JP7107439B2 - Round bar surface flaw inspection method and surface flaw inspection device - Google Patents

Round bar surface flaw inspection method and surface flaw inspection device Download PDF

Info

Publication number
JP7107439B2
JP7107439B2 JP2021527291A JP2021527291A JP7107439B2 JP 7107439 B2 JP7107439 B2 JP 7107439B2 JP 2021527291 A JP2021527291 A JP 2021527291A JP 2021527291 A JP2021527291 A JP 2021527291A JP 7107439 B2 JP7107439 B2 JP 7107439B2
Authority
JP
Japan
Prior art keywords
determination
region
flaw
regions
round bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021527291A
Other languages
Japanese (ja)
Other versions
JPWO2020261554A1 (en
Inventor
勝俊 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2020261554A1 publication Critical patent/JPWO2020261554A1/en
Application granted granted Critical
Publication of JP7107439B2 publication Critical patent/JP7107439B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/83Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

本開示は、丸棒の表面疵検査方法及び表面疵検査装置に関する。 TECHNICAL FIELD The present disclosure relates to a surface flaw inspection method and a surface flaw inspection device for a round bar.

漏洩磁束探傷法による丸棒鋼や鋼管等の円形断面の長尺材(以下、単に丸棒と云う)の探傷検査には、丸棒を長手方向に搬送させながら探触ヘッドを丸棒の周方向に沿って回転させる検査方法と、丸棒を軸周りに回転させながら探触ヘッドを丸棒の長手方向に走行させる検査方法とがある。この場合、いずれの検査方法においても、漏洩磁束探傷装置の探触ヘッド内のプローブ(探触子)によって丸棒の表面にある疵から疵信号を受け、その疵信号の高さが判定基準値以上か否かによって疵の有無が判定される。なお、判定基準値は、製品に要求された許容疵深さによって、予め規定される。 In the flaw detection inspection of long materials with a circular cross section such as round steel bars and steel pipes (hereinafter simply referred to as round bars) using the leakage magnetic flux inspection method, the round bar is conveyed in the longitudinal direction while the probe head is moved in the circumferential direction of the round bar. There is an inspection method in which the round bar is rotated along the axis, and an inspection method in which the probe head travels in the longitudinal direction of the round bar while rotating the round bar around its axis. In this case, in any inspection method, a flaw signal is received from a flaw on the surface of the round bar by the probe (probe) in the probe head of the leakage magnetic flux flaw detector, and the height of the flaw signal is the judgment reference value. The presence or absence of flaws is determined depending on whether or not the above conditions are met. Note that the criterion value is defined in advance according to the allowable flaw depth required for the product.

この2つの探傷方法のうち、探触ヘッドを丸棒の周方向に沿って回転させる検査方法は、探触ヘッドを丸棒の長手方向に走行させる検査方法に比べ、その検査方法の違いから検査に要する時間を短くすることができる。このため、生産効率の観点からは、探触ヘッドを丸棒の周方向に沿って回転させる検査方法の方が好ましく、この検査方法において、長手方向に連続した疵を精度よく検出する技術が望まれている。 Of these two flaw detection methods, the inspection method in which the probe head rotates along the circumference of the round bar is more effective than the inspection method in which the probe head travels in the longitudinal direction of the round bar. can shorten the time required for Therefore, from the viewpoint of production efficiency, it is preferable to use an inspection method in which the probe head is rotated along the circumferential direction of the round bar. It is rare.

例えば、特許文献1には、丸棒の表面疵検査方法として、周方向に連なる複数の測定領域での疵信号の検出結果と、疵信号の高さの判定基準値である第1の判定基準値及び第2の判定基準値とを用いて表面疵の有無を判定する方法が開示されています。特許文献1によれば、周方向の同じ位置で、欠陥幅が狭く長さのある欠陥を検出することができる。
また、特許文献2には、特許文献1と同様な方法で検出される疵信号について、周方向及び長手方向に並ぶ複数の測定領域を判定領域として疵の有無を判定する方法が開示されています。特許文献2によれば、漏洩磁束探傷を行う際に丸棒が回転または振動する場合においても、長手方向に連続した疵を精度よく検出することができる。
For example, in Patent Document 1, as a surface flaw inspection method for a round bar, the detection results of flaw signals in a plurality of measurement regions that are continuous in the circumferential direction, and the first judgment criterion that is the judgment reference value of the height of the flaw signal A method is disclosed for determining the presence or absence of surface defects using a value and a second criterion value. According to Patent Document 1, a defect having a narrow width and a long defect can be detected at the same position in the circumferential direction.
In addition, Patent Document 2 discloses a method for determining the presence or absence of flaws by using a plurality of measurement areas arranged in the circumferential direction and the longitudinal direction as determination areas for flaw signals detected by a method similar to Patent Document 1. . According to Patent Document 2, even when the round bar rotates or vibrates during leakage magnetic flux testing, flaws that are continuous in the longitudinal direction can be detected with high accuracy.

特許第5978889号Patent No. 5978889 特許第6451678号Patent No. 6451678

しかしながら、鋳片等の素材に起因する欠陥がある場合、断続的に疵信号の高さが低く特許文献1,2における第2の判定基準値以下となる連続疵が発生することがあった。このため、特許文献1,2に記載の表面疵検査方法では、このような連続疵を判定することが困難であった。また、鋳片等の素材に起因する疵を検知可能なように、第2の判定基準値となる疵信号の高さの値を低くしてしまうと、過検知となる可能性があった。 However, when there is a defect caused by a material such as a cast slab, the height of the defect signal is intermittently low, and continuous defects below the second criterion value in Patent Documents 1 and 2 may occur. For this reason, it was difficult to determine such continuous flaws with the surface flaw inspection methods described in Patent Documents 1 and 2. Further, if the height value of the flaw signal, which is the second determination reference value, is lowered so that flaws caused by the material such as slab can be detected, there is a possibility of overdetection.

そこで、本発明は、上記の課題に着目してなされたものであり、丸棒を長手方向に搬送させながら探触ヘッドを丸棒の周方向に沿って回転させる検査方法において、長手方向に連続した疵を精度よく検出することができる、丸棒の表面疵検査方法及び表面疵検査装置を提供することを目的としている。 Therefore, the present invention has been made with a focus on the above problems, and is an inspection method in which a probe head is rotated along the circumferential direction of a round bar while conveying the round bar in the longitudinal direction. It is an object of the present invention to provide a surface flaw inspection method and a surface flaw inspection device for a round bar that can accurately detect scratches.

本発明の一態様によれば、丸棒を長手方向に搬送しながら、あるいは、漏洩磁束探傷装置の探触ヘッドを丸棒の長手方向に移動させながら、漏洩磁束探傷装置の探触ヘッドが上記丸棒の周方向に沿って回転するように上記探傷ヘッドあるいは上記丸棒あるいは上記探傷ヘッドと上記丸棒の両方を回転させて、上記丸棒の表面における、上記長手方向及び上記周方向にそれぞれ区分けされた複数の測定領域について漏洩磁束を検出することで疵信号を検出する探傷工程と、少なくとも一つの上記測定領域を含み、上記周方向及び上記長手方向に並ぶ複数の判定領域について、上記判定領域に含まれる上記測定領域の最も大きな上記疵信号である代表疵信号に基づいて、上記丸棒の表面に疵があることを判定する判定工程と、を備え、上記判定工程には、上記丸棒の表面に上記疵があることを判定する第1の判定工程、第2の判定工程及び第3の判定工程が含まれ、上記第1の判定工程では、上記代表疵信号の高さが、第1の判定基準値以上となる上記判定領域に上記疵があると判定し、上記第2の判定工程では、上記判定領域の上記代表疵信号の高さが上記第1の判定基準値よりも低い第2の判定基準値以上となる、一つの上記判定領域または上記長手方向に連続する複数の上記判定領域を第1の領域とし、上記第1の領域が上記長手方向に連続する複数の上記判定領域からなる場合で、且つ上記第1の領域の上記判定領域の数が所定数以上の場合に、上記第1の領域の上記判定領域に上記疵があると判定し、上記第3の判定工程では、上記判定領域の上記代表疵信号の高さが上記第2の判定値以上となる、一つの上記判定領域または上記長手方向に連続する複数の上記判定領域であり、上記第1の領域と上記周方向の位置が等しい上記判定領域を、第2の領域とし、上記第1の領域と上記第2の領域との間の上記判定領域を第3の領域とし、上記第3の領域の上記判定領域の上記代表疵信号が上記第2の判定基準値未満で第3の判定基準値以上となる場合、並びに上記第3の領域の上記長手方向の上記判定領域の数が上記第1の領域及び上記第2の領域の少なくとも一方の上記長手方向の上記判定領域の数以下となる場合の少なくとも一方の場合で、且つ上記第1の領域、上記第2の領域及び上記第3の領域の上記判定領域の数が所定数以上の場合に、上記第1の領域、上記第2の領域及び上記第3の領域の上記判定領域に上記疵があると判定する、丸棒の表面疵検査方法が提供される。 According to one aspect of the present invention, while conveying the round bar in the longitudinal direction, or while moving the probe head of the leakage magnetic flux flaw detector in the longitudinal direction of the round bar, By rotating the flaw detection head, the round bar, or both the flaw detection head and the round bar so as to rotate along the circumferential direction of the round bar, the surface of the round bar is inspected in the longitudinal direction and the circumferential direction, respectively. A flaw detection step of detecting a flaw signal by detecting leakage magnetic flux in a plurality of divided measurement regions; and a plurality of judgment regions including at least one of the measurement regions and arranged in the circumferential direction and the longitudinal direction. a determination step of determining whether there is a flaw on the surface of the round bar based on the representative flaw signal that is the largest flaw signal of the measurement region included in the region; It includes a first determination step, a second determination step, and a third determination step for determining that the surface of the rod has the above-mentioned flaw, and in the first determination step, the height of the representative flaw signal is It is determined that the flaw is present in the determination region that is equal to or greater than the first determination reference value, and in the second determination step, the height of the representative flaw signal in the determination region is higher than the first determination reference value. One determination region or a plurality of determination regions continuous in the longitudinal direction, which is equal to or greater than a low second determination reference value, is defined as a first region, and the first region is a plurality of the determination regions continuous in the longitudinal direction. When the determination area consists of determination areas and the number of the determination areas of the first area is equal to or greater than a predetermined number, it is determined that the flaw is present in the determination area of the first area, and the third determination is performed. In the step, the height of the representative flaw signal of the determination region is equal to or greater than the second determination value, the determination region is one determination region or a plurality of determination regions continuous in the longitudinal direction, and the first region The determination region equal to the position in the circumferential direction is defined as a second region, the determination region between the first region and the second region is defined as a third region, and the third region is defined as When the representative flaw signal of the determination region is less than the second determination reference value and equal to or greater than the third determination reference value, and the number of the determination regions in the longitudinal direction of the third region is the first At least one of the cases where the number of the determination regions in the longitudinal direction of at least one of the region and the second region is equal to or less than the number of the determination regions, and the number of the first region, the second region, and the third region when the number of the determination regions is equal to or greater than a predetermined number, in the determination regions of the first region, the second region, and the third region A surface flaw inspection method for a round bar is provided for determining that there is the above flaw.

本発明の一態様によれば、探触ヘッドを有し、丸棒を長手方向に搬送しながら、あるいは、上記探触ヘッドを丸棒の長手方向に移動させながら、上記探触ヘッドが上記丸棒の周方向に沿って回転するように上記探傷ヘッドあるいは上記丸棒あるいは上記探傷ヘッドと上記丸棒の両方を回転させて、上記丸棒の表面における、上記長手方向及び上記周方向にそれぞれ区分けされた複数の測定領域について漏洩磁束を検出することで疵信号を検出する漏洩磁束探傷装置と、少なくとも一つの上記測定領域を含み、上記周方向及び上記長手方向に並ぶ複数の判定領域について、上記判定領域に含まれる上記測定領域の最も大きな上記疵信号である代表疵信号に基づいて、上記丸棒の表面に疵があることを判定する判定部と、を備え、上記判定部は、上記丸棒の表面に上記疵があることを判定する第1の判定工程、第2の判定工程及び第3の判定工程を行い、上記第1の判定工程では、上記代表疵信号の高さが、第1の判定基準値以上となる上記判定領域に上記疵があると判定し、上記第2の判定工程では、上記判定領域の上記代表疵信号の高さが上記第1の判定基準値よりも低い第2の判定基準値以上となる、一つの上記判定領域または上記長手方向に連続する複数の上記判定領域を第1の領域とし、上記第1の領域が上記長手方向に連続する複数の上記判定領域からなる場合で、且つ上記第1の領域の上記判定領域の数が所定数以上の場合に、上記第1の領域の上記判定領域に上記疵があると判定し、上記第3の判定工程では、上記判定領域の上記代表疵信号の高さが上記第2の判定値以上となる、一つの上記判定領域または上記長手方向に連続する複数の上記判定領域であり、上記第1の領域と上記周方向の位置が等しい上記判定領域を、第2の領域とし、上記第1の領域と上記第2の領域との間の上記判定領域を第3の領域とし、上記第3の領域の上記判定領域の上記代表疵信号が上記第2の判定基準値未満で第3の判定基準値以上となる場合、並びに上記第3の領域の上記長手方向の上記判定領域の数が上記第1の領域及び上記第2の領域の少なくとも一方の上記長手方向の上記判定領域の数以下となる場合の少なくとも一方の場合で、且つ上記第1の領域、上記第2の領域及び上記第3の領域の上記判定領域の数が所定数以上の場合に、上記第1の領域、上記第2の領域及び上記第3の領域の上記判定領域に上記疵があると判定する、丸棒の表面疵検査装置が提供される。 According to one aspect of the present invention, a probe head is provided, and the probe head moves the round bar while conveying the round bar in the longitudinal direction or moving the round bar in the longitudinal direction. By rotating the flaw detection head, the round bar, or both the flaw detection head and the round bar so as to rotate along the circumferential direction of the bar, the surface of the round bar is divided in the longitudinal direction and the circumferential direction, respectively. a leakage magnetic flux flaw detector that detects flaw signals by detecting leakage magnetic flux in a plurality of measurement areas; a determination unit that determines whether there is a flaw on the surface of the round bar based on the representative flaw signal that is the largest flaw signal of the measurement region included in the determination region, wherein the judgment unit includes: A first determination step, a second determination step, and a third determination step are performed to determine whether the surface of the bar has the above-mentioned flaw, and in the first determination step, the height of the representative flaw signal is It is determined that the flaw is present in the judgment region that is equal to or greater than the judgment reference value of 1, and in the second judgment step, the height of the representative flaw signal in the judgment region is lower than the first judgment reference value. One determination region or a plurality of determination regions continuous in the longitudinal direction, which is equal to or greater than a second determination reference value, is defined as a first region, and a plurality of determination regions continuous in the longitudinal direction are defined as the first region. When it is composed of regions and the number of the determination regions of the first region is a predetermined number or more, it is determined that the flaw is present in the determination region of the first region, and the third determination step is performed. Then, the determination region is one determination region or a plurality of determination regions continuous in the longitudinal direction in which the height of the representative flaw signal of the determination region is equal to or greater than the second determination value, and the first region and The determination regions having equal positions in the circumferential direction are defined as a second region, the determination region between the first region and the second region is defined as a third region, and the third region is defined as a third region. When the representative flaw signal of the determination region is less than the second determination reference value and equal to or greater than the third determination reference value, and the number of the determination regions in the longitudinal direction of the third region is the first region and at least one of the case where the number of the determination regions in the longitudinal direction of at least one of the second regions is equal to or less than the number of the determination regions, and the above-mentioned When the number of determination regions is equal to or greater than a predetermined number, the flaw is present in the determination regions of the first region, the second region, and the third region. Provided is a round bar surface flaw inspection apparatus that determines that

