JP7109584B2 - Thickness measuring device and thickness measuring method - Google Patents

Thickness measuring device and thickness measuring method Download PDF

Info

Publication number
JP7109584B2
JP7109584B2 JP2020558186A JP2020558186A JP7109584B2 JP 7109584 B2 JP7109584 B2 JP 7109584B2 JP 2020558186 A JP2020558186 A JP 2020558186A JP 2020558186 A JP2020558186 A JP 2020558186A JP 7109584 B2 JP7109584 B2 JP 7109584B2
Authority
JP
Japan
Prior art keywords
thickness measuring
holding
thickness
holding member
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020558186A
Other languages
Japanese (ja)
Other versions
JPWO2020110532A1 (en
Inventor
敏通 馬場
幸博 徳
祐作 山井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2020110532A1 publication Critical patent/JPWO2020110532A1/en
Application granted granted Critical
Publication of JP7109584B2 publication Critical patent/JP7109584B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H5/00Feeding articles separated from piles; Feeding articles to machines
    • B65H5/08Feeding articles separated from piles; Feeding articles to machines by grippers, e.g. suction grippers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Feeding Of Articles By Means Other Than Belts Or Rollers (AREA)

Description

本発明は厚み測定装置および厚み測定方法に関する。 The present invention relates to a thickness measuring device and a thickness measuring method.

たとえば実開平7-12347号公報(特許文献1)には、複数枚積層された、厚みの測定対象物としての板材を上から1枚ずつ搬送する装置が開示されている。実開平7-12347号公報では、複数枚積層された板材のうち最も上の1枚が上方から吸引器により保持され、搬送される。このとき、複数枚の板材が保持されるのを防止するため、マグネットセパレータが用いられる。マグネットセパレータにより、複数枚の板材は1枚ずつに分離される。分離された板材は、厚み検出装置により、1枚であるかそれ以上であるかが検出される。 For example, Japanese Utility Model Laying-Open No. 7-12347 (Patent Document 1) discloses an apparatus for conveying a plurality of stacked plate materials as thickness measurement objects one by one from above. In Japanese Utility Model Laid-Open No. 7-12347, the uppermost one of a plurality of laminated plate materials is held from above by a suction device and conveyed. At this time, a magnetic separator is used to prevent a plurality of plate materials from being held. The plurality of plate materials are separated one by one by the magnetic separator. A thickness detection device detects whether the separated plate material is one or more.

実開平7-12347号公報Japanese Utility Model Laid-Open No. 7-12347

しかしながら、実開平7-12347号公報の板材の搬送装置によれば、板材の厚みが薄い場合、非接触な方法では正確な厚み検出ができないという問題がある。ここで板材の厚みが薄いとは、厚みが概ね0.1mm以下であることをいう。これは薄い板材の反りおよびうねりの影響による。ここでうねりとは、反りが厚み寸法に設定する公差の範囲内に収まっていることをいう。接触式センサで板材の厚みを検出する場合、接触式センサと板材とが接触するのは板材の表面の一部のみになる。このため板材にキズおよび凹凸が発生する。またこのため板材に異物が発生したり異物が噛み込んだりする。以上により板材の厚みが正確に検出できない場合がある。また以上により板材の厚みの検出に多くの時間を要する場合がある。 However, according to the plate material conveying apparatus disclosed in Japanese Utility Model Laid-Open No. 7-12347, there is a problem that when the thickness of the plate material is thin, accurate thickness detection cannot be performed by the non-contact method. Here, the thin plate means that the thickness is approximately 0.1 mm or less. This is due to the effects of warping and waviness of the thin plate material. Here, undulation means that the warpage is within the range of tolerance set for the thickness dimension. When the contact sensor detects the thickness of the plate, only a part of the surface of the plate is in contact with the contact sensor. As a result, scratches and irregularities occur in the plate material. In addition, for this reason, foreign matter is generated in the plate material, or foreign matter is caught in the plate material. Due to the above, the thickness of the plate may not be detected accurately. In addition, due to the above, it may take a long time to detect the thickness of the plate material.

本発明は上記の課題に鑑みなされたものである。その目的は、積層された測定対象物の厚みが薄い場合であっても、非接触にて正確な厚みを検出できる厚み測定装置および厚み測定方法を提供することである。 The present invention has been made in view of the above problems. It is an object of the present invention to provide a thickness measuring device and a thickness measuring method capable of detecting an accurate thickness in a non-contact manner even when the thickness of a laminated object to be measured is thin.

本発明の厚み測定装置は、保持搬送機構部と、厚み測定機構部とを備える。保持搬送機構部は、測定対象物に接する剛体材料からなる保持部材と、保持部材に接する弾性体部材と、弾性体部材の保持部材と反対側に接する剛体材料からなる継手部材とを含む。厚み測定機構部は、保持部材に対向し保持部材との間に測定対象物を挟持可能な剛体材料からなるベース部材を含む。 A thickness measuring device of the present invention includes a holding/conveying mechanism section and a thickness measuring mechanism section. The holding/conveying mechanism includes a holding member made of a rigid material that contacts the object to be measured, an elastic member that contacts the holding member, and a joint member made of a rigid material that contacts the elastic member on the side opposite to the holding member. The thickness measuring mechanism section includes a base member made of a rigid material that faces the holding member and can sandwich the measurement object between itself and the holding member.

本発明の厚み測定方法では、保持部材に測定対象物を保持させながら、ベース部材上に測定対象物が載置される。ベース部材上に載置された測定対象物がベース部材側に押圧される。ベース部材上に押圧された測定対象物の厚みが測定される。 In the thickness measuring method of the present invention, the object to be measured is placed on the base member while holding the object to be measured by the holding member. An object to be measured placed on the base member is pressed toward the base member. The thickness of the measurement object pressed onto the base member is measured.

本発明によれば、保持部材に接する弾性体部材により、ベース部材の表面に測定対象物を押圧することで、板材の反りおよびうねりを矯正することができる。これにより、非接触にて測定対象物の正確な厚みを検出することができる。 According to the present invention, by pressing the object to be measured against the surface of the base member with the elastic member in contact with the holding member, it is possible to correct warpage and undulation of the plate material. As a result, the accurate thickness of the object to be measured can be detected in a non-contact manner.

実施の形態1に係る厚み測定装置の特徴的な部分の構成を示す概略平面図である。FIG. 2 is a schematic plan view showing the configuration of a characteristic portion of the thickness measuring device according to Embodiment 1; 実施の形態1に係る厚み測定装置の特徴的な部分の構成を示す概略正面図である。2 is a schematic front view showing the configuration of a characteristic portion of the thickness measuring device according to Embodiment 1; FIG. 実施の形態1に係る厚み測定装置を用いた厚み測定方法の第1工程を示す概略平面図である。FIG. 4 is a schematic plan view showing a first step of a thickness measuring method using the thickness measuring device according to Embodiment 1; 実施の形態1に係る厚み測定装置を用いた厚み測定方法の第1工程を示す概略正面図である。FIG. 2 is a schematic front view showing a first step of a thickness measuring method using the thickness measuring device according to Embodiment 1; 実施の形態1に係る厚み測定装置を用いた厚み測定方法の第2工程を示す概略正面図である。5 is a schematic front view showing a second step of the thickness measuring method using the thickness measuring device according to Embodiment 1; FIG. 実施の形態1に係る厚み測定装置を用いた厚み測定方法の第3工程を示す概略正面図である。4 is a schematic front view showing a third step of the thickness measuring method using the thickness measuring device according to Embodiment 1; FIG. 実施の形態1に係る厚み測定装置を用いた厚み測定方法の第4工程を示す概略正面図である。FIG. 7 is a schematic front view showing a fourth step of the thickness measuring method using the thickness measuring device according to Embodiment 1; 実施の形態2に係る厚み測定装置の特徴的な部分の構成を示す概略正面図である。FIG. 11 is a schematic front view showing the configuration of a characteristic portion of a thickness measuring device according to Embodiment 2; 実施の形態2に係る厚み測定装置を用いた厚み測定方法の第1工程を示す概略正面図である。FIG. 10 is a schematic front view showing a first step of a thickness measuring method using a thickness measuring device according to Embodiment 2; 実施の形態2に係る厚み測定装置を用いた厚み測定方法の第2工程を示す概略正面図である。FIG. 11 is a schematic front view showing a second step of the thickness measuring method using the thickness measuring device according to Embodiment 2; 実施の形態2に係る厚み測定装置を用いた厚み測定方法の第3工程を示す概略正面図である。FIG. 11 is a schematic front view showing a third step of the thickness measuring method using the thickness measuring device according to Embodiment 2; 実施の形態3に係る厚み測定装置の特徴的な部分の構成を示す概略正面図である。FIG. 11 is a schematic front view showing the configuration of a characteristic portion of a thickness measuring device according to Embodiment 3; 実施の形態3に係る厚み測定装置を用いた厚み測定方法の第1工程を示す概略正面図である。FIG. 11 is a schematic front view showing a first step of a thickness measuring method using a thickness measuring device according to Embodiment 3; 実施の形態3に係る厚み測定装置を用いた厚み測定方法の第2工程を示す概略正面図である。FIG. 11 is a schematic front view showing a second step of a thickness measuring method using a thickness measuring device according to Embodiment 3; 実施の形態3に係る厚み測定装置を用いた厚み測定方法の第3工程を示す概略正面図である。FIG. 11 is a schematic front view showing a third step of a thickness measuring method using a thickness measuring device according to Embodiment 3; 実施の形態4に係る厚み測定装置の特徴的な部分の構成を示す概略正面図である。FIG. 11 is a schematic front view showing the configuration of a characteristic portion of a thickness measuring device according to Embodiment 4; 実施の形態4に係る厚み測定装置を用いた厚み測定方法の第1工程を示す概略正面図である。FIG. 11 is a schematic front view showing a first step of a thickness measuring method using a thickness measuring device according to Embodiment 4; 実施の形態4に係る厚み測定装置を用いた厚み測定方法の第2工程を示す概略正面図である。FIG. 11 is a schematic front view showing a second step of a thickness measuring method using a thickness measuring device according to Embodiment 4; 実施の形態4に係る厚み測定装置を用いた厚み測定方法の第3工程を示す概略正面図である。FIG. 11 is a schematic front view showing a third step of a thickness measuring method using a thickness measuring device according to Embodiment 4; 実施の形態5に係る厚み測定装置の特徴的な部分の構成を示す概略平面図である。FIG. 11 is a schematic plan view showing the configuration of a characteristic portion of a thickness measuring device according to Embodiment 5; 実施の形態5に係る厚み測定装置の特徴的な部分の構成を示す概略正面図である。FIG. 11 is a schematic front view showing the configuration of a characteristic portion of a thickness measuring device according to Embodiment 5;

以下、実施の形態について図に基づいて説明する。
実施の形態1.
図1は、実施の形態1に係る厚み測定装置の特徴的な部分の構成を示す概略平面図である。図2は、実施の形態1に係る厚み測定装置の特徴的な部分の構成を示す概略正面図である。まず図1および図2を用いて、実施の形態1に係る厚み測定装置の特徴的な部分の構成について説明する。
Embodiments will be described below with reference to the drawings.
Embodiment 1.
FIG. 1 is a schematic plan view showing the configuration of a characteristic portion of the thickness measuring device according to Embodiment 1. FIG. FIG. 2 is a schematic front view showing the configuration of a characteristic portion of the thickness measuring device according to Embodiment 1. FIG. First, with reference to FIGS. 1 and 2, the configuration of the characteristic portion of the thickness measuring device according to Embodiment 1 will be described.

図1および図2を参照して、実施の形態1に係る厚み測定装置100は、保持搬送機構部1と、厚み測定機構部2とを主に備えている。保持搬送機構部1は、厚みの測定対象物としての薄板9を保持および搬送する部材である。ここで保持とは言い替えればたとえば吸着を意味する。なお薄板9は厚み測定装置100の構成要素ではないため図2中では点線で示す。すなわち保持搬送機構部1は、たとえば図示されないマガジン内において位置を規制されて複数積層された薄板9から、たとえば最上層の1枚の薄板9のみ分離されたものを保持する。保持搬送機構部1は、保持した1枚の薄板9を、厚み測定装置100に含まれる厚み測定機構部2へと搬送する。薄板9が金属製である場合、1枚の薄板9の分離は、たとえば厚み測定装置100とは別機構としての図示されない一般公知のマグネットセパレータにより行なわれる。ただし薄板9は非磁性体の金属製であってもよい。また薄板9はプラスチック製であってもよい。この場合にはマグネットセパレータ以外の、積層された複数の薄板9から1枚のみ分離することが可能な一般公知の機構が用いられればよい。 Referring to FIGS. 1 and 2, thickness measuring apparatus 100 according to Embodiment 1 mainly includes holding/conveying mechanism section 1 and thickness measuring mechanism section 2 . The holding and transporting mechanism unit 1 is a member that holds and transports a thin plate 9 as an object to be measured for thickness. In other words, holding here means, for example, adsorption. Since the thin plate 9 is not a component of the thickness measuring device 100, it is indicated by a dotted line in FIG. That is, the holding/conveying mechanism 1 holds, for example, only one thin plate 9, which is the uppermost layer, separated from a plurality of thin plates 9 stacked in a magazine (not shown) with their positions regulated. The holding/conveying mechanism section 1 conveys the held thin plate 9 to the thickness measuring mechanism section 2 included in the thickness measuring device 100 . When the thin plate 9 is made of metal, the separation of one thin plate 9 is performed by a generally known magnetic separator (not shown) as a separate mechanism from the thickness measuring device 100, for example. However, the thin plate 9 may be made of non-magnetic metal. The thin plate 9 may also be made of plastic. In this case, a generally known mechanism capable of separating only one thin plate from the plurality of laminated thin plates 9 may be used, other than the magnetic separator.

