JP7104350B2 - Luminescent device - Google Patents

Luminescent device Download PDF

Info

Publication number
JP7104350B2
JP7104350B2 JP2020190199A JP2020190199A JP7104350B2 JP 7104350 B2 JP7104350 B2 JP 7104350B2 JP 2020190199 A JP2020190199 A JP 2020190199A JP 2020190199 A JP2020190199 A JP 2020190199A JP 7104350 B2 JP7104350 B2 JP 7104350B2
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting device
resin
wavelength conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020190199A
Other languages
Japanese (ja)
Other versions
JP2021040149A (en
Inventor
智則 尾▲崎▼
正人 相原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2020190199A priority Critical patent/JP7104350B2/en
Publication of JP2021040149A publication Critical patent/JP2021040149A/en
Application granted granted Critical
Publication of JP7104350B2 publication Critical patent/JP7104350B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、発光素子を用いた発光装置に関する。 The present invention relates to a light emitting device using a light emitting element.

発光ダイオード(LED)等の発光素子を用いた発光装置は、液晶ディスプレイのバックライトやディスプレイ、照明等の各種の光源として広く利用されている。例えば、特許文献1や2に半導体発光装置が開示されている。このような半導体発光装置で面状の発光を得るため、導光板の裏面側に複数のLEDをマトリックス状に配置した構成が知られている。 A light emitting device using a light emitting element such as a light emitting diode (LED) is widely used as various light sources such as a backlight, a display, and lighting of a liquid crystal display. For example, Patent Documents 1 and 2 disclose a semiconductor light emitting device. In order to obtain planar light emission with such a semiconductor light emitting device, a configuration in which a plurality of LEDs are arranged in a matrix on the back surface side of the light guide plate is known.

特開2013-115088号公報Japanese Unexamined Patent Publication No. 2013-115088 特開2014-45194号公報Japanese Unexamined Patent Publication No. 2014-45194

本発明の目的の一は、薄型で広配光の発光装置を提供することにある。 An object of the present invention is to provide a thin and wide light emitting device.

以上の目的を達成するために、本発明の一形態に係る発光装置によれば、上面と、一対電極を有する下面と、側面とを有する発光素子と、前記上面と側面を連続して覆い、前記発光素子が発する光の波長を変換して異なる波長の光を発する、波長変換部材と、前記電極が露出されるように前記下面及び前記波長変換部材の下方に配置される、光反射性材料を含有する樹脂で構成されてなる光反射性層と、前記波長変換部材の上方に配置される、遮光性を備える遮光層とを備えることができる。 In order to achieve the above object, according to the light emitting device according to one embodiment of the present invention, the upper surface, the lower surface having a pair of electrodes, the light emitting element having the side surface, and the upper surface and the side surface are continuously covered. A wavelength conversion member that converts the wavelength of light emitted by the light emitting element to emit light of a different wavelength, and a light-reflecting material arranged on the lower surface and below the wavelength conversion member so that the electrode is exposed. It is possible to provide a light-reflecting layer made of a resin containing the above, and a light-shielding layer having a light-shielding property, which is arranged above the wavelength conversion member.

本発明の一形態に係る発光装置によれば、発光素子の上面から発する、最も輝度が高い光を遮光層で遮光したことで、薄型で広配光の発光装置を提供することができる。 According to the light emitting device according to one embodiment of the present invention, a thin and wide light distribution device can be provided by blocking the light having the highest brightness emitted from the upper surface of the light emitting element with a light shielding layer.