本発明の一態様によれば、丸棒を長手方向に搬送させながら探触ヘッドを丸棒の周方向に沿って回転させる検査方法において、長手方向に連続した疵を精度よく検出することができる。 According to one aspect of the present invention, in an inspection method in which the probe head is rotated along the circumferential direction of the round bar while conveying the round bar in the longitudinal direction, flaws continuous in the longitudinal direction can be accurately detected. .

本発明の一実施形態に係る丸棒の表面疵検査装置を示す構成図である。1 is a configuration diagram showing a round bar surface flaw inspection apparatus according to an embodiment of the present invention; FIG. 漏洩磁束探傷装置を示す模式図である。It is a schematic diagram which shows a leakage magnetic flux flaw detection apparatus. 本発明の一実施形態に係る丸棒の表面疵検査方法を示すフローチャートである。It is a flow chart which shows the surface defect inspection method of the round bar concerning one embodiment of the present invention. 丸棒の測定領域を示す正面図である。It is a front view which shows the measurement area|region of a round bar. 丸棒の測定領域を示す斜視図である。It is a perspective view which shows the measurement area|region of a round bar. 疵判定処理を示すフローチャートである。It is a flow chart which shows flaw judging processing. 疵信号の検出結果を示す説明図である。It is explanatory drawing which shows the detection result of a flaw signal. 変形例における疵信号の検出結果を示す説明図である。It is explanatory drawing which shows the detection result of the flaw signal in a modification. 変形例における疵信号の検出結果を示す説明図である。It is explanatory drawing which shows the detection result of the flaw signal in a modification. 連続疵がある測定領域における疵信号の検出結果を示すグラフである。It is a graph which shows the detection result of the flaw signal in the measurement area|region with a continuous flaw.

以下の詳細な説明では、本発明の実施形態の完全な理解を提供するように多くの特定の細部について記載される。しかしながら、かかる特定の細部がなくても1つ以上の実施態様が実施できることは明らかであろう。他にも、図面を簡潔にするために、周知の構造及び装置が略図で示されている。 In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the embodiments of the invention. However, it will be evident that one or more embodiments may be practiced without such specific details. In other instances, well-known structures and devices are schematically shown to simplify the drawings.

<装置構成>
図1及び図2を参照して、本発明の一実施形態に係る丸棒の表面疵検査装置1について説明する。表面疵検査装置1は、漏洩磁束探傷法を用いて円形断面の棒鋼である丸棒2の表面疵を検出する装置であり、図1に示すように、複数の搬送ロール3と、複数のピンチロール4と、漏洩磁束探傷装置5と、判定部6と、記憶部7とを備える。
<Device configuration>
A round bar surface flaw inspection apparatus 1 according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. A surface flaw inspection apparatus 1 is an apparatus for detecting surface flaws on a round bar 2, which is a steel bar with a circular cross section, using a leakage magnetic flux detection method. As shown in FIG. It includes a roll 4 , a leakage magnetic flux flaw detector 5 , a determination section 6 and a storage section 7 .

複数の搬送ロール3は、漏洩磁束探傷装置5を挟んで、搬送される丸棒2の長手方向(図1の紙面に対する左右方向)に並んで設けられる。複数の搬送ロール3は、回転駆動することにより、丸棒2の長手方向に丸棒2を搬送する。なお、図1に示した例において、丸棒2は図1の紙面に対する左方向へと搬送される。
複数のピンチロール4は、漏洩磁束探傷装置5を挟んで、搬送される丸棒2の長手方向に並んで設けられる。また、複数のピンチロール4は、複数の搬送ロール3の上方(図1の紙面に対する上側)に、漏洩磁束探傷装置5の近傍の複数の搬送ロール3に対向してそれぞれ設けられる。複数のピンチロール4は、搬送される丸棒2を上方から抑えることで、丸棒2の搬送中のガタやフレの発生を抑える。
A plurality of transport rolls 3 are arranged in the longitudinal direction of the transported round bar 2 (horizontal direction with respect to the paper surface of FIG. 1) with the leakage magnetic flux flaw detector 5 interposed therebetween. The plurality of transport rolls 3 transport the round bar 2 in the longitudinal direction of the round bar 2 by being rotationally driven. In the example shown in FIG. 1, the round bar 2 is conveyed leftward with respect to the plane of FIG.
A plurality of pinch rolls 4 are provided side by side in the longitudinal direction of the conveyed round bar 2 with the leakage magnetic flux flaw detector 5 interposed therebetween. Moreover, the plurality of pinch rolls 4 are provided above the plurality of conveying rolls 3 (the upper side with respect to the paper surface of FIG. 1) so as to face the plurality of conveying rolls 3 in the vicinity of the leakage magnetic flux flaw detector 5 . A plurality of pinch rolls 4 restrain the round bar 2 being conveyed from above, thereby suppressing looseness and deflection during conveyance of the round bar 2.例文帳に追加

漏洩磁束探傷装置5は、図2に示すように、丸棒2の搬送方向に垂直な平面において、搬送される丸棒2を挟むように対向して設けられる一対の探触ヘッド51a,51bを有する。一対の探触ヘッド51a,51bは、励磁ヨーク52a,52bと、励磁コイル53a,53bと、プローブ54a,54bとをそれぞれ有する。励磁ヨーク52a,52bは、丸棒2の搬送方向に垂直な面において略U字状に形成された珪素鋼からなり、その両磁極(N極、S極)が丸棒2の外周面に対して所要ギャップだけ離間して配置される。励磁コイル53a,53bは、励磁ヨーク52a,52bに所要巻数でそれぞれ巻回されるコイルであり、不図示の励磁電源に接続される。プローブ54a,54bは、サーチコイルやホール素子などの感磁素子であり、励磁ヨーク52a,52bの両磁極間にそれぞれ配置される。このような漏洩磁束探傷装置5では、励磁電源によって励磁コイル53a,53bを通電励磁することで、励磁ヨーク52a,52bを介して丸棒2が磁化される。そして、プローブ54a,54bは、丸棒2の表面の疵によって、磁化された丸棒2の表面から漏洩する磁束を検出する。また、一対の探触ヘッド51a,51bは、搬送される丸棒2の軸心を中心に、丸棒2の周方向に回転可能に構成される。漏洩磁束探傷装置5は、欠陥漏洩磁束の強さを示す信号であり、プローブ54a,54bにより検出された表面疵の深さに応じた信号を、疵信号として判定部6に出力する。 As shown in FIG. 2, the leakage magnetic flux flaw detector 5 has a pair of detection heads 51a and 51b provided facing each other so as to sandwich the conveyed round bar 2 on a plane perpendicular to the conveying direction of the round bar 2. have. A pair of probe heads 51a and 51b have excitation yokes 52a and 52b, excitation coils 53a and 53b, and probes 54a and 54b, respectively. The excitation yokes 52a and 52b are made of silicon steel and are formed in a substantially U-shape on the plane perpendicular to the direction in which the round bar 2 is conveyed. spaced apart by the required gap. The excitation coils 53a and 53b are coils wound around the excitation yokes 52a and 52b with a required number of turns, respectively, and are connected to an excitation power source (not shown). The probes 54a and 54b are magneto-sensitive elements such as search coils and Hall elements, and are arranged between the magnetic poles of the excitation yokes 52a and 52b, respectively. In such a leakage magnetic flux flaw detector 5, the round bar 2 is magnetized via the excitation yokes 52a and 52b by energizing and exciting the excitation coils 53a and 53b by the excitation power source. The probes 54a and 54b detect the magnetic flux leaking from the magnetized surface of the round bar 2 due to the flaws on the surface of the round bar 2. FIG. Also, the pair of probe heads 51a and 51b are configured to be rotatable in the circumferential direction of the round bar 2 being transported around the axis of the round bar 2 being conveyed. The leakage magnetic flux flaw detector 5 outputs a signal indicating the strength of the defect leakage magnetic flux and corresponding to the depth of the surface flaw detected by the probes 54a and 54b to the determination unit 6 as a flaw signal.

判定部6は、漏洩磁束探傷装置5から取得した疵信号と、記憶部7に記憶された疵信号とに基づいて、丸棒2の表面の疵の有無を判定する。また、判定部6は、漏洩磁束探傷装置5から取得した疵信号を記憶部7に出力する。
記憶部7は、判定部6から取得した疵信号を記憶し、記憶する疵信号を判定部6へと出力する。判定部6及び記憶部7は、中央処理装置(CPU)、主記憶装置(内部記憶装置)、補助記憶装置(外部記憶装置)などから構成される計算機である。
The determination unit 6 determines whether or not there is a flaw on the surface of the round bar 2 based on the flaw signal acquired from the leakage magnetic flux flaw detector 5 and the flaw signal stored in the storage unit 7 . The determination unit 6 also outputs the flaw signal acquired from the magnetic flux leakage flaw detector 5 to the storage unit 7 .
The storage unit 7 stores the flaw signal acquired from the determination unit 6 and outputs the stored flaw signal to the determination unit 6 . The determination unit 6 and the storage unit 7 are computers including a central processing unit (CPU), a main storage device (internal storage device), an auxiliary storage device (external storage device), and the like.

<表面疵検査方法>
次に、図3~図7を参照して、本実施形態に係る丸棒2の表面疵検査方法について説明する。本実施形態では、まず、図3に示すように、検出ループが開始される(S100)。検出ループは、漏洩磁束探傷装置5へと丸棒2が搬送され、丸棒2の搬送方向下流側の先端が一対の探触ヘッド51a,51bに到達することで開始される。
<Surface flaw inspection method>
Next, a surface flaw inspection method for the round bar 2 according to the present embodiment will be described with reference to FIGS. 3 to 7. FIG. In this embodiment, first, as shown in FIG. 3, a detection loop is started (S100). A detection loop is started when the round bar 2 is conveyed to the leakage magnetic flux flaw detector 5 and the downstream end of the round bar 2 in the conveying direction reaches the pair of probe heads 51a and 51b.

検出ループでは、はじめに、漏洩磁束探傷装置5は、同一トラックTにおける測定領域の疵信号を検出する(S102)。
ここで、漏洩磁束探傷装置5は、搬送される丸棒2に対して、一対の探触ヘッド51a,51bを回転させることで、丸棒2の表面全ての漏洩磁束を検出する。本実施形態では、漏洩磁束探傷装置5は、一対の探触ヘッド51a,51bの回転動作によって、図4に示すように、丸棒2の周方向に並んで等間隔に区分けされた8個の領域(「セクター」ともいう。)S~S毎に漏洩磁束を検出する。また、漏洩磁束探傷装置5は、丸棒2の搬送動作によって、図5に示すように、丸棒2の長手方向に並んで等間隔に区分けされた領域(「トラック」ともいう。)T毎に漏洩磁束を検出する(i=1~n(自然数))。即ち、漏洩磁束探傷装置5は、一対の探触ヘッド51a,51bが180度回転することで、長手方向の1トラック分の領域について、丸棒2の外周全長となる8セクターS~S毎に漏洩磁束を検出する。そして、一対の探触ヘッド51a,51bの所定の回転速度での回転動作、及び丸棒2の所定の搬送速度での搬送動作が連続して行われることで、丸棒2の全長・全周にわたって漏洩磁束が検出される。なお、図5に示すように、8個のセクターS~S及び複数のトラックTによって、丸棒2の長手方向及び周方向にそれぞれ区分された領域を測定領域という。漏洩磁束探傷装置5は、測定領域毎の疵信号を判定部6に出力する。
In the detection loop, first, the leakage magnetic flux flaw detector 5 detects a flaw signal in the measurement area on the same track T i (S102).
Here, the leakage magnetic flux flaw detector 5 detects the leakage magnetic flux on the entire surface of the round bar 2 by rotating the pair of probe heads 51a and 51b with respect to the round bar 2 being conveyed. In this embodiment, the leakage magnetic flux flaw detector 5 is arranged in the circumferential direction of the round bar 2 as shown in FIG. Leakage magnetic flux is detected for each region (also referred to as “sector”) S 1 to S 8 . 5, the leakage magnetic flux flaw detector 5 divides the round bar 2 in the longitudinal direction of the round bar 2 at regular intervals (also referred to as “tracks”) Ti as shown in FIG. leakage magnetic flux is detected (i=1 to n (natural number)). That is, the leakage magnetic flux flaw detector 5 rotates the pair of probe heads 51a and 51b by 180 degrees, so that eight sectors S 1 to S 8 corresponding to the entire outer peripheral length of the round bar 2 are detected in a region corresponding to one track in the longitudinal direction. Detect leakage magnetic flux every time. By continuously performing the rotating operation of the pair of probe heads 51a and 51b at a predetermined rotational speed and the conveying operation of the round bar 2 at a predetermined conveying speed, the entire length and circumference of the round bar 2 are Leakage magnetic flux is detected over . Incidentally, as shown in FIG. 5, the measurement area is defined by eight sectors S 1 to S 8 and a plurality of tracks T i in the longitudinal direction and the circumferential direction of the round bar 2 . The leakage magnetic flux flaw detector 5 outputs flaw signals for each measurement area to the determination unit 6 .