保持搬送機構部1は、保持部材11と、弾性体部材12と、継手部材10とを含んでいる。保持部材11は、薄板9に接する、すなわち薄板9を保持する部材である。図2の保持部材11はZ方向の上側に主表面11aを有し、これと反対側であるZ方向の下側には主表面11bを有する。主表面11aおよび主表面11bは、たとえば平面視において矩形状を有している。主表面11aおよび主表面11bは、XY平面に沿って拡がっている。主表面11aと主表面11bとのZ方向に関する間隔は、保持部材11の厚みである。ただし主表面11a,11bの形状はこれに限らず、たとえば円形状または楕円形状であってもよい。保持部材11は金属などの、たとえばヤング率が200GPa程度であり、100N程度の力を加えてもほぼ変形しない剛体の材料からなるように形成されている。保持部材11の主表面11a,11bは、薄板9よりも大きい面積を有することが好ましい。また保持部材11の薄板9が保持するたとえば主表面11bは、薄板9の有する反りおよびうねりを矯正することが可能な程度の平面度を有することが好ましい。 The holding/conveying mechanism section 1 includes a holding member 11 , an elastic member 12 and a joint member 10 . The holding member 11 is a member that contacts the thin plate 9 , that is, holds the thin plate 9 . The holding member 11 of FIG. 2 has a main surface 11a on the upper side in the Z direction and a main surface 11b on the lower side in the Z direction opposite thereto. Main surface 11a and main surface 11b have, for example, a rectangular shape in plan view. Main surface 11a and main surface 11b extend along the XY plane. The distance between main surfaces 11 a and 11 b in the Z direction is the thickness of holding member 11 . However, the shape of the main surfaces 11a and 11b is not limited to this, and may be, for example, circular or elliptical. The holding member 11 is made of a rigid material, such as metal, which has a Young's modulus of about 200 GPa and does not substantially deform even when a force of about 100 N is applied. The main surfaces 11 a and 11 b of the holding member 11 preferably have areas larger than the thin plate 9 . For example, the main surface 11b held by the thin plate 9 of the holding member 11 preferably has a degree of flatness capable of correcting the warp and undulation of the thin plate 9 .

弾性体部材12は、保持部材11に接するように配置される。図2においては一例として、弾性体部材12は保持部材11の上側の主表面11aに接するように配置されている。弾性体部材12はゴムまたは樹脂のような、たとえばヤング率が1MPa程度であり、100N程度の力を加えれば0.1mm以上変形する弾性を有する部材からなるように形成されている。弾性体部材12も平面視においてたとえば矩形状の主表面が1対、互いに間隔をあけて配置される。これにより弾性体部材12はZ方向の厚みを有する矩形状の部材である。ただし弾性体部材12の主表面は円形状または楕円形状であってもよい。当該主表面は、XY平面に沿って拡がっている。以上により、弾性体部材12は、薄板9から見て、1つの剛体材料の部材である保持部材11を挟んで、その保持部材11の直上に配置される。 The elastic member 12 is arranged so as to be in contact with the holding member 11 . In FIG. 2, as an example, the elastic member 12 is arranged so as to contact the upper main surface 11a of the holding member 11 . The elastic member 12 is made of an elastic member such as rubber or resin, which has a Young's modulus of about 1 MPa and is deformed by 0.1 mm or more when a force of about 100 N is applied. The elastic member 12 also has a pair of, for example, rectangular main surfaces in a plan view, which are spaced apart from each other. Thus, the elastic member 12 is a rectangular member having a thickness in the Z direction. However, the main surface of the elastic member 12 may be circular or elliptical. The main surface extends along the XY plane. As described above, when viewed from the thin plate 9, the elastic member 12 is arranged directly above the holding member 11 sandwiching the holding member 11, which is a member made of one rigid material.

継手部材10は、弾性体部材12の保持部材11と反対側に接する。具体的には、図2では保持部材11は弾性体部材12のZ方向の下側に接している。このため図2では継手部材10は、弾性体部材12のZ方向の上側に接している。継手部材10は金属などの、たとえばヤング率が200GPa程度であり、100N程度の力を加えてもほぼ変形しない剛体の材料からなるように形成されている。継手部材10は、ロボットまたは直交軸を組み合わせて3次元的に駆動する図示されない駆動機に取り付けられる。したがって継手部材10を含む保持搬送機構部1の全体は、X方向、Y方向およびZ方向の各方向に移動可能となり、薄板9を任意の位置に配置することが可能とされる。以上により、弾性体部材12は、保持部材11と継手部材10との間に設けられる。なお継手部材10は、弾性体部材12とは別体であることが好ましい。継手として作用する観点から、剛性を有する部材であることが好ましいためである。 The joint member 10 contacts the side of the elastic member 12 opposite to the holding member 11 . Specifically, in FIG. 2, the holding member 11 is in contact with the lower side of the elastic member 12 in the Z direction. Therefore, in FIG. 2, the joint member 10 is in contact with the upper side of the elastic member 12 in the Z direction. The joint member 10 is made of a rigid material, such as metal, which has a Young's modulus of about 200 GPa and is substantially not deformed even when a force of about 100 N is applied. The joint member 10 is attached to a robot or a driving machine (not shown) that three-dimensionally drives by combining orthogonal axes. Therefore, the entire holding/conveying mechanism 1 including the joint member 10 can move in the X, Y, and Z directions, and the thin plate 9 can be arranged at any position. As described above, the elastic member 12 is provided between the holding member 11 and the joint member 10 . The joint member 10 is preferably separate from the elastic member 12 . This is because it is preferable that the member has rigidity from the viewpoint of acting as a joint.

図2の保持搬送機構部1はZ方向の下側から上側へ、保持部材11、弾性体部材12、継手部材10の順に配置される。しかしこのような順序に限られない。たとえばZ方向の上側から下側へ、保持部材11、弾性体部材12、継手部材10の順に配置されてもよい。保持部材11と弾性体部材12と継手部材10とが、接着剤または両面テープなどにより互いに接合されている。これにより、保持部材11と弾性体部材12と継手部材10とが一体とされた保持搬送機構部1が形成されている。 2, the holding member 11, the elastic member 12, and the joint member 10 are arranged in this order from the bottom to the top in the Z direction. However, the order is not limited to this. For example, the holding member 11, the elastic member 12, and the joint member 10 may be arranged in this order from the upper side to the lower side in the Z direction. The holding member 11, the elastic member 12, and the joint member 10 are joined together with an adhesive, double-sided tape, or the like. As a result, the holding and transporting mechanism 1 in which the holding member 11, the elastic member 12, and the joint member 10 are integrated is formed.

保持部材11には、第1の空路13が形成されている。第1の空路13は、保持部材11のうち薄板9を保持する主表面11bから、保持部材11の内部を延びるように形成されている。主表面11bでの第1の空路13はX方向またはY方向に間隔をあけて複数形成されてもよい。主表面11bには、薄板9を保持固定するために必要な数だけ、第1の空路13が形成される。またそれらの複数形成された第1の空路13が図2のように保持部材11の内部にて一体となるように接続されてもよい。第1の空路13は図示されない真空ポンプなどに繋がれている。これにより第1の空路13の内部は、保持部材11が設置される環境、すなわちたとえば大気圧の環境よりも低い空気圧とすることが可能である。 A first air passage 13 is formed in the holding member 11 . First air passage 13 is formed to extend inside holding member 11 from main surface 11 b of holding member 11 that holds thin plate 9 . A plurality of first air passages 13 on the main surface 11b may be formed at intervals in the X direction or the Y direction. The main surface 11b is formed with the first air passages 13 as many as necessary for holding and fixing the thin plates 9. As shown in FIG. Also, the plurality of first air passages 13 may be connected together inside the holding member 11 as shown in FIG. The first air passage 13 is connected to a vacuum pump (not shown) or the like. As a result, the inside of the first air passage 13 can be made to have a lower air pressure than the environment in which the holding member 11 is installed, that is, for example, the atmospheric pressure environment.

厚み測定装置100の保持部材11には、通し穴14が形成されている。通し穴14は主表面11aから主表面11bまで保持部材11を貫通するように形成されている。通し穴14の代わりに切欠き部が形成されてもよい。通し穴14は、後述する厚み測定機構部2から厚みの測定のために放出されるレーザ光を通過させるために形成されている。保持部材11には、厚みを測定したい箇所の数に応じて任意の数だけ通し穴14または切欠き部が形成される。厚み測定装置100においては、一例として1つの通し穴14のみが形成されている。図1および図2に示すように、保持部材11は、弾性体部材12および継手部材10に比べて、平面視におけるサイズが大きいことが好ましい。この場合、保持部材11は弾性体部材12および継手部材10と重ねることで、弾性体部材12および継手部材10に対してはみ出る領域が形成される。この保持部材11がはみ出た領域に通し穴14などが形成されることが好ましい。 A through hole 14 is formed in the holding member 11 of the thickness measuring device 100 . Through hole 14 is formed so as to penetrate holding member 11 from main surface 11a to main surface 11b. A notch may be formed instead of the through hole 14 . The through-hole 14 is formed to pass a laser beam emitted for thickness measurement from the thickness measuring mechanism 2, which will be described later. An arbitrary number of through-holes 14 or notches are formed in the holding member 11 according to the number of locations whose thickness is to be measured. In the thickness measuring device 100, only one through-hole 14 is formed as an example. As shown in FIGS. 1 and 2, it is preferable that the holding member 11 is larger than the elastic member 12 and the joint member 10 in plan view. In this case, the holding member 11 overlaps the elastic member 12 and the joint member 10 to form a region protruding from the elastic member 12 and the joint member 10 . A through hole 14 or the like is preferably formed in the region where the holding member 11 protrudes.

通し穴14は、主表面11a側すなわちZ方向の上側では、XY平面を平面視したときにいわゆる長穴形状であることが好ましい。通し穴14は、主表面11b側すなわちZ方向の下側では、XY平面を平面視したときにたとえば円形状であることが好ましい。ここで長穴形状とは、たとえばY方向の寸法がX方向の寸法よりも長くなるように一方向に長く形成された形状を意味する。通し穴14の主表面11a側は、たとえばある半径を有する円形状がそのY方向中央部にてY方向に直線状に延びることにより、Y方向寸法がX方向寸法よりも長くなった平面形状を有している。これに対し、通し穴14の主表面11b側は、たとえば主表面11a側とほぼ等しい値の半径を有する円形状である。このため通し穴14は、主表面11a側の方が主表面11b側よりも平面積が大きい。 It is preferable that the through hole 14 has a so-called elongated shape when the XY plane is viewed from above on the side of the main surface 11a, that is, on the upper side in the Z direction. The through hole 14 preferably has a circular shape on the main surface 11b side, that is, on the lower side in the Z direction, when the XY plane is viewed from above. Here, the elongated hole shape means a shape elongated in one direction so that the dimension in the Y direction is longer than the dimension in the X direction. On the main surface 11a side of the through hole 14, for example, a circular shape having a certain radius extends linearly in the Y direction at the center in the Y direction, thereby forming a planar shape in which the Y dimension is longer than the X dimension. have. On the other hand, the main surface 11b side of the through hole 14 has a circular shape having a radius substantially equal to that of the main surface 11a side, for example. Therefore, the plane area of the through hole 14 is larger on the main surface 11a side than on the main surface 11b side.

このように通し穴14を主表面11a側にて主表面11b側より大きくすることで、後述するレーザ光が通し穴14内に入射されやすくなる。通し穴14の長手方向であるたとえばY方向の寸法は、レーザ光の入射角および反射角を考慮して決定される。また通し穴14を主表面11b側にて主表面11a側よりも平面積を小さくすることで、薄板9の反りおよびうねりをより局所的に矯正することができる。その結果、厚み測定装置100が薄板9の厚みを測定する精度を向上できる。 By making the through hole 14 larger on the main surface 11 a side than on the main surface 11 b side in this way, laser light, which will be described later, is more likely to enter the through hole 14 . The dimension of through-hole 14 in the longitudinal direction, for example, the Y direction, is determined in consideration of the incident angle and reflection angle of the laser beam. Further, by making the plane area of the through hole 14 smaller on the main surface 11b side than on the main surface 11a side, the warp and undulation of the thin plate 9 can be corrected more locally. As a result, the thickness measuring device 100 can improve the accuracy of measuring the thickness of the thin plate 9 .

厚み測定機構部2は、薄板9の図2におけるZ方向の厚みを測定する部材である。厚み測定機構部2は、ベース部材20と、レーザ変位計21とを含んでいる。図2においてZ方向の下方の図示が省略されているが、ベース部材20は、Z方向の上側に主表面20aを有し、これと反対側であるZ方向の下側にも主表面を有する。主表面20aは、たとえば平面視において矩形状を有している。ただし主表面20aの形状はこれに限らず、たとえば円形状または楕円形状であってもよい。主表面20aは、XY平面に沿って拡がっている。ベース部材20は剛体の材料により形成されている。 The thickness measuring mechanism 2 is a member that measures the thickness of the thin plate 9 in the Z direction in FIG. The thickness measuring mechanism section 2 includes a base member 20 and a laser displacement gauge 21 . Although illustration of the lower side in the Z direction is omitted in FIG. 2, the base member 20 has a main surface 20a on the upper side in the Z direction and also has a main surface on the lower side in the Z direction opposite to this. . Main surface 20a has, for example, a rectangular shape in plan view. However, the shape of main surface 20a is not limited to this, and may be circular or elliptical, for example. The main surface 20a extends along the XY plane. The base member 20 is made of rigid material.

ベース部材20の主表面20aは、その真上に保持部材11が対向する構成となっている。すなわち主表面20aの真上に保持部材11の主表面11bが対向可能となっている。主表面20aは保持部材11に保持された薄板9が押し付けられることが可能となる。すなわち保持搬送機構部1により薄板9が押し付けられれば、主表面20aは薄板9に接することが可能である。このとき薄板9は、ベース部材20と保持部材11との間に配置されながらこれら両者に接触する。言い換えれば、ベース部材20は、保持部材11に対向し、保持部材11との間に薄板9を挟持可能である。主表面20aは、ここに押し付けられる薄板9の有する反りおよびうねりを矯正することが可能な程度の平面度を有することが好ましい。 A main surface 20a of the base member 20 is configured to face the holding member 11 right thereabove. That is, the main surface 11b of the holding member 11 can face directly above the main surface 20a. The thin plate 9 held by the holding member 11 can be pressed against the main surface 20a. That is, when thin plate 9 is pressed by holding/conveying mechanism 1 , main surface 20 a can come into contact with thin plate 9 . At this time, the thin plate 9 is arranged between the base member 20 and the holding member 11 and contacts them. In other words, the base member 20 faces the holding member 11 and can sandwich the thin plate 9 between itself and the holding member 11 . It is preferable that the main surface 20a has a degree of flatness capable of correcting the warp and undulation of the thin plate 9 pressed thereon.

