12 2016-08-24 宇部興産株式会社 Laminated porous film, separator for electricity storage device, and electricity storage device
JP2020063398A (en) * 2018-10-19 2020-04-23 三菱ケミカル株式会社 Porous film
JP7135709B2 (en) 2018-10-19 2022-09-13 三菱ケミカル株式会社 porous film
JP2020084022A (en) * 2018-11-26 2020-06-04 三菱ケミカル株式会社 Porous film
JP7172498B2 (en) 2018-11-26 2022-11-16 三菱ケミカル株式会社 porous film
CN114576436A (en) * 2022-04-12 2022-06-03 公元管道(天津)有限公司 Impact-resistant PP-R cold and hot water pipe and production method thereof
CN114576436B (en) * 2022-04-12 2023-09-05 公元管道(天津)有限公司 Impact-resistant PP-R cold and hot water pipe and production method thereof

Also Published As

Publication number Publication date
JP4894794B2 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
US7141168B2 (en) Porous polyolefin membrane
JP5861832B2 (en) Microporous membrane
JP2008540794A6 (en) High density polyethylene microporous membrane excellent in extrusion kneadability and physical properties and method for producing the same
JP2008540794A (en) High density polyethylene microporous membrane excellent in extrusion kneadability and physical properties and method for producing the same
JP4894794B2 (en) Polyolefin resin porous membrane
JP2005145998A (en) Thermoplastic resin porous film
JP6079922B2 (en) Heat resistant sheet and manufacturing method thereof
JP5262556B2 (en) Polyolefin resin porous membrane and battery separator using the same
JP4797813B2 (en) Polyolefin resin porous membrane
JP2003327731A (en) Polyolefin resin porous membrane
JP4466039B2 (en) Polyolefin resin porous membrane
JP2006114746A (en) Separator for electric double layer capacitor made of polyolefin resin
KR100435942B1 (en) Unstretched polypropylene molding
JP4186798B2 (en) Multilayer porous membrane made of polyolefin resin
JP2005145999A (en) Porous film made of polyolefin resin
JP7010721B2 (en) Resin pellets
JP2005129435A (en) Battery separator made of polyolefin resin
JP5705605B2 (en) Polypropylene resin porous sheet and method for producing polypropylene resin porous sheet
JPH04335043A (en) Production of porous film
JP6787165B2 (en) Laminated porous film and its manufacturing method
JP4742214B2 (en) Polyolefin resin porous membrane
JP6922161B2 (en) Method for manufacturing stretched porous film
JP4742213B2 (en) Polyolefin resin degreasing film
JP4305133B2 (en) Base sheet for adhesive sheet
JP7214978B2 (en) Stretched porous film

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111212

R150 Certificate of patent or registration of utility model

Ref document number: 4894794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees