JP7108570B2 - Method for producing fluid catalytic cracking gasoline - Google Patents

Method for producing fluid catalytic cracking gasoline Download PDF

Info

Publication number
JP7108570B2
JP7108570B2 JP2019069973A JP2019069973A JP7108570B2 JP 7108570 B2 JP7108570 B2 JP 7108570B2 JP 2019069973 A JP2019069973 A JP 2019069973A JP 2019069973 A JP2019069973 A JP 2019069973A JP 7108570 B2 JP7108570 B2 JP 7108570B2
Authority
JP
Japan
Prior art keywords
catalytic cracking
fluid catalytic
catalyst
mass
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019069973A
Other languages
Japanese (ja)
Other versions
JP2020169235A (en
Inventor
晃平 大谷
慶彦 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2019069973A priority Critical patent/JP7108570B2/en
Publication of JP2020169235A publication Critical patent/JP2020169235A/en
Application granted granted Critical
Publication of JP7108570B2 publication Critical patent/JP7108570B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

本発明は、流動接触分解ガソリンの製造方法に関する。 The present invention relates to a method for producing fluid catalytic cracking gasoline.

環境問題に対する意識の高まりに伴い流動接触分解ガソリン等の流動接触分解装置(FCC装置)から得られる各種留分中の硫黄分の低減が求められるようになっている。当該硫黄分の低減手法としては、流動接触分解ガソリン中の硫黄分を下げるには、所望のレベルに脱硫した原料油を用いる、または流動接触分解ガソリン留分を水素化や吸着でさらに脱硫する、流動接触分解装置で用いられる脱硫触媒(FCC触媒)の開発及び改良による方法などが一般的である。例えば、バナジウムを高含量で含むアルミナ、シリカ等の無機酸化物を担体とする触媒をFCC触媒として用いて流動接触分解した石油留分の硫黄含量を低減させる方法(例えば、特許文献1参照)、酸化物マトリックス内に分散したゼオライト等に、Ni、Cu等の所定の金属種を含む化合物を担持した触媒を用いて、硫黄分を減少させた流動接触分解ガソリンを製造する方法(例えば、特許文献2参照)等が提案されている。しかし、これらの方法では、流動接触分解ガソリンの収率が十分ではないといった問題があった。 With the increasing awareness of environmental problems, there is a demand for reducing the sulfur content in various fractions obtained from fluid catalytic cracking units (FCC units) such as fluid catalytic cracking gasoline. As a method for reducing the sulfur content, in order to reduce the sulfur content in the fluid catalytic cracking gasoline, use a feedstock that has been desulfurized to the desired level, or further desulfurize the fluid catalytic cracking gasoline fraction by hydrogenation or adsorption. Common methods include the development and improvement of desulfurization catalysts (FCC catalysts) used in fluidized catalytic cracking units. For example, a method of reducing the sulfur content of a petroleum fraction subjected to fluid catalytic cracking using a catalyst containing inorganic oxides such as alumina and silica containing a high vanadium content as a carrier as an FCC catalyst (see, for example, Patent Document 1), A method for producing fluid catalytic cracking gasoline with reduced sulfur content using a catalyst in which a compound containing a predetermined metal species such as Ni or Cu is supported on zeolite dispersed in an oxide matrix (for example, Patent Document 2) have been proposed. However, these methods have the problem that the yield of fluid catalytic cracking gasoline is not sufficient.

流動接触分解ガソリンの収率の向上、留分中の硫黄分の含有量の低減を目的として、バナジウム、ニッケルの蓄積量を所定の範囲内とし、ゼオライトを含有する触媒を用いることで、低硫黄分流動接触分解ガソリンを製造する方法が提案されている(例えば、特許文献3参照)。 For the purpose of improving the yield of fluid catalytic cracking gasoline and reducing the sulfur content in the fraction, the amount of accumulated vanadium and nickel is kept within a predetermined range, and a catalyst containing zeolite is used to reduce sulfur A method for producing split-fluid catalytic cracking gasoline has been proposed (see, for example, Patent Document 3).

特表2003-510405号公報Japanese translation of PCT publication No. 2003-510405 特開平6-277519号公報JP-A-6-277519 特開2005-15782号公報JP-A-2005-15782

ところで近年、環境問題に対する意識の高まりは増すばかりであり、環境に関する規制は年々厳しくなっている。また、需要者のコストに対する要求も年々厳しくなっており、環境に関する規制を満足するだけでなく、より安価に流動接触分解ガソリンを提供する必要が生じており、その収率の向上が求められている。そのため、特許文献3で開示される流動接触分解ガソリンを製造する方法より、更なる改良が求められている。 By the way, in recent years, awareness of environmental problems is increasing, and environmental regulations are becoming stricter year by year. In addition, demand for cost from users is becoming stricter year by year, and there is a need not only to satisfy environmental regulations, but also to provide fluid catalytic cracking gasoline at a lower cost, and an improvement in its yield is required. there is Therefore, there is a demand for further improvement over the method for producing fluid catalytic cracking gasoline disclosed in Patent Document 3.

そこで、本発明は、流動接触分解ガソリンを収率よく製造し得る、流動接触分解ガソリンの製造方法を提供することを目的とする。 Accordingly, an object of the present invention is to provide a method for producing fluid catalytic cracking gasoline that can produce fluid catalytic cracking gasoline with high yield.

本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、下記の発明により解決できることを見出した。すなわち本発明は、下記の構成を有する流動接触分解ガソリンの製造方法を提供するものである。 The present inventors have made intensive studies to solve the above problems, and as a result, have found that the problems can be solved by the following inventions. That is, the present invention provides a method for producing fluid catalytic cracking gasoline having the following constitution.