なお図2においては弾性体部材12は1層のみ配置されている。しかし剛体材料の保持部材11の主表面11bと、剛体材料のベース部材20の主表面20aとがほぼ平行となるように配置可能であれば、弾性体部材12は複数層の構成であってもよい。すなわち弾性体部材12は、弾性体材料からなる層と剛性材料からなる層とが積層された構成であってもよい。なおこの場合、少なくとも弾性体部材12を構成する複数層のうち、保持部材11に接触する最下層と、継手部材10に接触する最上層とは弾性体材料からなることがより好ましい。 In FIG. 2, only one layer of the elastic member 12 is arranged. However, if the main surface 11b of the holding member 11 made of a rigid material and the main surface 20a of the base member 20 made of a rigid material can be arranged substantially parallel, the elastic member 12 can be composed of a plurality of layers. good. That is, the elastic member 12 may have a structure in which a layer made of an elastic material and a layer made of a rigid material are laminated. In this case, at least the bottom layer in contact with the holding member 11 and the top layer in contact with the joint member 10 among the plurality of layers constituting the elastic member 12 are more preferably made of an elastic material.

ベース部材20には、第2の空路22が形成されている。第2の空路22は、ベース部材20のうち薄板9を保持する主表面20aから、ベース部材20の内部を延びるように形成されている。主表面20aでの第2の空路22はX方向またはY方向に間隔をあけて複数形成されてもよい。主表面20aには、油等が付着した薄板9との表面張力による接合状態を解除するために必要な数だけ、第2の空路22が形成される。またそれらの複数形成された第2の空路22が図2のようにベース部材20の内部にて一体となるように接続されてもよい。第2の空路22は図示されない加圧装置などに繋がれてもよい。この場合、これにより第2の空路22の内部は、圧縮空気などにより、ベース部材20が設置される環境、すなわちたとえば大気圧の環境よりも高い空気圧とすることが可能である。ただし第2の空路22は図示されない真空ポンプなどに繋がれてもよい。この場合、これにより第2の空路22の内部は、真空圧により、ベース部材20が設置されるたとえば大気圧の環境よりも低い空気圧とすることが可能である。このような構成であってもよい。 A second air passage 22 is formed in the base member 20 . Second air passage 22 is formed to extend inside base member 20 from main surface 20 a of base member 20 that holds thin plate 9 . A plurality of second air passages 22 on the main surface 20a may be formed at intervals in the X direction or the Y direction. The main surface 20a is formed with the second air passages 22 as many as necessary to release the bonded state due to the surface tension with the thin plate 9 to which oil or the like is adhered. Also, the plurality of second air passages 22 formed therein may be connected integrally inside the base member 20 as shown in FIG. The second air passage 22 may be connected to a pressure device or the like (not shown). In this case, the inside of the second air passage 22 can be made to have a higher air pressure than the environment in which the base member 20 is installed, ie, the atmospheric pressure environment. However, the second air passage 22 may be connected to a vacuum pump or the like (not shown). In this case, this allows the interior of the second air passage 22 to have a lower air pressure than, for example, the atmospheric pressure environment in which the base member 20 is installed. Such a configuration may be used.

図1に示すように、第1の空路13と第2の空路22とは、平面視においてほぼ重なるように形成されることが好ましいが、このような態様に限られない。一例として図1では、主表面11bには、X方向およびY方向に互いに間隔をあけて3つずつ、合計9つの第1の空路13が形成されている。また主表面20aには、上記合計9つの第1の空路13と平面視にてほぼ重なる位置に、合計9つの第2の空路22が形成されている。たとえば合計9つの第1の空路13が保持部材11内にて一体となる。その一体となった第1の空路13が部分的に図1のように、平面視でのたとえば右上の位置から保持部材11の外部に通じている。これと同様に、たとえば合計9つの第2の空路22がベース部材20内にて一体となる。その一体となった第2の空路22が部分的に図1のように、平面視でのたとえば右端の中央の位置からベース部材20の外部に通じている。 As shown in FIG. 1, the first air passage 13 and the second air passage 22 are preferably formed so as to substantially overlap in plan view, but are not limited to such an aspect. As an example in FIG. 1, the main surface 11b is formed with a total of nine first air passages 13, three each spaced apart from each other in the X direction and the Y direction. A total of nine second air passages 22 are formed on the main surface 20a at positions substantially overlapping the nine first air passages 13 in plan view. For example, a total of nine first air passages 13 are integrated within the holding member 11 . The integrated first air passage 13 partially communicates with the outside of the holding member 11 from, for example, the upper right position in plan view as shown in FIG. Similarly, a total of nine second air passages 22 are integrated within the base member 20, for example. The integrated second air passage 22 partially communicates with the outside of the base member 20 from, for example, the central position of the right end in plan view as shown in FIG.

レーザ変位計21は、薄板9の厚みを測定可能な装置である。レーザ変位計21は、保持部材11に形成される通し穴14または切欠き部の数だけ設置される。このため図1および図2の厚み測定装置100では、通し穴14の数に等しい1台のレーザ変位計21のみが設置されている。レーザ変位計21は、薄板9に対して非接触で、その厚みを検出可能な装置である。レーザ変位計21は、ベース部材20の主表面20aに垂直なZ方向に関する、たとえば薄板9の厚みを検出する。レーザ変位計21は、厚みの検出にあたり、主表面20aのZ方向の位置を基準高さ、すなわちたとえば0mmとする。レーザ変位計21は、図2においては1か所のみ配置される。しかしこれに限らず、レーザ変位計21は、厚み測定装置100において、厚みの検出が必要な場所の真上に、X方向およびY方向の間隔を互いにあけて複数設置される。レーザ変位計21は、ブラケット部材により、厚みを検出したい場所の真上に固定される。つまり薄板9の厚みを検出したい場所と平面視にて重なる位置に通し穴14が配置され、その通し穴14の真上にレーザ変位計21が設置されることが好ましい。 The laser displacement gauge 21 is a device that can measure the thickness of the thin plate 9 . The laser displacement gauges 21 are installed by the number of through holes 14 or cutouts formed in the holding member 11 . Therefore, in the thickness measuring apparatus 100 of FIGS. 1 and 2, only one laser displacement gauge 21 equal in number to the through holes 14 is installed. The laser displacement gauge 21 is a non-contact device for detecting the thickness of the thin plate 9 . Laser displacement gauge 21 detects, for example, the thickness of thin plate 9 in the Z direction perpendicular to main surface 20 a of base member 20 . When detecting the thickness, the laser displacement gauge 21 sets the position of the main surface 20a in the Z direction to a reference height, ie, 0 mm, for example. Only one laser displacement meter 21 is arranged in FIG. However, the present invention is not limited to this, and in the thickness measuring device 100, a plurality of laser displacement gauges 21 are installed at intervals in the X and Y directions directly above locations where thickness detection is required. The laser displacement gauge 21 is fixed by a bracket member directly above the location where the thickness is to be detected. In other words, it is preferable that the through-hole 14 is arranged at a position where the thickness of the thin plate 9 is to be detected and the position overlaps in plan view, and the laser displacement gauge 21 is installed right above the through-hole 14 .

以上により、保持部材11の主表面11bと、ベース部材20の主表面20aとは、弾性体部材12の弾性変形範囲内の平行度を有するように設置されている。 As described above, the main surface 11 b of the holding member 11 and the main surface 20 a of the base member 20 are installed so as to have parallelism within the elastic deformation range of the elastic member 12 .

次に、図3~図7を用いて、実施の形態1に係る厚み測定装置を用いた厚み測定方法について説明する。 Next, a thickness measuring method using the thickness measuring apparatus according to Embodiment 1 will be described with reference to FIGS. 3 to 7. FIG.

図3は、実施の形態1に係る厚み測定装置を用いた厚み測定方法の第1工程を示す概略平面図である。図4は、実施の形態1に係る厚み測定装置を用いた厚み測定方法の第1工程を示す概略正面図である。図3および図4を参照して、本実施の形態での厚み測定方法では、まず図1および図2に示す構成の保持搬送機構部1が準備される。保持搬送機構部1に含まれる保持部材11の主表面11b上に接するように、複数積層された薄板9から1枚分離された薄板9が配置される。この状態で、保持部材11内の第1の空路13が、図示されない真空ポンプなどにより、周囲よりも低い空気圧とされる。このようにすれば、保持部材11に薄板9が保持される。 FIG. 3 is a schematic plan view showing the first step of the thickness measuring method using the thickness measuring device according to Embodiment 1. FIG. FIG. 4 is a schematic front view showing the first step of the thickness measuring method using the thickness measuring device according to Embodiment 1. FIG. 3 and 4, in the thickness measuring method according to the present embodiment, first, holding and transporting mechanism section 1 having the configuration shown in FIGS. 1 and 2 is prepared. A thin plate 9 separated from a plurality of laminated thin plates 9 is arranged so as to be in contact with the main surface 11b of the holding member 11 included in the holding/conveying mechanism section 1 . In this state, the air pressure in the first air passage 13 in the holding member 11 is made lower than the ambient air pressure by a vacuum pump (not shown) or the like. By doing so, the thin plate 9 is held by the holding member 11 .

図5は、実施の形態1に係る厚み測定装置を用いた厚み測定方法の第2工程を示す概略正面図である。図5を参照して、保持部材11に薄板9が保持された状態で、保持部材11を含む保持搬送機構部1は、図示されない駆動機により、ベース部材20の主表面20a上まで移動する。保持搬送機構部1は、薄板9の全体が主表面20aと平面視において重なる位置まで移動することが好ましい。この時点では薄板9は主表面20aとの間でZ方向に間隔をあけた状態となるように配置されている。 FIG. 5 is a schematic front view showing the second step of the thickness measuring method using the thickness measuring device according to the first embodiment. Referring to FIG. 5, holding member 11 and thin plate 9 are held by holding member 11, and holding and conveying mechanism portion 1 including holding member 11 is moved onto main surface 20a of base member 20 by a driving machine (not shown). It is preferable that the holding/conveying mechanism section 1 moves to a position where the entire thin plate 9 overlaps the main surface 20a in a plan view. At this point, the thin plate 9 is arranged so as to be spaced apart from the main surface 20a in the Z direction.

図6は、実施の形態1に係る厚み測定装置を用いた厚み測定方法の第3工程を示す概略正面図である。図6を参照して、駆動機が保持搬送機構部1をZ方向の下方に向けて移動させる。これにより、薄板9はベース部材20の主表面20a上に載置される。すなわち、保持部材11の主表面11bに薄板9を保持させた状態を保ちながら、ベース部材20上に薄板9が載置される。 FIG. 6 is a schematic front view showing the third step of the thickness measuring method using the thickness measuring device according to Embodiment 1. FIG. Referring to FIG. 6, the driving machine moves the holding/conveying mechanism 1 downward in the Z direction. The thin plate 9 is thereby placed on the main surface 20 a of the base member 20 . That is, the thin plate 9 is placed on the base member 20 while maintaining the thin plate 9 held on the main surface 11 b of the holding member 11 .

さらにその後も駆動機は、保持搬送機構部1をZ方向の下方に向けて移動するように力を加える。すなわち駆動機は、ベース部材20上に載置された薄板9を、ベース部材20側すなわちZ方向の下側に押圧する。これにより、薄板9は、主表面11bと主表面20aとに接触するように、両者の間に挟持される。すなわち薄板9は、保持部材11とベース部材20とに挟み込まれた状態となる。 After that, the driving machine further applies a force to move the holding/conveying mechanism 1 downward in the Z direction. That is, the driving machine presses the thin plate 9 placed on the base member 20 toward the base member 20, that is, downward in the Z direction. Thereby, the thin plate 9 is sandwiched between the main surface 11b and the main surface 20a so as to be in contact therewith. That is, the thin plate 9 is sandwiched between the holding member 11 and the base member 20 .

このように保持搬送機構部1には駆動機から押圧力が加えられる。この押圧力により、弾性体部材12はZ方向の厚みが薄くなるように潰される。これにより、弾性体部材12に隣接する剛体材料の保持部材11の薄板9が保持される主表面11bと、ベース部材20の薄板9が接する主表面20aとがともにたとえばXY平面に沿う。このため主表面11bと主表面20aとはほぼ平行な状態となる。したがって主表面11bおよび主表面20aに挟まれる薄板9の主表面もXY平面に沿うようになる。以上により薄板9の表面の反りおよびうねりが、主表面11bおよび主表面20aにおいて相殺されるように矯正される。 In this manner, a pressing force is applied to the holding/conveying mechanism section 1 from the driving machine. By this pressing force, the elastic member 12 is crushed so that the thickness in the Z direction is reduced. As a result, the main surface 11b on which the thin plate 9 of the holding member 11 made of rigid material adjacent to the elastic member 12 is held and the main surface 20a on which the thin plate 9 of the base member 20 is in contact are both along the XY plane, for example. Therefore, the main surface 11b and the main surface 20a are substantially parallel to each other. Therefore, the main surface of thin plate 9 sandwiched between main surface 11b and main surface 20a also extends along the XY plane. As described above, the warp and undulation of the surface of thin plate 9 are corrected so as to be offset at main surface 11b and main surface 20a.

図7は、実施の形態1に係る厚み測定装置を用いた厚み測定方法の第4工程を示す概略正面図である。図7を参照して、図6のようにベース部材20上に押圧され、薄板9の表面の反りおよびうねりが矯正された状態で、薄板9の上側の主表面9aから下側の主表面9bまでのZ方向に沿う距離が測定される。この距離が薄板9の厚みとして測定される。厚みの測定にはレーザ変位計21が用いられる。 FIG. 7 is a schematic front view showing a fourth step of the thickness measuring method using the thickness measuring device according to Embodiment 1. FIG. Referring to FIG. 7, thin plate 9 is pressed onto base member 20 as shown in FIG. A distance along the Z direction to is measured. This distance is measured as the thickness of the thin plate 9 . A laser displacement meter 21 is used to measure the thickness.

