WO2017175878A1 - Stretched porous film, and production method therefor - Google Patents

Stretched porous film, and production method therefor Download PDF

Info

Publication number
WO2017175878A1
WO2017175878A1 PCT/JP2017/015207 JP2017015207W WO2017175878A1 WO 2017175878 A1 WO2017175878 A1 WO 2017175878A1 JP 2017015207 W JP2017015207 W JP 2017015207W WO 2017175878 A1 WO2017175878 A1 WO 2017175878A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
porous film
stretched porous
film
machine direction
Prior art date
Application number
PCT/JP2017/015207
Other languages
French (fr)
Japanese (ja)
Inventor
田中 伸幸
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to CN201780014492.1A priority Critical patent/CN108779279A/en
Priority to JP2018510686A priority patent/JP6859324B2/en
Publication of WO2017175878A1 publication Critical patent/WO2017175878A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/20Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene

Definitions

  • the present invention relates to a stretched porous film and a method for producing the same. More specifically, the present invention relates to a polyolefin stretched porous film having a high machine direction low strain extension strength, suitable for pitch printing, and having good moisture permeability, and a method for producing the same.
  • stretched porous polyolefin films are used for sanitary materials such as disposable diapers and sanitary napkins, functional packaging materials such as desiccants and disposable warmers, simple clothing such as disposable gloves and rain feathers, waterproof building materials such as house wrap, and multi-agricultural methods. It is widely used for agricultural applications such as industrial sheets and waste disposal applications such as compost-coated sheets.
  • the stretched porous film used for the sanitary material application is not only moisture-permeable and breathable, but also has water resistance and contradictory properties. Liquid leakage resistance and flexibility in accordance with movement during wearing are required.
  • polyethylene has been used as a polyolefin resin from the viewpoint of flexibility as a raw material for stretched porous films for paper diapers, but such a film is excellent in flexibility but is stretched during printing.
  • a polyolefin resin (1) at least one kind of high-density polyethylene and polypropylene is 10 to 70% by mass, (2) linear low-density polyethylene is 88 to 15% by mass, and (3) A porous film obtained by stretching a resin composition containing 3 to 15% by weight of branched low density polyethylene and an inorganic filler is shown.
  • the obtained stretched porous film has a considerably high 5% tensile strength, but it is still the highest at 31 g / 25 mm (3.2 N / 25 mm). With this strength, the printing pitch is stable. I wasn't satisfied with my sex at a practical level.
  • JP-A-2015-229719 discloses (A) 20 to 80 parts by mass of a linear polyethylene resin having a density of 0.910 to 0.929 g / cm 3 and (B) a density of 0.930 to 0.965 g / cm 3.
  • polyethylene resin with a density of 0.930 to 0.965 g / cm 3 includes some of the category of low density polyethylene, but most of them correspond to high density polyethylene. Therefore, when using high-density polyethylene as the component (B), it functions as a component that increases the 5% stretch strength of the stretched porous film, similarly to the propylene homopolymer (D). In the examples, only one example with a low draw ratio of 2.5 times was specifically performed (see [0065]), and it was also disclosed that the 5% stretch strength could be improved to a sufficient value. Absent.
  • the object of the present invention is to have high moisture permeability and excellent texture, small variation in printing pitch during printing, and small variation in printing pitch of printed film rolls during storage,
  • the object is to provide a stretched polyolefin porous film.
  • Another object of the present invention is to use a resin composition having a special composition with a relatively small amount of polypropylene as a polyolefin resin, and to produce a stretched porosity having the above-mentioned properties, which is produced by employing a large stretch ratio.
  • Still another object of the present invention is to provide a stretched porous film having a 5% stretch strength in the machine direction at a level not known in the prior art and having a low printing pitch while maintaining high moisture permeability and excellent texture. There is.
  • a resin composition containing 100 parts by mass of a polyolefin comprising 85 to 50% by mass of linear low density polyethylene, 10 to 35% by mass of branched low density polyethylene, and 5 to 25% by mass of polypropylene, and 80 to 200 parts by mass of an inorganic filler.
  • a stretched porous film comprising 5% elongation strength in the machine direction of 3.5 N / 25 mm or more, moisture permeability of 2000 g / m 2 ⁇ 24 h or more, and basis weight of 10 to 35 g / m 2 Achieved.
  • the stretched porous film of the present invention comprises (1) 85 to 50% by mass of linear low density polyethylene, (2) 10 to 35% by mass of branched low density polyethylene, and (3) 5 to 25% by mass of polypropylene (PP). And 100 parts by mass of a polyolefin and 80 to 200 parts by mass of an inorganic filler.
  • LLDPE Linear low density polyethylene
  • LLDPE which is a polyolefin, is composed of a copolymer of ethylene and a small amount of an ⁇ -olefin, and has a linear polyethylene main chain and a carbon number of 2 to It has about 6 short chain branches.
  • the density of LLDPE is preferably 0.910 to 0.950 g / cm 3 , more preferably 0.915 to 0.945 g / cm 3 .
  • the melt index (MI) of LLDPE is preferably 1 to 8 g / 10 min. And particularly preferably 2.0 to 7.5 g / 10 min. It is.
  • the density, or more preferably, the density and the melt index are in the above ranges, the stretched porous film is excellent in flexibility, air permeability, and liquid leakage resistance.
  • the said density is a density measured by JISK7112, and the measuring method of the density of other resin is also the same as this.
  • the melt index is a value measured by the A method at 190 ° C.
  • linear low density polyethylene examples include ethylene-propylene, ethylene- (1-butene), ethylene- (1-hexene), ethylene- (4-methyl-1-pentene), and ethylene- (1- Octene) and the like.
  • the amount of linear low density polyethylene used is required to be 85 to 50% by mass of the total amount of polyolefin in order to greatly affect the strength and stiffness of the obtained stretched porous film. 80 to 55% by mass. When the amount used exceeds the above range, the strength of the stretched porous film and mechanical strength such as stiffness are lowered, and when it is less, the stiffness of the stretched porous film increases.
  • LDPE Branched low-density polyethylene
  • PE-LD low-density polyethylene
  • the density of LDPE having long chain branches is preferably 0.910-0. 940 g / cm 3
  • LDPE can be usually synthesized by polymerizing ethylene in the presence of a radical polymerization catalyst under high pressure. Among these, those having a density of 0.915 to 0.930 g / cm 3 are preferable.
  • the melt index is 1 to 8 g / 10 min. In particular, 2.0 to 7.0 g / 10 min.
  • the resin composition can have the extrusion characteristics and moldability of the film and the mechanical strength required for the stretched porous film.
  • the amount of branched low density polyethylene (LDPE) used needs to be 10 to 35% by mass of the total amount of polyolefin. Preferably, it is 13 to 35% by mass of the total amount of polyolefin.
  • the amount used affects the uniformity of the thickness of the resulting stretched porous film. If the amount of LDPE used exceeds the above range, the frequency of pinholes in the film will increase. On the other hand, if the amount is small, the uniformity of the film thickness is deteriorated, and draw resonance is likely to occur in the film.
  • Polypropylene constituting the polyolefin is not particularly limited, but has a density of 0.890 to 0.940 g / cm 3 and a melt index of 1 to 8 g / 10 min. It is preferable that When the density and melt index are within the above ranges, the resin composition can have the extrusion characteristics and moldability of the film, and the mechanical strength required for the stretched porous film.
  • Polypropylene is a homopolymer of propylene or a copolymer of propylene and a small amount of other ⁇ -olefins. Specific examples include a propylene homopolymer, a propylene-ethylene copolymer, and a propylene-ethylene-EPR (ethylene-propylene rubber) copolymer.
  • the propylene unit content of the propylene-ethylene copolymer is preferably 60 mol% or more.
  • the amount of polypropylene used is 5 to 25% by mass of the total amount of polyolefin. Preferably, it is 7 to 22% by mass of the total amount of polyolefin.
  • Polypropylene is an important component for increasing the 5% tensile strength in the machine direction of the obtained stretched porous film, but when this is blended in a large amount exceeding the above upper limit, the stretched porosity obtained as described above. In the conductive film, the moisture permeability is lowered and the texture is also deteriorated.
  • polypropylene is blended in less than the lower limit, the 5% tensile strength cannot be increased to the value specified by the present invention.
  • the three types of polyolefins used in the present invention may be resins manufactured using a multisite catalyst such as a Ziegler catalyst, or a resin manufactured using a single site catalyst such as a metallocene catalyst. Also good.
  • the melt index of polyolefin comprising (1) linear low density polyethylene, (2) branched low density polyethylene, and (3) polypropylene is 1-8 g / 10 min.
  • inorganic fillers can be used without limitation, for example, inorganic salts such as calcium carbonate, barium sulfate, calcium sulfate, barium carbonate, magnesium hydroxide, aluminum hydroxide, zinc oxide, magnesium oxide, Examples thereof include inorganic oxides such as silica, silicates such as mica, vermiculite and talc, and organic metal salts.
  • inorganic oxides such as silica, silicates such as mica, vermiculite and talc, and organic metal salts.
  • calcium carbonate can be particularly preferably used because of cost performance and releasability from the polyethylene resin.
  • the average particle size of the inorganic filler is preferably 10 ⁇ m or less, more preferably 0.5 to 5.0 ⁇ m, and even more preferably 0.7 to 3.0 ⁇ m.
  • the average particle size of the inorganic filler is preferably one that has been surface-treated in order to improve dispersibility in the resin.
  • the surface treating agent those capable of hydrophobizing the surface by coating the surface of the inorganic filler are preferable, and examples thereof include fatty acids, higher fatty acids, metal salts thereof, waxes and the like.
  • the amount of the surface treatment agent is not particularly limited, but is preferably about 0.5 to 2.0% by mass, more preferably 1.5% by mass or less, and 1.0% by mass with respect to the inorganic filler. It is particularly preferred that
  • the polyolefin resin composition in the present invention includes the polyolefin and an inorganic filler, and the composition thereof is 80 to 200 parts by mass of the inorganic filler with respect to 100 parts by mass of the polyolefin, and preferably 100 parts by mass of the polyolefin.
  • the inorganic filler is 85 to 150 parts by mass.
  • the mass ratio of the inorganic filler to the polyolefin is smaller than the above range, the interface between the polyolefin and the inorganic filler is peeled off, and the void generation frequency per unit area is reduced, so adjacent voids are difficult to communicate with each other.
  • the air permeability deteriorates.
  • the plasticizer content is preferably less than 2 parts by mass, and more preferably less than 1 part by mass.
  • the plasticizer is a general term for compounds that improve the plasticity of the film and impart flexibility to the film.
  • the melt index of the resin composition increases and it becomes difficult to obtain a high 5% tensile strength.
  • the type of the plasticizer is not particularly limited, and examples thereof include fatty acids, higher fatty acids, low molecular weight polyethylene, epoxidized soybean oil, polyethylene glycol, and fatty acid esters. Moreover, you may mix
  • additives examples include antioxidants, heat stabilizers, light stabilizers, ultraviolet absorbers, neutralizers, lubricants, antifogging agents, antiblocking agents, antistatic agents, slip agents, and coloring agents.
  • a small amount of a resin component other than that constituting the polyolefin may be blended in the resin composition as long as the effects of the present invention are not impaired. Specifically, if it is within 5 parts by mass, more preferably within 2.5 parts by mass with respect to 100 parts by mass of polyolefin, it is allowed to blend other resin components.
  • the melt index of the resin composition is 2 g / 10 min. Preferably, it is 2 g / 10 min. 5 g / 10 min.
  • the 5% stretch strength in the machine direction of the stretched porous film is 3.5 N / 25 mm or more, preferably 3.7 N / 25 mm or more, and more preferably 4.0 N / 25 mm or more. .
  • the 5% tensile strength in the machine direction is preferably 10.0 N / 25 mm or less, more preferably 6.0 N / 25 mm or less. If it exceeds the above range, the bending resistance increases and the texture becomes insufficient.
  • the 5% tensile strength in the machine direction can be determined according to JIS K 7127.
  • the moisture permeability of the stretched porous film is 2000 g / m 2 ⁇ 24 h or more, and preferably 2100 g / m 2 ⁇ 24 h or more.
  • the moisture permeability is in the above range, the breathability and moisture permeability are excellent.
  • the upper limit is not particularly limited moisture permeability, mechanical properties, water resistance, and liquid leakage resistance reasons, preferably 10000g / m 2 ⁇ 24h, and most preferably, 5000g / m 2 ⁇ 24h It is.
  • the moisture permeability can be determined by ASTM E96B.
  • the heat shrinkage rate (%) after treatment for 24 hours at 50 ° C. in the machine direction of the stretched porous film is preferably 3.0% or less, and more preferably 2.5% or less.
  • the fact that the thermal shrinkage rate in the machine direction is small makes it possible to suppress the elongation of the film to be small relative to the line tension applied in the machine direction during printing, in addition to increasing the 5% elongation strength. Therefore, the smaller the heat shrinkage rate (%) in the machine direction, the smaller the printing pitch deviation can be suppressed, but practically 0.5% is the lower limit.
  • the heat shrinkage rate (%) in the machine direction is expressed as a ratio of shrinkage of the film length in the machine direction before and after being left at a temperature of 50 ° C. for 24 hours. Specifically, a 15 cm ⁇ 15 cm sample is cut out from the stretched porous film, and marked lines are inserted so that the distance between marked lines is 10 cm in the machine direction. After being allowed to stand at a temperature of 50 ° C. for 24 hours, it is cooled to room temperature and the length between marked lines is measured.
  • the heat shrinkage rate (%) in the machine direction of the present invention is calculated from the following formula (I).
  • the basis weight of the stretched porous film is 10 to 35 g / m 2 . It is preferably 11 to 32 g / m 2 , and more preferably 12 to 30 g / m 2 .
  • a stretched porous film excellent in air permeability, moisture permeability and mechanical strength can be obtained. If it is larger than this range, it will be difficult to satisfy the moisture permeability of the film, and if it is smaller, the mechanical strength of the film will be lowered. Below, the manufacturing method of the stretched porous film of this invention is demonstrated.
  • the stretched porous film of the present invention is not limited by its production method, but is usually (1) 85 to 50% by mass of linear low density polyethylene and (2) 10 to 35 of branched low density polyethylene.
  • a resin composition comprising 100% by mass of polyolefin and 100% by mass of (3) 5-25% by mass of polypropylene and 80-200 parts by mass of an inorganic filler is formed into a film, and the resulting film is machined.
  • the film is preferably stretched 2.6 to 5.0 times in the direction and then preferably at a temperature in the range of 70 to 95 ° C., preferably at least 0 while maintaining the shrinkage in the machine direction preferably at 3 to 20%. It can be manufactured by heat setting for 2 seconds.
  • the polyolefin and the inorganic filler, and further, the additive to be blended as necessary are mixed.
  • a mixing method a known method can be employed.
  • the mixing is preferably performed for about 5 minutes to 1 hour using a mixer such as a Henschel mixer, a super mixer, or a tumbler mixer.
  • the obtained mixture is preferably melt-kneaded and pelletized.
  • a kneading method a known method can be adopted.
  • a kneading machine such as a high kneading type twin screw extruder or a tandem kneading machine is used to knead by a method such as strand cut, hot cut or underwater cut.
  • Premixing, kneading and pelletizing as described above are preferable because uniform dispersion of the resin composition can be promoted.
  • it can be directly put into a kneader without mixing and pelletized.
  • the obtained pellets are formed into a film with a circular die or a T die attached to the tip of the extruder.
  • a known method such as a nip roll method, an air knife method, or an air chamber method can be employed.
  • the film can be formed by directly feeding the resin composition into an extruder without mixing and kneading.
  • the film obtained by forming the film is stretched by a known method such as a roll stretching method or a tenter stretching method to obtain a stretched porous film.
  • the stretch ratio should be at least 2.6 to 5 times in the machine direction. is important. That is, the constituent resin composition is such that the amount of the polypropylene component is small and the 5% tensile strength is difficult to increase. In the present invention, however, the film made of the resin composition is stretched in this way. By carrying out at such a specific high magnification, a high value of 3.5 N / 25 mm or more can be achieved as the physical property value.
  • the draw ratio in the machine direction is preferably 2.8 times or more, more preferably 3.1 times or more.
  • the upper limit is preferably 4.5 times, more preferably 4.0 times.
  • the stretching may be single-stage stretching or multi-stage stretching, but is preferably single-stage stretching in order to improve the low strain elongation strength. Therefore, specifically, it is particularly preferable to perform one-stage stretching in the machine direction.
  • the stretching temperature is not particularly limited as long as it is at room temperature or higher and lower than the softening point of the resin composition. If the stretching temperature is too lower than the above range, unevenness of stretching tends to occur, and the thickness tends to be non-uniform. If the temperature is too high, the resin melts and air permeability and moisture permeability deteriorate.
  • the stretching temperature can be appropriately adjusted depending on the desired physical properties and in combination with the stretching ratio. Subsequently, the stretched porous film of the present invention heat-fixes the stretched porous film after stretching as a method of suppressing thermal shrinkage in the stretching direction.
  • the heat setting is a heat treatment performed in an environment in which a dimensional change is not caused in a state where a stretched film is maintained in a tensioned state due to stretching.
  • the heat fixation can suppress elastic recovery, shrinkage due to heat, squeezing and the like during storage.
  • a heat setting method when a roll stretching method is adopted, a method of heating the stretched film with a heated roll (annealing roll) can be mentioned.
  • annealing roll a heated roll
  • tenter stretching method a method of heating the film in the vicinity of the tenter outlet can be mentioned.
  • the heat setting temperature is 70 to 95 ° C, and preferably 80 to 95 ° C.
  • the heat setting time is 0.2 seconds or more, preferably 0.5 seconds or more, and more preferably 1 second or more.
  • the time is a time during which the film is held at the above temperature.
  • the heat setting time in the case of two or more rolls is the sum of the time during which the film is in contact with each roll.
  • the time is heated at the tenter outlet and maintained at the above temperature, and when divided and heated in multiple times, it is the sum of the times of heating.
  • the heat setting time is not 0.2 seconds or more, heat setting is insufficient and heat shrinkage is increased.
  • the fixing time is preferably 20 seconds or shorter, and more preferably 15 seconds or shorter. If the heat fixing time is too long, it cannot be generally described because it depends on the combination with the heat fixing temperature, but damage due to heat increases, and air permeability and moisture permeability may be reduced.
  • the shrinkage in the machine direction at the time of heat setting is 3 to 20%, preferably 5 to 15%.
  • the shrinkage rate is determined by the speed difference between the anneal roll and the subsequent roll. If the tenter stretching method is adopted, the clip width at both ends after heating is narrowed. It is decided by. If the shrinkage rate is too small, the heat-shrinkage of the resulting stretched porous film becomes large. If the shrinkage rate is too large, the film is slackened during production, and stable production cannot be performed.
  • the stretched porous film produced as described above has a 5% elongation strength in the machine direction in addition to the physical properties conventionally required for sanitary material applications such as paper diapers, and is particularly suitable for printing.
  • the pitch does not shift and a clear pattern or the like can be obtained, it is preferably used as a back sheet of a paper diaper to be printed.
  • the stretched porous film of the present invention is usually wound up as a roll and provided as a roll for printing.
  • the stretched porous film on which printing has been performed is again wound up as a roll and supplied for final use.
  • a roll subjected to printing does not change its winding shape even during long-term storage for more than one month, and the printing pitch does not fluctuate later during storage. Can be used with good yield.
  • the stretched porous film of the present invention is suitably used for moisture permeable waterproof sheets that require weather resistance and light resistance, such as building material use, agricultural use, and waste treatment use, by laminating with a breathable reinforcing material.
  • the breathable reinforcing material is not particularly limited, and for example, a nonwoven fabric, a woven fabric, a split fabric, a mesh, a net, a filter, paper, a fabric, or the like can be used.
  • the material of the breathable reinforcing material is not particularly limited, and polyolefin-based, polyester-based, and nylon-based materials can be used.
  • a heat fusion method is used.
  • the surface layer contains a polyethylene resin having a melting point peak of 130 ° C. or lower.
  • Example 1 Examples and Comparative Examples are shown below, but the present invention is not limited to these Examples.
  • the physical-property value described in the Example and the comparative example was measured by the method shown below.
  • a sample having a width of 25 mm and a length (machine direction) of 150 mm was cut from a 5% stretch strength stretched porous film. According to JIS K 7127, the distance between chucks is 50 mm, and the pulling speed is 200 mm / min. Then, the strength (stress) in the machine direction was measured when the sample (distance between chucks) was extended by 5% (2.5 mm). 5) Heat shrinkage in machine direction (%) A 15 cm ⁇ 15 cm sample is cut out from the stretched porous film, and marked lines are inserted so that the distance between marked lines is 10 cm in the machine direction. After being allowed to stand at a temperature of 50 ° C. for 24 hours, it is cooled to room temperature and the length between marked lines is measured.
  • the heat shrinkage rate (%) in the machine direction of the present invention is calculated from the following mathematical formula (I).
  • Heat shrinkage in machine direction (%) ⁇ (10 cm-measurement length cm) / 10 cm ⁇ ⁇ 100
  • Example 1 Linear low density polyethylene A [manufactured by Dow Chemical Co., Ltd., trade name: Dourex 2035G, density: 0.919 g / cm 3 , melt index: 6.0 g / 10 min.
  • the average particle size is 2.0 ⁇ m Calcium carbonate G (product name: FL-520, manufactured by Imeris Minerals Co., Ltd.) 102 parts by mass, additive H [titanium oxide (Huntsman Co., Ltd., product name: TR28) 50% by mass, hindered phenol-based heat stabilizer (Ciba Japan Co., Ltd., product name: IRGANOX 3114) 20% by mass, phosphorus-based heat stabilizer (Ciba Japan Co., Ltd.) A resin composition containing 2 parts by mass of a product, product name: IRGAFOS168) 30% by mass mixture] was granulated, and film forming was performed.
  • a ⁇ 30 mm twin screw extruder with a vent was used to extrude into a strand at a cylinder temperature of 180 ° C., cooled in a water bath, cut and dried to about 5 mm to obtain pellets.
  • the pellet was formed into a film using a ⁇ 400 mmT die film forming machine.
  • lip clearance 1.5 mm
  • die temperature 230 ° C.
  • air gap 105 mm
  • take-up speed 10 m / min.
  • the cast roll temperature was 20 ° C. Furthermore, it was uniaxially stretched only in the machine direction with a roll stretching machine set at 60 ° C.
  • the obtained stretched porous film was evaluated for basis weight, moisture permeability, 5% stretch strength, and heat shrinkage rate. The results are shown in Table 2.
  • the obtained stretched porous film had good moisture permeability of 2000 g / m 2 ⁇ 24 h or more and good texture. Further, the 5% tensile strength maintained a high value.
  • Examples 2-6, 10-13 A film was molded and evaluated in the same manner as in Example 1 except that the composition (Table 1) was changed. The results are shown in Table 2.
  • Example 7 A film was molded and evaluated in the same manner as in Example 2 except that the stretching ratio was 2.8 times as the stretching condition. The results are shown in Table 2.
  • the obtained stretched porous film had good moisture permeability of 2000 g / m 2 ⁇ 24 h or more and good texture. Further, the 5% stretch strength was kept high and the heat shrinkage rate in the machine direction was kept low.
  • Example 8 A film was molded and evaluated in the same manner as in Example 2 except that the stretching ratio was 2.6 times as the stretching condition. The results are shown in Table 2.
  • the obtained stretched porous film had good moisture permeability of 2000 g / m 2 ⁇ 24 h or more and good texture. Further, the 5% stretch strength was kept high and the heat shrinkage rate in the machine direction was kept low.
  • Example 9 A film was molded and evaluated in the same manner as in Example 2 except that the stretching ratio was 3.8 times as the stretching condition. The results are shown in Table 2. The obtained stretched porous film had good moisture permeability of 2000 g / m 2 ⁇ 24 h or more and good texture. Further, the 5% stretch strength was kept high and the heat shrinkage rate in the machine direction was kept low. Comparative Examples 1-4 A film was molded and evaluated in the same manner as in Example 1 except that the composition was changed to the composition shown in Table 1. The results are shown in Table 2.
  • Comparative Example 5 A film was molded and evaluated in the same manner as in Example 1 except that the stretching ratio was 1.7 times as the stretching condition. The results are shown in Table 2.
  • Comparative Example 6 A film was molded and evaluated in the same manner as in Example 2 except that the stretching ratio was 2.0 times as the stretching conditions. The results are shown in Table 2. From the results of Comparative Examples 1 to 6, the moisture permeability was 2000 g / m 2 ⁇ 24 h or less, the 5% tensile strength was a low value, and there were many pinholes, and physical properties could not be evaluated.
  • C Branched low density polyethylene [Mitsui DuPont Polychemical Co., Ltd., trade name: Mirason 16P, density: 0.917 g / cm 3 , melt index: 3.7 g / 10 min. ]
  • D Branched low density polyethylene [manufactured by Asahi Kasei Chemicals Corporation, trade name: L1850K, density: 0.918 g / cm 3 , melt index: 6.7 g / 10 min. ]
  • E Polypropylene [manufactured by Prime Polymer Co., Ltd., trade name: F-704NP, density: 0.900 g / cm 3 , MI: 2.8 g / 10 min.
  • F polypropylene [manufactured by Nippon Polypro Co., Ltd., trade name: Wintech WFX4M, density: 0.900 g / cm 3 , MI: 2.8 g / 10 min. ]
  • G Calcium carbonate [Product name: FL-520, manufactured by Imerizu Minerals Co., Ltd.]
  • H Additive [Titanium oxide (manufactured by Huntsman Co., Ltd., trade name: TR28) 50% by mass, hindered phenol thermal stabilizer (manufactured by Ciba Japan Co., Ltd., trade name: IRGANOX3114) 20% by mass, phosphorus system Thermal Stabilizer (Ciba Japan Co., Ltd., trade name: IRGAFOS168) 30% by mass mixture] (Extension conditions) * 1: Uniaxial stretching (stretching ratio: 3.2 times) was performed only in the machine direction with a roll stretching machine set at 60 ° C., and then in-line annealing was performed