実施形態1に係る発光装置を示す模式断面図である。It is a schematic cross-sectional view which shows the light emitting device which concerns on Embodiment 1. FIG. 図1のII-II線における水平断面図である。FIG. 5 is a horizontal cross-sectional view taken along the line II-II of FIG. 実施形態2に係る発光装置を示す模式断面図である。It is a schematic cross-sectional view which shows the light emitting device which concerns on Embodiment 2. 実施形態3に係る発光装置の水平断面図である。It is a horizontal sectional view of the light emitting device which concerns on Embodiment 3. 実施形態4に係る発光装置の水平断面図である。It is a horizontal sectional view of the light emitting device which concerns on Embodiment 4. FIG. 実施形態5に係る発光装置の水平断面図である。It is a horizontal sectional view of the light emitting device which concerns on Embodiment 5. 実施形態1に係る発光装置を用いた面状発光体を示す模式平面図である。It is a schematic plan view which shows the planar light emitting body using the light emitting device which concerns on Embodiment 1. FIG. 実施形態1に係る発光装置の製造工程の一状態を示す模式断面図である。It is a schematic cross-sectional view which shows one state of the manufacturing process of the light emitting device which concerns on Embodiment 1. FIG. 実施形態1に係る発光装置の製造工程の一状態を示す模式断面図である。It is a schematic cross-sectional view which shows one state of the manufacturing process of the light emitting device which concerns on Embodiment 1. FIG. 実施形態1に係る発光装置の製造工程の一状態を示す模式断面図である。It is a schematic cross-sectional view which shows one state of the manufacturing process of the light emitting device which concerns on Embodiment 1. FIG. 実施形態1に係る発光装置の製造工程の一状態を示す模式断面図である。It is a schematic cross-sectional view which shows one state of the manufacturing process of the light emitting device which concerns on Embodiment 1. FIG. 実施形態1に係る発光装置の製造工程の一状態を示す模式断面図である。It is a schematic cross-sectional view which shows one state of the manufacturing process of the light emitting device which concerns on Embodiment 1. FIG. 実施形態1に係る発光装置の製造工程の一状態を示す模式断面図である。It is a schematic cross-sectional view which shows one state of the manufacturing process of the light emitting device which concerns on Embodiment 1. FIG. 実施形態1に係る発光装置の製造工程の一状態を示す模式断面図である。It is a schematic cross-sectional view which shows one state of the manufacturing process of the light emitting device which concerns on Embodiment 1. FIG. 実施形態1に係る発光装置の製造工程の一状態を示す模式断面図である。It is a schematic cross-sectional view which shows one state of the manufacturing process of the light emitting device which concerns on Embodiment 1. FIG. 実施形態1に係る発光装置の製造工程の一状態を示す模式断面図である。It is a schematic cross-sectional view which shows one state of the manufacturing process of the light emitting device which concerns on Embodiment 1. FIG. 実施形態1に係る発光装置の製造工程の一状態を示す模式断面図である。It is a schematic cross-sectional view which shows one state of the manufacturing process of the light emitting device which concerns on Embodiment 1. FIG. 実施形態1に係る発光装置の製造工程の一状態を示す模式断面図である。It is a schematic cross-sectional view which shows one state of the manufacturing process of the light emitting device which concerns on Embodiment 1. FIG. 実施形態1に係る発光装置の製造工程の一状態を示す模式断面図である。It is a schematic cross-sectional view which shows one state of the manufacturing process of the light emitting device which concerns on Embodiment 1. FIG. 実施形態1に係る発光装置の製造工程の一状態を示す模式断面図である。It is a schematic cross-sectional view which shows one state of the manufacturing process of the light emitting device which concerns on Embodiment 1. FIG. 実施形態1に係る発光装置の製造工程の一状態を示す模式断面図である。It is a schematic cross-sectional view which shows one state of the manufacturing process of the light emitting device which concerns on Embodiment 1. FIG.

以下、図面に基づいて本発明を詳細に説明する。なお、以下の説明では、必要に応じて特定の方向や位置を示す用語(例えば、「上」、「下」、及びそれらの用語を含む別の用語)を用いるが、それらの用語の使用は図面を参照した発明の理解を容易にするためであって、それらの用語の意味によって本発明の技術的範囲が制限されるものではない。また、複数の図面に表れる同一符号の部分は同一もしくは同等の部分又は部材を示す。 Hereinafter, the present invention will be described in detail with reference to the drawings. In the following description, terms indicating a specific direction or position (for example, "upper", "lower", and other terms including those terms) are used as necessary, but the use of these terms is used. This is for facilitating the understanding of the invention with reference to the drawings, and the meaning of these terms does not limit the technical scope of the present invention. Further, the parts having the same reference numerals appearing in a plurality of drawings indicate the same or equivalent parts or members.