ステップS102では、判定部6は、1つのトラックTにおいて測定領域となる8個のセクターS~Sの疵信号を取得する。
ステップS102の後、判定部6は、後述する疵判定処理によって、取得した8個の測定領域の疵信号に基づいて、各測定領域に応じた後述する判定領域Rにおける表面疵の有無を判定する(S104)。
次いで、全てのトラックTについて、ステップS102及びS104の処理が行われることで、検出ループが終了し(S106)、表面疵検査装置1による疵判定が完了する。
In step S102, the determination unit 6 acquires flaw signals of eight sectors S 1 to S 8 that are measurement areas in one track T i .
After step S102, the determination unit 6 determines the presence or absence of a surface flaw in a determination region R j described later according to each measurement region based on the acquired flaw signals of the eight measurement regions by the flaw determination process described later. (S104).
Next, the processing of steps S102 and S104 is performed for all the tracks T i , thereby ending the detection loop (S106) and the defect determination by the surface defect inspection apparatus 1 is completed.

次に、図6を参照して、ステップS104の疵判定処理について詳細に説明する。疵判定処理では、図6に示すように、まず、判定ループが開始される(S200)。
判定ループでは、はじめに、判定部6は、判定領域Rの代表疵信号が第1の判定基準値以上か否かを判定する(S202)。ここで、判定領域Rは、同一トラックTにおいて周方向に隣接する2つの測定領域からなる領域である。本実施形態では、セクターSの数に応じて8個の判定領域R~Rが設定される。なお、各トラックTにおいて、判定領域RはセクターS,Sの測定領域からなり、判定領域RはセクターS,Sの測定領域からなり、判定領域RはセクターS,Sの測定領域からなり、判定領域RはセクターS,Sの測定領域からなり、判定領域RはセクターS,Sの測定領域からなり、判定領域RはセクターS,Sの測定領域からなり、判定領域RはセクターS,Sの測定領域からなり、判定領域RはセクターS,Sの測定領域からなる。つまり、判定領域Rは、トラックTで区分けされた領域において、丸棒2の周方向に隣り合う判定領域同士が重畳した状態で設定される。ステップS202では、判定部6は、取得した測定領域毎の疵信号から、判定が行われる判定領域Rの代表疵信号を決定し、予め設定される第1の判定基準値以上か否かを判定する。代表疵信号は、判定領域Rに含まれる2つの測定領域のうち大きい(信号の高さが高く、漏洩磁束が大きい)方の疵信号の値である。また、第1の判定基準値は、ノイズの影響を受けるおそれがないような値であり、例えば、S/N比で3となるような値に設定される。
Next, with reference to FIG. 6, the flaw determination processing in step S104 will be described in detail. In the flaw determination process, as shown in FIG. 6, first, a determination loop is started (S200).
In the determination loop, first, the determination section 6 determines whether or not the representative flaw signal of the determination region Rj is equal to or greater than the first determination reference value (S202). Here, the determination area Rj is an area composed of two circumferentially adjacent measurement areas on the same track T i . In this embodiment, eight determination regions R 1 to R 8 are set according to the number of sectors S. FIG. In each track T i , the determination area R 1 is composed of the measurement areas of sectors S 1 and S 2 , the determination area R 2 is composed of the measurement areas of sectors S 2 and S 3 , and the determination area R 3 is composed of the measurement areas of sector S 3 . , S4 , decision region R4 consists of the measurement regions of sectors S4 and S5 , decision region R5 consists of the measurement regions of sectors S5 and S6 , decision region R6 consists of sector S 6 and S7 , the decision area R7 consists of the measurement areas of sectors S7 and S8 , and the decision area R8 consists of the measurement areas of sectors S8 and S1. In other words, the determination regions Rj are set in a state in which adjacent determination regions in the circumferential direction of the round bar 2 overlap each other in the regions divided by the tracks T i . In step S202, the determination unit 6 determines a representative flaw signal of the determination region Rj to be determined from the acquired flaw signals for each measurement region, and determines whether or not the representative flaw signal is equal to or greater than a preset first judgment reference value. judge. The representative flaw signal is the value of the larger flaw signal (higher signal and higher leakage magnetic flux) of the two measurement regions included in the determination region Rj . Also, the first criterion value is a value that is not likely to be affected by noise, and is set to a value such that the S/N ratio is 3, for example.

ステップ202の判断の結果、判定領域Rの代表疵信号が第1の基準値未満となる場合、判定部6は、判定領域Rの代表疵信号が第2の判定基準値以上か否かを判定する(S204)。第2の判定基準値は、第1の判定基準値よりも小さい値に設定され、例えば、S/N比で2となるような値に設定される。
ステップS204の判断の結果、判定領域Rの代表疵信号が第2の基準値以上となる場合、判定部6は、第1の領域Dのトラック数が所定数以上か否かを判定する(S206)。第1の領域Dは、疵の有無が判定される判定領域Rを含む領域であり、代表疵信号が第2の判定基準値以上となる、少なくとも一つの判定領域Rである。また、第1の領域Dは、代表疵信号が第2の判定基準値以上となる複数の判定領域Rが長手方向に並んでいる場合には、長手方向に連続し、代表疵信号が第2の判定基準値以上となる複数の判定領域Rとなる。なお、本実施形態では、図3に示すように各トラックTでの疵信号の検出が行われる度に、疵判定処理(S104)が行われるため、第1の領域Dの特定は、既に疵信号の検出が行われた判定領域Rのみを対象として行われる。
If the representative flaw signal in the determination region Rj is less than the first reference value as a result of the determination in step 202, the determination unit 6 determines whether the representative flaw signal in the determination region Rj is greater than or equal to the second determination reference value. is determined (S204). The second determination reference value is set to a value smaller than the first determination reference value, for example, set to a value such that the S/N ratio is 2.
As a result of the determination in step S204, when the representative flaw signal of the determination region Rj is equal to or greater than the second reference value, the determination unit 6 determines whether or not the number of tracks in the first region D1 is equal to or greater than a predetermined number. (S206). The first region D1 is a region including a judgment region Rj in which the presence or absence of flaws is judged, and is at least one judgment region R in which the representative flaw signal is equal to or greater than the second judgment reference value. In addition, the first region D1 is continuous in the longitudinal direction when a plurality of determination regions R in which the representative flaw signal is equal to or greater than the second determination reference value is arranged in the longitudinal direction, and the representative flaw signal is the first. A plurality of judgment regions R j having a judgment reference value of 2 or more. In the present embodiment, as shown in FIG. 3, the defect determination process (S104) is performed each time a defect signal is detected in each track T i . This is done only for the determination region Rj in which the defect signal has already been detected.

第1の領域Dについて、図7を参照して説明する。図7には、セクターS~SとトラックTとで区分けされた測定領域における疵信号の検出結果を示す。なお、図7及び同様に疵信号の検出結果を示す図8において、「1」で示される測定領域は疵信号が第1の判定基準値以上となる測定領域を示し、「2」で示される測定領域は疵信号が第2の判定基準値以上で第1の判定基準値未満となる測定領域を示し、「3」で示される測定領域は疵信号が後述する第3の判定基準値以上で第2の判定基準値未満となる測定領域を示し、「-」で示される測定領域は疵信号が後述する第3の判定基準値未満となる測定領域を示す。また、さらに、図7及び図8に示す例では、トラックT~T10について、判定領域R~Rにおける疵判定処理(ステップS104)が、搬送方向の下流側となるトラックTから順にそれぞれ行われる。The first area D1 will be described with reference to FIG. FIG. 7 shows the detection results of flaw signals in the measurement area divided by sectors S 1 to S 8 and track T i . In addition, in FIG. 7 and FIG. 8 similarly showing the detection result of the flaw signal, the measurement area indicated by "1" indicates the measurement area where the flaw signal is greater than or equal to the first judgment reference value, and is indicated by "2". The measurement area indicates a measurement area where the flaw signal is greater than or equal to the second judgment reference value and less than the first judgment reference value. A measurement region where the flaw signal is less than the second criterion value is shown, and a measurement region indicated by "-" is a measurement region where the flaw signal is less than the third judgment criterion value, which will be described later. Further, in the examples shown in FIGS. 7 and 8, the defect determination process (step S104) in the determination regions R 1 to R 8 for the tracks T 1 to T 10 is performed from the track T 1 downstream in the transport direction. Each is done in turn.

ここで、図7のトラックTの判定領域R(「判定領域R1A」ともいう。)において疵判定処理を行う場合について説明する。判定領域R1Aの判定ループ(ステップS200)では、判定領域R1Aの代表疵信号が第2の判定基準値以上、第1の判定基準値未満となり、ステップS206において第1の領域Dの特定が行われる。ステップS206では、判定領域R1Aの疵判定処理の時点において、判定領域R1Aに長手方向に連続して位置し、代表疵信号が第2の判定基準値以上となる判定領域Rがないため、第1の領域Dとして特定されるのは、判定領域R1Aのみとなる(図7の第1の領域D1A)。Here, a case where flaw determination processing is performed in the determination region R 1 (also referred to as “determination region R 1A ”) of track T 3 in FIG. 7 will be described. In the determination loop (step S200) of the determination region R1A , the representative flaw signal of the determination region R1A becomes equal to or greater than the second determination reference value and less than the first determination reference value, and in step S206, the first region D1 is specified. is done. In step S206, at the time of the flaw determination process for the determination region R1A , there is no determination region Rj that is continuously positioned in the determination region R1A in the longitudinal direction and the representative flaw signal is equal to or greater than the second determination reference value. , is specified as the first region D 1 is only the determination region R 1A (the first region D 1A in FIG. 7).

また、図7のトラックTの判定領域R(「判定領域R4B」ともいう。)において疵判定処理を行う場合について説明する。判定領域R4Bの判定ループでは、判定領域R4Bの代表疵信号が第2の判定基準値以上、第1の判定基準値未満となり、ステップS206において第1の領域Dの特定が行われる。ステップS206では、判定領域R4Bの疵判定処理の時点において、判定領域R4Bに長手方向に連続して位置し、代表疵信号が第2の判定基準値以上となる判定領域Rは、トラックT,Tの判定領域R(「判定領域R4D,R4C」ともいう。)となる。このため、第1の領域Dとして特定されるのは、判定領域R4B~R4Dの3つの連続する判定領域となる(図7の第1の領域D1B)。Also, a case where flaw determination processing is performed in the determination region R 4 (also referred to as “determination region R 4B ”) of track T 4 in FIG. 7 will be described. In the determination loop of the determination region R4B , the representative flaw signal of the determination region R4B becomes equal to or greater than the second determination reference value and less than the first determination reference value, and the first region D1 is specified in step S206. In step S206, at the time of the defect determination process for the determination region R4B , the determination region Rj, which is continuously positioned in the determination region R4B in the longitudinal direction and has the representative defect signal equal to or greater than the second determination reference value, is the track. It becomes the determination area R 4 (also referred to as “determination area R 4D , R 4C ”) of T 2 and T 3 . Therefore, the first region D 1 is specified as three continuous determination regions R 4B to R 4D (first region D 1B in FIG. 7).