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

Provided is a stretched porous film comprising a resin composition which includes 80-200 parts by mass of an inorganic filler per 100 parts by mass of a polyolefin which comprises 85-50 mass% of a linear low-density polyethylene, 10-35 mass% of a branched low-density polyethylene, and 5-25 mass% of polypropylene. The stretched porous film has a strength at 5% elongation in the machine direction of at least 3.5 N/25mm, a moisture vapour transmission rate of at least 2000 g/m2∙24h, and a mass per unit area of 10-35 g/m2. The stretched porous film exhibits excellent pitch printing suitability and film texture.

Description

延伸多孔性フィルム及びその製造方法Stretched porous film and method for producing the same
 本発明は延伸多孔性フィルム及びその製造方法に関する。詳しくは、機械方向の低ひずみ伸張強度が高く、ピッチ印刷に適し、良好な透湿度を有するポリオレフィン延伸多孔性フィルム及びその製造方法に関する。 The present invention relates to a stretched porous film and a method for producing the same. More specifically, the present invention relates to a polyolefin stretched porous film having a high machine direction low strain extension strength, suitable for pitch printing, and having good moisture permeability, and a method for producing the same.
 従来、ポリオレフィン樹脂に無機充填材を添加したフィルムを少なくとも一軸方向に延伸し、無機充填材とポリオレフィンとの間で界面剥離を起こさせることにより微小ボイドを発生させ延伸多孔性フィルムを製造する方法が多数提案されている。これら延伸多孔性フィルムは内部に多数の微小なボイドを有しているため、これらのボイドが互に繋がって連通孔を形成している。そのため、高い透湿度を有しながらも液体は透過させない性質を示す。この性質より、延伸多孔性ポリオレフィンフィルムは、紙おむつや生理用ナプキンなどの衛生材料、乾燥剤や使い捨てカイロなどの機能包装材料、使い捨て手袋や雨合羽などの簡易衣料、ハウスラップなどの防水建材、マルチ農法用シートなどの農業用途、堆肥被覆シートなどの廃棄物処理用途などに幅広く使用されている。
 上記衛生材料用途に使用される延伸多孔性フィルムには、たとえば紙おむつの場合、着用時のムレや尿漏れを防止するため、透湿性及び通気性のみならず、それらの性質と相反する耐水性及び耐液漏れ性、さらに着用時の動きに合わせた柔軟性等が求められる。一方で、紙おむつを製造する際に必要な、機械流れ方向の強度、引張弾性率、引張伸びなどの機械特性も求められる。
 ところで、斯様な紙おむつ用の延伸多孔性フィルムは、とりわけ子供用の紙おむつのバックシートの透湿性フィルムとして用いられる場合、商品のブランドや付加価値を高め、さらに消費者の購買意欲の向上を図る目的で、文字やキャラクターを配置した意匠性やデザイン性の高い印刷が施されるのが普通である。延伸多孔性フィルムに斯様な印刷を施す場合、印刷ピッチ(間隔)の変動が大きいと、製品化時におむつの歩留まりが悪化する原因となるため、印刷ピッチの安定性が求められる。また、印刷ピッチの変動が小さくても、印刷を施されたフィルムをロールとして巻取り、保存しておくと、保存中にロールの巻姿が変化してロールの巻きの中央部分が締まり、巻きの始めと終りの部分が緩むようになるため、それによって印刷ピッチの変動が後発的に起り、やはりおむつの歩留りの変化を起すことも知られていた。該印刷ピッチの変動は、印刷時に機械方向にかかるライン張力が大きいと発生しやすく、伸びの少ないフィルムを必要とするが、保存中のロールの巻姿の変化にフィルムの如何なる性質が大きく影響するのかは従来知られていなかった。
 従来、紙おむつ用の延伸多孔性フィルムの原料として、柔軟性の観点から、ポリオレフィン樹脂として、ポリエチレンが用いられてきたが、こうしたフィルムは、柔軟性には優れるものの、印刷の際に伸びてしまうという欠点があった。
 特開2002−249622号公報には、ポリオレフィン樹脂として、(1)高密度ポリエチレン及びポリプロピレンの少なくとも1種10~70質量%、(2)線形低密度ポリエチレン88~15質量%、及び、(3)分岐状低密度ポリエチレン2~15質量%の3種類の樹脂と無機充填材とを含む樹脂組成物を延伸して得た多孔性フィルムが示されている。この延伸多孔性フィルムにおいて、(1)高密度ポリエチレン及びポリプロピレン成分は、機械方向の5%伸張強度で表される低ひずみ伸び強度を向上させ、印刷ピッチのずれを防止するために配合されるものであり、この効果を十分に発揮させるために実施例では、前記ポリオレフィン中での含有量に換算して30~45質量%の多さで配合されている。この結果、得られる延伸多孔性フィルムは、前記5%伸張強度はかなりに高められているが、それでも最も高いもので31g/25mm(3.2N/25mm)であり、この強度では印刷ピッチの安定性が実用レベルで今一歩満足できなかった。
 そこで、この物性をさらに高めようとして、前記(1)高密度ポリエチレン及びポリプロピレン成分をさらに多く配合すると、今度は、特開2002−249622号公報の比較例1に示されているようにフィルムの剛軟性が増加しすぎてフィルムの風合いが悪くなる。また、樹脂組成物の延伸工程において、その延伸倍率を高めることで前記5%伸張強度の向上を図ることも考えられるが、延伸倍率を高めるほどにフィルムの熱収縮率の悪化が懸念されるため、特開2002−249622号公報には、1.5~3.0倍の低い範囲の延伸倍率しか示されていない。実際、実施例で具体的に採択されている延伸倍率は2.0倍の低い一点しかない(〔0039〕参照)。また、本発明者らの知見によれば、斯様にポリプロピレン成分が多量に配合された組成で、高い倍率の延伸を行うことは、得られる延伸多孔性フィルムの透湿度を低下させる問題も生じることが明らかになっている。このような従来技術と知見とから5%伸張強度を、他の諸性質を実用的レベルで満足した上で、十分な値に改善するための方策は見いだせなくなっていた。
 一方、特開2015−229719号公報には、(A)密度0.910~0.929g/cmの直鎖状ポリエチレン樹脂20~80質量部、(B)密度0.930~0.965g/cmのポリエチレン樹脂10~40質量部、(C)密度0.910~0.929g/cmの高圧重合法低密度ポリエチレン5~20質量部、及び(D)プロピレン単独重合体5~20質量部を含む樹脂成分と、(E)無機充填剤、及び(F)可塑剤とを含む樹脂組成物から延伸多孔性フィルムを製造することが示されている。この延伸多孔性フィルムでは、(D)プロピレン単独重合体の配合量が比較的少なめであることがわかる。
 しかし、他方で、(B)密度0.930~0.965g/cmのポリエチレン樹脂は、一部には低密度ポリエチレンの範疇のものも含まれてはいるもののそのほとんどは高密度ポリエチレンに該当するため、(B)成分として、高密度ポリエチレンを用いた場合には、(D)プロピレン単独重合体と同様に、延伸多孔性フィルムの5%伸張強度を高める成分として機能することになるところ、実施例には、延伸倍率が2.5倍の低い一例しか具体的に行われておらず(〔0065〕参照)、やはり前記5%伸張強度が十分な値に改善できたものは開示されていない。その理由は、高密度ポリエチレン及びポリプロピレン成分の合計量を高めて、5%伸張強度を向上させようとして、延伸倍率を高めようとしても、前記特開2002−249622号公報に示されているとおりフィルムの剛軟性の増加やフィルムの風合の悪化が懸念されることになるためである。
Conventionally, there is a method of producing a stretched porous film by stretching a film in which an inorganic filler is added to a polyolefin resin at least in a uniaxial direction and generating microvoids by causing interfacial peeling between the inorganic filler and the polyolefin. Many have been proposed. Since these stretched porous films have a large number of minute voids inside, these voids are connected to each other to form communication holes. Therefore, the liquid does not permeate while having high moisture permeability. Because of this property, stretched porous polyolefin films are used for sanitary materials such as disposable diapers and sanitary napkins, functional packaging materials such as desiccants and disposable warmers, simple clothing such as disposable gloves and rain feathers, waterproof building materials such as house wrap, and multi-agricultural methods. It is widely used for agricultural applications such as industrial sheets and waste disposal applications such as compost-coated sheets.
For example, in the case of disposable diapers, the stretched porous film used for the sanitary material application is not only moisture-permeable and breathable, but also has water resistance and contradictory properties. Liquid leakage resistance and flexibility in accordance with movement during wearing are required. On the other hand, mechanical properties such as strength in the machine flow direction, tensile elastic modulus, and tensile elongation necessary for producing a disposable diaper are also required.
By the way, such a stretched porous film for paper diapers, when used as a moisture-permeable film for a back sheet of children's disposable diapers, enhances the brand and added value of the product, and further increases the consumer's willingness to purchase. For the purpose, printing with high design and design with characters and characters arranged is usually applied. When such a printing is performed on the stretched porous film, if the fluctuation of the printing pitch (interval) is large, the yield of the diaper is deteriorated at the time of commercialization, and thus the stability of the printing pitch is required. Even if the fluctuation of the printing pitch is small, if the printed film is wound up and stored as a roll, the roll shape of the roll will change during storage and the central part of the roll will be tightened. It has also been known that the beginning and end of the pattern become loose, which causes a change in the printing pitch later, which also changes the yield of the diaper. The fluctuation of the printing pitch is likely to occur when the line tension applied in the machine direction during printing is large and requires a film with little elongation, but any property of the film greatly affects the change in roll shape during storage. It was not known in the past.
Conventionally, polyethylene has been used as a polyolefin resin from the viewpoint of flexibility as a raw material for stretched porous films for paper diapers, but such a film is excellent in flexibility but is stretched during printing. There were drawbacks.
In JP-A-2002-249622, as a polyolefin resin, (1) at least one kind of high-density polyethylene and polypropylene is 10 to 70% by mass, (2) linear low-density polyethylene is 88 to 15% by mass, and (3) A porous film obtained by stretching a resin composition containing 3 to 15% by weight of branched low density polyethylene and an inorganic filler is shown. In this stretched porous film, (1) high-density polyethylene and polypropylene components are blended to improve the low strain elongation represented by 5% tensile strength in the machine direction and prevent printing pitch deviation. In order to fully exhibit this effect, in the examples, it is blended in the amount of 30 to 45% by mass in terms of the content in the polyolefin. As a result, the obtained stretched porous film has a considerably high 5% tensile strength, but it is still the highest at 31 g / 25 mm (3.2 N / 25 mm). With this strength, the printing pitch is stable. I wasn't satisfied with my sex at a practical level.
Therefore, in order to further improve the physical properties, if more (1) high-density polyethylene and polypropylene components are blended, this time, as shown in Comparative Example 1 of JP-A-2002-249622, the rigidity of the film is increased. Softness increases too much and the film feels worse. Further, in the stretching step of the resin composition, it may be possible to improve the 5% stretching strength by increasing the stretching ratio. However, as the stretching ratio is increased, the thermal shrinkage rate of the film may be deteriorated. JP 2002-249622 A shows only a draw ratio in a low range of 1.5 to 3.0 times. In fact, the draw ratio specifically adopted in the examples is only a low point of 2.0 times (see [0039]). Further, according to the knowledge of the present inventors, performing a high-magnification stretching with a composition containing a large amount of the polypropylene component in this way also causes a problem of reducing the moisture permeability of the obtained stretched porous film. It has become clear. Based on such prior art and knowledge, it has been impossible to find a measure for improving the 5% tensile strength to a sufficient value while satisfying other properties at a practical level.
On the other hand, JP-A-2015-229719 discloses (A) 20 to 80 parts by mass of a linear polyethylene resin having a density of 0.910 to 0.929 g / cm 3 and (B) a density of 0.930 to 0.965 g / cm 3. 10 to 40 parts by mass of a polyethylene resin of cm 3 , (C) 5 to 20 parts by mass of low-density polyethylene having a density of 0.910 to 0.929 g / cm 3 , and (D) 5 to 20 parts by mass of a propylene homopolymer It is shown that a stretched porous film is produced from a resin composition containing a resin component containing a part, (E) an inorganic filler, and (F) a plasticizer. In this stretched porous film, it can be seen that the blending amount of the (D) propylene homopolymer is relatively small.
However, on the other hand, (B) polyethylene resin with a density of 0.930 to 0.965 g / cm 3 includes some of the category of low density polyethylene, but most of them correspond to high density polyethylene. Therefore, when using high-density polyethylene as the component (B), it functions as a component that increases the 5% stretch strength of the stretched porous film, similarly to the propylene homopolymer (D). In the examples, only one example with a low draw ratio of 2.5 times was specifically performed (see [0065]), and it was also disclosed that the 5% stretch strength could be improved to a sufficient value. Absent. The reason for this is that even if the total amount of the high-density polyethylene and the polypropylene component is increased to improve the 5% stretch strength and the stretch ratio is increased, the film as disclosed in JP-A-2002-249622 is used. This is because there is concern about an increase in the bending resistance and deterioration of the texture of the film.
 それ故、本発明の目的は、高い透湿度と優れた風合を有し、印刷時の印刷ピッチの変動が小さく且つ印刷されたフィルムロールの印刷ピッチの変動が保存中にも変動が小さい、ポリオレフィン延伸多孔性フィルムを提供することにある。
 本発明の他の目的は、ポリオレフィン樹脂として、ポリプロピレンの量が比較的少ない特殊な配合である樹脂組成物を用い、大きな延伸倍率を採用して製造された、上記諸性質を備えた延伸多孔性フィルムを提供することにある。
 本発明のさらに他の目的は、機械方向の5%伸張強度が従来知られていない水準にあり、しかも高い透湿度と優れた風合を保持しつつ印刷ピッチの小さい延伸多孔性フィルムを提供することにある。
 本発明のさらに他の目的は、保存中の巻姿に優れた、印刷されたフィルムロールを与えるポリオレフィン延伸多孔性フィルムを提供することにある。
 本発明のさらに他の目的は、保存中の巻姿に優れた、印刷されたフィルムロールを提供することにある。
 本発明のさらに他の目的および利点は以下の説明から明らかになろう。
 本発明によれば、本発明の上記目的および利点は、
第1に、線形低密度ポリエチレン85~50質量%、分岐状低密度ポリエチレン10~35質量%、及びポリプロピレン5~25質量%から成るポリオレフィン100質量部ならびに無機充填剤80~200質量部含む樹脂組成物から成り、機械方向の5%伸張強度が3.5N/25mm以上、透湿度が2000g/m・24h以上、目付けが10~35g/mであることを特徴とする延伸多孔性フィルムによって達成される。