薄板9の厚みを測定する工程は以下のようになされる。レーザ変位計21は、保持部材11の特に通し穴14の真上に配置される。レーザ変位計21が放出するレーザ光が、薄板9の保持部材11に接する第1面としての上側の主表面9aに照射される。具体的には、図7では、照射されるレーザ光Lが通し穴14の内部を通る位置となるように、レーザ変位計21が配置される。この状態で、レーザ変位計21からレーザ光Lが放出される。このレーザ光LがZ方向の下側に向けて進行すれば、レーザ光Lは通し穴14の内部を光路として進行する。以上のように、保持部材11に形成された通し穴14内にレーザ光Lを通過させる。 The process of measuring the thickness of the thin plate 9 is performed as follows. The laser displacement gauge 21 is arranged directly above the through hole 14 of the holding member 11 . The upper main surface 9 a of the thin plate 9 as the first surface in contact with the holding member 11 is irradiated with laser light emitted by the laser displacement gauge 21 . Specifically, in FIG. 7, the laser displacement gauge 21 is arranged so that the irradiated laser beam L passes through the inside of the through hole 14 . A laser beam L is emitted from the laser displacement meter 21 in this state. If the laser light L travels downward in the Z direction, the laser light L travels through the through hole 14 as an optical path. As described above, the laser beam L is passed through the through hole 14 formed in the holding member 11 .

通し穴14内を通過することにより、レーザ光Lは、薄板9の保持部材11に接する第1面としての上側の主表面9aに達し、当該上側の主表面9aで反射する。主表面9aで反射するレーザ光Lから、主表面9aのZ方向の位置の情報が得られる。ここで上記のように、薄板9が載置されるベース部材20の薄板9に接する第2面としての主表面20aのZ方向の位置が基準高さとして定められていれば、主表面9aの得られたZ方向の位置情報が薄板9の厚みとなる。このように主表面20aが基準高さと定められていない場合、たとえば保持部材11が配置されない状態で主表面20aで反射するレーザ光Lから得られる主表面20aのZ方向の位置が測定される。測定された主表面20aのZ方向の位置と主表面9aのZ方向の位置との差分が演算される。このようにして求められた測定値の差分が、薄板9の厚みとして求められる。 By passing through the through hole 14, the laser light L reaches the upper main surface 9a of the thin plate 9 as the first surface in contact with the holding member 11, and is reflected by the upper main surface 9a. Information on the position of the main surface 9a in the Z direction is obtained from the laser light L reflected by the main surface 9a. Here, as described above, if the position in the Z direction of the main surface 20a as the second surface in contact with the thin plate 9 of the base member 20 on which the thin plate 9 is placed is determined as the reference height, the position of the main surface 9a The obtained positional information in the Z direction is the thickness of the thin plate 9 . When the main surface 20a is not set at the reference height in this way, for example, the Z-direction position of the main surface 20a obtained from the laser beam L reflected by the main surface 20a is measured in a state where the holding member 11 is not arranged. A difference between the measured position of the main surface 20a in the Z direction and the position of the main surface 9a in the Z direction is calculated. The difference between the measured values obtained in this manner is obtained as the thickness of the thin plate 9 .

薄板9の厚みが求められた後に、ベース部材20内の第2の空路22が、図示されない加圧装置などにより、周囲よりも高い空気圧とされる。このとき第1の空路13内は引き続き真空ポンプなどにより減圧され、薄板9は保持部材11に保持されている。このような状態を保ちながら、駆動機により保持搬送機構部1がZ方向の上側に移動される。このようにすれば、保持搬送機構部1は、薄板9を保持したまま、Z方向の上方に上昇する。第2の空路22のZ方向上方への加圧により、主表面20aと薄板9との表面張力による接合状態が解除されるためである。その後、保持搬送機構部1を動かす駆動機により、薄板9は次工程へ搬送される。なお厚み測定装置100に組み合わせられる次工程への搬送機構の構成は任意である。 After the thickness of the thin plate 9 is obtained, the air pressure in the second air passage 22 in the base member 20 is made higher than the surrounding air pressure by a pressure device (not shown) or the like. At this time, the pressure inside the first air passage 13 is continuously reduced by a vacuum pump or the like, and the thin plate 9 is held by the holding member 11 . While maintaining such a state, the holding/conveying mechanism 1 is moved upward in the Z direction by the driving machine. In this way, the holding/conveying mechanism section 1 moves upward in the Z direction while holding the thin plate 9 . This is because the joining state due to the surface tension between the main surface 20a and the thin plate 9 is released by pressurizing the second air passage 22 upward in the Z direction. After that, the thin plate 9 is conveyed to the next process by the driving machine that moves the holding and conveying mechanism section 1 . In addition, the structure of the transport mechanism to the next process combined with the thickness measuring device 100 is arbitrary.

次に、本実施の形態の作用効果について説明する。
本実施の形態の厚み測定装置100は、保持搬送機構部1が、薄板9に接する剛体材料の保持部材11と、弾性体部材12と、剛体材料の継手部材10とがこの順に積層された構成を有している。このように薄板9の上に剛体材料の保持部材11を挟んでその直上に弾性体部材12が配置される構成となっている。また薄板9は、剛体材料の保持部材11と、剛体材料のベース部材20とに接するように挟持可能となる。弾性体部材12が受ける厚み方向の押圧力により、保持部材11とベース部材20との主表面がともにXY平面に沿うようほぼ平行となる。その結果、保持部材11とベース部材20とに挟まれた薄板9の表面の反りおよびうねりが相殺され矯正される。そのような状態で薄板9が保持部材11およびベース部材20に挟み込まれる。したがって、たとえばレーザ変位計21を用いた非接触な方法であっても、薄板9は反りおよびうねりの影響を受けることなく、正確に厚みが測定される。
Next, the effects of this embodiment will be described.
In the thickness measuring device 100 of the present embodiment, the holding/conveying mechanism 1 has a configuration in which a holding member 11 made of a rigid material in contact with the thin plate 9, an elastic member 12, and a joint member 10 made of a rigid material are laminated in this order. have. In this manner, the holding member 11 made of a rigid material is sandwiched between the thin plate 9 and the elastic member 12 is arranged directly above the holding member 11 . Further, the thin plate 9 can be sandwiched so as to be in contact with the holding member 11 made of rigid material and the base member 20 made of rigid material. The main surfaces of the holding member 11 and the base member 20 are substantially parallel to each other along the XY plane due to the pressing force in the thickness direction that the elastic member 12 receives. As a result, warpage and undulation of the surface of the thin plate 9 sandwiched between the holding member 11 and the base member 20 are offset and corrected. In such a state, thin plate 9 is sandwiched between holding member 11 and base member 20 . Therefore, the thickness of the thin plate 9 can be accurately measured without being affected by warpage and undulation even by a non-contact method using the laser displacement gauge 21, for example.

このようにするために、上記の保持搬送機構部1の保持部材11に薄板9を保持させながらベース部材20上に薄板9が載置される。当該薄板9がベース部材20側に押圧され、薄板9の厚みが測定される。このようにすれば、上記のように弾性体部材12が受ける厚み方向の押圧力により、保持部材11とベース部材20とがほぼ平行となり、薄板9の表面の反りおよびうねりが相殺され矯正される。このため、たとえばレーザ変位計21を用いた非接触な方法であっても、薄板9は反りおよびうねりの影響を受けることなく、正確に厚みが測定される。 In order to do so, the thin plate 9 is placed on the base member 20 while the thin plate 9 is held by the holding member 11 of the holding/conveying mechanism section 1 . The thin plate 9 is pressed against the base member 20 and the thickness of the thin plate 9 is measured. In this way, the holding member 11 and the base member 20 become substantially parallel due to the pressing force in the thickness direction that the elastic member 12 receives as described above, and the warp and undulation of the surface of the thin plate 9 are offset and corrected. . Therefore, the thickness of the thin plate 9 can be accurately measured without being affected by warping and waviness even by a non-contact method using the laser displacement gauge 21, for example.

厚み測定機構部2にはレーザ変位計21が含まれる。薄板9の厚みは、薄板9の保持部材11に接する主表面9aで反射するレーザ光Lから得られる主表面9aの位置と、ベース部材20の主表面20aの位置との差分から求められる。このようにすれば、測定対象物である薄板9に接触することなく容易に、薄板9の厚みが測定できる。 The thickness measuring mechanism section 2 includes a laser displacement gauge 21 . The thickness of the thin plate 9 is obtained from the difference between the position of the main surface 9a obtained from the laser beam L reflected by the main surface 9a of the thin plate 9 in contact with the holding member 11 and the position of the main surface 20a of the base member 20 . In this way, the thickness of the thin plate 9 can be easily measured without touching the thin plate 9 which is the object to be measured.

その他、本実施の形態の厚み測定装置100には第1の空路13および第2の空路22が用いられる。これにより薄板9の保持および脱着が容易になされる。具体的には、厚み測定装置100の保持部材11には、保持部材11が設置される環境よりも低い空気圧とすることが可能な第1の空路13が形成される。これにより主表面11bから保持部材11内を延びる第1の空路13の大気圧よりも低い空気圧を利用して、主表面11bに薄板9をたとえば吸着するように保持させることができる。 In addition, the first air passage 13 and the second air passage 22 are used in the thickness measuring device 100 of the present embodiment. As a result, the thin plate 9 can be easily held and removed. Specifically, the holding member 11 of the thickness measuring device 100 is formed with a first air passage 13 that can have a lower air pressure than the environment in which the holding member 11 is installed. As a result, the thin plate 9 can be retained on the main surface 11b so as to be attracted, for example, by using air pressure lower than the atmospheric pressure of the first air passage 13 extending from the main surface 11b through the inside of the holding member 11 .

厚み測定装置100のベース部材20には、ベース部材20が設置される環境よりも低い空気圧とすることが可能な第2の空路22が形成されてもよい。これにより主表面20aからベース部材20内を延びる第2の空路22の大気圧よりも低い空気圧を利用して、主表面20aに薄板9をたとえば吸着するように保持させることができる。 The base member 20 of the thickness measuring device 100 may be formed with a second air passage 22 that can have a lower air pressure than the environment in which the base member 20 is installed. Thus, by using the air pressure lower than the atmospheric pressure in the second air passage 22 extending from the main surface 20a through the base member 20, the thin plate 9 can be retained on the main surface 20a, for example, in an adsorbed manner.

ただし厚み測定装置100のベース部材20には、ベース部材20が設置される環境よりも高い空気圧とすることが可能な第2の空路22が形成されてもよい。このようにすれば、主表面20a上に保持された薄板9に第2の空路22から大気圧よりも大きな圧力を加えることにより、薄板9をベース部材20の主表面20aから容易に剥がすことができる。防錆油などが薄板9に付着することにより、当該防錆油の表面張力に起因して薄板9が主表面20aから脱離しにくくなる場合がある。このような場合であっても、第2の空路22からの大気圧よりも高い空気圧を利用して、薄板9をベース部材20から剥がすことができる。 However, the base member 20 of the thickness measuring device 100 may be formed with a second air passage 22 capable of having a higher air pressure than the environment in which the base member 20 is installed. In this way, the thin plate 9 held on the main surface 20a can be easily peeled off from the main surface 20a of the base member 20 by applying a pressure higher than the atmospheric pressure from the second air passage 22. can. When the rust preventive oil or the like adheres to the thin plate 9, it may become difficult for the thin plate 9 to separate from the main surface 20a due to the surface tension of the rust preventive oil. Even in such a case, the thin plate 9 can be peeled off from the base member 20 by using air pressure higher than the atmospheric pressure from the second air passage 22 .

なお本実施の形態は、以下に記す意義を有する。正確に薄板9の厚みが測定できれば、それが複数積層された薄板9から1枚だけ搬送されたものであるか否かが正確に判定できる。薄板9は、防錆油等が付着することにより、1枚ずつ搬送すべきであっても複数枚が接合された状態のまま搬送される場合がある。防錆油により2枚の薄板9の間に表面張力が働くために、2枚の薄板9を1枚ずつに分離することが困難となる場合があるためである。仮に厚みの測定により薄板9を1枚だけ抜き取ったものであることが確認できれば、その薄板9は次工程に搬送される。しかし仮に厚みの測定により複数枚の薄板9が抜き取られたことが確認されれば、その薄板9の積層体は不良品であるとして払い出しされる。 Note that this embodiment has the following significance. If the thickness of the thin plate 9 can be accurately measured, it can be determined accurately whether or not only one thin plate 9 has been transported from a plurality of laminated thin plates 9 . The thin plates 9 may be conveyed in a state in which a plurality of sheets are joined together even if they should be conveyed one by one due to the adhesion of rust preventive oil or the like. This is because the anti-corrosion oil exerts surface tension between the two thin plates 9, which may make it difficult to separate the two thin plates 9 one by one. If it can be confirmed by measuring the thickness that only one thin plate 9 has been extracted, the thin plate 9 is conveyed to the next step. However, if it is confirmed by thickness measurement that a plurality of thin plates 9 have been removed, the laminate of the thin plates 9 is taken out as a defective product.

なお薄板9はその枚数により管理される。このため本実施の形態は、抜き取られた薄板9が1枚であるか否かを確認できることに意義がある。薄板は厚みの公差が大きい。これは仮に薄板が複数枚積層されたものをその厚みの数値により管理すれば、実際に積層されている枚数が同じとならず、枚数が正確に判断できなくなるためである。 The thin plates 9 are managed according to the number of sheets. Therefore, this embodiment is significant in that it can be confirmed whether or not the number of thin plates 9 extracted is one. Thin plates have a large thickness tolerance. This is because if a plurality of laminated thin plates are managed by numerical values of their thicknesses, the actual number of laminated thin plates will not be the same, making it impossible to accurately determine the number of thin plates.

実施の形態2.
図8は、実施の形態2に係る厚み測定装置の特徴的な部分の構成を示す概略正面図である。まず図8を用いて、実施の形態2に係る厚み測定装置の特徴的な部分の構成について説明する。
Embodiment 2.
FIG. 8 is a schematic front view showing the configuration of a characteristic portion of the thickness measuring device according to Embodiment 2. FIG. First, with reference to FIG. 8, the configuration of the characteristic portion of the thickness measuring device according to Embodiment 2 will be described.

図8を参照して、実施の形態2に係る厚み測定装置200は、実施の形態1に係る厚み測定装置100と基本的に同様の構成を有している。このため以下において、厚み測定装置100と同一の構成要素には同一の参照符号を付しその説明を繰り返さない。厚み測定装置200は、保持搬送機構部3と、厚み測定機構部2とを主に備えている。実施の形態2は実施の形態1に対し、保持搬送機構部3を構成する各部材の固定態様が変更されている。 Referring to FIG. 8, thickness measuring apparatus 200 according to the second embodiment has basically the same configuration as thickness measuring apparatus 100 according to the first embodiment. Therefore, hereinafter, the same reference numerals are given to the same components as those of the thickness measuring apparatus 100, and the description thereof will not be repeated. The thickness measuring device 200 mainly includes a holding/conveying mechanism section 3 and a thickness measuring mechanism section 2 . The second embodiment differs from the first embodiment in the manner in which each member constituting the holding/conveying mechanism 3 is fixed.