1.少なくとも脱硫重油を含む原料油を供給する、流動接触分解触媒を投入しながら用いる流動接触分解装置において、その流動接触分解触媒の投入量に対する該原料油中のバナジウム相当金属量を0.4質量%以上4.0質量%以下とすることで、装置内流動接触分解触媒の残留炭素分を0.05質量%超0.50質量%以下とする、流動接触分解ガソリンの製造方法。
2.前記バナジウム相当金属量を0.4質量%超2.5質量%以下とする上記1に記載の流動接触分解ガソリンの製造方法。
3.前記流動接触分解装置における再生塔の運転温度が、615℃以上645℃以下である上記1又は2に記載の流動接触分解ガソリンの製造方法。
4.前記原料油中の重質軽油の含有量が、10容量%以上90容量%以下である上記1~3のいずれか1に記載の流動接触分解ガソリンの製造方法。
1. In a fluidized catalytic cracking unit that supplies a feedstock containing at least desulfurized heavy oil and uses a fluidized catalytic cracking catalyst while charging, the amount of metal equivalent to vanadium in the feedstock with respect to the amount of charged fluidized catalytic cracking catalyst is 0.4% by mass. A method for producing fluid catalytic cracking gasoline, wherein the residual carbon content of the in-apparatus fluid catalytic cracking catalyst is more than 0.05 mass % and 0.50 mass % or less by making it 4.0 mass % or less.
2. 2. The method for producing fluid catalytic cracking gasoline according to 1 above, wherein the vanadium equivalent metal amount is more than 0.4% by mass and not more than 2.5% by mass.
3. 3. The method for producing fluid catalytic cracking gasoline according to 1 or 2 above, wherein the operating temperature of the regeneration tower in the fluid catalytic cracking unit is 615° C. or higher and 645° C. or lower.
4. 4. The method for producing fluid catalytic cracking gasoline according to any one of 1 to 3 above, wherein the content of heavy gas oil in the feedstock oil is 10% by volume or more and 90% by volume or less.

本発明によれば、流動接触分解ガソリンを収率よく製造し得る、流動接触分解ガソリンの製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of fluid catalytic cracking gasoline which can manufacture fluid catalytic cracking gasoline with high yield can be provided.

〔流動接触分解ガソリンの製造方法〕
本発明における実施形態(以後、単に本実施形態と称する場合がある。)に係る流動接触分解ガソリンの製造方法は、少なくとも脱硫重油を含む原料油を供給する、流動接触分解触媒を投入しながら用いる流動接触分解装置において、当該流動接触分解触媒の投入量に対する該原料油中のバナジウム相当金属量を0.4質量%以上4.0質量%以下とすることで、装置内流動接触分解触媒の残留炭素分を0.05質量%超0.50質量%以下とすることを特徴とするものである。
[Method for producing fluid catalytic cracking gasoline]
The method for producing fluid catalytic cracking gasoline according to the embodiment of the present invention (hereinafter sometimes simply referred to as this embodiment) supplies feedstock oil containing at least desulfurized heavy oil, and is used while introducing a fluid catalytic cracking catalyst. In the fluid catalytic cracking unit, the amount of vanadium equivalent metal in the feedstock relative to the input amount of the fluid catalytic cracking catalyst is 0.4% by mass or more and 4.0% by mass or less, so that the residual fluid catalytic cracking catalyst in the unit It is characterized by having a carbon content of more than 0.05% by mass and not more than 0.50% by mass.

本実施形態では、流動接触分解触媒の投入量に対する原料油中のバナジウム相当金属量を所定の範囲内とすることで、投入する流動接触分解触媒及び装置内流動接触分解触媒(以下、「平衡触媒」とも称する。)上での原料油の過分解を抑制し、かつ該触媒のバナジウム等の被毒金属種による活性の低下を抑制することができ、結果として流動接触分解ガソリンの収率を向上させることができる。より具体的には、流動接触分解装置に供給する原料油中のバナジウム相当金属量を制御することにより、装置内接触分解触媒(平衡触媒)を所定のバナジウム相当金属量とするとともに、該触媒(平衡触媒)の残留炭素分を制御することができるので、流動接触分解ガソリンの収率を向上させることができる。 In the present embodiment, by setting the amount of metal equivalent to vanadium in the feedstock to the amount of the fluid catalytic cracking catalyst input within a predetermined range, the fluid catalytic cracking catalyst and the in-device fluid catalytic cracking catalyst (hereinafter referred to as "equilibrium catalyst (Also referred to as ".) It is possible to suppress the overcracking of the feed oil above and suppress the decrease in activity due to the poisoning metal species such as vanadium of the catalyst, and as a result, the yield of fluid catalytic cracking gasoline is improved. can be made More specifically, by controlling the amount of vanadium equivalent metal in the feed oil supplied to the fluidized catalytic cracking unit, the in-unit catalytic cracking catalyst (equilibrium catalyst) has a predetermined amount of vanadium equivalent metal, and the catalyst ( Since the residual carbon content of the equilibrium catalyst) can be controlled, the yield of fluid catalytic cracking gasoline can be improved.

流動接触分解装置で用いられる流動接触分解触媒は、当該装置内の反応塔に固定されるものではなく反応塔内を流動しながら原料油と流動接触することで、原料油の分解反応による流動接触分解ガソリンの生成を促進している。そのため、流動接触分解触媒は、流動接触分解ガソリン及び生成ガス等とともに、その一部は流動接触分解装置外に流出することとなる。また、流動接触分解装置で用いられる流動接触分解触媒は、原料油の分解反応及び触媒再生処理を繰り返して用いられることから、劣化する。そのため、その一部を一定量流動接触分解装置外に抜き出して、新触媒を投入することが一般的に行われており、新触媒を常時補充することとなる。本実施形態の流動接触分解ガソリンの製造方法では、該新触媒の投入量及び原料油の供給量を調整することで、装置内接触分解触媒(平衡触媒)を所定のバナジウム相当金属量とするとともに、該触媒(平衡触媒)の残留炭素分を制御することにより、流動接触分解ガソリンの収率を向上させることができる。 The fluid catalytic cracking catalyst used in the fluid catalytic cracking unit is not fixed to the reaction tower in the unit, but is fluidly contacted with the feedstock while flowing in the reaction tower. It promotes the generation of cracked gasoline. Therefore, a part of the fluid catalytic cracking catalyst will flow out of the fluid catalytic cracking apparatus together with the fluid catalytic cracking gasoline, the generated gas, and the like. In addition, the fluid catalytic cracking catalyst used in the fluid catalytic cracking unit deteriorates due to repeated use of the cracking reaction of the raw oil and the catalyst regeneration treatment. Therefore, it is common practice to withdraw a certain amount of the catalyst out of the fluidized catalytic cracking apparatus and to put in a new catalyst, so that the new catalyst is constantly replenished. In the method for producing fluidized catalytic cracking gasoline of the present embodiment, by adjusting the input amount of the new catalyst and the supply amount of the feedstock oil, the in-device catalytic cracking catalyst (equilibrium catalyst) has a predetermined amount of metal equivalent to vanadium. , the yield of fluid catalytic cracking gasoline can be improved by controlling the residual carbon content of the catalyst (equilibrium catalyst).