Therefore, the object of the present invention is to have high moisture permeability and excellent texture, small variation in printing pitch during printing, and small variation in printing pitch of printed film rolls during storage, The object is to provide a stretched polyolefin porous film.
Another object of the present invention is to use a resin composition having a special composition with a relatively small amount of polypropylene as a polyolefin resin, and to produce a stretched porosity having the above-mentioned properties, which is produced by employing a large stretch ratio. To provide a film.
Still another object of the present invention is to provide a stretched porous film having a 5% stretch strength in the machine direction at a level not known in the prior art and having a low printing pitch while maintaining high moisture permeability and excellent texture. There is.
It is still another object of the present invention to provide a polyolefin stretched porous film that provides a printed film roll excellent in winding shape during storage.
Still another object of the present invention is to provide a printed film roll excellent in winding shape during storage.
Still other objects and advantages of the present invention will become apparent from the following description.
According to the present invention, the above objects and advantages of the present invention are:
First, a resin composition containing 100 parts by mass of a polyolefin comprising 85 to 50% by mass of linear low density polyethylene, 10 to 35% by mass of branched low density polyethylene, and 5 to 25% by mass of polypropylene, and 80 to 200 parts by mass of an inorganic filler. A stretched porous film comprising 5% elongation strength in the machine direction of 3.5 N / 25 mm or more, moisture permeability of 2000 g / m 2 · 24 h or more, and basis weight of 10 to 35 g / m 2 Achieved.
 以下、本発明について詳細に説明する。本発明の延伸多孔性フィルムは、(1)線形低密度ポリエチレン85~50質量%、(2)分岐状低密度ポリエチレン10~35質量%、及び(3)ポリプロピレン(PP)5~25質量%から成るポリオレフィン100質量部ならびに無機充填剤80~200質量部含む樹脂組成物により形成されている。
 ポリオレフィンを構成する、(1)線形低密度ポリエチレン(以下、LLDPEということがある)は、エチレンと少量のα−オレフィンとの共重合体からなり、直鎖状のポリエチレン主鎖と炭素数2~6程度の短鎖分岐とを有する。LLDPEの密度は好ましくは0.910~0.950g/cmであり、より好ましくは0.915~0.945g/cmである。また、LLDPEのメルト・インデックス(MI)は、好ましくは1~8g/10min.であり、特に好ましくは2.0~7.5g/10min.である。密度、またはさらに好ましくは密度とメルト・インデックスが、上記範囲であることにより、延伸多孔性フィルムは柔軟性、通気性、耐液漏れ性に優れるようになる。
 ここで、上記密度は、JIS K 7112法により測定した密度であり、他の樹脂の密度の測定方法もこれと同じである。また、上記メルト・インデックスは、JIS K 7210に準じて190℃でA法にて測定した値であり、他の樹脂のメルト・インデックスの測定方法もこれと同じである。
 線形低密度ポリエチレンとしては、具体的には、エチレン−プロピレン、エチレン−(1−ブテン)、エチレン−(1−ヘキセン)、エチレン−(4−メチル−1−ペンテン)、及びエチレン−(1−オクテン)等の共重合体が挙げられる。
 (1)線形低密度ポリエチレンの使用量は、得られる延伸多孔性フィルムの強度、剛軟性に大きく影響を及ぼすため、ポリオレフィンの総量の85~50質量%であることが必要であり、好ましくは、80~55質量%である。使用量が、上記範囲を超えて多いと、延伸多孔性フィルムの強度、剛軟性などの機械的強度が低下し、少ないと延伸多孔性フィルムの剛軟性が増加する。
 (2)分岐状低密度ポリエチレンは(以下、LDPEということがある)、一般に低密度ポリエチレン(PE−LD)と呼ばれ、長鎖分岐を有するLDPEの密度は、好ましくは0.910~0.940g/cmである。LDPEは、通常、エチレンを高圧下、ラジカル重合触媒の存在下に重合させることにより合成できる。このうち密度が0.915~0.930g/cmのものが好ましい。また、メルト・インデックスが1~8g/10min.特に、2.0~7.0g/10min.であることが好ましい。密度、さらに好ましくはメルト・インデックスが、夫々上記範囲であることにより、樹脂組成物にフィルムの押出特性や成形加工性、そして延伸多孔性フィルムに必要な機械強度を持たせることができる。
 (2)分岐状低密度ポリエチレン(LDPE)の使用量は、ポリオレフィンの総量の10~35質量%であることが必要である。好ましくは、ポリオレフィンの総量の13~35質量%である。該使用量は、得られる延伸多孔性フィルムの厚みの均一性に影響を及ぼす。LDPEの使用量が上記範囲を超えて多いと、フィルムのピンホールの出現頻度が多くなる。一方少ないとフィルムの厚みの均一性が悪化する上、フィルムにドローレゾナンスが発生しやすくなる。
 ポリオレフィンを構成する、(3)ポリプロピレンは特に限定されるものではないが、密度0.890~0.940g/cm、メルト・インデックスが1~8g/10min.であることが好ましい。密度およびメルト・インデックスが上記範囲であることにより、樹脂組成物にフィルムの押出特性や成形加工性、そして延伸多孔性フィルムに必要な機械強度を得ることができる。
 ポリプロピレンは、プロピレンの単独重合体あるいはプロピレンと少量の他のα−オレフィンとの共重合体である。具体的には、プロピレン単重合体、プロピレン−エチレン共重合体、プロピレン−エチレン−EPR(エチレン−プロピレンゴム)共重合体が挙げられる。これらのうち、プロピレン−エチレン共重合体のプロピレン単位含有量は60モル%以上であるのが好ましい。
 (3)ポリプロピレンの使用量は、ポリオレフィンの総量の5~25質量%である。好ましくは、ポリオレフィンの総量の7~22質量%である。ポリプロピレンは、得られる延伸多孔性フィルムの機械方向の5%伸張強度を高めるために重要な成分であるが、これが前記上限値を超えて多量に配合されると、前述のように得られる延伸多孔性フィルムにおいて、透湿度が低下し、さらに風合いも悪化する。また、ポリプロピレンが前記下限値を超えて少なく配合されると、前記5%伸張強度を本発明が規定する値に高くすることができなくなる。
 本発明に用いられる上記3種のポリオレフィンは、ツィーグラー触媒の如きマルチサイト触媒を用いて製造された樹脂であっても、また、メタロセン触媒の如きシングルサイト触媒を用いて製造された樹脂であってもよい。
 本発明において、(1)線形低密度ポリエチレン、(2)分岐状低密度ポリエチレン、及び(3)ポリプロピレンから成るポリオレフィンのメルト・インデックスは1~8g/10min.であることが好ましい。
 本発明において、無機充填材は、公知のものが制限なく使用でき、例えば、炭酸カルシウム、硫酸バリウム、硫酸カルシウム、炭酸バリウム、水酸化マグネシウム、水酸化アルミニウム等の無機塩類、酸化亜鉛、酸化マグネシウム、シリカ等の無機酸化物、マイカ、バーミキュライト、タルク等のケイ酸塩類、及び有機金属塩等が挙げられる。なかでも炭酸カルシウムが、コストパフォーマンスおよびポリエチレン樹脂との剥離性から特に好ましく使用できる。
 無機充填剤の平均粒径は10μm以下のものが好ましく、0.5~5.0μmのものがより好ましく、0.7~3.0μmのものがさらに好ましい。平均粒子径が上記範囲にあると、分散性に優れ、延伸時に連通孔の形成が容易となる上に、成形時のフィルム破れ等が発生しにくく効率よく延伸多孔性フィルムを生産することが可能である。無機充填剤の平均粒径が上記範囲を超えて大きいとピンホールの原因となりやすく、小さいと製膜時にドローレゾナンスが生じる原因となりやすい。
 上記無機充填剤としては、樹脂への分散性を向上させるために表面処理が施されているものが好ましい。表面処理剤としては、無機充填材の表面を被覆することにより、その表面を疎水化できるものが好ましく、例えば、脂肪酸、高級脂肪酸、またはそれらの金属塩の他、ワックス等を挙げることができる。表面処理剤の量は特に限定されないが、好ましくは、無機充填剤に対し0.5~2.0質量%程度であり、1.5質量%以下であることがさらに好ましく、1.0質量%以下であることが特に好ましい。
 本発明におけるポリオレフィン樹脂組成物は、前記ポリオレフィンと無機充填材を含み、その組成は、ポリオレフィン100質量部に対して、無機充填材80~200質量部であり、好ましくは、ポリオレフィン100質量部に対して、無機充填材85~150質量部である。ポリオレフィンに対する無機充填材の質量比が上記範囲を超えて小さいと、ポリオレフィンと無機充填材の界面が剥離してできる、単位面積あたりのボイド発生頻度が小さくなるため、隣接したボイド同士が連通しにくくなり、通気性が悪化する。上記範囲を超えて大きいと、フィルム延伸時の伸びがなくなり、延伸が困難になる他、高い5%伸張強度が得られにくくなる。
 本発明におけるポリオレフィン樹脂組成物には、可塑剤を配合することは必ずしも必要ではない。可塑剤の含有量は2質量部未満であることが好ましく、1質量部未満であることがより好ましい。本発明において可塑剤とは、フィルムの可塑性を改善し、フィルムに柔軟性を与える化合物の総称である。可塑剤の含有量が多くなると、樹脂組成物のメルト・インデックスが大きくなり、高い5%伸張強度を得ることが困難となる。上記可塑剤の種類は特に限定されないが、例えば脂肪酸、高級脂肪酸、低分子量ポリエチレン、エポキシ化大豆油、ポリエチレングリコール、脂肪酸エステル類等が挙げられる。
 また、本発明における樹脂組成物には、通常の樹脂組成物に用いられている添加物を配合してもよい。かかる添加物としては、例えば酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、中和剤、滑剤、防曇剤、アンチブロッキング剤、帯電防止剤、スリップ剤、着色剤等が挙げられる。この樹脂組成物には、本発明の効果を損なわない範囲で、前記ポリオレフィンを構成する以外の樹脂成分を少量配合しても良い。具体的には、ポリオレフィン100質量部に対して5質量部以内、より好ましくは2.5質量部以内であれば、他の樹脂成分を配合することは許容される。
 本発明において、樹脂組成物のメルト・インデックスは2g/10min.以上であることが好ましく、2g/10min.以上5g/10min.以下であることが好ましく、2g/10min.以上4g/10min.以下であることがより好ましい。上記範囲であることにより、安定した製膜を行うことが可能である。上記範囲を超えて大きいと、Tダイで製膜する際にネックインを起こし、必要とされる製品幅が得られず、小さいと、製膜時押出機の樹脂圧力が高くなり、製膜に悪影響を及ぼすことになる。また、該メルト・インデックスの値が小さい程5%伸張強度が大きくなる傾向がある。
 本発明において、延伸多孔性フィルムの機械方向の5%伸張強度は3.5N/25mm以上であり、3.7N/25mm以上であることが好ましく、4.0N/25mm以上であることがさらに好ましい。機械方向の5%伸張強度が大きいほど、機械方向の低ひずみ伸張強度に優れ、印刷時に機械方向にかかるライン張力に対しフィルムの伸びを小さく抑えることが可能となる。したがって、印刷ピッチ(間隔)の変動が小さく、おむつ等の製品化時の歩留まりの低下を抑制することができる。本発明の延伸多孔性フィルムにおいて、上記機械方向の5%伸張強度は、好ましくは10.0N/25mm以下、より好ましくは6.0N/25mm以下である。上記範囲を超えて大きいと剛軟性が増加し、風合いが十分でなくなる。機械方向の5%伸張強度はJIS K 7127により求めることができる。
 本発明において、延伸多孔性フィルムの透湿度は2000g/m・24h以上であり、2100g/m・24h以上であることが好ましい。透湿度が上記範囲であることにより、通気性、透湿性に優れ、たとえば、紙おむつのバックシートに用いた場合には、着用時のムレを防止する。なお、透湿度の上限は特に制限されるものではないが、機械特性、耐水性、及び耐液漏れ性の理由から、好ましくは10000g/m・24h、特に好ましくは、5000g/m・24hである。上記透湿度は、ASTM E96Bにより求めることができる。
 本発明において、延伸多孔性フィルムの機械方向の50℃、24時間処理後の熱収縮率(%)は3.0%以下であることが好ましく、2.5%以下であることがより好ましい。機械方向の熱収縮率が小さいことは、前記5%伸張強度を大きくすることに加え、さらに印刷時に機械方向にかかるライン張力に対しフィルムの伸びを小さく抑えることを可能とする。したがって、機械方向の熱収縮率(%)が小さければ小さい程、印刷ピッチのずれを抑制できるため好ましいが、実用的には、0.5%を下限とする。本発明の延伸多孔性フィルムにおいて、機械方向の熱収縮率(%)は、温度50℃で24時間放置した前後で、機械方向のフィルム長さが収縮した割合で表される。具体的には、延伸多孔性フィルムから15cm×15cmのサンプルを切り出し、機械方向に標線間が10cmとなるよう標線を入れる。温度50℃で24時間放置した後、室温に冷却して標線間の長さを測定する。本発明の機械方向の熱収縮率(%)は、下記式(I)より算出される。
機械方向の熱収縮率(%)=
 {(10cm−測定長さcm)/10cm}×100・・(I)
 本発明において、延伸多孔性フィルムの目付けは10~35g/mである。11~32g/mであることが好ましく、12~30g/mであることがさらに好ましい。目付けが上記範囲とすることにより、通気性、透湿性、機械強度に優れる延伸多孔性フィルムが得られる。この範囲を超えて大きいとフィルムの透湿性を満たすことが難しくなり、小さいとフィルムの機械強度が低くなる。
 つぎに、本発明の延伸多孔性フィルムの製造方法について説明する。
 本発明の延伸多孔性フィルムは、その製造方法により制限されるものではないが、通常は、前記(1)線形低密度ポリエチレン85~50質量%、前記(2)分岐状低密度ポリエチレン10~35質量%、及び前記(3)ポリプロピレン5~25質量%を含むポリオレフィン100質部と、無機充填剤80~200質量部を含んでなる樹脂組成物をフィルム状に成形し、得られたフィルムを機械方向に好ましくは2.6~5.0倍延伸し、次いで、機械方向の収縮率を好ましくは3~20%に維持しながら、好ましくは70~95℃の範囲の温度で、好ましくは少なくとも0.2秒間熱固定することによって製造できる。
 まず、上記ポリオレフィンと無機充填剤、さらには、必要に応じて配合する前記添加剤とが混合される。混合方法としては、公知の方法が採用でき、例えば、ヘンシェルミキサー、スーパーミキサー、タンブラーミキサー等の混合機を用いて好ましくは5分~1時間程度混合することが挙げられる。
 得られた混合物は、溶融混練してペレット化することが好ましい。混練方法としては、公知の方法が採用でき、例えば、高混練タイプの2軸押出機、タンデム型混練機等の混練機を用いて、ストランドカット、ホットカット、アンダーウォーターカットなどの方法で混練し、ペレット化することが挙げられる。上記の如く予め混合し、混練し、ペレット化することにより、樹脂組成物の均一な分散を促すことができ好ましい。樹脂組成物の配合によっては、混合なしに直接混練機に投入しペレタイズすることもできる。
 つづいて得られたペレットを、押出機の先端に装着したサーキュラダイ又はTダイでフィルム状に成形する。このとき、T−ダイ法を用いる場合の冷却方法としては、例えばニップロール法やエアナイフ法及びエアチャンバー法等公知の方法が採用できる。また、樹脂組成物の配合によっては、混合・混練なしに直接押出機に樹脂組成物を投入しフィルムを成形することもできる。
 上記の製膜し得られたフィルムを、ロール延伸法またはテンター延伸法等の公知の方法により延伸し、延伸多孔性フィルムを得る。ここで、得られる延伸多孔性フィルムにおいて、機械方向の5%伸張強度を本発明が規定する高い値にするためには、延伸倍率を、少なくとも機械方向に2.6~5倍とすることが重要である。即ち、構成する樹脂組成物は、前記ポリプロピレン成分の配合量が少なめであり、上記5%伸張強度が高くなり難い性状にあるが、本発明では、係る樹脂組成物からなるフィルムの延伸を斯様な特定の高倍率で実施することにより、当該物性値として3.5N/25mm以上の高い値が達成できる。
 機械方向の延伸倍率は、好ましくは2.8倍以上、より好ましくは3.1倍以上である。上記延伸倍率が大きすぎると、引裂強度が低くなり、実用性に欠ける。上限は、好ましくは4.5倍、より好ましくは4.0倍である。また延伸倍率を大きくすることにより、ポリプロピレンを含むにもかかわらず厚みムラが問題にならず、必ずしも分散剤の添加の必要がない。
 本発明において、上記延伸は一段延伸でも多段延伸でもよいが、低ひずみ伸張強度の向上のために、一段延伸であることが好ましい。したがって、具体的には、機械方向に一段延伸することが特に好ましい。
 延伸温度は、常温以上、樹脂組成物の軟化点未満の温度範囲であれば特に限定されない。延伸温度が上記範囲より低すぎると、延伸ムラが生じやすくなるため厚みが不均一になりやすく、温度が高すぎると、樹脂が溶融し通気性や透湿性が低下する。上記延伸温度は、所望の物性に応じて、延伸倍率との組合せにより適宜調整することができる。
 つづいて、本発明の延伸多孔性フィルムは、上記延伸方向の熱収縮を抑える方法として、上記延伸後の延伸多孔性フィルムを熱固定する。該熱固定とは、延伸後フィルムに延伸による緊張状態を維持した状態で、寸法変化をさせない環境下で行う加熱処理のことである。該熱固定により、保管時の、弾性回復、及び熱による収縮や、巻き絞まり等を抑制することができる。
 熱固定の方法としては、ロール延伸法を採用した場合には、延伸後のフィルムを、加熱したロール(アニールロール)により加熱する方法が挙げられる。また、テンター延伸法を採用した場合には、テンター出口付近でフィルムを加熱する方法が挙げられる。
 熱固定の温度は、70~95℃であり、80~95℃であることが好ましい。熱固定温度が上記範囲より低すぎると、フィルムの熱収縮が大きくなり、温度が高すぎると、ブロッキングが起こる。
 熱固定の時間は、0.2秒以上であり、0.5秒以上であることが好ましく、1秒以上であることがより好ましい。上記時間は、フィルムが上記温度で保持される時間であり、例えば、アニールロールにより加熱する場合であれば、フィルムがアニールロールと接している時間をいう。アニールロールの本数は特に制限されないが、2本以上の場合の熱固定時間は、各ロールにフィルムが接する時間の和である。同様に、テンター延伸法による場合であれば、テンター出口で加熱され、上記温度で維持される時間であり、複数回に分割して加熱する際は、各々加熱された時間の和である。該熱固定時間は、0.2秒以上でないと熱固定が不十分となり、熱収縮が大きくなる。また、固定時間は20秒以下であることが好ましく、15秒以下であることがより好ましい。該熱固定時間が長すぎると、前記熱固定温度との組合せにもよるため一概にはいえないが、熱によるダメージが大きくなり、通気性、透湿性が低下するおそれがある。
 また、本発明において、上記熱固定時の機械方向の収縮率は、3~20%であり、好ましくは5~15%である。収縮率は、ロール延伸法を採用した場合であれば、アニールロールと、後続ロールとの速度差により決められ、テンター延伸法を採用した場合であれば、加熱後の両端のクリップ幅を狭くすることにより決められる。収縮率が小さすぎると、得られる延伸多孔性フィルムの熱収縮が大きくなり、収縮率が大きすぎると、製造時にフィルムがたるんで、安定生産ができなくなる。
 上記の如くして製造された延伸多孔性フィルムは、従来紙おむつ等の衛生材料用途において求められていた物性に加え、機械方向の5%伸張強度が大きく、特に、印刷等を施す場合に印刷のピッチがずれることがなく、鮮明な図柄などが得られるため、特に印刷が施される紙おむつのバックシートとして好適に用いられる。また、本発明の上記延伸多孔性フィルムは、通常、ロールとして巻取られ、印刷のためにそのままロールとして提供される。また、印刷を施された延伸多孔性フィルムは、再び、ロールとして巻取られ、最終用途のために供給される。
 印刷を施されたロールは、例えば1ヶ月以上にも亘る長期保存中においても、巻姿が変化することがなく、保存中に、後発的に印刷ピッチの変動が起こることもなく、上記用途に歩留り良く使用することができる。また、本発明の延伸多孔性フィルムは通気性補強材と積層することにより、建材用途、農業用途、廃棄物処理用途等の耐候性や耐光性を必要とする透湿防水シート等に好適に使用できる。
 通気性補強材としては、特に制限されることなく、例えば、不織布、織布、割布、メッシュ、ネット、フィルト、紙、布等を使用することができる。また、通気性補強材の材質は、特に制限されることなくポリオレフィン系、ポリエステル系、ナイロン系のものを使用することができるが、本発明の延伸多孔性フィルムと積層する際に熱融着法により容易に積層できることを勘案すると、表面層として130℃以下の融点ピークを持つポリエチレン系樹脂を含有しているものが好ましい。
Hereinafter, the present invention will be described in detail. The stretched porous film of the present invention comprises (1) 85 to 50% by mass of linear low density polyethylene, (2) 10 to 35% by mass of branched low density polyethylene, and (3) 5 to 25% by mass of polypropylene (PP). And 100 parts by mass of a polyolefin and 80 to 200 parts by mass of an inorganic filler.
(1) Linear low density polyethylene (hereinafter sometimes referred to as LLDPE), which is a polyolefin, is composed of a copolymer of ethylene and a small amount of an α-olefin, and has a linear polyethylene main chain and a carbon number of 2 to It has about 6 short chain branches. The density of LLDPE is preferably 0.910 to 0.950 g / cm 3 , more preferably 0.915 to 0.945 g / cm 3 . The melt index (MI) of LLDPE is preferably 1 to 8 g / 10 min. And particularly preferably 2.0 to 7.5 g / 10 min. It is. When the density, or more preferably, the density and the melt index are in the above ranges, the stretched porous film is excellent in flexibility, air permeability, and liquid leakage resistance.
Here, the said density is a density measured by JISK7112, and the measuring method of the density of other resin is also the same as this. The melt index is a value measured by the A method at 190 ° C. in accordance with JIS K 7210, and the melt index measurement methods for other resins are the same.