さらに、図7のトラックTの判定領域R(「判定領域R7E」ともいう。)において疵判定処理を行う場合について説明する。判定領域R7Eの判定ループでは、判定領域R7Eの代表疵信号が第2の判定基準値以上、第1の判定基準値未満となり、ステップS206において第1の領域Dの特定が行われる。ステップS206では、判定領域R7Eの疵判定処理の時点において、判定領域R7Eに長手方向に連続して位置し、代表疵信号が第2の判定基準値以上となる判定領域Rがないため、第1の領域Dとして特定されるのは、判定領域R7Eのみとなる(図7の第1の領域D1C)。なお、図7に示すように、判定領域R7Eと隣り合うトラックTの判定領域R(「判定領域R7F」ともいう。)についても、代表疵信号が第2の判定基準値以上となるものであるが、トラックTの疵処理信号を行う時点においてはトラックTの疵信号の検出は行われていない状態となる。このため、判定領域R7Eの疵判定処理の段階では、第1の領域Dは判定領域R7Eの1つの判定領域となり、判定領域R7Fの疵判定処理の段階にて、第1の領域Dは判定領域R7E,R7Fの2つの判定領域となる。Furthermore, a case where flaw determination processing is performed in the determination region R 7 (also referred to as “determination region R 7E ”) of track T 4 in FIG. 7 will be described. In the determination loop of the determination region R7E , the representative flaw signal of the determination region R7E becomes equal to or greater than the second determination reference value and less than the first determination reference value, and the first region D1 is specified in step S206. In step S206, at the time of the flaw determination process for the determination region R7E , there is no determination region Rj that is continuously positioned in the determination region R7E in the longitudinal direction and the representative flaw signal is equal to or greater than the second determination reference value. , the first region D 1 is only the determination region R 7E (the first region D 1C in FIG. 7). Note that, as shown in FIG. 7, the representative flaw signal of the determination region R7 (also referred to as "determination region R7F ") of the track T5 adjacent to the determination region R7E is equal to or greater than the second determination reference value. However, when the defect processing signal for track T4 is issued , the defect signal for track T5 is not detected. Therefore, at the stage of the flaw determination process of the determination area R7E , the first area D becomes one determination area of the determination area R7E , and at the stage of the flaw determination process of the determination area R7F , the first area D 1 becomes two determination areas, that is, determination areas R 7E and R 7F .

第1の領域Dのトラック数は、第1の領域Dに含まれるトラックTの数であり、第1の領域Dに含まれる判定領域Rの長手方向の数を示す。
ステップS206における所定数とは、連続疵と判定される長さに対応して決定される値であり、検出したい疵の長さと、トラックTの長手方向の長さとから決定される。本実施形態では、一例として、所定数を4個とする。つまり、ステップS206では、判定部6は、判定するトラックTの判定領域Rについて、記憶部7に記憶された同一のセクターSにおける、疵信号の判定結果を取得する。そして、判定部6は、判定結果から第1の領域Dを決定し、第1の領域Dの長手方向の長さに相当するトラック数が4個以上であるか否かを判断する。
The number of tracks in the first region D1 is the number of tracks T i included in the first region D1, and indicates the number of determination regions Rj included in the first region D1 in the longitudinal direction.
The predetermined number in step S206 is a value determined corresponding to the length determined to be a continuous flaw, and is determined from the length of the flaw to be detected and the length of the track Ti in the longitudinal direction. In this embodiment, as an example, the predetermined number is four. That is, in step S206, the determination unit 6 acquires the determination result of the flaw signal in the same sector S stored in the storage unit 7 for the determination region Rj of the track T i to be determined. Then, the determination unit 6 determines the first area D1 from the determination result, and determines whether or not the number of tracks corresponding to the longitudinal length of the first area D1 is four or more.

ステップS206の判断の結果、第1の領域Dのトラック数が所定数未満である場合、判定部6は、第1の領域Dと丸棒2の周方向の位置が等しい第2の領域Dが存在するか否かを判断する(S208)。第2の領域Dは、判定領域Rの代表疵信号が第2の判定基準値以上となる少なくとも一つの判定領域Rであり、代表疵信号が第2の閾値未満となる少なくとも一つの判定領域Rを介して、第1の領域Dと長手方向に並んだ判定領域Rである。また、第1の領域Dと同様に、代表疵信号が第2の閾値以上となる複数の判定領域Rが長手方向に連続して存在する場合には、この連続する全ての判定領域Rが第2の領域Dとなる。As a result of the determination in step S206, if the number of tracks in the first area D1 is less than the predetermined number, the determining unit 6 selects the second area where the first area D1 and the round bar 2 are located at the same circumferential position. It is determined whether D2 exists ( S208). The second region D2 is at least one determination region R j in which the representative flaw signal of the determination region R j is equal to or greater than the second determination reference value, and at least one determination region R j in which the representative flaw signal is less than the second threshold The determination region Rj is aligned with the first region D1 in the longitudinal direction via the determination region Rj . Further, similarly to the first region D1, when a plurality of determination regions R j in which the representative flaw signal is equal to or greater than the second threshold exist continuously in the longitudinal direction, all the continuous determination regions R j becomes the second region D2.

なお、第1の領域Dと第2の領域Dとの間にある領域を第3の領域Dという。第3の領域Dは、第1の領域Dと第2の領域Dと丸棒2の周方向の位置が等しい領域であり、第1の領域Dと第2の領域Dとそれぞれ隣接した状態となる。つまり、第1の領域D、第3の領域D及び第2の領域Dは、長手方向に順(D→D→D)に連接して並ぶ領域であり、それぞれの領域に含まれるセクターSが同じものとなる。A region between the first region D1 and the second region D2 is called a third region D3. The third region D3 is a region where the positions of the round bar 2 in the circumferential direction are equal to those of the first region D1 and the second region D2, and the first region D1 and the second region D2 They are adjacent to each other. That is, the first area D 1 , the third area D 3 and the second area D 2 are areas that are contiguously arranged in order (D 1 →D 3 →D 2 ) in the longitudinal direction. are the same.

第2の領域D及び第3の領域Dについて、図7を参照して説明する。例えば、図7において、トラックTの判定領域R(「判定領域R1G」ともいう。)にて疵判定処理が行われる場合、判定領域R1Gが第1の領域D(D1D)と判断される。また、ステップS208では、トラックT,Tの判定領域R(「判定領域R1H,R1I」ともいう。)が第2の領域D(D2D)と判断され、トラックT,Tの判定領域R(「判定領域R1J,R1K」ともいう。)が第3の領域D(D3D)と判断される。The second area D2 and the third area D3 will be described with reference to FIG. For example, in FIG. 7, when the flaw determination process is performed in the determination region R 1 (also referred to as “determination region R 1G ”) of track T 9 , the determination region R 1G is the first region D 1 (D 1D ). is judged. Further, in step S208, the determination regions R 1 of the tracks T 5 and T 6 (also referred to as “determination regions R 1H and R 1I ”) are determined to be the second regions D 2 (D 2D ), and the tracks T 7 and T 7 are determined as the second regions D 2 (D 2D ). The determination region R 1 of T 8 (also referred to as “determination regions R 1J and R 1K ”) is determined to be the third region D 3 (D 3D ).

ステップS208の判断の結果、第2の領域Dが存在する場合、判定部6は、第3の領域Dが連結条件を満たすか否かを判断する(S210)。連結条件とは、第1の領域Dと第2の領域Dと第3の領域Dとが一つの連続疵として判断される条件であり、本実施形態では、第3の領域Dの全ての判定領域Rの代表疵信号が第3の判定基準値以上となる場合に連結可能と判断される。As a result of the determination in step S208, if the second area D2 exists, the determination unit 6 determines whether or not the third area D3 satisfies the connection condition (S210). The connection condition is a condition under which the first area D1, the second area D2, and the third area D3 are judged as one continuous flaw, and in the present embodiment, the third area D3 When the representative flaw signals of all the determination regions Rj are equal to or greater than the third determination reference value, it is determined that connection is possible.

ステップS210の判断の結果、第3の領域Dが連結条件を満たす場合、判定部6は、第1の領域D、第2の領域D及び第3の領域Dのトラック数が所定数以上か否かを判定する(S212)。ステップS212では、第1の領域D、第2の領域D及び第3の領域Dの3個の領域に対して、ステップS206での判定と同様な判定が行われる。ステップS212における、トラック数の所定数は、連続疵と判定される長さに対応して決定される値であり、検出したい疵の長さと、トラックTの長手方向の長さとから決定される本実施形態では、一例として、ステップS206と同様に所定数を4個とする。つまり、ステップS212では、判定部6は、第1の領域D、第2の領域D及び第3の領域Dの3領域を繋げた長手方向の長さに相当するトラック数が4個以上であるか否かを判定する。As a result of the determination in step S210, if the third area D3 satisfies the connection condition, the determining unit 6 determines that the number of tracks of the first area D1, the second area D2, and the third area D3 is predetermined. It is determined whether or not the number is greater than or equal to the number (S212). In step S212, determination similar to that in step S206 is performed for the three areas of the first area D1, the second area D2, and the third area D3. The predetermined number of tracks in step S212 is a value determined corresponding to the length determined to be a continuous flaw, and is determined from the length of the flaw to be detected and the length of the track Ti in the longitudinal direction. In this embodiment, as an example, the predetermined number is set to 4 as in step S206. That is, in step S212, the determination unit 6 determines that the number of tracks corresponding to the length in the longitudinal direction connecting the three regions of the first region D 1 , the second region D 2 and the third region D 3 is four. It is determined whether or not the above is satisfied.

ステップS204の判断の結果、判定領域Rの代表疵信号が第2の判定基準値未満となる場合、ステップS208の判断の結果、第2の領域Dが存在しない場合、ステップS210の判断の結果、第3の領域Dが連結条件を満たさない場合、または、ステップS212の判断の結果、第1の領域D、第2の領域D及び第3の領域Dのトラック数が所定数未満となる場合、判定部6は判定領域Rにおいて丸棒2の表面に疵が無いと判定する(S214)。なお、ステップS214での判定は、判定をした判定領域Rを含むトラックTでの疵信号の検出を行ったタイミングでの疵の有無の判定となる。このため、疵が無いと判定された判定領域Rであっても、その後の疵判定処理の結果によっては、疵有りと判定される場合がある。さらに、ステップS214では、判定部6は、判定結果を記憶部7へ出力する。As a result of the determination in step S204, if the representative flaw signal of the determination region Rj is less than the second determination reference value, as a result of the determination in step S208, if the second region D2 does not exist, the determination in step S210 is performed. As a result, if the third area D3 does not satisfy the connection condition, or as a result of the judgment in step S212, the number of tracks in the first area D1, the second area D2, and the third area D3 is predetermined. If it is less than the number, the determination unit 6 determines that there is no flaw on the surface of the round bar 2 in the determination region Rj (S214). It should be noted that the determination in step S214 is the determination of the presence/absence of flaws at the timing of detection of the flaw signal in the track T including the judgment region Rj . Therefore, even in the judgment region Rj where it is judged that there is no flaw, it may be judged that there is a flaw depending on the result of the subsequent flaw judgment processing. Furthermore, in step S214, the determination unit 6 outputs the determination result to the storage unit 7. FIG.

一方、ステップS202の判断の結果、判定領域Rの疵信号が第1の判定基準値以上となる場合、ステップS206の判断の結果、第1の領域Dのトラック数が所定数以上となる場合、または、ステップS212の判断の結果、第1の領域D、第2の領域D及び第3の領域Dのトラック数が所定数以上となる場合、判定部6は、少なくとも判定領域Rにおいて丸棒2の表面に疵があると判定する(S216)。この際、ステップS206の判断の結果から疵があると判定された場合、ステップS206での判定に用いられた、所定数以上の複数の判定領域Rからなる第1の領域Dにおいて疵があると判定される。また、ステップS212の判断の結果から疵があると判定された場合、第1の領域D、第2の領域D及び第3の領域Dの複数の判定領域Rの全てにおいて、疵があると判定される。さらに、ステップS216では、判定部6は、判定結果を記憶部7へ出力する。On the other hand, as a result of the determination in step S202, when the defect signal in the determination region Rj is equal to or greater than the first determination reference value, as a result of the determination in step S206, the number of tracks in the first region D1 is equal to or greater than the predetermined number. case, or if the number of tracks in the first area D 1 , the second area D 2 and the third area D 3 is equal to or greater than a predetermined number as a result of the determination in step S212, the determination unit 6 determines at least the determination area It is determined that there is a flaw on the surface of the round bar 2 at Rj (S216). At this time, if it is determined that there is a flaw from the result of the determination in step S206, the flaw is present in the first region D1, which is made up of a predetermined number or more of the plurality of determination regions Rj used for the determination in step S206. It is determined that there is Further, when it is determined that there is a flaw from the result of determination in step S212, all of the plurality of determination regions R j of the first region D 1 , the second region D 2 and the third region D 3 have the flaw. It is determined that there is Furthermore, in step S216, the determination unit 6 outputs the determination result to the storage unit 7. FIG.

ステップS214,S216の後、記憶部7は、判定領域Rにおける疵の有無についての判定結果を記憶する(S218)。この際、疵があると判定された判定領域Rについては、ステップS202、ステップS206及びステップS212のどこで判定された結果なのかについても記憶してもよい。
次いで、全ての判定領域Rについて、ステップS202~S218の処理が行われることで、判定ループが終了する(S220)。
After steps S214 and S216, the storage unit 7 stores the determination result regarding the presence or absence of flaws in the determination region Rj (S218). At this time, with respect to the determination region Rj in which it is determined that there is a flaw, it may also be possible to store the result of the determination in step S202, step S206, and step S212.
Next, steps S202 to S218 are performed for all determination regions Rj , and the determination loop ends (S220).

<変形例>
以上で、特定の実施形態を参照して本発明を説明したが、これら説明によって発明を限定することを意図するものではない。本発明の説明を参照することにより、当業者には、開示された実施形態の種々の変形例とともに本発明の別の実施形態も明らかである。従って、特許請求の範囲は、本発明の範囲及び要旨に含まれるこれらの変形例または実施形態も網羅すると解すべきである。
<Modification>
Although the invention has been described with reference to particular embodiments, it is not intended that the invention be limited by these descriptions. Various modifications of the disclosed embodiments, as well as other embodiments of the invention, will be apparent to persons skilled in the art upon reference to the description of the invention. Therefore, the claims should be construed to cover those variations or embodiments that fall within the scope and spirit of the invention.