(原料油)
本実施形態の流動接触分解ガソリンの製造方法において用いられる原料油は、少なくとも脱硫重油を含むものである。
脱硫重油は、重油直接脱硫装置(「RH装置」とも称する。)で水素化脱硫処理して得られる重油留分(「DSAR」とも称する。)である。重油直接脱硫装置(RH装置)は、通常、常圧蒸留装置、減圧蒸留装置に接続され、これらの装置から得られる残油(重油)を触媒により水素化脱硫処理する装置である。この装置では、水素化脱硫及び水素化分解が行われ、得られる反応生成物は、気液分離され、液相は蒸留等の分離操作により、ナフサ留分、軽油留分、重油留分等の所望の留分に分留され、回収される。ここで回収される重油留分が、脱硫重油(DSAR)である。
(raw material oil)
The feedstock oil used in the method for producing fluid catalytic cracking gasoline of the present embodiment contains at least desulfurized heavy oil.
Desulfurized heavy oil is a heavy oil fraction (also referred to as "DSAR") obtained by hydrodesulfurization in a heavy oil direct desulfurization apparatus (also referred to as "RH apparatus"). A heavy oil direct desulfurization unit (RH unit) is usually connected to an atmospheric distillation unit and a vacuum distillation unit, and is a unit that hydrodesulfurizes residual oil (heavy oil) obtained from these units using a catalyst. In this device, hydrodesulfurization and hydrocracking are carried out, and the resulting reaction product is separated from gas and liquid, and the liquid phase is separated into naphtha fraction, gas oil fraction, heavy oil fraction, etc. by separation operation such as distillation. The desired fractions are fractionated and recovered. The heavy oil fraction recovered here is desulfurized heavy oil (DSAR).

RH装置で処理される重油としては特に制限なく、例えば、原油の常圧蒸留残油(AR)、減圧蒸留残油(VR)、重質サイクル油(HCO:Heavy Cycle Oil)、流動接触分解残油(CLO:Clarified Oil)、重質軽油、ビスブレーキング油、ビチューメン等の高密度の石油留分が挙げられ、これらは単独であっても、又は複数種が組み合わされていてもよい。 The heavy oil to be processed in the RH unit is not particularly limited, for example, atmospheric distillation residue (AR) of crude oil, vacuum distillation residue (VR), heavy cycle oil (HCO: Heavy Cycle Oil), fluid catalytic cracking residue High density petroleum fractions such as CLO (Clarified Oil), heavy gas oil, visbreaking oil, and bitumen may be mentioned, and these may be used alone or in combination.

RH装置における水素化脱硫及び水素化分解は、通常触媒の存在下で行われ、反応温度、反応圧力、液空間速度等の各種反応条件を調整することにより、所望の脱硫率、重油の分解率を達成することができる。水素化脱硫及び水素化分解は、特に制限されないが、通常300~450℃の反応温度で、通常10~22MPaの水素加圧下で行われ、液空間速度(LHSV)は通常0.1~10h-1とし、水素/重油比は通常200~10,000Nm/kLである。 Hydrodesulfurization and hydrocracking in the RH unit are usually carried out in the presence of a catalyst, and by adjusting various reaction conditions such as reaction temperature, reaction pressure, and liquid hourly space velocity, the desired desulfurization rate and heavy oil cracking rate can be obtained. can be achieved. Hydrodesulfurization and hydrocracking are not particularly limited, but are usually carried out at a reaction temperature of 300 to 450° C. under a hydrogen pressure of usually 10 to 22 MPa, and the liquid hourly space velocity (LHSV) is usually 0.1 to 10 h − 1 , and the hydrogen/heavy oil ratio is usually 200 to 10,000 Nm 3 /kL.

原料油には、脱硫重油以外の留分が含まれていてもよい。そのような留分としては特に制限はなく、例えば、原油の常圧蒸留、減圧蒸留により得られる重質軽油(HGO)、減圧軽油(VGO)、これらの重質軽油及び減圧軽油等を間接脱硫装置で脱硫処理して得られる脱硫減圧軽油(VHHGO)、間接脱硫重油と溶剤脱れき装置から得られる脱れき油(DAO)、減圧重油(VR)、コーカーガスオイル、コーカーボトム油等の各種重質油が挙げられる。中でも、重質軽油(HGO)、減圧軽油(VGO)が好ましく、重質軽油(HGO)が含まれることがより好ましい。 The feedstock oil may contain fractions other than the desulfurized heavy oil. Such fractions are not particularly limited. For example, heavy gas oil (HGO) obtained by atmospheric distillation or vacuum distillation of crude oil, vacuum gas oil (VGO), and indirect desulfurization of these heavy gas oils and vacuum gas oil. Desulfurized vacuum gas oil (VHHGO) obtained by desulfurization in equipment, deasphalted oil (DAO) obtained from indirect desulfurized heavy oil and solvent deasphalting equipment, vacuum heavy oil (VR), coker gas oil, various heavy oils such as coker bottom oil Quality oil is mentioned. Among them, heavy gas oil (HGO) and vacuum gas oil (VGO) are preferred, and heavy gas oil (HGO) is more preferred.