保持搬送機構部3は、保持部材31と、弾性体部材32と、継手部材30とを含んでいる。これらは厚み測定装置100の保持搬送機構部1の保持部材11、弾性体部材12、継手部材10に対応するため、実施の形態1との共通事項についてはその説明を繰り返さない。剛体材料の保持部材31はZ方向の上側に主表面31aを有し、Z方向の下側には主表面11bを有する。弾性体部材32は主表面31aに接するように配置される。剛体材料の継手部材30は弾性体部材32の保持部材31と反対側に接する。薄板9を保持する主表面11bから保持部材31の内部を延びるように、第1の空路13が形成されている。ベース部材20のうち薄板9と接する主表面20aから、ベース部材20の内部を延びるように、第2の空路22が形成されている。 The holding and transporting mechanism section 3 includes a holding member 31 , an elastic member 32 and a joint member 30 . Since these correspond to the holding member 11, the elastic member 12, and the joint member 10 of the holding/conveying mechanism 1 of the thickness measuring apparatus 100, the description of the common items with the first embodiment will not be repeated. The holding member 31 of rigid material has a main surface 31a on the upper side in the Z direction and a main surface 11b on the lower side in the Z direction. The elastic member 32 is arranged so as to be in contact with the main surface 31a. The joint member 30 made of a rigid material contacts the side of the elastic member 32 opposite to the holding member 31 . A first air passage 13 is formed to extend inside the holding member 31 from the main surface 11 b holding the thin plate 9 . A second air passage 22 is formed so as to extend inside the base member 20 from a main surface 20 a of the base member 20 that contacts the thin plate 9 .

保持搬送機構部3においては、継手部材30と弾性体部材32とを貫通するように、貫通孔34が形成されている。貫通孔34は、継手部材30の中央部のフランジ(図中の上方に突起した部分)を除く部分の上側の主表面30aから下側の主表面30bまで継手部材30をZ方向に沿って貫通している。また貫通孔34は、弾性体部材32の上側の主表面32aから下側の主表面32bまで弾性体部材32をZ方向に沿って貫通している。さらに貫通孔34は、保持部材31の上側の主表面31aから保持部材31の内部までZ方向に延びている。 A through hole 34 is formed through the joint member 30 and the elastic member 32 in the holding and transporting mechanism section 3 . The through-hole 34 penetrates the joint member 30 along the Z direction from the upper main surface 30a to the lower main surface 30b of the joint member 30 except for the central flange (the portion that protrudes upward in the drawing). is doing. The through hole 34 penetrates the elastic member 32 along the Z direction from the upper main surface 32a of the elastic member 32 to the lower main surface 32b. Furthermore, the through hole 34 extends in the Z direction from the upper main surface 31 a of the holding member 31 to the inside of the holding member 31 .

保持部材31には、貫通孔34と平面視において重なる位置に、平面視において貫通孔34と同じ大きさの凹部が、主表面31aからZ方向に沿って形成されている。当該凹部の内側の側面には、雌ネジ35が形成されている。すなわち保持部材31には、貫通孔34と平面視において重なる位置に、雌ネジ35が形成されている。 In the holding member 31, a recess having the same size as the through hole 34 in plan view is formed along the Z direction from the main surface 31a at a position overlapping the through hole 34 in plan view. A female thread 35 is formed on the inner side surface of the recess. That is, the holding member 31 is formed with a female thread 35 at a position overlapping the through hole 34 in plan view.

継手部材30と弾性体部材32と保持部材31とが重なった状態において、継手部材30の貫通孔34と、弾性体部材32の貫通孔34と、保持部材31の凹部とは、平面視において重なる。このためこれらの貫通孔34および凹部は1つの貫通孔34としてZ方向に、継手部材30から保持部材31まで延びる。貫通孔34を貫通し雌ネジ35と締結される雄ネジ部材36により、保持部材31と弾性体部材32と継手部材30とがひとまとまりとされた保持搬送機構部3が形成される。 In a state in which the joint member 30, the elastic member 32, and the holding member 31 are overlapped, the through hole 34 of the joint member 30, the through hole 34 of the elastic member 32, and the concave portion of the holding member 31 overlap in plan view. . These through holes 34 and recesses thus extend as one through hole 34 in the Z direction from the joint member 30 to the holding member 31 . The holding member 31, the elastic member 32, and the joint member 30 are collectively formed by the male threaded member 36 passing through the through hole 34 and fastened with the female thread 35 to form the holding/conveying mechanism portion 3. As shown in FIG.

言い換えれば、厚み測定装置200においては、保持搬送機構部3を構成する保持部材31と弾性体部材32と継手部材30とが、雌ネジ35に締結された雄ネジ部材36により一体となっている。この点において本実施の形態は、保持搬送機構部1を構成する保持部材11と弾性体部材12と継手部材10とが接着剤または両面テープなどにより互いに接合される実施の形態1と異なる。 In other words, in the thickness measuring device 200, the holding member 31, the elastic member 32, and the joint member 30, which constitute the holding/conveying mechanism 3, are integrated by the male screw member 36 fastened to the female screw 35. . In this respect, the present embodiment differs from the first embodiment in which the holding member 11, the elastic member 12, and the joint member 10 constituting the holding/conveying mechanism section 1 are joined to each other by an adhesive, double-sided tape, or the like.

雄ネジ部材36は、雌ネジ35と締結される領域すなわち先端側の領域のみに雄ネジが加工されていることが好ましい。このようにすれば、雄ネジ部材36と、剛体材料の継手部材30および弾性体部材32との間の摩擦を低減し、両者間の異物の発生を抑制できる。つまり雄ネジ部材36の長さ方向における雄ネジが加工された長さと、保持部材31のZ方向における雌ネジ35が加工された長さとがほぼ等しくなることが好ましい。 It is preferable that the male screw member 36 has a male screw processed only in a region to be fastened with the female screw 35, that is, in a region on the tip side. In this way, the friction between the male screw member 36 and the joint member 30 and the elastic member 32 made of rigid material can be reduced, and the generation of foreign matter between them can be suppressed. That is, it is preferable that the length of the male thread in the longitudinal direction of the male screw member 36 and the length of the female thread 35 in the Z direction of the holding member 31 are substantially equal.

次に、図9~図11を用いて、実施の形態2に係る厚み測定装置を用いた厚み測定方法について説明する。 Next, a thickness measuring method using the thickness measuring device according to the second embodiment will be described with reference to FIGS. 9 to 11. FIG.

図9は、実施の形態2に係る厚み測定装置を用いた厚み測定方法の第1工程を示す概略正面図である。図10は、実施の形態2に係る厚み測定装置を用いた厚み測定方法の第2工程を示す概略正面図である。図9の示す工程は実施の形態1の図4の示す工程に対応する。図10の示す工程は実施の形態1の図5の示す工程に対応する。このため図9、図10の工程における図4、図5の工程と同一の処理についてはその説明を繰り返さない。図9および図10を参照して、本実施の形態の厚み測定方法では、まず図8に示す構成の保持搬送機構部3が準備される。具体的には、保持部材31と弾性体部材32と継手部材30とが、雄ネジ部材36により一体として固定される。保持部材31の主表面11b上に接するように薄板9が保持され、保持搬送機構部3が主表面20a上まで移動される。 FIG. 9 is a schematic front view showing the first step of the thickness measuring method using the thickness measuring device according to the second embodiment. FIG. 10 is a schematic front view showing the second step of the thickness measuring method using the thickness measuring device according to the second embodiment. The process shown in FIG. 9 corresponds to the process shown in FIG. 4 of the first embodiment. The process shown in FIG. 10 corresponds to the process shown in FIG. 5 of the first embodiment. 9 and 10 that are the same as those in FIGS. 4 and 5 will not be described repeatedly. Referring to FIGS. 9 and 10, in the thickness measuring method of the present embodiment, first, holding/conveying mechanism 3 configured as shown in FIG. 8 is prepared. Specifically, the holding member 31 , the elastic member 32 and the joint member 30 are integrally fixed by the male screw member 36 . The thin plate 9 is held so as to be in contact with the main surface 11b of the holding member 31, and the holding/conveying mechanism portion 3 is moved onto the main surface 20a.

図9および図10の時点では、弾性体部材32と継手部材30とは、自重により、雄ネジ部材36の長さ方向に沿ってストロークすることができる長さ分だけ、下降する。保持部材31には雌ネジ35が加工され雄ネジ部材36との間で締結される。これに対し弾性体部材32および継手部材30には貫通孔34が形成されているのみであり、雌ネジは加工されていない。このため弾性体部材32および継手部材30は雄ネジ部材36との間で締結されていない。したがって弾性体部材32および継手部材30は雄ネジ部材36に対して自由に動くことができる。一例として、たとえば継手部材30が雄ネジ部材36に対して自重で下降するストローク量が少なければ、図10のように、継手部材30と弾性体部材32との間に隙間が生じる。 At the time of FIGS. 9 and 10, the elastic member 32 and the joint member 30 are lowered by their own weight by the length that can be stroked along the length direction of the male screw member 36 . A female screw 35 is processed in the holding member 31 and fastened with a male screw member 36 . On the other hand, the elastic member 32 and the joint member 30 only have through holes 34 and are not provided with female threads. Therefore, the elastic member 32 and the joint member 30 are not fastened with the male screw member 36 . Therefore, the elastic member 32 and the joint member 30 can move freely with respect to the male screw member 36 . As an example, if the stroke amount of the joint member 30 descending by its own weight with respect to the male screw member 36 is small, a gap is generated between the joint member 30 and the elastic member 32 as shown in FIG.

図11は、実施の形態2に係る厚み測定装置を用いた厚み測定方法の第3工程を示す概略正面図である。図11の示す工程は実施の形態1の図6および図7の示す工程に対応する。このため図11の工程における図6および図7の工程と同一の処理についてはその説明を繰り返さない。図11を参照して、駆動機が保持搬送機構部3をZ方向の下方に向けて移動させる。これにより、薄板9に接触するベース部材20から、保持搬送機構部3側へ、すなわちZ方向の上側へ、反力が加えられる。この反力により、保持部材31と弾性体部材32とは、継手部材30に対して相対的に上昇する。以下、実施の形態1と同様に、保持搬送機構部3にさらにZ方向の下向きの押圧力が加えられる。この押圧力により、弾性体部材32はZ方向の厚みが薄くなるように潰される。これにより実施の形態1と同様に、主表面11bと主表面20aとがほぼ平行な状態となる。したがって薄板9の表面の反りおよびうねりが、主表面11bおよび主表面20aにおいて相殺されるように矯正される。 FIG. 11 is a schematic front view showing the third step of the thickness measuring method using the thickness measuring device according to the second embodiment. The steps shown in FIG. 11 correspond to the steps shown in FIGS. 6 and 7 of the first embodiment. 11 that are the same as those in FIGS. 6 and 7 will not be repeated. Referring to FIG. 11, the driving machine moves the holding/conveying mechanism 3 downward in the Z direction. As a result, a reaction force is applied from the base member 20 in contact with the thin plate 9 toward the holding/conveying mechanism 3 side, that is, upward in the Z direction. This reaction force causes the holding member 31 and the elastic member 32 to rise relative to the joint member 30 . Thereafter, a downward pressing force in the Z direction is further applied to the holding/conveying mechanism 3 in the same manner as in the first embodiment. Due to this pressing force, the elastic member 32 is crushed so that its thickness in the Z direction is reduced. As a result, main surface 11b and main surface 20a are substantially parallel to each other, as in the first embodiment. Therefore, the warp and undulation of the surface of thin plate 9 are corrected so as to be offset at main surface 11b and main surface 20a.

次に、本実施の形態の作用効果について説明する。本実施の形態は実施の形態1と同様の作用効果の他、以下の作用効果を奏する。 Next, the effects of this embodiment will be described. This embodiment has the following effects in addition to the same effects as those of the first embodiment.

本実施の形態では、弾性体部材32が、保持部材31と継手部材30との間から脱落しないように、雄ネジ部材36による一体化がなされている。保持部材31に雌ネジ35が形成されている。継手部材30と弾性体部材32とを貫通する貫通孔34と雌ネジ35とを合わせた孔部の内部が、雄ネジ部材36に貫通されている。すなわち弾性体部材32と、継手部材30および保持部材31とが接着固定されてはいない。このため実施の形態1の保持搬送機構部1において懸念される、保持部材11と弾性体部材12と継手部材10との接着固定部の経年劣化による接着力低下を抑制できる。このため当該接着固定部の定期的なメンテナンス作業を省くことができる。 In this embodiment, the elastic member 32 is integrated by the male screw member 36 so as not to drop out from between the holding member 31 and the joint member 30 . A female screw 35 is formed in the holding member 31 . A male screw member 36 penetrates the inside of a hole formed by combining a through hole 34 passing through the joint member 30 and the elastic member 32 and a female screw 35 . That is, the elastic member 32, the joint member 30 and the holding member 31 are not adhesively fixed. For this reason, it is possible to suppress the reduction in adhesive force due to aged deterioration of the adhesive fixing portion between the holding member 11, the elastic member 12, and the joint member 10, which is a concern in the holding and transporting mechanism portion 1 of the first embodiment. Therefore, it is possible to omit periodic maintenance work for the adhesive fixing portion.

実施の形態3.
図12は、実施の形態3に係る厚み測定装置の特徴的な部分の構成を示す概略正面図である。まず図12を用いて、実施の形態3に係る厚み測定装置の特徴的な部分の構成について説明する。
Embodiment 3.
FIG. 12 is a schematic front view showing the configuration of a characteristic portion of the thickness measuring device according to Embodiment 3. FIG. First, with reference to FIG. 12, the configuration of the characteristic portion of the thickness measuring device according to Embodiment 3 will be described.

図12を参照して、実施の形態3に係る厚み測定装置300は、実施の形態1に係る厚み測定装置100と基本的に同様の構成を有している。このため以下において、厚み測定装置100と同一の構成要素には同一の参照符号を付しその説明を繰り返さない。厚み測定装置300は、保持搬送機構部4と、厚み測定機構部5とを主に備えている。実施の形態3は実施の形態1に対し、薄板9を挟持する面が傾斜している点において異なっている。 Referring to FIG. 12, thickness measuring apparatus 300 according to the third embodiment has basically the same configuration as thickness measuring apparatus 100 according to the first embodiment. Therefore, hereinafter, the same reference numerals are given to the same components as those of the thickness measuring apparatus 100, and the description thereof will not be repeated. The thickness measuring device 300 mainly includes a holding/conveying mechanism section 4 and a thickness measuring mechanism section 5 . Embodiment 3 differs from Embodiment 1 in that the surfaces holding thin plate 9 are inclined.