例えば、上記実施形態では、漏洩磁束探傷装置5が一対の探触ヘッド51a,51bを有する構成としたが、本発明はかかる例に限定されない。設けられる探触ヘッドの数は、1個や3個以上であってもよい。
また、上記実施形態では、丸棒2が円形断面の棒鋼であるとしたが、本発明はかかる例に限定されない。丸棒2は、円形断面の長尺材であればよく、鋼管等であってもよい。
For example, in the above-described embodiment, the leakage magnetic flux flaw detector 5 is configured to have a pair of probe heads 51a and 51b, but the present invention is not limited to such an example. The number of probe heads provided may be one or three or more.
Further, in the above embodiment, the round bar 2 is a steel bar with a circular cross section, but the present invention is not limited to such an example. The round bar 2 may be a long member having a circular cross section, and may be a steel pipe or the like.

さらに、上記実施形態では、探触ヘッド51a,51bが、搬送される丸棒2の軸心を中心に、丸棒2の周方向に回転する構成としたが、本発明はかかる例に限定されない。探触ヘッドが丸棒2の周方向に沿って相対的に回転するよう構成されていればよい。すなわち、探傷ヘッドを回転させずに固定し、ターニングローラ-によって丸棒2をその軸心を中心に回転させるようにしてもよいし、あるいは、探傷ヘッドと丸棒2との両方を丸棒の軸心を中心に回転させ、探傷ヘッドと丸棒2との回転方向を変えたり、回転速度を変えるようにしてもよい。
さらに、上記実施形態では、漏洩磁束探傷装置5は、搬送される丸棒2に対して、一対の探触ヘッドを回転させることで、漏洩磁束探傷装置5が丸棒2の表面全ての漏洩磁束を検出する構成としたが、本発明はかかる例に限定されない。探触ヘッドが丸棒2の搬送を行わずに、探触ヘッドを丸棒2の長手方向に移動させるようにしてもよい。つまり、丸棒2と探触ヘッドとを、丸棒2の長手方向に相対的に移動させるようにすればよい。
Furthermore, in the above-described embodiment, the probe heads 51a and 51b are configured to rotate in the circumferential direction of the round bar 2 around the axial center of the round bar 2 being conveyed, but the present invention is not limited to such an example. . It suffices if the probe head is configured to relatively rotate along the circumferential direction of the round bar 2 . That is, the flaw detection head may be fixed without being rotated and the round bar 2 may be rotated around its axis by a turning roller, or both the flaw detection head and the round bar 2 may be rotated. It is also possible to change the rotation direction or the rotation speed of the flaw detection head and the round bar 2 by rotating them around the axis.
Furthermore, in the above-described embodiment, the leakage magnetic flux flaw detector 5 rotates the pair of probe heads with respect to the round bar 2 being conveyed, so that the leakage magnetic flux flaw detector 5 detects the leakage magnetic flux on the entire surface of the round bar 2 . However, the present invention is not limited to such an example. The probe head may be moved in the longitudinal direction of the round bar 2 instead of conveying the round bar 2 . That is, the round bar 2 and the probe head can be moved relative to each other in the longitudinal direction of the round bar 2 .

さらに、上記実施形態では、8個のセクターS~Sに分割された測定領域で漏洩磁束を探傷する構成としたが、本発明はかかる例に限定されない。測定領域は、丸棒2の周方向に対して複数に分割されていればよく、丸棒2の径の大きさや漏洩磁束探傷装置5の検出精度や仕様に応じて適宜設定される。例えば、測定領域は、丸棒2の周方向に24個~130個に分割された領域であってもよい。Furthermore, in the above embodiment, the leakage magnetic flux is detected in the measurement area divided into eight sectors S 1 to S 8 , but the present invention is not limited to this example. The measurement area may be divided into a plurality of areas in the circumferential direction of the round bar 2, and is appropriately set according to the size of the diameter of the round bar 2 and the detection accuracy and specifications of the leakage magnetic flux flaw detector 5. For example, the measurement area may be an area obtained by dividing the round bar 2 into 24 to 130 areas in the circumferential direction.

さらに、上記実施形態では、判定領域Rは、周方向に並ぶ2つの測定領域からなる構成としたが、本発明はかかる例に限定されない。判定領域Rは、特許文献1のように1つの測定領域であってもよく、周方向に並ぶ3つ以上の測定領域からなってもよい。なお、判定領域Rを周方向に並ぶ複数の測定領域とする場合、判定領域Rに含まれる測定領域の数は、想定される回転や振動による疵のずれの大きさや、測定領域の大きさなどによって適宜決定される。そして、判定領域Rを周方向に並ぶ複数の測定領域とすることで、丸棒2の搬送時に回転や振動が発生する場合でも、長手方向に連続する疵を精度よく検知することができる。また、判定領域Rが1つの測定領域である場合、各測定領域の疵信号を検出する度に、その測定領域を判定領域Rとして疵判定処理を行ってもよい。つまり、丸棒2の疵信号の検出動作と並行して疵判定処理を行ってもよい。さらに、判定領域Rが1つの測定領域である場合、代表疵信号は、当該測定領域における疵信号となる。また、判定領域Rが3つ以上の測定領域である場合、代表疵信号は、3つ以上の測定領域のうち疵信号が最も大きい(信号が高い)測定領域における疵信号となる。Furthermore, in the above-described embodiment, the determination region Rj is composed of two measurement regions arranged in the circumferential direction, but the present invention is not limited to such an example. The determination region Rj may be one measurement region as in Patent Document 1, or may be composed of three or more measurement regions arranged in the circumferential direction. In the case where the determination region Rj is a plurality of measurement regions arranged in the circumferential direction, the number of measurement regions included in the determination region Rj depends on the size of the deviation of flaws due to assumed rotation and vibration, and the size of the measurement region. determined as appropriate depending on By setting the determination region Rj as a plurality of measurement regions arranged in the circumferential direction, even if the round bar 2 rotates or vibrates during transportation, flaws continuous in the longitudinal direction can be accurately detected. Moreover, when the determination region Rj is one measurement region, the flaw determination process may be performed with the measurement region as the determination region Rj every time the flaw signal of each measurement region is detected. That is, the defect determination process may be performed in parallel with the operation of detecting the defect signal of the round bar 2 . Furthermore, when the determination region Rj is one measurement region, the representative flaw signal is the flaw signal in the measurement region. Also, when the determination region Rj is three or more measurement regions, the representative flaw signal is the flaw signal in the measurement region where the flaw signal is the largest (highest signal) among the three or more measurement regions.

さらに、上記実施形態では、ステップS206で第1の領域Dのトラック数が所定数以上の場合に、ステップS216の処理を行うとしたが、本発明はかかる例に限定されない。例えば、ステップS206で第1の領域Dのトラック数が所定数以上の場合に、ステップS208と同じ処理をしてもよい。この場合、ステップS208と同じ処理において、第2の領域Dが存在しない場合には、ステップS216の処理を行い、第1の領域Dにおいて疵があると判定される。一方、ステップS208と同じ処理において、第2の領域Dが存在する場合には、ステップS210と同じ処理が行われる。そして、ステップS210と同じ処理において、第3の領域Dが連結条件を満たす場合、ステップS216の処理を行い、第1の領域D、第2の領域D及び第3の領域Dにおいて疵があると判定される。一方、ステップS210と同じ処理において、第3の領域Dが連結条件を満たさない場合、ステップS216の処理を行い、第1の領域Dにおいて疵があると判定される。Furthermore, in the above embodiment, the process of step S216 is performed when the number of tracks in the first area D1 is equal to or greater than the predetermined number in step S206, but the present invention is not limited to such an example. For example, if the number of tracks in the first area D1 is equal to or greater than a predetermined number in step S206, the same processing as in step S208 may be performed. In this case, in the same process as step S208, if the second area D2 does not exist, the process of step S216 is performed, and it is determined that there is a flaw in the first area D1. On the other hand, in the same process as step S208, if the second area D2 exists, the same process as step S210 is performed. Then, in the same process as step S210, if the third area D3 satisfies the connection condition, the process of step S216 is performed in the first area D1, the second area D2 and the third area D3. It is determined that there is a flaw. On the other hand, in the same process as step S210, if the third area D3 does not satisfy the connection condition, the process of step S216 is performed, and it is determined that there is a flaw in the first area D1.

さらに、上記実施形態では、ステップS206またはS212の後、ステップS216にて疵有りと判定される場合には、第1の領域Dまたは第1の領域D、第2の領域D及び第3の領域Dの3つの領域において疵があると判定するとしたが、本発明はかかる例に限定されない。例えば、この場合、上記実施形態にて疵があると判定された領域と同じ周方向位置で隣接する判定領域Rにおいて、代表疵信号の高さが第3の判定基準値以上となる場合には、この判定領域Rにさらに疵があると判定されてもよい。この際、第3の判定基準値以上となる判定領域Rが長手方向に連続してある場合には、この複数の判定領域Rにおいて疵があると判定されてもよい。Furthermore, in the above embodiment, after step S206 or S212, when it is determined that there is a flaw in step S216, the first region D1 or the first region D1, the second region D2 and the second Area D of 3 Although it is determined that there are flaws in the three areas of 3, the present invention is not limited to such an example. For example, in this case, when the height of the representative flaw signal is equal to or higher than the third judgment reference value in the judgment region Rj adjacent to the region judged to have a flaw in the above embodiment at the same circumferential position. may be determined that there is a further flaw in this determination region Rj . At this time, if the determination regions Rj having the third determination reference value or more are continuous in the longitudinal direction, it may be determined that there is a flaw in the plurality of determination regions Rj .

さらに、上記実施形では、ステップS210において、第3の領域Dの全ての判定領域Rの代表疵信号が第3の判定基準値以上となる場合に連結可能と判断されるとしたが、本発明はかかる例に限定されない。例えば、第3の領域Dが連結条件を満たすか否かの判断は、第3の領域Dの長手方向の判定領域Rの数(トラック数)が、第1の領域D及び第2の領域Dの少なくとも一方の長手方向の判定領域の数(トラック数)以下となる場合に、連結可能と判断されてもよい。また、このような判定領域の数に基づいた連結条件と、上記実施形態における連結条件とを両方用いて、いずれか一方の連結条件を満足する場合に、連結可能と判断されてもよい。Furthermore, in the above embodiment, in step S210, it is determined that connection is possible when the representative flaw signals of all the determination regions Rj of the third region D3 are equal to or greater than the third determination reference value. The invention is not limited to such examples. For example, to determine whether or not the third region D3 satisfies the connection condition, the number of determination regions Rj (the number of tracks) in the longitudinal direction of the third region D3 is the same as the number of the first region D1 and the first region D1 and the third region D1. It may be determined that connection is possible when the number of determination regions (the number of tracks) in at least one of the two regions D2 in the longitudinal direction is equal to or less than the number of determination regions. Alternatively, both the linking condition based on the number of determination regions and the linking condition in the above embodiment may be used, and it may be determined that linking is possible when either one of the linking conditions is satisfied.

さらに、上記実施形態では、表面疵検査装置1は、丸棒2について疵の有無のみを判定する構成としたが、本発明はかかる例に限定されない。例えば、表面疵検査装置1は、不図示のマーキング装置を備え、このマーキング装置を用いて疵があると判定された判定領域に、特許文献1のようにマーキングする構成であってもよい。 Furthermore, in the above-described embodiment, the surface flaw inspection apparatus 1 is configured to determine only the presence or absence of flaws on the round bar 2, but the present invention is not limited to this example. For example, the surface flaw inspection apparatus 1 may be provided with a marking device (not shown), and may be configured to mark, as in Patent Document 1, a judgment region judged to have flaws using this marking device.

さらに、上記実施形態では、トラック単位で疵信号が検出された後にトラック単位で疵判定処理を行う構成としたが、本発明はかかる例に限定されない。例えば、ステップS100の検出ループにおいて、ステップS102の処理のみを行い、丸棒2の全長全周にわたって疵信号の検出が行われた後に、その検出結果に基づいて疵の判定が行われてもよい。この場合、判定部6は、第1の判定工程、第2の判定工程及び第3の判定工程を用いて疵の判定を行う。 Furthermore, in the above-described embodiment, the defect determination process is performed for each track after the defect signal is detected for each track, but the present invention is not limited to this example. For example, in the detection loop of step S100, only the process of step S102 is performed, and after the flaw signal is detected over the entire circumference of the round bar 2, the flaw determination may be performed based on the detection result. . In this case, the judging section 6 judges the flaw using the first judging process, the second judging process, and the third judging process.

第1の判定工程~第3の判定工程について、図8及び図9を参照して説明をする。図8及び図9は、図7と同様に各測定領域における疵信号の検出結果をマッピングしたものである。図8に示す本変形例では、上記の変形例と同様に判定領域Rを1つの測定領域として、疵を検出するものとする。なお、図8及び図9に示す例では、判定領域を、セクターS(k=1~8)とトラックTとを用いて、RSk,Tiと示す。例えば、セクターS、トラックTとなる測定領域を判定領域とする場合、この判定領域はRS1,T2として示される。The first to third determination steps will be described with reference to FIGS. 8 and 9. FIG. 8 and 9 map the detection results of the flaw signal in each measurement region, as in FIG. In this modified example shown in FIG. 8, as in the above modified example, flaws are detected using the determination region Rj as one measurement region. In the examples shown in FIGS. 8 and 9, the determination area is denoted as R Sk, Ti using sector S k (k=1 to 8) and track T i . For example, when the measurement area of sector S 1 and track T 2 is set as the determination area, this determination area is indicated as R S1, T2 .

(第1の判定工程)
第1の判定工程では、疵信号の高さが第1の判定基準値以上となる判定領域RSk,Tiにおいて、疵があると判定する。例えば、図8に示す例のセクターSの範囲では、疵信号の高さが第1の判定基準値以上となる判定領域RS1,T2,RS1,T6,RS1,T7の3個の判定領域において、疵があると判定される。
(First determination step)
In the first determination step, it is determined that there is a flaw in the determination regions R Sk, Ti in which the height of the flaw signal is equal to or higher than the first determination reference value. For example, in the range of sector S 1 in the example shown in FIG. It is determined that there is a flaw in the determination area.