原料油中の脱硫重油の含有量は、特に制限はないが、好ましくは10容量%以上、より好ましくは20容量%以上、より好ましくは30容量%以上であり、上限として好ましくは90容量%以下、より好ましくは75容量%以下、更に好ましくは50容量%以下である。
原料油中の脱硫重油以外の留分の含有量は、特に制限はないが、好ましくは10容量%以上、より好ましくは25容量%以上、更に好ましくは50容量%以上であり、上限として好ましくは90容量%以下、より好ましくは80容量%以下、更に好ましくは70容量%以下である。
原料油中の脱硫重油、脱硫重油以外の留分の含有量が上記範囲内であると、流動接触分解触媒の投入量に対する原料油中のバナジウム相当金属量を所定範囲内としやすくなり、また後述するように再生塔における運転温度を通常より低くして流動接触分解触媒の水熱熱劣化を抑制しながら該触媒上の残留炭素分の低減を図ることができ、結果として流動接触分解ガソリンの収率の向上を図ることができる。
The content of desulfurized heavy oil in the feedstock is not particularly limited, but is preferably 10% by volume or more, more preferably 20% by volume or more, more preferably 30% by volume or more, and the upper limit is preferably 90% by volume or less. , more preferably 75% by volume or less, still more preferably 50% by volume or less.
The content of fractions other than desulfurized heavy oil in the raw material oil is not particularly limited, but is preferably 10% by volume or more, more preferably 25% by volume or more, and still more preferably 50% by volume or more, and the upper limit is preferably It is 90% by volume or less, more preferably 80% by volume or less, and even more preferably 70% by volume or less.
When the content of the desulfurized heavy oil and the fraction other than the desulfurized heavy oil in the feedstock is within the above range, the amount of metal equivalent to vanadium in the feedstock relative to the input amount of the fluid catalytic cracking catalyst is easily within a predetermined range, and will be described later. It is possible to reduce the residual carbon content on the catalyst while suppressing the hydrothermal deterioration of the fluid catalytic cracking catalyst by lowering the operating temperature in the regeneration tower than usual, and as a result, the yield of fluid catalytic cracking gasoline. rate can be improved.

流動接触分解触媒の投入量に対する原料油中のバナジウム相当金属量は、0.4質量%以上4.0質量%以下であることを要する。ここで、流動接触分解触媒の投入量は、流動接触分解装置への新触媒の投入量のことであり、またバナジウム相当金属量(Veq、質量ppm)とは、原料油中のバナジウムの含有量(V、質量ppm)及びニッケルの含有量(Ni、質量ppm)を用いた、以下の式で表される数値である。
Veq=V+1/4×Ni
The amount of metal equivalent to vanadium in the raw oil with respect to the input amount of the fluid catalytic cracking catalyst is required to be 0.4% by mass or more and 4.0% by mass or less. Here, the input amount of the fluid catalytic cracking catalyst is the input amount of the new catalyst to the fluid catalytic cracking unit, and the vanadium equivalent metal amount (Veq, mass ppm) is the vanadium content in the feed oil It is a numerical value represented by the following formula using (V, mass ppm) and nickel content (Ni, mass ppm).
Veq=V+1/4×Ni

流動接触分解触媒の投入量に対する原料油中のバナジウム相当金属量が0.4質量%未満であると、原料油の過分解が進行するため、流動接触分解ガソリンの収率が低下する。一方、当該金属量が4.0質量%超であると、流動接触分解触媒がバナジウム等の被毒金属で覆われてしまい、活性が低下するともに、該触媒の再生時に該被毒金属により水熱熱劣化及び破壊が生じる。流動接触分解ガソリンの収率を向上させ、かつ触媒の活性の低下、水熱熱劣化及び破壊を防止する観点から、流動接触分解触媒の投入量に対する原料油中のバナジウム相当金属量は、好ましくは0.4質量%超、より好ましくは0.6質量%以上、更に好ましくは1.0質量%以上であり、上限として好ましくは2.5質量%以下、より好ましくは2.0質量%以下、更に好ましくは1.7質量%以下である。 If the vanadium-equivalent metal content in the feedstock relative to the input amount of the fluid catalytic cracking catalyst is less than 0.4% by mass, excessive cracking of the feedstock proceeds, resulting in a decrease in the yield of fluid catalytic cracking gasoline. On the other hand, if the amount of the metal is more than 4.0% by mass, the fluid catalytic cracking catalyst is covered with a poisoning metal such as vanadium, and the activity is lowered. Thermal degradation and destruction occur. From the viewpoint of improving the yield of fluid catalytic cracking gasoline and preventing deterioration of catalyst activity, hydrothermal deterioration and destruction, the amount of vanadium equivalent metal in the feedstock relative to the input amount of fluid catalytic cracking catalyst is preferably More than 0.4% by mass, more preferably 0.6% by mass or more, more preferably 1.0% by mass or more, and the upper limit is preferably 2.5% by mass or less, more preferably 2.0% by mass or less, More preferably, it is 1.7% by mass or less.

本実施形態の流動接触分解ガソリンの製造方法において、流動接触分解触媒の投入量に対する原料油中のバナジウム相当金属量は、流動接触分解触媒の投入量の調整、流動接触分解処理装置への原料油の供給量の調整により制御することができ、より容易に制御する観点から、原料油の調整により行うことが好ましい。 In the method for producing fluid catalytic cracking gasoline of the present embodiment, the amount of metal equivalent to vanadium in the feedstock relative to the amount of input of the fluid catalytic cracking catalyst is determined by adjusting the amount of input of the fluid catalytic cracking catalyst and the feedstock oil to the fluid catalytic cracking treatment apparatus. From the viewpoint of easier control, it is preferable to adjust the raw material oil.

本実施形態の流動接触分解ガソリンの製造方法において、装置内流動接触分解触媒(平衡触媒)は、0.05質量%超0.50質量%以下であることを要する。残留炭素分が0.50質量%超となると、装置内流動接触分解触媒(平衡触媒)が残留炭素で覆われる、また装置内流動接触分解触媒(平衡触媒)の例えばゼオライト等の担体がコーキングを生じることにより、触媒の活性の低下が生じ、流動接触分解ガソリンの収率が低下する。触媒の活性の低下を抑制し、かつ過分解を抑制し、流動接触ガソリンの収率を向上させる観点から、装置内流動接触分解触媒(平衡触媒)の残留炭素分は、好ましくは0.1質量%以上、より好ましくは0.2質量%以上であり、上限として好ましくは0.5質量%未満、より好ましくは0.45質量%以下、更に好ましくは0.4質量%以下である。
本明細書において、流動接触分解触媒の残留炭素分は、炭素・硫黄分析装置(例えば、「EMIA-920V2(型番)」、株式会社堀場製作所製)により測定した数値である。
In the method for producing fluid catalytic cracking gasoline of the present embodiment, the in-device fluid catalytic cracking catalyst (equilibrium catalyst) is required to be more than 0.05% by mass and not more than 0.50% by mass. When the residual carbon content exceeds 0.50% by mass, the in-device fluid catalytic cracking catalyst (equilibrium catalyst) is covered with residual carbon, and the in-device fluid catalytic cracking catalyst (equilibrium catalyst) carrier such as zeolite is coking. This results in a decrease in the activity of the catalyst and a decrease in the yield of fluid catalytic cracking gasoline. From the viewpoint of suppressing a decrease in activity of the catalyst, suppressing excessive cracking, and improving the yield of fluid contact gasoline, the residual carbon content of the in-device fluid catalytic cracking catalyst (equilibrium catalyst) is preferably 0.1 mass. % or more, more preferably 0.2 mass % or more, and the upper limit is preferably less than 0.5 mass %, more preferably 0.45 mass % or less, and still more preferably 0.4 mass % or less.
In this specification, the residual carbon content of the fluid catalytic cracking catalyst is a numerical value measured by a carbon/sulfur analyzer (for example, "EMIA-920V2 (model number)", manufactured by Horiba, Ltd.).