Specific examples of the linear low density polyethylene include ethylene-propylene, ethylene- (1-butene), ethylene- (1-hexene), ethylene- (4-methyl-1-pentene), and ethylene- (1- Octene) and the like.
(1) The amount of linear low density polyethylene used is required to be 85 to 50% by mass of the total amount of polyolefin in order to greatly affect the strength and stiffness of the obtained stretched porous film. 80 to 55% by mass. When the amount used exceeds the above range, the strength of the stretched porous film and mechanical strength such as stiffness are lowered, and when it is less, the stiffness of the stretched porous film increases.
(2) Branched low-density polyethylene (hereinafter sometimes referred to as LDPE) is generally called low-density polyethylene (PE-LD), and the density of LDPE having long chain branches is preferably 0.910-0. 940 g / cm 3 . LDPE can be usually synthesized by polymerizing ethylene in the presence of a radical polymerization catalyst under high pressure. Among these, those having a density of 0.915 to 0.930 g / cm 3 are preferable. The melt index is 1 to 8 g / 10 min. In particular, 2.0 to 7.0 g / 10 min. It is preferable that When the density, more preferably the melt index is within the above range, the resin composition can have the extrusion characteristics and moldability of the film and the mechanical strength required for the stretched porous film.
(2) The amount of branched low density polyethylene (LDPE) used needs to be 10 to 35% by mass of the total amount of polyolefin. Preferably, it is 13 to 35% by mass of the total amount of polyolefin. The amount used affects the uniformity of the thickness of the resulting stretched porous film. If the amount of LDPE used exceeds the above range, the frequency of pinholes in the film will increase. On the other hand, if the amount is small, the uniformity of the film thickness is deteriorated, and draw resonance is likely to occur in the film.
(3) Polypropylene constituting the polyolefin is not particularly limited, but has a density of 0.890 to 0.940 g / cm 3 and a melt index of 1 to 8 g / 10 min. It is preferable that When the density and melt index are within the above ranges, the resin composition can have the extrusion characteristics and moldability of the film, and the mechanical strength required for the stretched porous film.
Polypropylene is a homopolymer of propylene or a copolymer of propylene and a small amount of other α-olefins. Specific examples include a propylene homopolymer, a propylene-ethylene copolymer, and a propylene-ethylene-EPR (ethylene-propylene rubber) copolymer. Of these, the propylene unit content of the propylene-ethylene copolymer is preferably 60 mol% or more.
(3) The amount of polypropylene used is 5 to 25% by mass of the total amount of polyolefin. Preferably, it is 7 to 22% by mass of the total amount of polyolefin. Polypropylene is an important component for increasing the 5% tensile strength in the machine direction of the obtained stretched porous film, but when this is blended in a large amount exceeding the above upper limit, the stretched porosity obtained as described above. In the conductive film, the moisture permeability is lowered and the texture is also deteriorated. If polypropylene is blended in less than the lower limit, the 5% tensile strength cannot be increased to the value specified by the present invention.
The three types of polyolefins used in the present invention may be resins manufactured using a multisite catalyst such as a Ziegler catalyst, or a resin manufactured using a single site catalyst such as a metallocene catalyst. Also good.
In the present invention, the melt index of polyolefin comprising (1) linear low density polyethylene, (2) branched low density polyethylene, and (3) polypropylene is 1-8 g / 10 min. It is preferable that
In the present invention, known inorganic fillers can be used without limitation, for example, inorganic salts such as calcium carbonate, barium sulfate, calcium sulfate, barium carbonate, magnesium hydroxide, aluminum hydroxide, zinc oxide, magnesium oxide, Examples thereof include inorganic oxides such as silica, silicates such as mica, vermiculite and talc, and organic metal salts. Of these, calcium carbonate can be particularly preferably used because of cost performance and releasability from the polyethylene resin.
The average particle size of the inorganic filler is preferably 10 μm or less, more preferably 0.5 to 5.0 μm, and even more preferably 0.7 to 3.0 μm. When the average particle size is in the above range, it is excellent in dispersibility, it is easy to form communication holes during stretching, and it is possible to efficiently produce a stretched porous film that hardly causes film breakage during molding. It is. If the average particle size of the inorganic filler is larger than the above range, it tends to cause pinholes, and if it is smaller, it tends to cause draw resonance during film formation.
The inorganic filler is preferably one that has been surface-treated in order to improve dispersibility in the resin. As the surface treating agent, those capable of hydrophobizing the surface by coating the surface of the inorganic filler are preferable, and examples thereof include fatty acids, higher fatty acids, metal salts thereof, waxes and the like. The amount of the surface treatment agent is not particularly limited, but is preferably about 0.5 to 2.0% by mass, more preferably 1.5% by mass or less, and 1.0% by mass with respect to the inorganic filler. It is particularly preferred that
The polyolefin resin composition in the present invention includes the polyolefin and an inorganic filler, and the composition thereof is 80 to 200 parts by mass of the inorganic filler with respect to 100 parts by mass of the polyolefin, and preferably 100 parts by mass of the polyolefin. The inorganic filler is 85 to 150 parts by mass. If the mass ratio of the inorganic filler to the polyolefin is smaller than the above range, the interface between the polyolefin and the inorganic filler is peeled off, and the void generation frequency per unit area is reduced, so adjacent voids are difficult to communicate with each other. The air permeability deteriorates. When it is larger than the above range, elongation at the time of film stretching is lost, it becomes difficult to stretch, and it becomes difficult to obtain high 5% stretch strength.
It is not always necessary to add a plasticizer to the polyolefin resin composition in the present invention. The plasticizer content is preferably less than 2 parts by mass, and more preferably less than 1 part by mass. In the present invention, the plasticizer is a general term for compounds that improve the plasticity of the film and impart flexibility to the film. When the content of the plasticizer increases, the melt index of the resin composition increases and it becomes difficult to obtain a high 5% tensile strength. The type of the plasticizer is not particularly limited, and examples thereof include fatty acids, higher fatty acids, low molecular weight polyethylene, epoxidized soybean oil, polyethylene glycol, and fatty acid esters.
Moreover, you may mix | blend the additive currently used for the normal resin composition with the resin composition in this invention. Examples of such additives include antioxidants, heat stabilizers, light stabilizers, ultraviolet absorbers, neutralizers, lubricants, antifogging agents, antiblocking agents, antistatic agents, slip agents, and coloring agents. . A small amount of a resin component other than that constituting the polyolefin may be blended in the resin composition as long as the effects of the present invention are not impaired. Specifically, if it is within 5 parts by mass, more preferably within 2.5 parts by mass with respect to 100 parts by mass of polyolefin, it is allowed to blend other resin components.
In the present invention, the melt index of the resin composition is 2 g / 10 min. Preferably, it is 2 g / 10 min. 5 g / 10 min. Or less, preferably 2 g / 10 min. 4 g / 10 min. The following is more preferable. By being in the above range, stable film formation can be performed. When it is larger than the above range, neck-in occurs when forming a film with a T-die, and the required product width cannot be obtained, and when it is small, the resin pressure of the extruder during film formation increases, It will have an adverse effect. Also, the smaller the melt index value, the greater the 5% stretch strength.
In the present invention, the 5% stretch strength in the machine direction of the stretched porous film is 3.5 N / 25 mm or more, preferably 3.7 N / 25 mm or more, and more preferably 4.0 N / 25 mm or more. . The larger the 5% stretch strength in the machine direction, the better the low strain stretch strength in the machine direction, and the elongation of the film can be kept small relative to the line tension applied in the machine direction during printing. Therefore, the fluctuation of the printing pitch (interval) is small, and it is possible to suppress a decrease in yield when a product such as a diaper is commercialized. In the stretched porous film of the present invention, the 5% tensile strength in the machine direction is preferably 10.0 N / 25 mm or less, more preferably 6.0 N / 25 mm or less. If it exceeds the above range, the bending resistance increases and the texture becomes insufficient. The 5% tensile strength in the machine direction can be determined according to JIS K 7127.
In the present invention, the moisture permeability of the stretched porous film is 2000 g / m 2 · 24 h or more, and preferably 2100 g / m 2 · 24 h or more. When the moisture permeability is in the above range, the breathability and moisture permeability are excellent. For example, when used for a back sheet of a disposable diaper, the stuffiness at the time of wearing is prevented. Although the upper limit is not particularly limited moisture permeability, mechanical properties, water resistance, and liquid leakage resistance reasons, preferably 10000g / m 2 · 24h, and most preferably, 5000g / m 2 · 24h It is. The moisture permeability can be determined by ASTM E96B.
In the present invention, the heat shrinkage rate (%) after treatment for 24 hours at 50 ° C. in the machine direction of the stretched porous film is preferably 3.0% or less, and more preferably 2.5% or less. The fact that the thermal shrinkage rate in the machine direction is small makes it possible to suppress the elongation of the film to be small relative to the line tension applied in the machine direction during printing, in addition to increasing the 5% elongation strength. Therefore, the smaller the heat shrinkage rate (%) in the machine direction, the smaller the printing pitch deviation can be suppressed, but practically 0.5% is the lower limit. In the stretched porous film of the present invention, the heat shrinkage rate (%) in the machine direction is expressed as a ratio of shrinkage of the film length in the machine direction before and after being left at a temperature of 50 ° C. for 24 hours. Specifically, a 15 cm × 15 cm sample is cut out from the stretched porous film, and marked lines are inserted so that the distance between marked lines is 10 cm in the machine direction. After being allowed to stand at a temperature of 50 ° C. for 24 hours, it is cooled to room temperature and the length between marked lines is measured. The heat shrinkage rate (%) in the machine direction of the present invention is calculated from the following formula (I).