(第2の判定工程)
第2の判定工程では、まず、疵信号の高さが第2の判定基準値以上となる、少なくとも一つの判定領域RSk,Tiまたは長手方向に連続する複数の判定領域RSk,Tiを第1の領域Dとする。このとき、疵信号の高さが第1の判定基準値以上となる判定領域RSk,Tiは第1の判定工程にて疵があると判定されるため、第2の判定工程では、疵信号の高さが第2の判定基準値以上、第1の判定基準値未満となる判定領域RSk,Tiが第1の領域Dと判定されてもよい。例えば、図8に示す例においてセクターS~Sの範囲では、判定領域RS3,T2~判定領域RS3,T4の3個の判定領域、判定領域RS3,T6の1個の判定領域、判定領域RS5,T3~判定領域RS5,T6の4個の判定領域が、それぞれ第1の領域Dとなる。
(Second judgment step)
In the second determination step, first, at least one determination region R Sk, Ti or a plurality of determination regions R Sk, Ti continuous in the longitudinal direction in which the height of the flaw signal is equal to or higher than the second determination reference value is selected as the second 1 area D 1 . At this time, since it is determined that there is a flaw in the judgment regions R Sk and Ti in which the height of the flaw signal is equal to or higher than the first judgment reference value in the first judgment step, in the second judgment step, the flaw signal The determination regions R Sk and Ti whose height is equal to or greater than the second determination reference value and less than the first determination reference value may be determined as the first region D 1 . For example, in the range of sectors S 3 to S 5 in the example shown in FIG. , the determination regions R S5,T3 to the determination regions R S5,T6 are each the first region D 1 .

次いで、第2の判定工程では、第1の領域Dが長手方向に連続する所定数以上の判定領域からなる場合に、この第1の領域Dに疵があると判定する。この判定は、上記実施形態におけるステップS206の処理と同様に行うことができる。例えば、図8に示す例においてセクターS~Sの範囲では、所定数を4とする場合、判定領域RS5,T3~判定領域RS5,T6からなる第1の領域Dに疵があると判定される。また、それ以外の第1の領域Dについては、第2の判定工程においては疵が無いと判定される。
また、例えば、図8のセクターSの範囲に示すように、疵信号が第1の判定基準値以上となるものも含めて第1の領域Dとしてもよい。この場合、判定領域RS7,T4~判定領域RS7,T8の5個の領域が第1の領域Dとなり、長手方向の判定領域の数が4個以上となることから、この第1の領域Dにおいて疵があると判定されてもよい。
Next, in the second determination step, when the first region D1 consists of a predetermined number or more of determination regions continuous in the longitudinal direction, it is determined that the first region D1 has a flaw. This determination can be performed in the same manner as the process of step S206 in the above embodiment. For example, in the range of sectors S 3 to S 5 in the example shown in FIG. It is determined that there is Further, the other first region D1 is determined to have no flaw in the second determination step.
Further, for example, as shown in the range of sector S7 in FIG. 8 , the first region D1 may include the flaw signal having the first criterion value or more. In this case, the five regions from the determination regions R S7, T4 to R S7, T8 are the first region D 1 , and the number of determination regions in the longitudinal direction is four or more. It may be determined that there is a flaw in the region D1.

(第3の判定工程)
第3の判定工程では、まず、第2の判定工程と同様に第1の領域Dとなる判定領域RSk,Tiが判定され、第1の領域Dに対して第2の領域Dとなる判定領域RSk,Tiが存在するかが判断される。第2の領域Dは、上記実施形態と同様なものであり、ある第1の領域Dに対して、周方向の同じ位置に存在し、疵信号の高さが全て第2の判定基準値以上となる一つの判定領域RSk,Tiまたは長手方向に連続する複数の判定領域RSk,Tiである。また、第1の領域Dと第2の領域Dとの長手方向の間の判定領域RSk,Tiは、全て疵信号の高さが第2の判定基準値未満となる。つまり、間に疵信号の高さが第2の判定基準値未満となる判定領域RSk,Tiを介して長手方向に並んだ、2つの第1の領域Dについて、一方が第1の領域Dとなり、他方が第2の領域Dとなる。この際、例えば、搬送方向の下流側(トラックの番号が若い側)の第1の領域Dを第2の領域Dと定義してもよい。例えば、図9に示す例のセクターSの範囲では、判定領域RS2,T6~判定領域RS2,T7の2個の判定領域からなる領域が第1の領域Dとなり、判定領域RS2,T3の1個の判定領域からなる領域が第2の領域Dとなる。
(Third determination step)
In the third determination step, first , the determination regions R Sk and Ti to be the first region D1 are determined in the same manner as in the second determination step, and the second region D2 is determined with respect to the first region D1. It is determined whether or not there is a determination region R Sk, Ti such that The second region D2 is similar to the above embodiment, exists at the same position in the circumferential direction as the first region D1, and the height of the flaw signal is all the second criteria One determination region R Sk,Ti equal to or greater than the value or a plurality of determination regions R Sk,Ti continuous in the longitudinal direction. In addition, the height of the defect signal is less than the second criterion value in all of the judgment regions RSk and Ti between the first region D1 and the second region D2 in the longitudinal direction. That is, for the two first regions D 1 arranged in the longitudinal direction via the judgment regions R Sk and Ti in which the height of the flaw signal is less than the second judgment reference value, one is the first region D 1 and the other becomes the second region D 2 . At this time, for example, the first area D1 on the downstream side (the side with the smaller track number) in the transport direction may be defined as the second area D2. For example, in the range of sector S 2 in the example shown in FIG. 9, the first region D 1 consists of the two determination regions R S2 , T6 to R S2, T7 . , T3 is the second area D2.

次いで、第3の判定工程では、第1の領域Dと第2の領域Dとの間の判定領域RSk,Tiである第3の領域Dが連結条件を満たすか否かを判断する。この判断は、上記実施形態におけるステップS210と同じように行われてもよく、また、上記の変形例のように第3の領域Dの判定領域の数(トラック数)に基づいて行われてもよい。例えば、図9のセクターSの範囲では、判定領域RS2,T6~判定領域RS2,T7を第1の領域Dとし、判定領域RS2,T3を第2の領域Dとする場合、第3の領域Dは、判定領域RS2,T4~判定領域RS2,T5の2個の判定領域となる。この際、連結条件を上記実施形態と同様にする場合、第3の領域Dに含まれる判定領域RS2,T4~判定領域RS2,T5の疵信号の高さは全て第3の判定基準値以上となるため、連結条件を満たすものとなる。また、図9のセクターSの範囲では、判定領域RS4,T7~判定領域RS4,T8を第1の領域Dとし、判定領域RS4,T2~判定領域RS4,T4を第2の領域Dとする場合、第3の領域Dは、判定領域RS4,T5~判定領域RS4,T6の2個の判定領域となる。この際、連結条件を上記の変形例のように第3の領域Dの判定領域の数に基づいて行う場合、第3の領域Dの判定領域の数は、第1の領域D及び第2の領域Dの少なくとも一方の判定領域の数以上となるため、連結条件を満たすものとなる。さらに、図9のセクターSの範囲では、判定領域RS6,T8~判定領域RS6,T9を第1の領域Dとし、判定領域RS6,T3~判定領域RS6,T4を第2の領域Dとする場合、第3の領域Dは、判定領域RS6,T5~判定領域RS6,T7の3個の判定領域となる。この際、連結条件を上記実施形態と同様にする場合、第3の領域Dに含まれる判定領域RS4,T5~判定領域RS4,T7の疵信号の高さは全て第3の判定基準値以上とならないため、連結条件を満たさないものとなる。Next, in the third determination step, it is determined whether or not the third region D3, which is the determination region RSk, Ti between the first region D1 and the second region D2, satisfies the connection condition. do. This determination may be performed in the same manner as in step S210 in the above embodiment, or may be performed based on the number of determination areas (number of tracks) of the third area D3 as in the above modification. good too. For example, in the range of sector S2 in FIG . 9, when the determination regions R S2,T6 to R S2,T7 are set as the first region D1, and the determination regions R S2,T3 are set as the second region D2 , and the third region D 3 become two determination regions of determination regions R S2,T4 to R S2,T5 . At this time, when the connection condition is the same as in the above embodiment, the heights of the flaw signals in the determination regions R S2, T4 to R S2, T5 included in the third region D 3 are all the third determination criteria. value, it satisfies the concatenation condition. In the range of sector S4 in FIG. 9, the determination regions R S4,T7 to R S4,T8 are the first region D1, and the determination regions R S4,T2 to R S4,T4 are the second region D1. , the third region D 3 becomes two determination regions of determination regions R S4,T5 to R S4,T6 . At this time, when the connection condition is based on the number of determination regions of the third region D3 as in the above modified example, the number of determination regions of the third region D3 is the same as the number of the determination regions of the first region D1 and Since the number is greater than or equal to the number of determination regions in at least one of the second regions D2, the connection condition is satisfied. Further, in the range of the sector S6 in FIG. 9 , the determination regions R S6,T8 to R S6,T9 are set as the first region D1, and the determination regions R S6,T3 to R S6,T4 are set as the second region D1. , the third region D 3 consists of three determination regions R S6,T5 to R S6,T7 . At this time, when the connection condition is the same as in the above embodiment, the heights of the flaw signals in the determination regions R S4, T5 to R S4, T7 included in the third region D 3 are all the third determination criteria. Since it does not exceed the value, it does not satisfy the consolidation condition.

さらに、第3の判定工程では、従前の処理ステップにて第3の領域Dが連結条件を満たす場合、第1の領域D、第2の領域D及び第3の領域Dに疵があると判定する。一方、第3の領域Dが連結条件を満たさない場合、第1の領域D、第2の領域D及び第3の領域Dに、第3の判定工程では疵がないと判定する。つまり、図9に示す例では、判定領域RS2,T3~判定領域RS2,T7の5個の判定領域と、判定領域RS4,T2~判定領域RS4,T8の7個の判定領域とにおいて、疵があると判断される。Furthermore, in the third determination step, if the third region D3 satisfies the connection condition in the previous processing step, the flaws are present in the first region D1, the second region D2 and the third region D3. It is determined that there is On the other hand, when the third region D3 does not satisfy the connection condition, the first region D1, the second region D2 and the third region D3 are judged to have no flaws in the third judgment step. . That is, in the example shown in FIG. 9, there are five determination regions from determination regions R S2,T3 to R S2,T7 , and seven determination regions from determination regions R S4,T2 to R S4,T8 . In, it is judged that there is a flaw.

この変形例において、第1の判定工程~第3の判定工程は、個別に行われてもよく、順に行われてもよい。そして、それぞれの判定工程での結果から、各判定領域Rにおいて、疵の有無が最終的に判断される。その後、第1の判定工程~第3の判定工程の少なくともいずれかの判定工程において疵があると判定された判定領域Rには、疵があるとして最終的な判断が行われる。
また、この変形例において、上記実施形態と同様に、同一トラックTにおいて周方向に隣接する複数の測定領域を判定領域Rとして、疵の有無の判断が行われてもよい。
In this modification, the first to third determination steps may be performed individually or sequentially. Then, based on the results of each determination process, the presence or absence of flaws in each determination region Rj is finally determined. After that, a final judgment is made that there is a flaw in the judgment region Rj that has been judged to have a flaw in at least one of the judgment steps from the first judgment step to the third judgment step.
Further, in this modified example, similarly to the above-described embodiment, the presence or absence of flaws may be determined using a plurality of measurement areas adjacent in the circumferential direction on the same track T i as the determination areas Rj .