また、装置内流動接触分解触媒のバナジウム相当金属量は、好ましくは800質量ppm以上、より好ましくは1500質量ppm以上、更に好ましくは2500質量ppm以上、より更に好ましくは3000質量ppm以上であり、上限として好ましくは5000質量ppm以下、より好ましくは4500質量ppm以下である。上記範囲内であると、触媒の活性の低下を抑制し、流動接触分解ガソリンの収率を向上させることができる。
本明細書において、流動接触分解触媒上のバナジウム相当金属量は、ASTM D7085-04:Standard Guide for Determination of Chemical Elements in Fluid Catalytic Cracking Catalysts by X-ray Fluorescence Spectrometry(XRF)に基づき算出される値とする。
In addition, the vanadium equivalent metal amount of the in-device fluid catalytic cracking catalyst is preferably 800 mass ppm or more, more preferably 1500 mass ppm or more, still more preferably 2500 mass ppm or more, still more preferably 3000 mass ppm or more, and the upper limit is preferably 5000 mass ppm or less, more preferably 4500 mass ppm or less. Within the above range, it is possible to suppress a decrease in the activity of the catalyst and improve the yield of fluid catalytic cracking gasoline.
In this specification, the vanadium equivalent metal amount on the fluid catalytic cracking catalyst is calculated based on ASTM D7085-04: Standard Guide for Determination of Chemical Elements in Fluid Catalytic Cracking Catalysts by X-ray Fluorescence Spectrometry (RF) value. do.

本実施形態で用いられる流動接触分解装置は、通常製油所に設けられる流動接触分解装置と称される装置であれば特に制限なく適用可能である。例えば、流動接触分解装置は、サイクロン、分解生成物排出ライン、ストリッパー、スペント触媒トランスファーライン及びライザー等を有し、原料油の流動接触分解が行われる反応塔と、エアブロワー、エアグリッド、サイクロン、再生触媒トランスファーライン及び排ガスライン等を有し、触媒の再生を行う再生塔と、を備える装置である。 The fluid catalytic cracking unit used in the present embodiment can be applied without particular limitation as long as it is a unit called a fluid catalytic cracking unit that is usually installed in a refinery. For example, the fluid catalytic cracking unit has a cyclone, a cracked product discharge line, a stripper, a spent catalyst transfer line, a riser, etc., and includes a reaction tower in which the feedstock is subjected to fluid catalytic cracking, an air blower, an air grid, a cyclone, The apparatus includes a regeneration tower having a regenerated catalyst transfer line, an exhaust gas line, and the like, for regenerating the catalyst.

反応塔では、ライザー内で原料油の分解反応により生成した分解生成物はサイクロンに供給され、サイクロンでは遠心力を利用して分解生成物と流動接触分解触媒とを分離し、分解生成物は分解生成物排出ラインより反応塔から排出され、流動接触分解触媒はスチームが供給されるストリッパーで該触媒上の炭化水素を除去してからスペント触媒トランスファーラインより反応塔から排出され、再生塔に移送される。 In the reaction tower, the cracked products generated by the cracking reaction of the raw oil in the riser are supplied to the cyclone, and the cyclone uses centrifugal force to separate the cracked products and the fluid catalytic cracking catalyst, and the cracked products are cracked. The fluidized catalytic cracking catalyst is discharged from the reaction tower through the product discharge line, and the fluid catalytic cracking catalyst is discharged from the reaction tower through the spent catalyst transfer line after removing the hydrocarbons on the catalyst with a stripper to which steam is supplied and transferred to the regeneration tower. be.

再生塔では、エアブロワーからエアグリッドを経由して再生塔内に供給される空気と、スペント触媒トランスファーラインから再生塔に供給される反応塔で使用された流動接触分解触媒とを接触させて、該触媒上の炭化水素(「コーク」とも称する。)を燃焼させることにより、流動接触分解触媒が再生される。再生された流動接触分解触媒(「再生触媒」とも称する。)と、コークの燃焼により生じた排ガスとはサイクロンで分離され、再生触媒は再生触媒トランスファーラインより再生塔から排出され、ライザーに供給される。一方、排ガスは排ガスラインから再生塔から排出される。 In the regeneration tower, the air supplied from the air blower through the air grid into the regeneration tower is brought into contact with the fluid catalytic cracking catalyst used in the reaction tower supplied to the regeneration tower from the spent catalyst transfer line, The fluid catalytic cracking catalyst is regenerated by burning the hydrocarbons (also referred to as "coke") on the catalyst. The regenerated fluid catalytic cracking catalyst (also referred to as "regenerated catalyst") and the exhaust gas generated by combustion of coke are separated in a cyclone, and the regenerated catalyst is discharged from the regeneration tower through the regenerated catalyst transfer line and supplied to the riser. be. On the other hand, the exhaust gas is discharged from the regeneration tower through the exhaust gas line.