保持搬送機構部4は、保持部材41と、弾性体部材12と、継手部材10とを含んでいる。これらは厚み測定装置100の保持搬送機構部1の保持部材11、弾性体部材12、継手部材10に対応するため、実施の形態1との共通事項についてはその説明を繰り返さない。剛体材料の保持部材41はZ方向の上側に主表面11aを有し、Z方向の下側に主表面41bを有する。主表面41bは、保持部材41の薄板9を保持可能な保持部材面として機能する。保持搬送機構部4は鉛直方向すなわちZ方向に駆動可能である。この駆動方向に垂直な方向すなわち水平方向としてのX方向およびY方向に対して、主表面41bは傾斜している。図12では一例として、X方向の左側が右側よりもZ方向の下側に配置されるように、主表面41bはXY平面に対して傾斜している。保持部材41の薄板9が保持するたとえば主表面41bは、薄板9の有する反りおよびうねりを矯正することが可能な程度の平面度を有することが好ましい。 The holding/conveying mechanism section 4 includes a holding member 41 , an elastic member 12 and a joint member 10 . Since these correspond to the holding member 11, the elastic member 12, and the joint member 10 of the holding/conveying mechanism 1 of the thickness measuring apparatus 100, the description of the common items with the first embodiment will not be repeated. A rigid material holding member 41 has an upper main surface 11a in the Z direction and a lower main surface 41b in the Z direction. The main surface 41 b functions as a holding member surface capable of holding the thin plate 9 of the holding member 41 . The holding/conveying mechanism 4 can be driven in the vertical direction, that is, in the Z direction. The main surface 41b is inclined with respect to the X direction and the Y direction, which are horizontal directions perpendicular to the drive direction. In FIG. 12, as an example, the main surface 41b is inclined with respect to the XY plane so that the left side in the X direction is arranged below the right side in the Z direction. For example, the main surface 41b held by the thin plate 9 of the holding member 41 preferably has a degree of flatness capable of correcting the warp and undulation of the thin plate 9 .

保持部材41には、主表面41bから、保持部材41の内部を延びるように、第1の空路43が形成されている。図12では一例として、第1の空路43は、X方向左側において、X方向右側よりも、Z方向に長く延びている。これは主表面41bが傾斜していることに伴う。 A first air passage 43 is formed in the holding member 41 so as to extend inside the holding member 41 from the main surface 41b. As an example in FIG. 12, the first air passage 43 extends longer in the Z direction on the left side in the X direction than on the right side in the X direction. This is due to the inclination of the main surface 41b.

厚み測定機構部5は、ベース部材50と、レーザ変位計51とを含んでいる。これらは厚み測定装置100の厚み測定機構部2のベース部材20、レーザ変位計21に対応するため、実施の形態1と共通事項についてはその説明を繰り返さない。剛体材料のベース部材50はZ方向の上側に主表面50aを有する。主表面50aは、ベース部材50の薄板9に接触可能なベース部材面として機能する。保持搬送機構部4の駆動方向に垂直な方向すなわち水平方向としてのX方向およびY方向に対して、主表面50aは傾斜している。図12では一例として、X方向の左側が右側よりもZ方向の下側に配置されるように、主表面50aはXY平面に対して傾斜している。主表面41bと主表面50aとのZ方向の距離がほぼ一定となるように、主表面50aは傾斜している。 The thickness measuring mechanism section 5 includes a base member 50 and a laser displacement gauge 51 . Since these correspond to the base member 20 and the laser displacement gauge 21 of the thickness measuring mechanism 2 of the thickness measuring device 100, the description of the items common to the first embodiment will not be repeated. A rigid material base member 50 has a main surface 50a on the upper side in the Z direction. The main surface 50 a functions as a base member surface that can contact the thin plate 9 of the base member 50 . The main surface 50a is inclined with respect to the X direction and the Y direction, which are horizontal directions perpendicular to the driving direction of the holding/conveying mechanism 4 . In FIG. 12, as an example, the main surface 50a is inclined with respect to the XY plane so that the left side in the X direction is arranged below the right side in the Z direction. The main surface 50a is inclined so that the distance in the Z direction between the main surface 41b and the main surface 50a is substantially constant.

ベース部材50には、第2の空路52が形成されている。図12では一例として、第2の空路52は、X方向右側において、X方向左側よりも、Z方向に長く延びている。これは主表面50aが傾斜していることに伴う。 A second air passage 52 is formed in the base member 50 . As an example in FIG. 12, the second air passage 52 extends longer in the Z direction on the right side in the X direction than on the left side in the X direction. This is due to the inclination of the main surface 50a.

レーザ変位計51は、レーザ変位計21に対して、やや傾斜した態様となるように配置されている。すなわち傾斜された主表面41b,50aに垂直な方向に進行するレーザ光を照射可能とする角度となるように、レーザ変位計51は傾斜している。この点においてレーザ変位計51は、鉛直方向であるZ方向に進行するレーザ光を照射可能なレーザ変位計21と異なっている。これに伴い、保持部材41を主表面11aから主表面41bまで貫通するように形成されるレーザ光の光路としての通し穴44は、主表面41bに垂直な方向に延びている。すなわち通し穴44は主表面11aに垂直な方向すなわちZ方向に対して傾斜している。 The laser displacement gauge 51 is arranged so as to be slightly inclined with respect to the laser displacement gauge 21 . In other words, the laser displacement gauge 51 is tilted at an angle that allows irradiation of the laser beam traveling in the direction perpendicular to the tilted main surfaces 41b and 50a. In this respect, the laser displacement gauge 51 is different from the laser displacement gauge 21 that can irradiate a laser beam traveling in the Z direction, which is the vertical direction. Along with this, a through hole 44 as an optical path of a laser beam formed so as to pass through the holding member 41 from the main surface 11a to the main surface 41b extends in a direction perpendicular to the main surface 41b. That is, the through hole 44 is inclined with respect to the direction perpendicular to the main surface 11a, that is, the Z direction.

主表面41b,50aのXY平面に対する傾斜角度は、厚み測定装置300に組み合わせられるロボットまたは駆動機とのスペースの兼ね合い等により、任意に定められる。 The inclination angles of the main surfaces 41b and 50a with respect to the XY plane are arbitrarily determined depending on the balance of space with a robot or a driving machine combined with the thickness measuring device 300, or the like.

図13は、実施の形態3に係る厚み測定装置を用いた厚み測定方法の第1工程を示す概略正面図である。図14は、実施の形態3に係る厚み測定装置を用いた厚み測定方法の第2工程を示す概略正面図である。図15は、実施の形態3に係る厚み測定装置を用いた厚み測定方法の第3工程を示す概略正面図である。図13の示す工程は実施の形態1の図4の示す工程に対応する。図14の示す工程は実施の形態1の図5の示す工程に対応する。図15の示す工程は実施の形態1の図6および図7の示す工程に対応する。すなわち図13~図15の示す工程は、図4~図7の示す工程に対し、主表面41b,50aが図12のように傾斜している点においてのみ異なる。図13~図15の示す工程は、上記以外の点およびなされる処理等は図4~図7の示す工程と同様である。このため本実施の形態の厚み測定方法についての説明を繰り返さない。 FIG. 13 is a schematic front view showing the first step of the thickness measuring method using the thickness measuring device according to Embodiment 3. FIG. FIG. 14 is a schematic front view showing the second step of the thickness measuring method using the thickness measuring device according to the third embodiment. FIG. 15 is a schematic front view showing the third step of the thickness measuring method using the thickness measuring device according to the third embodiment. The process shown in FIG. 13 corresponds to the process shown in FIG. 4 of the first embodiment. The process shown in FIG. 14 corresponds to the process shown in FIG. 5 of the first embodiment. The steps shown in FIG. 15 correspond to the steps shown in FIGS. 6 and 7 of the first embodiment. 13 to 15 differ from the steps shown in FIGS. 4 to 7 only in that the main surfaces 41b and 50a are inclined as shown in FIG. The steps shown in FIGS. 13 to 15 are the same as the steps shown in FIGS. 4 to 7 except for the points described above and the processing performed. Therefore, the description of the thickness measuring method of this embodiment will not be repeated.

次に、本実施の形態の作用効果について説明する。本実施の形態は実施の形態1と同様の作用効果の他、以下の作用効果を奏する。 Next, the effects of this embodiment will be described. This embodiment has the following effects in addition to the same effects as those of the first embodiment.

本実施の形態においては、薄板9を保持する保持部材面としての主表面41b、および薄板9を挟むようにこれに接触するベース部材面としての主表面50aが、XY平面に対して傾斜している。主表面41bと主表面50aとがほぼ平行である限り、両者は水平方向に対して傾斜していてもよい。主表面41b,50aは薄板9の反りおよびうねりを矯正する。仮に防錆油が主表面50a上に溜まれば、薄板9に防錆油が付着し、厚み測定後の主表面50aから薄板9を持ち上げる工程の妨げとなる。そこで本実施の形態のように主表面41bおよび主表面50aが傾斜していれば、薄板9に塗布された防錆油が主表面50a上に停滞し溜まることを抑制できる。このため本実施の形態によれば、主表面50a上の防錆油を除去するなどの定期的なメンテナンス作業を省くことができる。 In the present embodiment, main surface 41b as a holding member surface that holds thin plate 9 and main surface 50a as a base member surface that contacts thin plate 9 so as to sandwich thin plate 9 are inclined with respect to the XY plane. there is As long as the main surface 41b and the main surface 50a are substantially parallel, both may be inclined with respect to the horizontal direction. The main surfaces 41b and 50a correct warpage and undulation of the thin plate 9. As shown in FIG. If the anticorrosion oil accumulates on the main surface 50a, the anticorrosion oil adheres to the thin plate 9, which interferes with the process of lifting the thin plate 9 from the main surface 50a after thickness measurement. Therefore, if main surface 41b and main surface 50a are inclined as in the present embodiment, rust preventive oil applied to thin plate 9 can be prevented from stagnating and accumulating on main surface 50a. Therefore, according to the present embodiment, it is possible to omit regular maintenance work such as removing the antirust oil on the main surface 50a.

実施の形態4.
図16は、実施の形態4に係る厚み測定装置の特徴的な部分の構成を示す概略正面図である。まず図16を用いて、実施の形態4に係る厚み測定装置の特徴的な部分の構成について説明する。
Embodiment 4.
FIG. 16 is a schematic front view showing the configuration of a characteristic portion of the thickness measuring device according to Embodiment 4. FIG. First, with reference to FIG. 16, the configuration of the characteristic portion of the thickness measuring device according to Embodiment 4 will be described.

図16を参照して、実施の形態4に係る厚み測定装置400は、実施の形態3に係る厚み測定装置300に、実施の形態2の厚み測定装置200の特徴を組み合わせたものである。このため以下において、厚み測定装置100,200,300と同一の構成要素には同一の参照符号を付しその説明を繰り返さない。厚み測定装置400は、保持搬送機構部6と、厚み測定機構部5とを主に有している。実施の形態4は実施の形態3に対し、保持搬送機構部3を構成する各部材が実施の形態2と同様に固定されるよう変更されている。 Referring to FIG. 16, thickness measuring apparatus 400 according to the fourth embodiment is obtained by combining thickness measuring apparatus 300 according to the third embodiment with features of thickness measuring apparatus 200 according to the second embodiment. Therefore, hereinafter, the same reference numerals are given to the same components as those of the thickness measuring devices 100, 200, 300, and the description thereof will not be repeated. The thickness measuring device 400 mainly has a holding/conveying mechanism section 6 and a thickness measuring mechanism section 5 . The fourth embodiment is different from the third embodiment in that each member constituting the holding/conveying mechanism section 3 is fixed in the same manner as in the second embodiment.

保持搬送機構部6は、保持部材61と、弾性体部材32と、継手部材30とを含んでいる。これらは基本的に上述の各実施の形態の同名の構成要素に対応する。このため実施の形態1~3との共通事項についてはその説明を繰り返さない。剛体材料の保持部材61はZ方向の上側に主表面31aを有し、Z方向の下側には主表面41bを有する。弾性体部材32は主表面31aに接するように配置される。剛体材料の継手部材30はは弾性体部材32の保持部材31と反対側に接する。保持部材61には第1の空路43が形成されている。またベース部材50には第2の空路52が形成されている。 The holding and transporting mechanism section 6 includes a holding member 61 , an elastic member 32 and a joint member 30 . These basically correspond to the same-named components of the above-described embodiments. Therefore, the description of the items common to the first to third embodiments will not be repeated. The rigid material holding member 61 has an upper main surface 31a in the Z direction and a lower main surface 41b in the Z direction. The elastic member 32 is arranged so as to be in contact with the main surface 31a. The joint member 30 made of rigid material contacts the side of the elastic member 32 opposite to the holding member 31 . A first air passage 43 is formed in the holding member 61 . A second air passage 52 is formed in the base member 50 .

保持部材61には、貫通孔34と平面視において重なる位置に、平面視において貫通孔34と同じ大きさの凹部が、主表面31aからZ方向に沿って形成されている。当該凹部の内側の側面には、雌ネジ35が形成されている。貫通孔34および凹部を貫通する雄ネジ部材36が配置される。雄ネジ部材36により、保持部材61と弾性体部材32と継手部材30とがひとまとまりとされた保持搬送機構部6が形成される。この点において本実施の形態は、保持搬送機構部4を構成する保持部材41と弾性体部材12と継手部材10とが接着剤または両面テープなどにより互いに接合される実施の形態3と異なる。 In the holding member 61, a recess having the same size as the through hole 34 in plan view is formed along the Z direction from the main surface 31a at a position overlapping the through hole 34 in plan view. A female thread 35 is formed on the inner side surface of the recess. A male screw member 36 is arranged to pass through the through hole 34 and the recess. The holding member 61, the elastic member 32, and the joint member 30 are collectively formed by the male screw member 36 to form the holding/conveying mechanism portion 6. As shown in FIG. In this respect, the present embodiment differs from the third embodiment in which the holding member 41, the elastic member 12, and the joint member 10, which constitute the holding/conveying mechanism 4, are joined together by an adhesive, double-sided tape, or the like.