<実施形態の効果>
(1)本発明の一態様に係る丸棒2の表面疵検査方法は、丸棒2を長手方向に搬送しながら、漏洩磁束探傷装置5の探触ヘッド51a,51bを丸棒2の周方向に沿って回転させて、丸棒2の表面における、長手方向及び周方向にそれぞれ区分けされた複数の測定領域について漏洩磁束を検出することで疵信号を検出する探傷工程と、少なくとも一つの測定領域を含み、周方向及び長手方向に並ぶ複数の判定領域Rについて、判定領域Rに含まれる測定領域の最も大きな疵信号である代表疵信号に基づいて、丸棒2の表面に疵があることを判定する判定工程と、を備える。判定工程には、丸棒2の表面に疵があることを判定する第1の判定工程、第2の判定工程及び第3の判定工程が含まれる。第1の判定工程では、代表疵信号の高さが、第1の判定基準値以上となる判定領域Rに疵があると判定する(例えば、ステップS202)。第2の判定工程では、判定領域Rの代表疵信号の高さが第1の判定基準値よりも低い第2の判定基準値以上となる、一つの判定領域Rまたは長手方向に連続する複数の判定領域Rを第1の領域Dとし、第1の領域Dが長手方向に連続する複数の判定領域Rからなる場合で、且つ第1の領域Dの判定領域Rの数が所定数以上の場合に、第1の領域Dの判定領域Rに疵があると判定する(例えば、ステップS206)。第3の判定工程では、判定領域Rの代表疵信号の高さが第2の判定値以上となる、一つの判定領域Rまたは長手方向に連続する複数の判定領域Rであり、第1の領域Dと周方向の位置が等しい判定領域Rを、第2の領域Dとし、第1の領域Dと第2の領域Dとの間の判定領域Rを第3の領域Dとし、第3の領域Dの判定領域Rの代表疵信号が第2の判定基準値未満で第3の判定基準値以上となる場合、並びに第3の領域Dの長手方向の判定領域Rの数が第1の領域D及び第2の領域Dの少なくとも一方の長手方向の判定領域Rの数以下となる場合の少なくとも一方の場合で、且つ第1の領域D、第2の領域D及び第3の領域Dの判定領域Rの数が所定数以上の場合に、第1の領域D、第2の領域D及び第3の領域Dの判定領域Rに疵があると判定する(例えば、ステップS208~S212)。
<Effects of Embodiment>
(1) A method for inspecting a surface flaw of a round bar 2 according to one aspect of the present invention is such that the probe heads 51a and 51b of the leakage magnetic flux flaw detector 5 are moved in the circumferential direction of the round bar 2 while conveying the round bar 2 in the longitudinal direction. A flaw detection step of detecting a flaw signal by detecting a leakage magnetic flux in a plurality of measurement areas divided in the longitudinal direction and the circumferential direction on the surface of the round bar 2, and at least one measurement area , and for a plurality of judgment regions R j arranged in the circumferential direction and the longitudinal direction, based on the representative flaw signal that is the largest flaw signal of the measurement region included in the judgment region R j , there is a flaw on the surface of the round bar 2 and a determination step of determining that. The determination process includes a first determination process, a second determination process, and a third determination process for determining whether the surface of the round bar 2 has a flaw. In the first determination step, it is determined that there is a flaw in the determination region Rj in which the height of the representative flaw signal is equal to or greater than the first determination reference value (for example, step S202). In the second determination step, the height of the representative flaw signal of the determination region R j is equal to or higher than the second determination reference value lower than the first determination reference value, one determination region R j or continuous in the longitudinal direction A plurality of determination regions R j is defined as a first region D 1 , and the first region D 1 is composed of a plurality of determination regions R j continuous in the longitudinal direction, and the determination region R j of the first region D 1 is equal to or greater than a predetermined number, it is determined that there is a flaw in the determination region Rj of the first region D1 (eg, step S206). In the third determination step, one determination region R j or a plurality of determination regions R j continuous in the longitudinal direction in which the height of the representative flaw signal of the determination region R j is equal to or higher than the second determination value, A determination region Rj having the same position in the circumferential direction as the region D1 of 1 is defined as a second region D2, and a determination region Rj between the first region D1 and the second region D2 is defined as a third region D2. When the representative flaw signal of the judgment region R j of the third region D 3 is less than the second judgment reference value and is equal to or more than the third judgment reference value, and the length of the third region D 3 In at least one of the cases where the number of direction determination regions R j is less than or equal to the number of longitudinal direction determination regions R j in at least one of the first region D 1 and the second region D 2 , and When the number of determination regions R j of the region D 1 , the second region D 2 and the third region D 3 is equal to or greater than a predetermined number, the first region D 1 , the second region D 2 and the third region It is determined that there is a flaw in the determination region Rj of D3 ( for example, steps S208 to S212).

ここで、表面に疵がある場合における、疵信号の検出結果の一例を図10に示す。図10において、点線で示す疵信号の検出結果は、疵信号の高さが第2の判定基準値以上となる連続疵が、長手方向に断続的に2ヶ所ある場合を示す。また、図10において、実線で示す疵信号の検出結果は、疵信号が長手方向の中央にて部分的に第2の判定基準値未満、第3の判定基準値以上となる場合を示す。この実線で示す連続疵は、鋳片等の素材に起因する欠陥である場合等に発生し易く、特許文献1,2に示すような従来の疵検出方法では、疵信号の高さが第2の判定基準値未満となる第3の領域Dに疵があると判定されないものであった。Here, FIG. 10 shows an example of the flaw signal detection result when there is a flaw on the surface. In FIG. 10, the detection result of the flaw signal indicated by the dotted line shows the case where there are two consecutive flaws intermittently in the longitudinal direction where the height of the flaw signal is equal to or higher than the second criterion value. In FIG. 10, the detection result of the flaw signal indicated by the solid line shows the case where the flaw signal partially becomes less than the second judgment reference value and equal to or more than the third judgment reference value at the center in the longitudinal direction. The continuous flaws shown by the solid line are likely to occur when the flaws are caused by the material such as the cast slab. It was not judged that there was a flaw in the third region D3, which is less than the judgment reference value of.

しかし、上記(1)の構成によれば、第3の判定工程において、第3の領域Dの判定領域Rの代表疵信号が第2の判定基準値未満で第3の判定基準値以上となる場合に、第3の領域Dに疵があると判定することで、このような連続疵を検出できるようになる。また、図10の実線に示すような連続疵では、第3の領域Dの長手方向の長さは、連続疵の長手方向の全体の長さに対して短いものとなる。このため、第3の判定工程において、第1の領域D及び第2の領域D2の少なくとも一方の判定領域Rの数以下となる場合に、第3の領域Dに疵がある判定することで、このような連続疵を検出できるようになる。なお、この判定の場合、第3の判定基準値を用いたものよりも、検出感度が高くなるが、疵の検出を簡便に行うことができる。However, according to the configuration (1) above, in the third determination step, the representative flaw signal of the determination region Rj of the third region D3 is less than the second determination reference value and is equal to or greater than the third determination reference value. In this case, by determining that there is a flaw in the third region D3, such a continuous flaw can be detected. In addition, in the continuous flaw shown by the solid line in FIG. 10, the length in the longitudinal direction of the third region D3 is shorter than the overall length of the continuous flaw in the longitudinal direction. Therefore, in the third determination step, when the number of determination regions Rj of at least one of the first region D1 and the second region D2 is equal to or less than the number of the determination regions Rj , it is determined that the third region D3 has a flaw. This makes it possible to detect such continuous flaws. In addition, in the case of this determination, the detection sensitivity is higher than that using the third determination reference value, but the flaw can be easily detected.

これにより、長手方向に連続した疵を精度よく検出することができ、長さのある表面疵がある不適合材の流出を防止することができる。さらに、製造者に対して金額的な損失を与えるだけでなく、製造者の社会的信用を失墜させる可能性がある、不適合材の大量流出を防止することができる。
また、上記(1)の構成では、連続した浅い疵を検出する際に、第2の判定工程と第3の判定工程とを行う。ここで、疵信号の高さが第2の判定基準値未満で第3の判定基準値以上となる連続疵を検出する場合、第2の判定工程において、用いる第2の判定基準値を上記実施形態における第3の判定基準値まで低くすれば、連続疵を検出することができる。しかし、この場合、問題とならない程度に浅くて長い疵等が検出されることから、検出感度が高くなり過ぎ、過検出となる。これに対して、上記(1)の構成によれば、第2の判定工程と第3の判定工程とを用いることで、過検出となることを抑制することができる。
This makes it possible to accurately detect flaws that are continuous in the longitudinal direction, and to prevent outflow of unsuitable materials with long surface flaws. Furthermore, it is possible to prevent a large amount of nonconforming materials from flowing out, which not only causes monetary loss to the manufacturer, but also may damage the social credibility of the manufacturer.
Further, in the above configuration (1), when detecting continuous shallow flaws, the second determination step and the third determination step are performed. Here, when detecting continuous flaws in which the height of the flaw signal is less than the second judgment reference value and equal to or higher than the third judgment reference value, the second judgment reference value used in the second judgment step is set to the above-described implementation. Continuous flaws can be detected by lowering to the third criterion value in the form. However, in this case, since shallow and long flaws that are not problematic are detected, the detection sensitivity becomes too high, resulting in over-detection. On the other hand, according to the above configuration (1), by using the second determination step and the third determination step, it is possible to suppress over-detection.

(2)上記(1)の構成において、判定領域Rは、周方向に連なる複数の測定領域からなる。
上記(2)の構成によれば、周方向に連なる複数の測定領域での疵信号の検出結果に基づいて判定が行われるため、周方向における測定領域間の継ぎ目をなくすことができる。このため、搬送中の丸棒2が回転または振動する場合や、疵が測定領域の境界に位置する場合などにおいても、長手方向に連続した疵を精度よく検出することができる。
(2) In the configuration of (1) above, the determination region Rj is composed of a plurality of measurement regions that are continuous in the circumferential direction.
According to the above configuration (2), determination is made based on the detection results of the flaw signals in a plurality of measurement areas that are continuous in the circumferential direction, so it is possible to eliminate seams between the measurement areas in the circumferential direction. Therefore, even when the round bar 2 rotates or vibrates during transportation, or when the flaw is positioned at the boundary of the measurement area, flaws that are continuous in the longitudinal direction can be accurately detected.

(3)本発明の一態様に係る丸棒2の表面疵検査装置1は、探触ヘッド51a,51bを有し、丸棒2を長手方向に搬送しながら、探触ヘッド51a,51bを丸棒2の周方向に沿って回転させて、丸棒2の表面における、長手方向及び周方向にそれぞれ区分けされた複数の測定領域について漏洩磁束を検出することで疵信号を検出する漏洩磁束探傷装置5と、少なくとも一つの測定領域を含み、周方向及び長手方向に並ぶ複数の判定領域Rについて、判定領域Rに含まれる測定領域の最も大きな疵信号である代表疵信号に基づいて、丸棒2の表面に疵があることを判定する判定部6と、を備える。判定部6は、丸棒2の表面に疵があることを判定する第1の判定工程、第2の判定工程及び第3の判定工程を行う。第1の判定工程では、代表疵信号の高さが、第1の判定基準値以上となる判定領域Rに疵があると判定する(例えば、ステップS202)。第2の判定工程では、判定領域Rの代表疵信号の高さが第1の判定基準値よりも低い第2の判定基準値以上となる、一つの判定領域Rまたは長手方向に連続する複数の判定領域Rを第1の領域Dとし、第1の領域Dが長手方向に連続する複数の判定領域Rからなる場合で、且つ第1の領域Dの判定領域Rの数が所定数以上の場合に、第1の領域Dの判定領域Rに疵があると判定する(例えば、ステップS206)。第3の判定工程では、判定領域Rの代表疵信号の高さが第2の判定値以上となる、一つの判定領域Rまたは長手方向に連続する複数の判定領域Rであり、第1の領域Dと周方向の位置が等しい判定領域Rを、第2の領域Dとし、第1の領域Dと第2の領域Dとの間の判定領域Rを第3の領域Dとし、第3の領域Dの判定領域Rの代表疵信号が第2の判定基準値未満で第3の判定基準値以上となる場合、並びに第3の領域Dの長手方向の判定領域Rの数が第1の領域D及び第2の領域Dの少なくとも一方の長手方向の判定領域Rの数以下となる場合の少なくとも一方の場合で、且つ第1の領域D、第2の領域D及び第3の領域Dの判定領域Rの数が所定数以上の場合に、第1の領域D、第2の領域D及び第3の領域Dの判定領域Rに疵があると判定する(例えば、ステップS208~S212)。
上記(3)の構成によれば、上記(1)と同様な効果が得られる。
(3) The apparatus 1 for inspecting surface defects of a round bar 2 according to one aspect of the present invention has probe heads 51a and 51b. A leakage magnetic flux flaw detector that detects a flaw signal by rotating the rod 2 along the circumferential direction and detecting leakage magnetic flux in a plurality of measurement areas divided in the longitudinal direction and the circumferential direction on the surface of the round rod 2. 5, and for a plurality of determination regions Rj that include at least one measurement region and are arranged in the circumferential direction and the longitudinal direction, based on the representative flaw signal that is the largest flaw signal of the measurement regions included in the determination region Rj , a circle and a determination unit 6 that determines whether the surface of the rod 2 has a flaw. The determination unit 6 performs a first determination process, a second determination process, and a third determination process for determining whether the surface of the round bar 2 has a flaw. In the first determination step, it is determined that there is a flaw in the determination region Rj in which the height of the representative flaw signal is equal to or greater than the first determination reference value (for example, step S202). In the second determination step, the height of the representative flaw signal of the determination region R j is equal to or higher than the second determination reference value lower than the first determination reference value, one determination region R j or continuous in the longitudinal direction A plurality of determination regions R j is defined as a first region D 1 , and the first region D 1 is composed of a plurality of determination regions R j continuous in the longitudinal direction, and the determination region R j of the first region D 1 is equal to or greater than a predetermined number, it is determined that there is a flaw in the determination region Rj of the first region D1 (eg, step S206). In the third determination step, one determination region R j or a plurality of determination regions R j continuous in the longitudinal direction in which the height of the representative flaw signal of the determination region R j is equal to or higher than the second determination value, A determination region Rj having the same position in the circumferential direction as the region D1 of 1 is defined as a second region D2, and a determination region Rj between the first region D1 and the second region D2 is defined as a third region D2. When the representative flaw signal of the judgment region R j of the third region D 3 is less than the second judgment reference value and is equal to or more than the third judgment reference value, and the length of the third region D 3 In at least one of the cases where the number of direction determination regions R j is less than or equal to the number of longitudinal direction determination regions R j in at least one of the first region D 1 and the second region D 2 , and When the number of determination regions R j of the region D 1 , the second region D 2 and the third region D 3 is equal to or greater than a predetermined number, the first region D 1 , the second region D 2 and the third region It is determined that there is a flaw in the determination region Rj of D3 ( for example, steps S208 to S212).
According to the configuration of (3) above, the same effect as that of (1) above can be obtained.