反応塔の運転条件としては、反応塔の出口温度として、好ましくは450℃以上、より好ましくは470℃以上、更に好ましくは490℃以上であり、上限として好ましくは550℃以下、より好ましくは540℃以下、更に好ましくは530℃以下である。このような反応条件とすると、分解反応の進行がより促進され、また流動接触分解触媒上の非蒸発の炭化水素をより低減することができ、再生塔に持ち込まれる炭化水素の量をより低減することができるので、安定した運転が可能となるので、結果として流動接触分解ガソリンの収率が向上する。 As for the operating conditions of the reaction tower, the outlet temperature of the reaction tower is preferably 450° C. or higher, more preferably 470° C. or higher, still more preferably 490° C. or higher, and the upper limit is preferably 550° C. or lower, more preferably 540° C. 530° C. or less, more preferably 530° C. or less. Under such reaction conditions, the progress of the cracking reaction is further promoted, and the amount of non-vaporized hydrocarbons on the fluidized catalytic cracking catalyst can be further reduced, further reducing the amount of hydrocarbons brought into the regeneration tower. Since stable operation is possible, the yield of fluid catalytic cracking gasoline is improved as a result.

再生塔における運転温度は好ましくは615℃以上、より好ましくは620℃以上であり、上限として好ましくは645℃以下、より好ましくは635℃以下である。再生温度が615℃以上であると、コークを十分に燃焼できるため、触媒活性が向上する。一方、再生温度が645℃以下であると、コークの燃焼によるスチームの発生をより抑制し、触媒活性の劣化(水熱熱劣化)をより抑制できるため、触媒活性が向上する。また、触媒の循環量が低下することなく、分解率が向上するため、結果として流動接触分解ガソリンの収率が向上する。また、上記運転温度の範囲は、通常の再生塔の運転温度が660~720℃程度であることを考慮すると、低い温度範囲で再生塔を運転しているといえる。本実施形態においては、流動接触分解触媒の投入量に対して原料油の供給量を調整することで、装置内流動接触分解触媒(平衡触媒)を所定のバナジウム相当金属量とするとともに、該触媒の残留炭素分を制御し、結果として流動接触分解ガソリンの収率の向上を図っているが、再生塔の運転温度を通常より低くできることは、該調整による副次的な効果ともいえる。また、原料油中の脱硫重油の含有量を上記範囲内とし、かつ脱硫重油以外の留分として上記例示したもの、中でも好ましくは重質軽油(HGO)、減圧軽油(VGO)、より好ましくは重質軽油(HGO)が含有させることにより、相対的に重油留分の含有量が低減するので、再生塔の運転温度をより低下させやすくなる。 The operating temperature in the regeneration tower is preferably 615° C. or higher, more preferably 620° C. or higher, and the upper limit is preferably 645° C. or lower, more preferably 635° C. or lower. When the regeneration temperature is 615° C. or higher, the coke can be sufficiently burned, so the catalytic activity is improved. On the other hand, when the regeneration temperature is 645° C. or lower, the generation of steam due to coke combustion can be further suppressed, and deterioration of catalytic activity (hydrothermal degradation) can be further suppressed, resulting in improved catalytic activity. In addition, since the cracking rate is improved without lowering the circulation amount of the catalyst, the yield of fluid catalytic cracking gasoline is improved as a result. Considering that the normal operating temperature of the regeneration tower is about 660 to 720° C., it can be said that the regeneration tower is operated in a low temperature range. In the present embodiment, by adjusting the supply amount of feedstock oil with respect to the input amount of the fluid catalytic cracking catalyst, the in-device fluid catalytic cracking catalyst (equilibrium catalyst) has a predetermined vanadium equivalent metal amount, and the catalyst Although the residual carbon content is controlled and as a result, the yield of fluidized catalytic cracking gasoline is improved, the fact that the operating temperature of the regeneration tower can be lower than usual can be said to be a secondary effect of this adjustment. In addition, the content of desulfurized heavy oil in the raw material oil is within the above range, and the fractions other than desulfurized heavy oil exemplified above, among them, preferably heavy gas oil (HGO), vacuum gas oil (VGO), more preferably heavy oil By including high-quality light oil (HGO), the content of the heavy oil fraction is relatively reduced, making it easier to lower the operating temperature of the regeneration tower.

以下に、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に何ら制限されるものではない。 EXAMPLES The present invention will be specifically described below with reference to Examples, but the present invention is not limited to these Examples.

(測定方法)
1.原料油中のバナジウム含有量及びニッケル含有量
石油学会規格JPI-5S-59-99に準拠して測定した。測定したバナジウム含有量をV(質量ppm)、ニッケル含有量をNi(質量ppm)とし、以下の式によりバナジウム相当金属量を算出した。
Veq=V+1/4×Ni
2.触媒の比表面積
BET窒素吸着法(ASTM D4365-95)に準拠して測定し、算出した。
3.触媒の細孔容量
ASTM D4222-03、D4641-94に規定される窒素吸着、脱着等温線から算出した(N吸着法)。
4.触媒上のバナジウム相当金属量
装置内流動接触分解触媒上のバナジウム相当金属量について、ASTM D7085-04:Standard Guide for Determination of Chemical Elements in Fluid Catalytic Cracking Catalysts by X-ray Fluorescence Spectrometry(XRF)に基づき算出した。
5.触媒上の残留炭素分
装置内流動接触分解触媒上の残留炭素分について、炭素・硫黄分析装置(「EMIA-920V2(型番)」、株式会社堀場製作所製)を用いて測定した。
(Measuring method)
1. Vanadium Content and Nickel Content in Raw Oil Measured according to the Japan Petroleum Institute standard JPI-5S-59-99. Using V (mass ppm) as the measured vanadium content and Ni (mass ppm) as the nickel content, the vanadium equivalent metal content was calculated by the following formula.
Veq=V+1/4×Ni
2. Specific Surface Area of Catalyst Measured and calculated according to the BET nitrogen adsorption method (ASTM D4365-95).
3. Pore volume of catalyst Calculated from nitrogen adsorption and desorption isotherms specified in ASTM D4222-03 and D4641-94 (N 2 adsorption method).
4. Vanadium equivalent metal amount on the catalyst The amount of vanadium equivalent metal on the fluid catalytic cracking catalyst in the device is calculated based on ASTM D7085-04: Standard Guide for Determination of Chemical Elements in Fluid Catalytic Cracking Catalysts by X-ray Fluorescence Spectrometry (RF). did.
5. Carbon Residual on Catalyst The residual carbon on the in-device fluidized catalytic cracking catalyst was measured using a carbon/sulfur analyzer ("EMIA-920V2 (model number)", manufactured by Horiba, Ltd.).