Heat shrinkage in machine direction (%) =
{(10 cm—measured length cm) / 10 cm} × 100 (100) (I)
In the present invention, the basis weight of the stretched porous film is 10 to 35 g / m 2 . It is preferably 11 to 32 g / m 2 , and more preferably 12 to 30 g / m 2 . By setting the basis weight within the above range, a stretched porous film excellent in air permeability, moisture permeability and mechanical strength can be obtained. If it is larger than this range, it will be difficult to satisfy the moisture permeability of the film, and if it is smaller, the mechanical strength of the film will be lowered.
Below, the manufacturing method of the stretched porous film of this invention is demonstrated.
The stretched porous film of the present invention is not limited by its production method, but is usually (1) 85 to 50% by mass of linear low density polyethylene and (2) 10 to 35 of branched low density polyethylene. A resin composition comprising 100% by mass of polyolefin and 100% by mass of (3) 5-25% by mass of polypropylene and 80-200 parts by mass of an inorganic filler is formed into a film, and the resulting film is machined. The film is preferably stretched 2.6 to 5.0 times in the direction and then preferably at a temperature in the range of 70 to 95 ° C., preferably at least 0 while maintaining the shrinkage in the machine direction preferably at 3 to 20%. It can be manufactured by heat setting for 2 seconds.
First, the polyolefin and the inorganic filler, and further, the additive to be blended as necessary are mixed. As a mixing method, a known method can be employed. For example, the mixing is preferably performed for about 5 minutes to 1 hour using a mixer such as a Henschel mixer, a super mixer, or a tumbler mixer.
The obtained mixture is preferably melt-kneaded and pelletized. As a kneading method, a known method can be adopted. For example, a kneading machine such as a high kneading type twin screw extruder or a tandem kneading machine is used to knead by a method such as strand cut, hot cut or underwater cut. And pelletizing. Premixing, kneading and pelletizing as described above are preferable because uniform dispersion of the resin composition can be promoted. Depending on the composition of the resin composition, it can be directly put into a kneader without mixing and pelletized.
Subsequently, the obtained pellets are formed into a film with a circular die or a T die attached to the tip of the extruder. At this time, as a cooling method when the T-die method is used, a known method such as a nip roll method, an air knife method, or an air chamber method can be employed. Depending on the blending of the resin composition, the film can be formed by directly feeding the resin composition into an extruder without mixing and kneading.
The film obtained by forming the film is stretched by a known method such as a roll stretching method or a tenter stretching method to obtain a stretched porous film. Here, in the obtained stretched porous film, in order to make the 5% stretch strength in the machine direction a high value specified by the present invention, the stretch ratio should be at least 2.6 to 5 times in the machine direction. is important. That is, the constituent resin composition is such that the amount of the polypropylene component is small and the 5% tensile strength is difficult to increase. In the present invention, however, the film made of the resin composition is stretched in this way. By carrying out at such a specific high magnification, a high value of 3.5 N / 25 mm or more can be achieved as the physical property value.
The draw ratio in the machine direction is preferably 2.8 times or more, more preferably 3.1 times or more. When the said draw ratio is too large, tear strength will become low and practicability will be lacking. The upper limit is preferably 4.5 times, more preferably 4.0 times. Further, by increasing the draw ratio, unevenness in thickness does not become a problem despite the inclusion of polypropylene, and it is not always necessary to add a dispersant.
In the present invention, the stretching may be single-stage stretching or multi-stage stretching, but is preferably single-stage stretching in order to improve the low strain elongation strength. Therefore, specifically, it is particularly preferable to perform one-stage stretching in the machine direction.
The stretching temperature is not particularly limited as long as it is at room temperature or higher and lower than the softening point of the resin composition. If the stretching temperature is too lower than the above range, unevenness of stretching tends to occur, and the thickness tends to be non-uniform. If the temperature is too high, the resin melts and air permeability and moisture permeability deteriorate. The stretching temperature can be appropriately adjusted depending on the desired physical properties and in combination with the stretching ratio.
Subsequently, the stretched porous film of the present invention heat-fixes the stretched porous film after stretching as a method of suppressing thermal shrinkage in the stretching direction. The heat setting is a heat treatment performed in an environment in which a dimensional change is not caused in a state where a stretched film is maintained in a tensioned state due to stretching. The heat fixation can suppress elastic recovery, shrinkage due to heat, squeezing and the like during storage.
As a heat setting method, when a roll stretching method is adopted, a method of heating the stretched film with a heated roll (annealing roll) can be mentioned. Moreover, when the tenter stretching method is employed, a method of heating the film in the vicinity of the tenter outlet can be mentioned.
The heat setting temperature is 70 to 95 ° C, and preferably 80 to 95 ° C. When the heat setting temperature is too lower than the above range, the heat shrinkage of the film increases, and when the temperature is too high, blocking occurs.
The heat setting time is 0.2 seconds or more, preferably 0.5 seconds or more, and more preferably 1 second or more. The time is a time during which the film is held at the above temperature. For example, in the case where the film is heated by an annealing roll, it means the time during which the film is in contact with the annealing roll. The number of annealing rolls is not particularly limited, but the heat setting time in the case of two or more rolls is the sum of the time during which the film is in contact with each roll. Similarly, in the case of the tenter stretching method, the time is heated at the tenter outlet and maintained at the above temperature, and when divided and heated in multiple times, it is the sum of the times of heating. If the heat setting time is not 0.2 seconds or more, heat setting is insufficient and heat shrinkage is increased. Further, the fixing time is preferably 20 seconds or shorter, and more preferably 15 seconds or shorter. If the heat fixing time is too long, it cannot be generally described because it depends on the combination with the heat fixing temperature, but damage due to heat increases, and air permeability and moisture permeability may be reduced.
In the present invention, the shrinkage in the machine direction at the time of heat setting is 3 to 20%, preferably 5 to 15%. If the roll stretching method is adopted, the shrinkage rate is determined by the speed difference between the anneal roll and the subsequent roll. If the tenter stretching method is adopted, the clip width at both ends after heating is narrowed. It is decided by. If the shrinkage rate is too small, the heat-shrinkage of the resulting stretched porous film becomes large. If the shrinkage rate is too large, the film is slackened during production, and stable production cannot be performed.
The stretched porous film produced as described above has a 5% elongation strength in the machine direction in addition to the physical properties conventionally required for sanitary material applications such as paper diapers, and is particularly suitable for printing. Since the pitch does not shift and a clear pattern or the like can be obtained, it is preferably used as a back sheet of a paper diaper to be printed. The stretched porous film of the present invention is usually wound up as a roll and provided as a roll for printing. The stretched porous film on which printing has been performed is again wound up as a roll and supplied for final use.
For example, a roll subjected to printing does not change its winding shape even during long-term storage for more than one month, and the printing pitch does not fluctuate later during storage. Can be used with good yield. In addition, the stretched porous film of the present invention is suitably used for moisture permeable waterproof sheets that require weather resistance and light resistance, such as building material use, agricultural use, and waste treatment use, by laminating with a breathable reinforcing material. it can.
The breathable reinforcing material is not particularly limited, and for example, a nonwoven fabric, a woven fabric, a split fabric, a mesh, a net, a filter, paper, a fabric, or the like can be used. In addition, the material of the breathable reinforcing material is not particularly limited, and polyolefin-based, polyester-based, and nylon-based materials can be used. However, when laminating with the stretched porous film of the present invention, a heat fusion method is used. In view of the fact that it can be easily laminated, it is preferable that the surface layer contains a polyethylene resin having a melting point peak of 130 ° C. or lower.
 以下、実施例及び比較例を示すが、本発明はこれらの実施例に制限されるものではない。
 尚、実施例及び比較例に記載した物性値は以下に示す方法によって測定したものである。
1) メルト・インデックス
JIS K 7210に準じて190℃でA法にて測定した。
2) 目付
10cm×10cmで切り取り、天秤で質量を測定して求めた。
3) 透湿度
延伸多孔性フィルムから試料(10cm×10cm)を10枚採取し、ASTM E96Bに準じて、温度40℃、相対湿度60%、純水法の条件で測定し、その平均値を算出して求めた。測定時間は24時間とした。
4) 5%伸張強度
延伸多孔性フィルムから、巾25mm、長さ(機械方向)150mmのサンプルを切り取った。JIS K 7127に準じて、チャック間距離50mm、引張り速度200mm/min.で機械方向に引張り、サンプル(チャック間距離)が5%(2.5mm)伸びたときの機械方向の強度(応力)を測定した。
5)機械方向の熱収縮率(%)
延伸多孔性フィルムから15cm×15cmのサンプルを切り出し、機械方向に標線間が10cmとなるよう標線を入れる。温度50℃で24時間放置した後、室温に冷却して標線間の長さを測定する。本発明の機械方向の熱収縮率(%)は、下記数式(I)より算出される。
機械方向の熱収縮率(%)=
 {(10cm−測定長さcm)/10cm}×100   (I)
 実施例1
 表1に示す、線状低密度ポリエチレンA[ダウケミカル(株)製、商品名:ダウレックス2035G、密度:0.919g/cm 、メルト・インデックス:6.0g/10min.]34質量%、B[(ダウケミカル(株)製、商品名:ダウレックス2036P、密度:0.935g/cm 、メルト・インデックス:2.5g/10min.]42質量%、分岐状低密度ポリエチレンC[三井・デュポンポリケミカル(株)製、商品名:ミラソン16P、密度:0.917g/cm、メルト・インデックス:3.7g/10min.]18質量%、およびポリプロピレンE[(株)プライムポリマー製、商品名:F−704NP、密度:0.900g/cm、MI:2.8g/10min.]6質量%からなるポリオレフィン100質量部に加え、平均粒径が2.0μmである炭酸カルシウムG((株)イメリスミネラルズ製、商品名:FL−520)102質量部、さらに添加剤H[酸化チタン(ハンツマン(株)製、商品名:TR28)50質量%、ヒンダードフェノール系熱安定剤(チバ・ジャパン(株)製、商品名:IRGANOX3114)20質量%、リン系熱安定剤(チバ・ジャパン(株)製、商品名:IRGAFOS168)30質量%の混合物]を2質量部配合の樹脂組成物を造粒し、フィルム成形を行った。
 造粒はベント付φ30mm二軸押出機を用いて、シリンダー温度180℃でストランド状に押出し、水槽で冷却後に5mm程度にカット・乾燥してペレットとした。次に、上記ペレットをφ400mmTダイ成膜機にてフィルム成形した。この時の、リップクリアランス=1.5mm、ダイ温度=230℃、エアギャップ=105mm、引取速度=10m/min.、キャストロール温度=20℃であった。さらに60℃に設定したロール延伸機で機械方向のみ一軸延伸(延伸倍率3.2倍)し、次いで90℃に設定した熱セットロールでインラインアニーリングした(熱固定時間4秒)。その熱固定時の機械方向の収縮率は、8%であった。
 得られた延伸多孔性フィルムの目付、透湿度、5%伸張強度、熱収縮率の評価を行った。結果を表2に示した。得られた延伸多孔性フィルムは、2000g/m・24h以上の良好な透湿度および良好な風合いを有していた。また、5%伸張強度は高い値を保持していた。
 実施例2~6、10~13
 組成物の配合(表1)を変えた以外は、実施例1と同様にフィルムを成形し、評価を行った。結果を表2に示した。得られた延伸多孔性フィルムは、いずれも2000g/m・24h以上の良好な透湿度および良好な風合いを有していた。また、5%伸張強度は高い値を保持し、機械方向の熱収縮率は低い値を保持していた。
 実施例7
 延伸条件として、延伸倍率を2.8倍とした以外は、実施例2と同様にフィルムを成形し、評価を行った。結果を表2に示した。得られた延伸多孔性フィルムは、2000g/m・24h以上の良好な透湿度および良好な風合いを有していた。また、5%伸張強度は高い値を保持し、機械方向の熱収縮率は低い値を保持していた。
 実施例8