また保持部材61の主表面41bは、図12と同様に、XY平面に対して傾斜している。このため主表面50aも図12と同様にXY平面に対して傾斜している。その結果、レーザ変位計51は、傾斜された主表面41b,50aに垂直な方向に進行するレーザ光を照射可能とする角度となるように傾斜している。これに伴い、通し穴44は、主表面31aに垂直な方向すなわちZ方向に対して傾斜している。この点において本実施の形態は、主表面11b,20aがXY平面に沿う実施の形態1,2と異なる。 12, the main surface 41b of the holding member 61 is inclined with respect to the XY plane. Therefore, the main surface 50a is also inclined with respect to the XY plane as in FIG. As a result, the laser displacement meter 51 is tilted at an angle that allows irradiation of the laser beam traveling in the direction perpendicular to the tilted main surfaces 41b and 50a. Accordingly, the through hole 44 is inclined with respect to the direction perpendicular to the main surface 31a, that is, the Z direction. In this respect, the present embodiment differs from Embodiments 1 and 2 in which main surfaces 11b and 20a extend along the XY plane.

図17は、実施の形態4に係る厚み測定装置を用いた厚み測定方法の第1工程を示す概略正面図である。図18は、実施の形態4に係る厚み測定装置を用いた厚み測定方法の第2工程を示す概略正面図である。図19は、実施の形態4に係る厚み測定装置を用いた厚み測定方法の第3工程を示す概略正面図である。図17の示す工程は実施の形態2,3の図9,図13の示す工程に対応する。図18の示す工程は実施の形態2,3の図10,図14の示す工程に対応する。図19の示す工程は実施の形態2,3の図11,図15の示す工程に対応する。図17~図19の工程では、厚み測定装置400を用いて、実施の形態2,3と同様の処理がなされている。このため本実施の形態の厚み測定方法についての説明を繰り返さない。 FIG. 17 is a schematic front view showing the first step of the thickness measuring method using the thickness measuring device according to the fourth embodiment. FIG. 18 is a schematic front view showing the second step of the thickness measuring method using the thickness measuring device according to the fourth embodiment. FIG. 19 is a schematic front view showing the third step of the thickness measuring method using the thickness measuring device according to the fourth embodiment. The steps shown in FIG. 17 correspond to the steps shown in FIGS. 9 and 13 of the second and third embodiments. The steps shown in FIG. 18 correspond to the steps shown in FIGS. 10 and 14 of the second and third embodiments. The steps shown in FIG. 19 correspond to the steps shown in FIGS. 11 and 15 of the second and third embodiments. 17 to 19, thickness measuring device 400 is used to perform the same processing as in the second and third embodiments. Therefore, the description of the thickness measuring method of this embodiment will not be repeated.

本実施の形態によれば、実施の形態1と実施の形態2と実施の形態3との作用効果をすべて奏することができる。すなわち実施の形態1の作用効果の他、保持搬送機構部6の構成部材間の接着固定部の経年劣化を抑制できるとともに、薄板9に塗布された防錆油が主表面50a上に停滞し溜まることを抑制できる。 According to the present embodiment, it is possible to obtain all the effects of the first, second, and third embodiments. In other words, in addition to the effects of the first embodiment, it is possible to suppress aged deterioration of the adhesive fixing portion between the constituent members of the holding and transporting mechanism portion 6, and the rust preventive oil applied to the thin plate 9 stagnates and accumulates on the main surface 50a. can be suppressed.

実施の形態5.
図20は、実施の形態5に係る厚み測定装置の特徴的な部分の構成を示す概略平面図である。図21は、実施の形態5に係る厚み測定装置の特徴的な部分の構成を示す概略正面図である。図20および図21を用いて、実施の形態5に係る厚み測定装置の特徴的な部分の構成について説明する。
Embodiment 5.
FIG. 20 is a schematic plan view showing the configuration of a characteristic portion of the thickness measuring device according to Embodiment 5. FIG. FIG. 21 is a schematic front view showing the configuration of a characteristic portion of the thickness measuring device according to Embodiment 5. FIG. The configuration of the characteristic portion of the thickness measuring device according to Embodiment 5 will be described with reference to FIGS. 20 and 21. FIG.

図20および図21を参照して、実施の形態5に係る厚み測定装置500は、実施の形態1に係る厚み測定装置100と基本的に同様の構成を有している。このため以下において、厚み測定装置100と同一の構成要素には同一の参照符号を付しその説明を繰り返さない。厚み測定装置500は、保持搬送機構部7と、厚み測定機構部8とを主に備えている。実施の形態5は実施の形態1の図1および図2の厚み測定装置100に対し、レーザ変位計81の配置態様と、保持搬送機構部7に含まれる保持部材に形成される通し穴14について異なっている。 20 and 21, thickness measuring apparatus 500 according to the fifth embodiment has basically the same configuration as thickness measuring apparatus 100 according to the first embodiment. Therefore, hereinafter, the same reference numerals are given to the same components as those of the thickness measuring apparatus 100, and the description thereof will not be repeated. The thickness measuring device 500 mainly includes a holding/conveying mechanism section 7 and a thickness measuring mechanism section 8 . The fifth embodiment differs from the thickness measuring apparatus 100 of the first embodiment shown in FIGS. different.

保持搬送機構部7は、保持部材71と、弾性体部材12と、接手部材10とを含んでいる。これらは厚み測定装置100の保持搬送機構部1の保持部材11、弾性体部材12、継手部材10に対応するため、実施の形態1との共通事項についてはその説明を繰り返さない。剛体材料の保持部材71はZ方向の上側に主表面71aを有し、Z方向の下側には主表面71bを有する。主表面71bは、保持部材71の薄板9を保持可能な保持部材面として機能する。保持搬送機構部7は鉛直方向すなわちZ方向に駆動可能である。保持部材71の薄板9が保持するたとえば主表面71bは、薄板9の有する反りおよびうねりを矯正することが可能な程度の平面度を有することが好ましい。 The holding and transporting mechanism section 7 includes a holding member 71 , an elastic member 12 and a joint member 10 . Since these correspond to the holding member 11, the elastic member 12, and the joint member 10 of the holding/conveying mechanism 1 of the thickness measuring apparatus 100, the description of the common items with the first embodiment will not be repeated. The rigid material holding member 71 has an upper major surface 71a in the Z direction and a lower major surface 71b in the Z direction. The main surface 71 b functions as a holding member surface capable of holding the thin plate 9 of the holding member 71 . The holding/conveying mechanism 7 can be driven in the vertical direction, that is, in the Z direction. For example, the main surface 71b held by the thin plate 9 of the holding member 71 preferably has a degree of flatness capable of correcting the warp and undulation of the thin plate 9 .

保持部材71には、実施の形態1と同様の第1の空路13が形成されている。また保持部材71には、図20および図21のように、X方向およびY方向に間隔をあけて複数の通し穴14が形成されている。一例として図20においては、合計10の通し穴14が形成されているが、この数は任意である。 The holding member 71 is formed with the first air passage 13 similar to that of the first embodiment. 20 and 21, the holding member 71 is formed with a plurality of through holes 14 spaced apart in the X and Y directions. As an example, ten through-holes 14 are formed in total in FIG. 20, but this number is arbitrary.

厚み測定機構部8は、ベース部材20と、レーザ変位計81と、Y方向位置決め機構82と、X方向位置決め機構83とを含んでいる。ベース部材20、レーザ変位計81は厚み測定装置100の厚み測定機構部2のベース部材20、レーザ変位計21に対応するため、実施の形態1との共通事項についてはその説明を繰り返さない。ベース部材20には、実施の形態1と同様の第2の空路22が形成されている。 The thickness measuring mechanism section 8 includes a base member 20 , a laser displacement meter 81 , a Y-direction positioning mechanism 82 and an X-direction positioning mechanism 83 . Since base member 20 and laser displacement gauge 81 correspond to base member 20 and laser displacement gauge 21 of thickness measuring mechanism 2 of thickness measuring device 100, description of items common to Embodiment 1 will not be repeated. A second air passage 22 similar to that of the first embodiment is formed in the base member 20 .

厚み測定装置500において、レーザ変位計81は、1台のみ設置されている。レーザ変位計81は、位置決め機構としてのY方向位置決め機構82と、位置決め機構としてのX方向位置決め機構83とに固定されている。Y方向位置決め機構82およびX方向位置決め機構83は駆動源を有している。レーザ変位計81は、3次元空間内すなわちXYZ空間内にて、Y方向位置決め機構82およびX方向位置決め機構83に固定されている。Y方向位置決め機構82が駆動することにより、レーザ変位計81がY方向に移動し、レーザ変位計81のY方向の位置を決定する。X方向位置決め機構83が駆動することにより、レーザ変位計81がX方向に移動し、レーザ変位計81のX方向の位置を決定する。これに伴い、保持部材71を主表面71aから主表面71bまで貫通するように形成されるレーザ光の光路としての通し穴14は、厚み測定が必要な箇所の数だけ形成されている。 Only one laser displacement gauge 81 is installed in the thickness measuring device 500 . The laser displacement gauge 81 is fixed to a Y-direction positioning mechanism 82 as a positioning mechanism and an X-direction positioning mechanism 83 as a positioning mechanism. The Y-direction positioning mechanism 82 and the X-direction positioning mechanism 83 have drive sources. The laser displacement meter 81 is fixed to a Y-direction positioning mechanism 82 and an X-direction positioning mechanism 83 in a three-dimensional space, ie, an XYZ space. By driving the Y-direction positioning mechanism 82, the laser displacement meter 81 moves in the Y direction, and the position of the laser displacement meter 81 in the Y direction is determined. When the X-direction positioning mechanism 83 is driven, the laser displacement gauge 81 moves in the X-direction and determines the position of the laser displacement gauge 81 in the X-direction. Along with this, the through-holes 14 as optical paths of the laser light formed to penetrate the holding member 71 from the main surface 71a to the main surface 71b are formed in the same number as the locations where thickness measurement is required.

次に、本実施の形態の作用効果について説明する。本実施の形態は実施の形態1と同様の作用効果の他、以下の作用効果を奏する。 Next, the effects of this embodiment will be described. This embodiment has the following effects in addition to the same effects as those of the first embodiment.

本実施の形態の厚み測定装置500においては、レーザ変位計81が、3次元空間内でレーザ変位計81を位置決め可能な位置決め機構としてのY方向位置決め機構82およびX方向位置決め機構83に固定されている。Y方向位置決め機構82およびX方向位置決め機構83により、XY平面におけるレーザ変位計81の位置を任意に決定できる。 In the thickness measuring device 500 of the present embodiment, the laser displacement gauge 81 is fixed to a Y-direction positioning mechanism 82 and an X-direction positioning mechanism 83 as positioning mechanisms capable of positioning the laser displacement gauge 81 in a three-dimensional space. there is The Y-direction positioning mechanism 82 and the X-direction positioning mechanism 83 can arbitrarily determine the position of the laser displacement gauge 81 on the XY plane.

たとえば実施の形態1の厚み測定装置100では、レーザ変位計21が、上記のようにブラケット部材により、薄板9の厚みを検出したい場所の真上に固定される。このため実施の形態1では、薄板9の厚みを測定したい場所が複数存在する場合、当該厚みを測定したい場所の数だけ、当該場所の真上にレーザ変位計21を固定する必要がある。このようにすれば多数のレーザ変位計21を設置する必要が生じるため、厚み測定装置100の製造コストが高騰する。また厚み測定装置100が厚みを測定する測定対象物の品種である薄板9などを切り替えるために厚みの測定場所が変更になる場合がある。このような場合、厚み測定装置100でのレーザ変位計21の固定位置を変更する作業が発生する。 For example, in the thickness measuring device 100 of Embodiment 1, the laser displacement gauge 21 is fixed directly above the location where the thickness of the thin plate 9 is to be detected by the bracket member as described above. Therefore, in the first embodiment, when there are a plurality of locations where the thickness of the thin plate 9 is to be measured, it is necessary to fix the laser displacement gauges 21 directly above the locations corresponding to the number of locations where the thickness is to be measured. In this way, since it is necessary to install a large number of laser displacement gauges 21, the manufacturing cost of the thickness measuring device 100 rises. In addition, the place where the thickness is measured may be changed in order to change the type of thin plate 9 or the like of the object whose thickness is to be measured by the thickness measuring apparatus 100 . In such a case, an operation of changing the fixed position of the laser displacement gauge 21 in the thickness measuring device 100 is required.

しかし本実施の形態の厚み測定装置500によれば、薄板9の厚みを測定したい場所が複数存在する場合であっても、レーザ変位計81は1台のみ設置されればよい。レーザ変位計81がその位置決め可能なY方向位置決め機構82およびX方向位置決め機構83に固定されている。Y方向位置決め機構82およびX方向位置決め機構83の駆動によりレーザ変位計81の位置は薄板9の厚みを測定したい場所の真上となるよう移動させることができる。このため単一のレーザ変位計81があれば、薄板9の複数個所の厚みを測定できる。したがって厚み測定装置500は、多数のレーザ変位計21を設ける必要がある厚み測定装置100に比べて製造コストが削減できる。 However, according to the thickness measuring device 500 of the present embodiment, only one laser displacement gauge 81 needs to be installed even when there are multiple locations where the thickness of the thin plate 9 is to be measured. A laser displacement gauge 81 is fixed to its positionable Y-direction positioning mechanism 82 and X-direction positioning mechanism 83 . By driving the Y-direction positioning mechanism 82 and the X-direction positioning mechanism 83, the position of the laser displacement meter 81 can be moved so that it is directly above the place where the thickness of the thin plate 9 is to be measured. Therefore, with a single laser displacement meter 81, the thickness of the thin plate 9 can be measured at a plurality of locations. Therefore, the thickness measuring device 500 can reduce the manufacturing cost compared to the thickness measuring device 100 that requires a large number of laser displacement gauges 21 to be provided.

また厚み測定装置500を用いれば、測定対象物の品種である薄板9を変更するために厚みの測定箇所が変更になる場合にも、レーザ変位計81の固定位置を変更する作業としてはXY平面におけるレーザ変位計81の固定位置を変更するのみでよい。このため実施の形態1に比べて、レーザ変位計81の固定位置を変更する作業を簡素化できる。 Further, if the thickness measuring device 500 is used, even if the thickness measurement location is changed in order to change the type of the thin plate 9 of the object to be measured, the operation of changing the fixed position of the laser displacement gauge 81 can be done on the XY plane. It is only necessary to change the fixing position of the laser displacement meter 81 in . Therefore, compared to the first embodiment, the work of changing the fixing position of the laser displacement gauge 81 can be simplified.