(実施例1)
以下のようにして原料油の流動接触分解反応を行った。
下記留分を含み、第1表に示される性状を有する原料油を、下記の流動接触分解触媒を循環させる流動接触分解装置の反応塔に供給し、第1表に示される原料油の通油量、流動接触分解触媒の投入量、流動接触分解触媒上のバナジウム相当金属量及び残留炭素分となるようにしながら、分解反応を行った。
(原料油の性状)
脱硫重油 含有量:30容量%
脱硫軽油 含有量:70容量%
(流動接触分解触媒)
成分:超安定性Y型ゼオライトを25質量%、アルミナを5質量%、粘土鉱物を60質量%、シリカ5質量%、その他不純物等含め5質量%を含有する触媒を用いた。
比表面積:250m/g
細孔容量:0.20cm/g
(流動接触分解装置の運転条件)
反応塔出口温度(ROT):518℃±3℃
再生塔の運転温度:630±3℃
触媒循環量:48±1ton/min
(Example 1)
The fluidized catalytic cracking reaction of feedstock oil was carried out as follows.
A feedstock oil containing the following fraction and having the properties shown in Table 1 is supplied to a reaction column of a fluid catalytic cracking unit in which the following fluid catalytic cracking catalyst is circulated, and the feedstock oil shown in Table 1 is fed. The cracking reaction was carried out while adjusting the amount, the input amount of the fluid catalytic cracking catalyst, the vanadium equivalent metal amount on the fluid catalytic cracking catalyst, and the residual carbon content.
(Properties of raw material oil)
Desulfurized heavy oil content: 30% by volume
Desulfurized light oil content: 70% by volume
(fluid catalytic cracking catalyst)
Components: A catalyst containing 25% by mass of ultra-stable Y-type zeolite, 5% by mass of alumina, 60% by mass of clay mineral, 5% by mass of silica, and 5% by mass of other impurities was used.
Specific surface area: 250 m 2 /g
Pore volume: 0.20 cm 3 /g
(Operating conditions of fluidized catalytic cracking unit)
Reactor outlet temperature (ROT): 518°C ± 3°C
Operating temperature of regeneration tower: 630±3°C
Catalyst circulation amount: 48±1 ton/min

(実施例2及び比較例1)
実施例1において、流動接触分解触媒の投入量に対する該原料油中のバナジウム相当金属量を第1表に記載の量とした以外は、実施例1と同様にして分解反応を行った。流動接触分解ガソリンの収率等を第1表に示す。
(Example 2 and Comparative Example 1)
In Example 1, the cracking reaction was carried out in the same manner as in Example 1, except that the amount of vanadium equivalent metal in the feedstock relative to the input amount of the fluid catalytic cracking catalyst was set to the amount shown in Table 1. Table 1 shows the yield of fluid catalytic cracking gasoline.

Figure 0007108570000001
Figure 0007108570000001

上記結果から、実施例では流動接触分解触媒の投入量に対する原料油中のバナジウム相当金属量を1.50、1.21質量%と0.4質量%以上4.0質量%以下の範囲内とし、装置内流動接触分解触媒(平衡触媒)の残留炭素分を0.05質量%超0.50質量%以下の範囲内とすることで、61.8%、61.5%という優れた流動接触分解ガソリンの収率が得られた。
また、従来法による比較例1では、流動接触分解触媒の投入量に対する原料油中のバナジウム相当金属量が0.20質量%と0.4質量%以上4.0質量%以下の範囲外とすると、装置内流動接触分解触媒(平衡触媒)の残留炭素分が0.58質量%と0.05質量%超0.50質量%以下の範囲外となり、流動接触分解ガソリンの収率は60.0%に留まった。よって、本実施形態の流動接触分解ガソリンの製造方法によれば、従来法に比べて収率は1.5~1.8%向上することが確認された。
From the above results, in the examples, the amount of vanadium equivalent metal in the feedstock relative to the input amount of the fluid catalytic cracking catalyst is set to 1.50, 1.21% by mass and within the range of 0.4% by mass to 4.0% by mass. , By setting the residual carbon content of the in-device fluid catalytic cracking catalyst (equilibrium catalyst) to within the range of more than 0.05% by mass and 0.50% by mass or less, excellent fluid contact of 61.8% and 61.5% A yield of cracked gasoline was obtained.
In addition, in Comparative Example 1 according to the conventional method, if the vanadium equivalent metal amount in the feedstock relative to the amount of fluid catalytic cracking catalyst input is 0.20% by mass and is outside the range of 0.4% by mass to 4.0% by mass , The residual carbon content of the in-device fluid catalytic cracking catalyst (equilibrium catalyst) is 0.58% by mass, which is outside the range of more than 0.05% by mass and 0.50% by mass or less, and the yield of fluid catalytic cracking gasoline is 60.0 remained at %. Therefore, it was confirmed that according to the method for producing fluid catalytic cracking gasoline of the present embodiment, the yield is improved by 1.5 to 1.8% compared to the conventional method.

Claims (4)

少なくとも脱硫重油を含む原料油を供給する、流動接触分解触媒を投入しながら用いる流動接触分解装置において、当該流動接触分解触媒の投入量に対する該原料油中のバナジウム相当金属量を0.4質量%以上4.0質量%以下とすることで、装置内流動接触分解触媒の残留炭素分を0.05質量%超0.50質量%以下とする、流動接触分解ガソリンの製造方法。 In a fluidized catalytic cracking unit that supplies a feedstock containing at least desulfurized heavy oil and uses a fluidized catalytic cracking catalyst while charging, the vanadium equivalent metal amount in the feedstock relative to the amount of the fluidized catalytic cracking catalyst charged is 0.4% by mass. A method for producing fluid catalytic cracking gasoline, wherein the residual carbon content of the in-apparatus fluid catalytic cracking catalyst is more than 0.05 mass % and 0.50 mass % or less by making it 4.0 mass % or less. 前記バナジウム相当金属量を0.4質量%超2.5質量%以下とする請求項1に記載の流動接触分解ガソリンの製造方法。 The method for producing fluid catalytic cracking gasoline according to claim 1, wherein the vanadium-equivalent metal content is more than 0.4% by mass and 2.5% by mass or less. 前記流動接触分解装置における再生塔の運転温度が、615℃以上645℃以下である請求項1又は2に記載の流動接触分解ガソリンの製造方法。 The method for producing fluid catalytic cracking gasoline according to claim 1 or 2, wherein the operating temperature of the regeneration tower in the fluid catalytic cracking unit is 615°C or higher and 645°C or lower. 前記原料油中の重質軽油の含有量が、10容量%以上90容量%以下である請求項1~3のいずれか1項に記載の流動接触分解ガソリンの製造方法。 The method for producing fluid catalytic cracking gasoline according to any one of claims 1 to 3, wherein the content of heavy gas oil in the feedstock oil is 10% by volume or more and 90% by volume or less.
JP2019069973A 2019-04-01 2019-04-01 Method for producing fluid catalytic cracking gasoline Active JP7108570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019069973A JP7108570B2 (en) 2019-04-01 2019-04-01 Method for producing fluid catalytic cracking gasoline