 延伸条件として、延伸倍率を2.6倍とした以外は、実施例2と同様にフィルムを成形し、評価を行った。結果を表2に示した。得られた延伸多孔性フィルムは、2000g/m・24h以上の良好な透湿度および良好な風合いを有していた。また、5%伸張強度は高い値を保持し、機械方向の熱収縮率は低い値を保持していた。
 実施例9
 延伸条件として、延伸倍率を3.8倍とした以外は、実施例2と同様にフィルムを成形し、評価を行った。結果を表2に示した。得られた延伸多孔性フィルムは、2000g/m・24h以上の良好な透湿度および良好な風合いを有していた。また、5%伸張強度は高い値を保持し、機械方向の熱収縮率は低い値を保持していた。
 比較例1~4
 組成物の配合を表1に示す配合に変えた以外は、実施例1と同様にフィルムを成形し、評価を行った。結果を表2に示した。
 比較例5
 延伸条件として、延伸倍率を1.7倍とした以外は、実施例1と同様にフィルムを成形し、評価を行った。結果を表2に示した。
 比較例6
 延伸条件として、延伸倍率を2.0倍とした以外は、実施例2と同様にフィルムを成形し、評価を行った。結果を表2に示した。
 比較例1~6の結果から、透湿度が2000g/m・24h以下であったり、5%伸張強度が低い値であったり、また、ピンホールが多く、物性評価できないものもあった。
Figure JPOXMLDOC01-appb-T000001
表1の記号の説明
(ポリオレフィン系樹脂、原料)
A:線形低密度ポリエチレン[ダウケミカル(株)製、商品名:ダウレックス2035G、密度:0.919g/cm 、メルト・インデックス:6.0g/10min.]
B:線形低密度ポリエチレン[ダウケミカル(株)製、商品名:ダウレックス2036P、密度:0.935g/cm 、メルト・インデックス:2.5g/10min.]
C:分岐状低密度ポリエチレン[三井・デュポンポリケミカル(株)製、商品名:ミラソン16P、密度:0.917g/cm、メルト・インデックス:3.7g/10min.]
D:分岐状低密度ポリエチレン[旭化成ケミカルズ(株)製、商品名:L1850K、密度:0.918g/cm、メルト・インデックス:6.7g/10min.]
E:ポリプロピレン[(株)プライムポリマー製、商品名:F−704NP、密度:0.900g/cm、MI:2.8g/10min.]
F:ポリプロピレン[日本ポリプロ(株)製、商品名:ウィンテックWFX4M、密度:0.900g/cm、MI:2.8g/10min.]
G:炭酸カルシウム[(株)イメリスミネラルズ製、商品名:FL−520]
H:添加剤[酸化チタン(ハンツマン(株)製、商品名:TR28)50質量%、ヒンダードフェノール系熱安定剤(チバ・ジャパン(株)製、商品名:IRGANOX3114)20質量%、リン系熱安定剤(チバ・ジャパン(株)製、商品名:IRGAFOS168)30質量%の混合物]
(延伸条件)
※1:60℃に設定したロール延伸機で機械方向のみ一軸延伸(延伸倍率3.2倍)し、次いで90℃に設定した熱セットロールでインラインアニーリングした。
※2:60℃に設定したロール延伸機で機械方向のみ一軸延伸(延伸倍率2.8倍)し、次いで90℃に設定した熱セットロールでインラインアニーリングした。
※3:60℃に設定したロール延伸機で機械方向のみ一軸延伸(延伸倍率2.6倍)し、次いで90℃に設定した熱セットロールでインラインアニーリングした。
※4:60℃に設定したロール延伸機で機械方向のみ一軸延伸(延伸倍率3.8倍)し、次いで90℃に設定した熱セットロールでインラインアニーリングした。
※5:60℃に設定したロール延伸機で機械方向のみ一軸延伸(延伸倍率1.7倍)し、次いで90℃に設定した熱セットロールでインラインアニーリングした。
※6:60℃に設定したロール延伸機で機械方向のみ一軸延伸(延伸倍率2.0倍)し、次いで90℃に設定した熱セットロールでインラインアニーリングした。
Figure JPOXMLDOC01-appb-T000002
発明の効果
 本発明の延伸多孔性フィルムは、機械方向の5%伸張強度に高度に優れ、そのため、当該延伸多孔性フィルムに印刷等を施す場合に、印刷ピッチのずれがなく、印刷の図柄が鮮明になるとともに、製品化時の歩留まりが改善される。さらに、風合い及び透湿性も良好であり、紙おむつ用を始めとして、前記印刷が施される多孔性フィルムの種々の用途に対して有用に使用できる。
Examples and Comparative Examples are shown below, but the present invention is not limited to these Examples.
In addition, the physical-property value described in the Example and the comparative example was measured by the method shown below.
1) Melt index Measured by method A at 190 ° C. according to JIS K 7210.
2) It was cut off with a basis weight of 10 cm × 10 cm and measured by measuring the mass with a balance.
3) Ten samples (10 cm × 10 cm) were taken from the moisture-permeable stretched porous film, measured according to ASTM E96B at a temperature of 40 ° C., a relative humidity of 60%, and a pure water method, and the average value was calculated. And asked. The measurement time was 24 hours.
4) A sample having a width of 25 mm and a length (machine direction) of 150 mm was cut from a 5% stretch strength stretched porous film. According to JIS K 7127, the distance between chucks is 50 mm, and the pulling speed is 200 mm / min. Then, the strength (stress) in the machine direction was measured when the sample (distance between chucks) was extended by 5% (2.5 mm).
5) Heat shrinkage in machine direction (%)
A 15 cm × 15 cm sample is cut out from the stretched porous film, and marked lines are inserted so that the distance between marked lines is 10 cm in the machine direction. After being allowed to stand at a temperature of 50 ° C. for 24 hours, it is cooled to room temperature and the length between marked lines is measured. The heat shrinkage rate (%) in the machine direction of the present invention is calculated from the following mathematical formula (I).
Heat shrinkage in machine direction (%) =
{(10 cm-measurement length cm) / 10 cm} × 100 (I)
Example 1
Linear low density polyethylene A [manufactured by Dow Chemical Co., Ltd., trade name: Dourex 2035G, density: 0.919 g / cm 3 , melt index: 6.0 g / 10 min. ] 34% by mass, B [(Dow Chemical Co., Ltd., product name: Dow Rex 2036P, density: 0.935 g / cm 3 , melt index: 2.5 g / 10 min.] 42% by mass, branched low density Polyethylene C [made by Mitsui DuPont Polychemical Co., Ltd., trade name: Mirason 16P, density: 0.917 g / cm 3 , melt index: 3.7 g / 10 min.] 18% by mass, and polypropylene E [Co., Ltd. Prime polymer, product name: F-704NP, density: 0.900 g / cm 3 , MI: 2.8 g / 10 min.] In addition to 100 parts by mass of polyolefin, the average particle size is 2.0 μm Calcium carbonate G (product name: FL-520, manufactured by Imeris Minerals Co., Ltd.) 102 parts by mass, additive H [titanium oxide (Huntsman Co., Ltd., product name: TR28) 50% by mass, hindered phenol-based heat stabilizer (Ciba Japan Co., Ltd., product name: IRGANOX 3114) 20% by mass, phosphorus-based heat stabilizer (Ciba Japan Co., Ltd.) A resin composition containing 2 parts by mass of a product, product name: IRGAFOS168) 30% by mass mixture] was granulated, and film forming was performed.
For granulation, a φ30 mm twin screw extruder with a vent was used to extrude into a strand at a cylinder temperature of 180 ° C., cooled in a water bath, cut and dried to about 5 mm to obtain pellets. Next, the pellet was formed into a film using a φ400 mmT die film forming machine. At this time, lip clearance = 1.5 mm, die temperature = 230 ° C., air gap = 105 mm, take-up speed = 10 m / min. The cast roll temperature was 20 ° C. Furthermore, it was uniaxially stretched only in the machine direction with a roll stretching machine set at 60 ° C. (stretching ratio: 3.2 times), and then in-line annealed with a heat set roll set at 90 ° C. (heat setting time 4 seconds). The shrinkage in the machine direction during the heat setting was 8%.
The obtained stretched porous film was evaluated for basis weight, moisture permeability, 5% stretch strength, and heat shrinkage rate. The results are shown in Table 2. The obtained stretched porous film had good moisture permeability of 2000 g / m 2 · 24 h or more and good texture. Further, the 5% tensile strength maintained a high value.
Examples 2-6, 10-13
A film was molded and evaluated in the same manner as in Example 1 except that the composition (Table 1) was changed. The results are shown in Table 2. All of the obtained stretched porous films had good moisture permeability and good texture of 2000 g / m 2 · 24 h or more. Further, the 5% stretch strength was kept high and the heat shrinkage rate in the machine direction was kept low.
Example 7
A film was molded and evaluated in the same manner as in Example 2 except that the stretching ratio was 2.8 times as the stretching condition. The results are shown in Table 2. The obtained stretched porous film had good moisture permeability of 2000 g / m 2 · 24 h or more and good texture. Further, the 5% stretch strength was kept high and the heat shrinkage rate in the machine direction was kept low.
Example 8
A film was molded and evaluated in the same manner as in Example 2 except that the stretching ratio was 2.6 times as the stretching condition. The results are shown in Table 2. The obtained stretched porous film had good moisture permeability of 2000 g / m 2 · 24 h or more and good texture. Further, the 5% stretch strength was kept high and the heat shrinkage rate in the machine direction was kept low.
Example 9
A film was molded and evaluated in the same manner as in Example 2 except that the stretching ratio was 3.8 times as the stretching condition. The results are shown in Table 2. The obtained stretched porous film had good moisture permeability of 2000 g / m 2 · 24 h or more and good texture. Further, the 5% stretch strength was kept high and the heat shrinkage rate in the machine direction was kept low.
Comparative Examples 1-4
A film was molded and evaluated in the same manner as in Example 1 except that the composition was changed to the composition shown in Table 1. The results are shown in Table 2.
Comparative Example 5
A film was molded and evaluated in the same manner as in Example 1 except that the stretching ratio was 1.7 times as the stretching condition. The results are shown in Table 2.
Comparative Example 6
A film was molded and evaluated in the same manner as in Example 2 except that the stretching ratio was 2.0 times as the stretching conditions. The results are shown in Table 2.
From the results of Comparative Examples 1 to 6, the moisture permeability was 2000 g / m 2 · 24 h or less, the 5% tensile strength was a low value, and there were many pinholes, and physical properties could not be evaluated.
Figure JPOXMLDOC01-appb-T000001
Explanation of symbols in Table 1 (Polyolefin resin, raw material)
A: Linear low density polyethylene [manufactured by Dow Chemical Co., Ltd., trade name: Dow Rex 2035G, density: 0.919 g / cm 3 , melt index: 6.0 g / 10 min. ]
B: Linear low density polyethylene [manufactured by Dow Chemical Co., Ltd., trade name: Dow Rex 2036P, density: 0.935 g / cm 3 , melt index: 2.5 g / 10 min. ]
C: Branched low density polyethylene [Mitsui DuPont Polychemical Co., Ltd., trade name: Mirason 16P, density: 0.917 g / cm 3 , melt index: 3.7 g / 10 min. ]
D: Branched low density polyethylene [manufactured by Asahi Kasei Chemicals Corporation, trade name: L1850K, density: 0.918 g / cm 3 , melt index: 6.7 g / 10 min. ]
E: Polypropylene [manufactured by Prime Polymer Co., Ltd., trade name: F-704NP, density: 0.900 g / cm 3 , MI: 2.8 g / 10 min. ]
F: polypropylene [manufactured by Nippon Polypro Co., Ltd., trade name: Wintech WFX4M, density: 0.900 g / cm 3 , MI: 2.8 g / 10 min. ]
G: Calcium carbonate [Product name: FL-520, manufactured by Imerizu Minerals Co., Ltd.]
H: Additive [Titanium oxide (manufactured by Huntsman Co., Ltd., trade name: TR28) 50% by mass, hindered phenol thermal stabilizer (manufactured by Ciba Japan Co., Ltd., trade name: IRGANOX3114) 20% by mass, phosphorus system Thermal Stabilizer (Ciba Japan Co., Ltd., trade name: IRGAFOS168) 30% by mass mixture]
(Extension conditions)
* 1: Uniaxial stretching (stretching ratio: 3.2 times) was performed only in the machine direction with a roll stretching machine set at 60 ° C., and then in-line annealing was performed with a heat set roll set at 90 ° C.
* 2: Uniaxial stretching was performed only in the machine direction with a roll stretching machine set at 60 ° C. (stretching ratio: 2.8 times), and then in-line annealing was performed with a heat set roll set at 90 ° C.
* 3: Uniaxial stretching (stretching ratio 2.6 times) was performed only in the machine direction with a roll stretching machine set at 60 ° C., and then in-line annealing was performed with a heat set roll set at 90 ° C.
* 4: Uniaxial stretching (stretching ratio 3.8 times) was performed only in the machine direction with a roll stretching machine set at 60 ° C., and then in-line annealing was performed with a heat set roll set at 90 ° C.
* 5: Uniaxial stretching (stretching ratio 1.7 times) was performed only in the machine direction with a roll stretching machine set at 60 ° C., and then in-line annealing was performed with a heat set roll set at 90 ° C.
* 6: Uniaxial stretching was performed only in the machine direction with a roll stretching machine set at 60 ° C. (stretching ratio: 2.0 times), and then in-line annealing was performed with a heat set roll set at 90 ° C.
Figure JPOXMLDOC01-appb-T000002
Effect of the Invention The stretched porous film of the present invention is highly excellent in 5% stretch strength in the machine direction. Therefore, when printing is performed on the stretched porous film, there is no shift in the print pitch, and the printed pattern is It becomes clear and the yield at the time of commercialization is improved. Furthermore, the texture and moisture permeability are good, and it can be usefully used for various applications of the porous film to which the printing is applied, including for disposable diapers.