1 表面疵検査装置
2 丸棒
3 搬送ロール
4 ピンチロール
5 漏洩磁束探傷装置
51a,51b 探触ヘッド
52a,52b 励磁ヨーク
53a,53b 励磁コイル
54a,54b プローブ
6 判定部
7 記憶部
1 Surface flaw inspection device 2 Round bar 3 Transfer roll 4 Pinch roll 5 Leakage magnetic flux flaw detection device 51a, 51b Probing heads 52a, 52b Exciting yokes 53a, 53b Exciting coils 54a, 54b Probes 6 Judging unit 7 Storage unit

Claims (3)

丸棒を長手方向に搬送しながら、あるいは、漏洩磁束探傷装置の探触ヘッドを丸棒の長手方向に移動させながら、漏洩磁束探傷装置の探触ヘッドが前記丸棒の周方向に沿って回転するように前記探ヘッドあるいは前記丸棒あるいは前記探ヘッドと前記丸棒の両方を回転させて、前記丸棒の表面における、前記長手方向及び前記周方向にそれぞれ区分けされた複数の測定領域について漏洩磁束を検出することで疵信号を検出する探傷工程と、
少なくとも一つの前記測定領域を含み、前記周方向及び前記長手方向に並ぶ複数の判定領域について、前記判定領域に含まれる前記測定領域の最も大きな前記疵信号である代表疵信号に基づいて、前記丸棒の表面に疵があることを判定する判定工程と、
を備え、
前記判定工程には、前記丸棒の表面に前記疵があることを判定する第1の判定工程、第2の判定工程及び第3の判定工程が含まれ、
前記第1の判定工程では、前記代表疵信号の高さが、第1の判定基準値以上となる前記判定領域に前記疵があると判定し、
前記第2の判定工程では、
前記判定領域の前記代表疵信号の高さが前記第1の判定基準値よりも低い第2の判定基準値以上となる、一つの前記判定領域または前記長手方向に連続する複数の前記判定領域を第1の領域とし、
前記第1の領域が前記長手方向に連続する複数の前記判定領域からなる場合で、且つ前記第1の領域の前記判定領域の数が所定数以上の場合に、前記第1の領域の前記判定領域に前記疵があると判定し、
前記第3の判定工程では、
前記判定領域の前記代表疵信号の高さが前記第2の判定基準値以上となる、一つの前記判定領域または前記長手方向に連続する複数の前記判定領域であり、前記第1の領域と前記周方向の位置が等しい前記判定領域を、第2の領域とし、
前記第1の領域と前記第2の領域との間の前記判定領域を第3の領域とし、
前記第3の領域の前記判定領域の前記代表疵信号が前記第2の判定基準値未満で第3の判定基準値以上となる場合で、且つ前記第1の領域、前記第2の領域及び前記第3の領域の前記判定領域の数が所定数以上の場合に、前記第1の領域、前記第2の領域及び前記第3の領域の前記判定領域に前記疵があると判定する、丸棒の表面疵検査方法。
While conveying the round bar in the longitudinal direction, or while moving the probe head of the magnetic flux leakage flaw detector in the longitudinal direction of the round bar, the probe head of the magnetic flux leakage flaw detector rotates along the circumferential direction of the round bar. By rotating the probe head or the round bar or both the probe head and the round bar so as to A flaw detection step of detecting a flaw signal by detecting leakage magnetic flux for
For a plurality of determination regions that include at least one measurement region and are arranged in the circumferential direction and the longitudinal direction, based on the representative flaw signal that is the largest flaw signal of the measurement region included in the determination region, the circle A determination step of determining whether there is a flaw on the surface of the rod;
with
The determination step includes a first determination step, a second determination step, and a third determination step for determining whether the surface of the round bar has the flaw,
In the first determination step, the height of the representative flaw signal determines that the flaw is present in the determination region in which the height is equal to or higher than a first determination reference value,
In the second determination step,
One determination region or a plurality of determination regions continuous in the longitudinal direction in which the height of the representative flaw signal of the determination region is equal to or higher than a second determination reference value lower than the first determination reference value as a first region,
the determination of the first region when the first region is composed of a plurality of the determination regions continuous in the longitudinal direction and the number of the determination regions of the first region is a predetermined number or more; Determining that the area has the flaw,
In the third determination step,
The height of the representative flaw signal of the determination region is the second determination reference value or more, one of the determination regions or a plurality of the determination regions continuous in the longitudinal direction, wherein the first region and the The determination regions having equal positions in the circumferential direction are defined as a second region,
The determination region between the first region and the second region is defined as a third region,
When the representative flaw signal of the determination region of the third region is less than the second determination reference value and is equal to or more than the third determination reference value , and the first region, the second region and When the number of the determination regions of the third region is a predetermined number or more, it is determined that the flaw is present in the determination regions of the first region, the second region, and the third region. A bar surface flaw inspection method.
前記判定領域は、前記周方向に連なる複数の前記測定領域からなる、請求項1に記載の丸棒の表面疵検査方法。 2. The round bar surface flaw inspection method according to claim 1, wherein said determination area comprises a plurality of said measurement areas which are continuous in said circumferential direction. 探触ヘッドを有し、丸棒を長手方向に搬送しながら、あるいは、前記探触ヘッドを丸棒の長手方向に移動させながら、前記探触ヘッドが前記丸棒の周方向に沿って回転するように前記探ヘッドあるいは前記丸棒あるいは前記探ヘッドと前記丸棒の両方を回転させて、前記丸棒の表面における、前記長手方向及び前記周方向にそれぞれ区分けされた複数の測定領域について漏洩磁束を検出することで疵信号を検出する漏洩磁束探傷装置と、
少なくとも一つの前記測定領域を含み、前記周方向及び前記長手方向に並ぶ複数の判定領域について、前記判定領域に含まれる前記測定領域の最も大きな前記疵信号である代表疵信号に基づいて、前記丸棒の表面に疵があることを判定する判定部と、
を備え、
前記判定部は、前記丸棒の表面に前記疵があることを判定する第1の判定工程、第2の判定工程及び第3の判定工程を行い、
前記第1の判定工程では、前記代表疵信号の高さが、第1の判定基準値以上となる前記判定領域に前記疵があると判定し、
前記第2の判定工程では、
前記判定領域の前記代表疵信号の高さが前記第1の判定基準値よりも低い第2の判定基準値以上となる、一つの前記判定領域または前記長手方向に連続する複数の前記判定領域を第1の領域とし、
前記第1の領域が前記長手方向に連続する複数の前記判定領域からなる場合で、且つ前記第1の領域の前記判定領域の数が所定数以上の場合に、前記第1の領域の前記判定領域に前記疵があると判定し、
前記第3の判定工程では、
前記判定領域の前記代表疵信号の高さが前記第2の判定基準値以上となる、一つの前記判定領域または前記長手方向に連続する複数の前記判定領域であり、前記第1の領域と前記周方向の位置が等しい前記判定領域を、第2の領域とし、
前記第1の領域と前記第2の領域との間の前記判定領域を第3の領域とし、
前記第3の領域の前記判定領域の前記代表疵信号が前記第2の判定基準値未満で第3の判定基準値以上となる場合で、且つ前記第1の領域、前記第2の領域及び前記第3の領域の前記判定領域の数が所定数以上の場合に、前記第1の領域、前記第2の領域及び前記第3の領域の前記判定領域に前記疵があると判定する、丸棒の表面疵検査装置。
It has a probe head, and the probe head rotates along the circumferential direction of the round bar while conveying the round bar in the longitudinal direction or moving the probe head in the longitudinal direction of the round bar. By rotating the probe head, the round bar, or both the probe head and the round bar, a plurality of measurement areas divided in the longitudinal direction and the circumferential direction on the surface of the round bar A leakage magnetic flux flaw detector that detects a flaw signal by detecting a leakage magnetic flux;
For a plurality of determination regions that include at least one measurement region and are arranged in the circumferential direction and the longitudinal direction, based on the representative flaw signal that is the largest flaw signal of the measurement region included in the determination region, the circle a determination unit that determines whether there is a flaw on the surface of the rod;
with
The determination unit performs a first determination step, a second determination step, and a third determination step for determining that the surface of the round bar has the flaw,
In the first determination step, the height of the representative flaw signal determines that the flaw is present in the determination region in which the height is equal to or higher than a first determination reference value,
In the second determination step,
One determination region or a plurality of determination regions continuous in the longitudinal direction in which the height of the representative flaw signal of the determination region is equal to or higher than a second determination reference value lower than the first determination reference value as a first region,
the determination of the first region when the first region is composed of a plurality of the determination regions continuous in the longitudinal direction and the number of the determination regions of the first region is a predetermined number or more; Determining that the area has the flaw,
In the third determination step,
The height of the representative flaw signal of the determination region is the second determination reference value or more, one of the determination regions or a plurality of the determination regions continuous in the longitudinal direction, wherein the first region and the The determination regions having equal positions in the circumferential direction are defined as a second region,
The determination region between the first region and the second region is defined as a third region,
When the representative flaw signal of the determination region of the third region is less than the second determination reference value and is equal to or more than the third determination reference value , and the first region, the second region and When the number of the determination regions of the third region is a predetermined number or more, it is determined that the flaw is present in the determination regions of the first region, the second region, and the third region. Bar surface flaw inspection device.
JP2021527291A 2019-06-28 2019-06-28 Round bar surface flaw inspection method and surface flaw inspection device Active JP7107439B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/025895 WO2020261554A1 (en) 2019-06-28 2019-06-28 Round bar surface defect inspection method and surface defect inspection device

Publications (2)

Publication Number Publication Date
JPWO2020261554A1 JPWO2020261554A1 (en) 2021-11-04
JP7107439B2 true JP7107439B2 (en) 2022-07-27

Family

ID=74061807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021527291A Active JP7107439B2 (en) 2019-06-28 2019-06-28 Round bar surface flaw inspection method and surface flaw inspection device

Country Status (3)

Country Link
JP (1) JP7107439B2 (en)
CN (1) CN114072668A (en)
WO (1) WO2020261554A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001281226A (en) 2000-03-29 2001-10-10 Daido Steel Co Ltd Method and apparatus for fluorescent magnetic-particle flaw detection
JP2017520005A (en) 2014-06-27 2017-07-20 インスティトゥート ドクトル フェルスター ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Method and apparatus for leakage flux inspection
CN107024532A (en) 2017-04-12 2017-08-08 东北大学 A kind of leakage field defect of pipeline position extracting method based on forms feature
JP6451678B2 (en) 2016-03-17 2019-01-16 Jfeスチール株式会社 Round bar surface wrinkle inspection method and surface wrinkle inspection apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217399A (en) * 1985-07-13 1987-01-26 Kyokuto Kikai Seisakusho:Kk Manufacture of blower impeller
JPH08184580A (en) * 1994-12-28 1996-07-16 Sumitomo Metal Ind Ltd Automatic magnetic particle inspection apparatus of seam-welded steel pipe welded part
JP5453861B2 (en) * 2008-03-31 2014-03-26 Jfeスチール株式会社 Periodic defect detection apparatus and method
JP5978889B2 (en) * 2012-03-09 2016-08-24 Jfeスチール株式会社 Inspection method and inspection device for surface defect of round bar
JP6596188B2 (en) * 2015-04-02 2019-10-23 マークテック株式会社 Flaw detector and flaw detection method using flaw detector
JP6697302B2 (en) * 2016-03-25 2020-05-20 マークテック株式会社 Flaw detection device and defect detection method using flaw detection device
CN109060939A (en) * 2018-08-31 2018-12-21 南京航空航天大学 Steel rail defect checking method for width based on leakage magnetic detection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001281226A (en) 2000-03-29 2001-10-10 Daido Steel Co Ltd Method and apparatus for fluorescent magnetic-particle flaw detection
JP2017520005A (en) 2014-06-27 2017-07-20 インスティトゥート ドクトル フェルスター ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Method and apparatus for leakage flux inspection
JP6451678B2 (en) 2016-03-17 2019-01-16 Jfeスチール株式会社 Round bar surface wrinkle inspection method and surface wrinkle inspection apparatus
CN107024532A (en) 2017-04-12 2017-08-08 东北大学 A kind of leakage field defect of pipeline position extracting method based on forms feature

Also Published As

Publication number Publication date
WO2020261554A1 (en) 2020-12-30
CN114072668A (en) 2022-02-18
JPWO2020261554A1 (en) 2021-11-04

Similar Documents

Publication Publication Date Title
JP5438592B2 (en) Rotating eddy current flaw detection probe
JP5153274B2 (en) Inspection equipment for inspection objects
JP6514592B2 (en) Defect measurement method, defect measurement apparatus and inspection probe
KR102457050B1 (en) pipe inspection
JP4247723B2 (en) Eddy current flaw detection method and eddy current flaw detection apparatus
JP6451678B2 (en) Round bar surface wrinkle inspection method and surface wrinkle inspection apparatus
JP2011002409A (en) Leak flux flaw detecting device
EP2098860B1 (en) Eddy current testing method
JP7107439B2 (en) Round bar surface flaw inspection method and surface flaw inspection device
JPS58218644A (en) Method and apparatus for testing surface flaw of metallic material
JP5674581B2 (en) Inspection apparatus and inspection method
JP2004205212A (en) Eddy current flaw detecting probe for magnetic material and eddy current flaw detector
JPH0868778A (en) Leakage magnetic flux flaw detector
JP2005164516A (en) Method for detecting defect
JPH07294490A (en) Magnetic flaw detection method excellent in oblique flaw detecting performance
JP2008292280A (en) Eddy current flaw detection method, insertion type probe and eddy current flaw detector using insertion type probe
JP2004251839A (en) Pipe inner surface flaw inspection device
JP3981965B2 (en) Eddy current flaw detection probe and eddy current flaw detection device using the probe
JP2017125709A (en) Magnetic leakage flux flaw detector
JP5505806B2 (en) Discrimination method of reflection echo
JP6875073B2 (en) Defect detector
JPS59781B2 (en) Method for detecting surface defects on continuously cast slabs
JP2008241449A (en) Eddy current flaw detection apparatus
JPH0342629B2 (en)
JP2001041932A (en) Leakage flux flaw detecting-apparatus and method for judging defect

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220627

R150 Certificate of patent or registration of utility model

Ref document number: 7107439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150