次に本実施の形態の厚み測定装置500の変形例について説明する。本実施の形態の厚み測定装置500は、図示されないが、Y方向位置決め機構82およびX方向位置決め機構83に加え、位置決め機構としてのZ方向位置決め機構をさらに有してもよい。Z方向位置決め機構は駆動源を有している。この場合のレーザ変位計81は、3次元空間内すなわちXYZ空間内にて、Y方向位置決め機構82、X方向位置決め機構83およびZ方向位置決め機構に固定されている。Z方向位置決め機構が駆動することにより、レーザ変位計81がZ方向に移動し、レーザ変位計81のZ方向の位置が決定される。 Next, a modification of the thickness measuring device 500 of this embodiment will be described. Although not shown, the thickness measuring device 500 of the present embodiment may further have a Z-direction positioning mechanism as a positioning mechanism in addition to the Y-direction positioning mechanism 82 and the X-direction positioning mechanism 83 . The Z-direction positioning mechanism has a drive source. The laser displacement gauge 81 in this case is fixed to a Y-direction positioning mechanism 82, an X-direction positioning mechanism 83, and a Z-direction positioning mechanism in a three-dimensional space, ie, an XYZ space. By driving the Z-direction positioning mechanism, the laser displacement gauge 81 moves in the Z direction, and the Z-direction position of the laser displacement gauge 81 is determined.

たとえば実施の形態3の厚み測定装置300のように主表面41bおよび主表面50aが傾斜している場合、主表面41b,50a内の位置に応じてZ方向座標が変化する。このような場合に、Z方向位置決め機構を有する厚み測定装置500はより一層好都合である。厚み測定装置500がZ方向位置決め機構を有し、レーザ変位計81の位置をX方向、Y方向、Z方向のすべてについて変更可能とすることで、傾斜する主表面41b,50aと重なる任意位置の薄板9の厚み測定ができるためである。また厚み測定装置500がZ方向位置決め機構を有すれば、薄板9の品種切り替えの際にもレーザ変位計81の固定位置を、Z座標も含めて容易に変更できるためである。 For example, when main surface 41b and main surface 50a are inclined as in thickness measuring device 300 of the third embodiment, the Z-direction coordinates change according to the positions within main surfaces 41b and 50a. In such cases, the thickness measuring device 500 having a Z-direction positioning mechanism is much more convenient. The thickness measuring device 500 has a Z-direction positioning mechanism, and by making the position of the laser displacement meter 81 changeable in all of the X-, Y-, and Z-directions, any position overlapping the inclined main surfaces 41b and 50a can be measured. This is because the thickness of the thin plate 9 can be measured. Also, if the thickness measuring device 500 has a Z-direction positioning mechanism, the fixed position of the laser displacement gauge 81 can be easily changed, including the Z-coordinate, when the type of the thin plate 9 is changed.

なお本実施の形態のレーザ変位計81は、直交軸を組み合わせて3次元的に駆動可能とされてもよい。ただし本実施の形態のレーザ変位計81は、たとえばロボットによって3次元的に駆動可能とされてもよい。 The laser displacement meter 81 of the present embodiment may be three-dimensionally drivable by combining orthogonal axes. However, laser displacement meter 81 of the present embodiment may be three-dimensionally drivable by a robot, for example.

以上に述べた各実施の形態(に含まれる各例)に記載した特徴を、技術的に矛盾のない範囲で適宜組み合わせるように適用してもよい。 You may apply so that the feature described in each embodiment (each example included in) described above may be suitably combined in the technically consistent range.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments disclosed this time are illustrative in all respects and not restrictive. The scope of the present invention is indicated by the scope of the claims rather than the above description, and is intended to include all changes within the scope and meaning equivalent to the scope of the claims.

1,3,4,6,7 保持搬送機構部、2,5 厚み測定機構部、9 薄板、9a,9b,11a,11b,20a,31a,41b,50a,71a,71b 主表面、10,30 継手部材、11,31,41,61,71 保持部材、12,32 弾性体部材、13,43 第1の空路、14 通し穴、20,50 ベース部材、21,51,81 レーザ変位計、22,52 第2の空路、34 貫通孔、35 雌ネジ、36 雄ネジ部材、44 通し穴、82 Y方向位置決め機構、83 X方向位置決め機構、100,200,300,400,500 厚み測定装置、L レーザ光。 1, 3, 4, 6, 7 holding and conveying mechanism 2, 5 thickness measuring mechanism 9 thin plate 9a, 9b, 11a, 11b, 20a, 31a, 41b, 50a, 71a, 71b main surface 10, 30 Joint member 11, 31, 41, 61, 71 Holding member 12, 32 Elastic member 13, 43 First air passage 14 Through hole 20, 50 Base member 21, 51, 81 Laser displacement gauge 22 , 52 second air passage 34 through hole 35 female screw 36 male screw member 44 through hole 82 Y-direction positioning mechanism 83 X-direction positioning mechanism 100, 200, 300, 400, 500 thickness measuring device L laser light.

Claims (10)

測定対象物を保持および搬送する保持搬送機構部と、
前記測定対象物の厚みを測定する厚み測定機構部とを備え、
前記保持搬送機構部は、前記測定対象物に接する剛体材料からなる保持部材と、前記保持部材に接する弾性体部材と、前記弾性体部材の前記保持部材と反対側に接する剛体材料からなる継手部材とを含み、
前記厚み測定機構部は、前記保持部材に対向し前記保持部材との間に前記測定対象物を挟持可能な剛体材料からなるベース部材を含み、
前記保持部材は前記弾性体部材および前記継手部材に対して平面視におけるサイズが大きく、
前記保持部材が前記弾性体部材および前記継手部材に対してはみ出る領域に前記保持部材を貫通しレーザ光を通す通し穴が形成される、厚み測定装置。
a holding and transporting mechanism that holds and transports the object to be measured;
and a thickness measuring mechanism for measuring the thickness of the measurement object,
The holding/conveying mechanism includes a holding member made of a rigid material in contact with the object to be measured, an elastic member in contact with the holding member, and a joint member made of a rigid material in contact with the side of the elastic member opposite to the holding member. and
The thickness measuring mechanism includes a base member made of a rigid material that faces the holding member and can hold the measurement object between itself and the holding member,
The holding member has a larger size in plan view than the elastic member and the joint member,
A thickness measuring device, wherein a through-hole is formed through the holding member in a region where the holding member protrudes with respect to the elastic member and the joint member, through which the laser beam passes .
前記保持部材には、前記保持部材が設置される環境よりも低い空気圧とすることが可能な第1の空路が形成される、請求項1に記載の厚み測定装置。 2. The thickness measuring device according to claim 1, wherein said holding member is formed with a first air passage capable of having a lower air pressure than the environment in which said holding member is installed. 前記ベース部材には、前記ベース部材が設置される環境よりも低い空気圧とすることが可能な第2の空路が形成される、請求項1または2に記載の厚み測定装置。 3. The thickness measuring device according to claim 1, wherein the base member is formed with a second air passage that can be made to have a lower air pressure than the environment in which the base member is installed. 前記ベース部材には、前記ベース部材が設置される環境よりも高い空気圧とすることが可能な第2の空路が形成される、請求項1または2に記載の厚み測定装置。 3. The thickness measuring device according to claim 1, wherein the base member is formed with a second air passage capable of having a higher air pressure than the environment in which the base member is installed. 前記厚み測定機構部は、前記測定対象物の厚みを測定可能なレーザ変位計を含む、請求項1~4のいずれか1項に記載の厚み測定装置。 5. The thickness measuring device according to claim 1, wherein said thickness measuring mechanism includes a laser displacement gauge capable of measuring the thickness of said object to be measured. 前記レーザ変位計は、3次元空間内で前記レーザ変位計を位置決め可能な位置決め機構に固定されている、請求項5に記載の厚み測定装置。 6. The thickness measuring device according to claim 5, wherein said laser displacement gauge is fixed to a positioning mechanism capable of positioning said laser displacement gauge within a three-dimensional space. 前記保持搬送機構部は、前記継手部材と前記弾性体部材とを貫通するように貫通孔が形成され、
前記保持部材には、前記貫通孔と平面視において重なる位置に、雌ネジが形成され、
前記貫通孔を貫通し前記雌ネジと締結される雄ネジ部材により、前記保持部材と前記弾性体部材と前記継手部材とが前記保持搬送機構部として構成される、請求項1~6のいずれか1項に記載の厚み測定装置。
a through hole is formed in the holding and transporting mechanism so as to pass through the joint member and the elastic member;
A female screw is formed in the holding member at a position overlapping the through hole in a plan view,
7. The holding member, the elastic member, and the joint member are configured as the holding and conveying mechanism by a male screw member that passes through the through hole and is fastened to the female screw. The thickness measuring device according to item 1.
前記保持部材の前記測定対象物を保持可能な保持部材面、および前記ベース部材の前記測定対象物に接触可能なベース部材面は、前記保持搬送機構部の駆動方向に垂直な方向に対して傾斜している、請求項1~7のいずれか1項に記載の厚み測定装置。 A holding member surface capable of holding the object to be measured of the holding member and a base member surface of the base member capable of contacting the object to be measured are inclined with respect to a direction perpendicular to the driving direction of the holding/conveying mechanism. The thickness measuring device according to any one of claims 1 to 7, wherein the thickness measuring device is 請求項1~8のいずれか1項に記載の厚み測定装置を用いた厚み測定方法であって、
前記保持部材に前記測定対象物を保持させながら、前記ベース部材上に前記測定対象物を載置する工程と、
前記ベース部材上に載置された前記測定対象物を前記ベース部材側に押圧する工程と、
前記ベース部材上に押圧された前記測定対象物の厚みを測定する工程とを備える、厚み測定方法。
A thickness measurement method using the thickness measurement device according to any one of claims 1 to 8,
placing the measurement object on the base member while holding the measurement object on the holding member;
a step of pressing the measurement object placed on the base member toward the base member;
and measuring the thickness of the object to be measured pressed onto the base member.
前記測定対象物の厚みを測定する工程は、
前記測定対象物の前記保持部材に接する第1面にレーザ光を照射する工程と、
前記第1面で反射する前記レーザ光から得られる前記第1面の位置と、前記測定対象物が載置される前記ベース部材の前記測定対象物に接する第2面の位置との差分を演算する工程とを備える、請求項9に記載の厚み測定方法。
The step of measuring the thickness of the measurement object includes:
a step of irradiating a first surface of the object to be measured which is in contact with the holding member with a laser beam;
calculating the difference between the position of the first surface obtained from the laser beam reflected by the first surface and the position of the second surface of the base member on which the object to be measured is placed and which is in contact with the object to be measured; The thickness measurement method according to claim 9, comprising the step of:
JP2020558186A 2018-11-28 2019-10-24 Thickness measuring device and thickness measuring method Active JP7109584B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018222197 2018-11-28
JP2018222197 2018-11-28
PCT/JP2019/041692 WO2020110532A1 (en) 2018-11-28 2019-10-24 Thickness measurement device and thickness measurement method

Publications (2)

Publication Number Publication Date
JPWO2020110532A1 JPWO2020110532A1 (en) 2021-06-03
JP7109584B2 true JP7109584B2 (en) 2022-07-29

Family

ID=70853393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020558186A Active JP7109584B2 (en) 2018-11-28 2019-10-24 Thickness measuring device and thickness measuring method

Country Status (2)

Country Link
JP (1) JP7109584B2 (en)
WO (1) WO2020110532A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264044A (en) 2000-03-16 2001-09-26 Hitachi Chem Co Ltd Plate thickness measuring instrument
JP2003294419A (en) 2002-03-29 2003-10-15 Hitachi Kokusai Electric Inc Measuring instrument for infinitesimal dimension
JP2004055995A (en) 2002-07-23 2004-02-19 Seiko Epson Corp Cmp device, cmp grinding method, semiconductor device and method for manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5387258A (en) * 1977-01-11 1978-08-01 Canon Inc Measuring device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264044A (en) 2000-03-16 2001-09-26 Hitachi Chem Co Ltd Plate thickness measuring instrument
JP2003294419A (en) 2002-03-29 2003-10-15 Hitachi Kokusai Electric Inc Measuring instrument for infinitesimal dimension
JP2004055995A (en) 2002-07-23 2004-02-19 Seiko Epson Corp Cmp device, cmp grinding method, semiconductor device and method for manufacturing the same

Also Published As

Publication number Publication date
WO2020110532A1 (en) 2020-06-04
JPWO2020110532A1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
US8244399B2 (en) Transport method and transport apparatus
KR101401777B1 (en) Continuous linear scanning of large flat panel media
CN111615271B (en) Automatic laminating equipment for multilayer circuit board
JP4761026B2 (en) Element transfer device, element transfer method, and display device manufacturing method
US9239218B2 (en) Size inspection device
JP2016111188A (en) Separation device and separation method
CN103389046A (en) Automatic thin plate measuring device with compound measuring function
KR20180063421A (en) Scribing apparatus
KR102468101B1 (en) Device mounting apparatus
KR20120130246A (en) Apparatus for detecting position of sheet-like mold, transfer apparatus and transfer method
JP7109584B2 (en) Thickness measuring device and thickness measuring method
TWI454369B (en) Transfer device
CN109824253B (en) Substrate cutting device
TWI731102B (en) Device for positioning an integrated circuit wafer and equipment for inspecting an integrated circuit wafer comprising such a positioning device
JP7196235B2 (en) Thickness measuring device and lamination device using the same
KR20190036238A (en) Substrate cutting apparatus
WO2012098679A1 (en) Apparatus for bonding work pieces, and press-curing apparatus
KR102398710B1 (en) Spacing device and spacing method
JP2012111606A (en) Glass positioning device and glass positioning method
JP6435508B2 (en) Component mounting method and component mounting apparatus
JP2005532236A (en) Equipment for packaging contact lenses
KR20130142950A (en) Apparatus and method for adhering sheet
KR102341796B1 (en) Substrate cutting apparatus
KR102214325B1 (en) Apparatus and method for dispensing package
JP2012180202A (en) Work delivery device and work delivery method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220719

R150 Certificate of patent or registration of utility model

Ref document number: 7109584

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150