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019069973A JP7108570B2 (en) 2019-04-01 2019-04-01 Method for producing fluid catalytic cracking gasoline

Publications (2)

Publication Number Publication Date
JP2020169235A JP2020169235A (en) 2020-10-15
JP7108570B2 true JP7108570B2 (en) 2022-07-28

Family

ID=72746172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019069973A Active JP7108570B2 (en) 2019-04-01 2019-04-01 Method for producing fluid catalytic cracking gasoline

Country Status (1)

Country Link
JP (1) JP7108570B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4200520A (en) 1978-01-30 1980-04-29 Exxon Research & Engineering Co. Catalytic cracking process
JP2000319667A (en) 1999-04-09 2000-11-21 Bar Co Processes Joint Venture Improved residual oil fluid catalytic cracking process for increasing catalytic metal tolerance
JP2003105345A (en) 2001-09-27 2003-04-09 Catalysts & Chem Ind Co Ltd Method for fluid catalytic cracking of heavy hydrocarbon oil
CN101191068A (en) 2006-11-21 2008-06-04 中国石油化工股份有限公司 Cracking method for hydrocarbon oil
JP6272784B2 (en) 2012-02-08 2018-01-31 クゥアルコム・インコーポレイテッドQualcomm Incorporated Method and apparatus for spiking neural computation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235491A (en) * 1985-04-12 1986-10-20 Res Assoc Residual Oil Process<Rarop> Fluid catalytic cracking of heavy oil
JPS6272784A (en) * 1985-09-27 1987-04-03 Catalysts & Chem Ind Co Ltd Fluid catalytic cracking of heavy hydrocarbon oil
JP2004083615A (en) * 2002-08-22 2004-03-18 Idemitsu Kosan Co Ltd Method for producing low-sulfur catalytically cracked gasoline
JP2007054753A (en) * 2005-08-25 2007-03-08 Petroleum Energy Center Fluid catalytic cracking catalyst, its production method and production method of low-sulfur catalytic cracked gasoline
JP5426308B2 (en) * 2009-10-05 2014-02-26 出光興産株式会社 Fluid catalytic cracking method
JP7158230B2 (en) * 2018-09-28 2022-10-21 コスモ石油株式会社 Method for controlling deposit metal concentration in fluid catalytic cracking catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4200520A (en) 1978-01-30 1980-04-29 Exxon Research & Engineering Co. Catalytic cracking process
JP2000319667A (en) 1999-04-09 2000-11-21 Bar Co Processes Joint Venture Improved residual oil fluid catalytic cracking process for increasing catalytic metal tolerance
JP2003105345A (en) 2001-09-27 2003-04-09 Catalysts & Chem Ind Co Ltd Method for fluid catalytic cracking of heavy hydrocarbon oil
CN101191068A (en) 2006-11-21 2008-06-04 中国石油化工股份有限公司 Cracking method for hydrocarbon oil
JP6272784B2 (en) 2012-02-08 2018-01-31 クゥアルコム・インコーポレイテッドQualcomm Incorporated Method and apparatus for spiking neural computation

Also Published As

Publication number Publication date
JP2020169235A (en) 2020-10-15

Similar Documents

Publication Publication Date Title
KR102447300B1 (en) A conversion process comprising fixed bed hydrotreating for the manufacture of marine fuels, separation of the hydrotreated resid fraction and catalytic cracking steps
KR101831041B1 (en) Process for producing distillate fuels and anode grade coke from vacuum resid
KR102061187B1 (en) Integrated hydroprocessing and fluid catalytic cracking for processing of a crude oil
KR101320813B1 (en) Process for the desulfurization of gasolines comprising a desulfurization by adsorption of the light fraction and a hydrodesulfurization of the heavy fraction
US20090127161A1 (en) Process and Apparatus for Integrated Heavy Oil Upgrading
EP2753424B1 (en) Catalytic system and process for the total hydroconversion of heavy oils
US20090129998A1 (en) Apparatus for Integrated Heavy Oil Upgrading
RU2663896C2 (en) Residue hydrocracking processing
JP2011506690A (en) An improved integrated method for hydrogenating and catalytically cracking hydrocarbon oils
EA037049B1 (en) Residue hydrocracking
US11352575B2 (en) Processes for producing petrochemical products that utilize hydrotreating of cycle oil
US8163168B2 (en) Process for flexible vacuum gas oil conversion
US8168061B2 (en) Process for flexible vacuum gas oil conversion using divided wall fractionation
EP0134924A1 (en) Addition of water to regeneration air
US20180237706A1 (en) Desulfurization of a naphtha boiling range feed
JP5406629B2 (en) Method for producing highly aromatic hydrocarbon oil
JP7108570B2 (en) Method for producing fluid catalytic cracking gasoline
US4915820A (en) Removal of coke and metals from carbo-metallic oils
TWI418619B (en) A combination process for improved hydrotreating and catalytic cracking of hydrocarbon oils
JP6426027B2 (en) Fluid catalytic cracking device and catalytic cracking method of feedstock using the device
CA2853924A1 (en) Pretreatment of fcc naphthas and selective hydrotreating
JP6561648B2 (en) Method for catalytic cracking of feedstock
JP2980436B2 (en) Treatment method for heavy hydrocarbon oil
WO2015157379A1 (en) Process and apparatus for fluid catalytic cracking and hydrocracking hydrocarbons
WO2017003788A1 (en) Process and apparatus for selectively hydrogenating diolefins

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211201

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220715

R150 Certificate of patent or registration of utility model

Ref document number: 7108570

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150