Claims (5)

  1.  線形低密度ポリエチレン85~50質量%、分岐状低密度ポリエチレン10~35質量%、及びポリプロピレン5~25質量%から成るポリオレフィン100質量部ならびに無機充填剤80~200質量部含む樹脂組成物から成り、
    機械方向の5%伸張強度が3.5N/25mm以上、透湿度が2000g/m・24h以上、目付けが10~35g/mであることを特徴とする延伸多孔性フィルム。
    A resin composition comprising 100 parts by mass of polyolefin comprising 85 to 50% by mass of linear low density polyethylene, 10 to 35% by mass of branched low density polyethylene, and 5 to 25% by mass of polypropylene, and 80 to 200 parts by mass of an inorganic filler,
    A stretched porous film having a 5% tensile strength in the machine direction of 3.5 N / 25 mm or more, a moisture permeability of 2000 g / m 2 · 24 h or more, and a basis weight of 10 to 35 g / m 2 .
  2.  前記ポリオレフィンのメルト・インデックスが1~8g/10min.である、請求項1記載の延伸多孔性フィルム。 The melt index of the polyolefin is 1-8 g / 10 min. The stretched porous film according to claim 1, wherein
  3.  前記無機充填剤が炭酸カルシウムである、請求項1または2記載の延伸多孔性フィルム。 The stretched porous film according to claim 1 or 2, wherein the inorganic filler is calcium carbonate.
  4.  前記樹脂組成物のメルト・インデックスが2g/10min.以上である、請求項1~3のいずれか1項に記載の延伸多孔性フィルム。 The melt index of the resin composition is 2 g / 10 min. The stretched porous film according to any one of claims 1 to 3, which is as described above.
  5.  線形低密度ポリエチレン85~50質量%、分岐状低密度ポリエチレン10~35質量%、及びポリプロピレン5~25質量%から成るポリオレフィン100質量部ならびに無機充填剤80~200質量部を含む樹脂組成物をフィルム状に成形し、得られたフィルムを機械方向に2.6~5倍延伸し、次いで、機械方向の収縮率を3~20%に維持しながら、70~95℃の温度範囲で少なくとも0.2秒間熱固定することを特徴とする、請求項1記載の延伸多孔性フィルムの製造方法。 A resin composition containing 100 parts by mass of a polyolefin comprising 85 to 50% by mass of linear low density polyethylene, 10 to 35% by mass of branched low density polyethylene, and 5 to 25% by mass of polypropylene, and 80 to 200 parts by mass of an inorganic filler The film obtained was stretched 2.6 to 5 times in the machine direction, and then maintained at a shrinkage rate in the machine direction of 3 to 20%, at least in the temperature range of 70 to 95 ° C. The method for producing a stretched porous film according to claim 1, wherein the film is heat-fixed for 2 seconds.
PCT/JP2017/015207 2016-04-08 2017-04-06 Stretched porous film, and production method therefor WO2017175878A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780014492.1A CN108779279A (en) 2016-04-08 2017-04-06 Stretchable porous property film and its manufacturing method
JP2018510686A JP6859324B2 (en) 2016-04-08 2017-04-06 Stretched porous film and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016078143 2016-04-08
JP2016-078143 2016-04-08

Publications (1)

Publication Number Publication Date
WO2017175878A1 true WO2017175878A1 (en) 2017-10-12

Family

ID=60001145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015207 WO2017175878A1 (en) 2016-04-08 2017-04-06 Stretched porous film, and production method therefor

Country Status (3)

Country Link
JP (1) JP6859324B2 (en)
CN (1) CN108779279A (en)
WO (1) WO2017175878A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109705446A (en) * 2018-12-27 2019-05-03 佛山佛塑科技集团股份有限公司 A kind of modified polyolefin mother material and its preparation method and application
CN109734989A (en) * 2018-12-27 2019-05-10 佛山佛塑科技集团股份有限公司 A kind of film and its preparation method and application
WO2019130990A1 (en) * 2017-12-26 2019-07-04 株式会社トクヤマ Stretched porous film and method for producing same
JPWO2019107555A1 (en) * 2017-11-30 2020-11-26 株式会社トクヤマ Stretched porous film and its manufacturing method
WO2022104065A1 (en) * 2020-11-12 2022-05-19 Hanwha Azdel, Inc. In-line lamination process for producing decorative thermoplastic composite panels
WO2023074731A1 (en) * 2021-10-29 2023-05-04 株式会社トクヤマ Stretched porous film and method for producing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110343371A (en) * 2019-07-11 2019-10-18 惠州市国宏科技有限公司 A kind of netted transaudient sheet material of PET waterproof and its preparation method and application
JP7448407B2 (en) * 2020-04-09 2024-03-12 タキロンシーアイ株式会社 Stretch film and its manufacturing method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999045063A1 (en) * 1998-03-05 1999-09-10 Nippon Petrochemicals Co., Ltd. Polyolefin resin composition, laminate thereof, and process for producing the same
JP2001294717A (en) * 2000-02-09 2001-10-23 Mitsui Chemicals Inc Polyolefin resin composition and polyolefin film obtained therefrom
JP2002509496A (en) * 1997-11-04 2002-03-26 トレドガー フィルム プロダクツ コーポレイション Textured dimensionally stable microporous film and method of making same
JP2002515367A (en) * 1998-05-15 2002-05-28 クロペイ プラスチック プロダクツ カンパニー,インコーポレイテッド High speed production of microporous film products
JP2002249622A (en) * 2001-02-22 2002-09-06 Mitsui Chemicals Inc Porous film and preparation method for the same
JP2002307627A (en) * 2001-04-10 2002-10-23 Mitsui Chemicals Inc Method for manufacturing air permeable laminated film
JP2013154585A (en) * 2012-01-31 2013-08-15 Mitsubishi Plastics Inc Polyolefin-based film for laminate molding
JP2015123318A (en) * 2013-12-27 2015-07-06 日生化学株式会社 Foamed polyolefin film and package using the same
WO2015186532A1 (en) * 2014-06-03 2015-12-10 三菱樹脂株式会社 Porous film and storage bag
WO2015186809A1 (en) * 2014-06-04 2015-12-10 三菱樹脂株式会社 Moisture permeable film
JP2015229722A (en) * 2014-06-04 2015-12-21 三菱樹脂株式会社 Moisture-permeable film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6703439B2 (en) * 2000-02-09 2004-03-09 Mitsui Chemicals, Inc. Polyolefin resin composition and polyolefin film prepared from the same
US9502705B2 (en) * 2010-12-22 2016-11-22 Toray Battery Separator Film Co., Ltd. Microporous film, methods for making such film, and use for such film as battery separator film

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002509496A (en) * 1997-11-04 2002-03-26 トレドガー フィルム プロダクツ コーポレイション Textured dimensionally stable microporous film and method of making same
WO1999045063A1 (en) * 1998-03-05 1999-09-10 Nippon Petrochemicals Co., Ltd. Polyolefin resin composition, laminate thereof, and process for producing the same
JP2002515367A (en) * 1998-05-15 2002-05-28 クロペイ プラスチック プロダクツ カンパニー,インコーポレイテッド High speed production of microporous film products
JP2001294717A (en) * 2000-02-09 2001-10-23 Mitsui Chemicals Inc Polyolefin resin composition and polyolefin film obtained therefrom
JP2002249622A (en) * 2001-02-22 2002-09-06 Mitsui Chemicals Inc Porous film and preparation method for the same
JP2002307627A (en) * 2001-04-10 2002-10-23 Mitsui Chemicals Inc Method for manufacturing air permeable laminated film
JP2013154585A (en) * 2012-01-31 2013-08-15 Mitsubishi Plastics Inc Polyolefin-based film for laminate molding
JP2015123318A (en) * 2013-12-27 2015-07-06 日生化学株式会社 Foamed polyolefin film and package using the same
WO2015186532A1 (en) * 2014-06-03 2015-12-10 三菱樹脂株式会社 Porous film and storage bag
WO2015186809A1 (en) * 2014-06-04 2015-12-10 三菱樹脂株式会社 Moisture permeable film
JP2015229722A (en) * 2014-06-04 2015-12-21 三菱樹脂株式会社 Moisture-permeable film

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019107555A1 (en) * 2017-11-30 2020-11-26 株式会社トクヤマ Stretched porous film and its manufacturing method
WO2019130990A1 (en) * 2017-12-26 2019-07-04 株式会社トクヤマ Stretched porous film and method for producing same
JPWO2019130990A1 (en) * 2017-12-26 2020-12-10 株式会社トクヤマ Stretched porous film and its manufacturing method
JP7112430B2 (en) 2017-12-26 2022-08-03 株式会社トクヤマ Stretched porous film and manufacturing method thereof
CN109705446A (en) * 2018-12-27 2019-05-03 佛山佛塑科技集团股份有限公司 A kind of modified polyolefin mother material and its preparation method and application
CN109734989A (en) * 2018-12-27 2019-05-10 佛山佛塑科技集团股份有限公司 A kind of film and its preparation method and application
WO2022104065A1 (en) * 2020-11-12 2022-05-19 Hanwha Azdel, Inc. In-line lamination process for producing decorative thermoplastic composite panels
WO2022104075A3 (en) * 2020-11-12 2022-06-23 Hanwha Azdel, Inc. In-line lamination process for producing thermoplastic composite panels with textured film layers
WO2023074731A1 (en) * 2021-10-29 2023-05-04 株式会社トクヤマ Stretched porous film and method for producing same

Also Published As

Publication number Publication date
JPWO2017175878A1 (en) 2019-02-14
JP6859324B2 (en) 2021-04-14
CN108779279A (en) 2018-11-09

Similar Documents

Publication Publication Date Title
JP6859324B2 (en) Stretched porous film and its manufacturing method
CN102395623B (en) Porous polypropylene film
CN111417676B (en) Stretched porous film and method for producing same
EP1245620A2 (en) Polypropylene base porous film and production process for the same
WO2014088065A1 (en) Moisture vapor permeable film and method for manufacturing same
JP7112430B2 (en) Stretched porous film and manufacturing method thereof
JP4894794B2 (en) Polyolefin resin porous membrane
JPH0925372A (en) Moisture-permeable film
JP4540858B2 (en) Porous film and method for producing the same
KR20010012600A (en) Unstretched polypropylene molding
JP2006241276A (en) Polyethylene-based porous film
WO2021205805A1 (en) Stretch film and method for producing same
JP2015229722A (en) Moisture-permeable film
JP6413671B2 (en) Moisture permeable waterproof film and moisture permeable waterproof sheet
JP2002146070A (en) Polypropylene-based porous film and method for producing the same
TW202337976A (en) Stretched porous film and method for producing the same
JP2016102203A (en) Porous film, and moisture-permeable waterproof sheet
KR20240087632A (en) Stretched porous film and its manufacturing method
JP4742213B2 (en) Polyolefin resin degreasing film
JP2007016064A (en) Method for producing polyethylene-based porous film
JPH08231775A (en) Polyolefin composition
JP2022108630A (en) Stretchable film
JPH1135715A (en) Production of porous film
JP2005263862A (en) Porous film
JP2005126694A (en) Ethylenic polymer composition for high-speed drawn film-forming and method for producing porous film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018510686

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17779255

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17779255

Country of ref document: EP

Kind code of ref document: A1