さらに、以下に示す実施形態は、本発明の技術思想を具体化するための例示であって、本発明を以下に限定するものではない。また、以下に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特定的な記載がない限り、本発明の範囲をそれのみに限定する趣旨ではなく、例示することを意図したものである。また、一の実施の形態、実施例において説明する内容は、他の実施の形態、実施例にも適用可能である。また、図面が示す部材の大きさや位置関係等は、説明を明確にするため、誇張していることがある。
[実施形態1]
Furthermore, the embodiments shown below are examples for embodying the technical idea of the present invention, and the present invention is not limited to the following. In addition, the dimensions, materials, shapes, relative arrangements, etc. of the components described below are not intended to limit the scope of the present invention to the specific description, but are exemplified. It was intended. Further, the contents described in one embodiment and the embodiment can be applied to other embodiments and the examples. In addition, the size and positional relationship of the members shown in the drawings may be exaggerated in order to clarify the explanation.
[Embodiment 1]

本発明の実施形態1に係る発光装置を、図1の模式断面図及び図2の水平断面図に示す。これらの図に示す発光装置100は、発光素子10と、波長変換部材20と、光拡散層30と、遮光層40と、光反射性層50を備えている。
(発光素子10)
The light emitting device according to the first embodiment of the present invention is shown in a schematic cross-sectional view of FIG. 1 and a horizontal cross-sectional view of FIG. The light emitting device 100 shown in these figures includes a light emitting element 10, a wavelength conversion member 20, a light diffusing layer 30, a light shielding layer 40, and a light reflecting layer 50.
(Light emitting element 10)

発光素子10は、発光ダイオードなどの半導体発光素子が好適に利用できる。また発光素子10は、上面と、一対の電極12を有する下面と、側面とを有する。以下では発光素子10の上面を素子主面、側面を素子側面、下面を素子電極形成面とも呼ぶ。 As the light emitting element 10, a semiconductor light emitting element such as a light emitting diode can be preferably used. Further, the light emitting element 10 has an upper surface, a lower surface having a pair of electrodes 12, and a side surface. Hereinafter, the upper surface of the light emitting element 10 is also referred to as an element main surface, a side surface thereof is also referred to as an element side surface, and a lower surface thereof is also referred to as an element electrode forming surface.

発光素子10として、任意の波長の光を出射する素子を選択することができる。例えば、青色、緑色の光を出射する素子としては、窒化物系半導体(InxAlyGa1-x-yN、0≦X、0≦Y、X+Y≦1)又はGaPを用いた発光素子を用いることができる。また、赤色の光を出射する素子としては、AlGaAs、AlInGaPなどの半導体を含む発光素子を用いることができる。さらに、これら以外の材料からなる半導体発光素子を用いることもできる。半導体層の材料及びその混晶度を変更することによって発光波長を変化させることができる。用いる発光素子の組成、発光色、大きさ、個数などは、目的に応じて適宜選択できる。図1の例では、発光素子10を一のみ用いているが、2個以上の発光素子を発光装置に含めてもよい。
(波長変換部材20)
As the light emitting element 10, an element that emits light having an arbitrary wavelength can be selected. For example, as an element that emits blue or green light, a nitride semiconductor (In x Aly Ga 1-xy N , 0 ≦ X, 0 ≦ Y, X + Y ≦ 1) or a light emitting device using GaP is used. be able to. Further, as an element that emits red light, a light emitting element containing a semiconductor such as AlGaAs or AlInGaP can be used. Further, a semiconductor light emitting device made of a material other than these can also be used. The emission wavelength can be changed by changing the material of the semiconductor layer and the mixed crystalliteity thereof. The composition, emission color, size, number, etc. of the light emitting element to be used can be appropriately selected according to the purpose. In the example of FIG. 1, only one light emitting element 10 is used, but two or more light emitting elements may be included in the light emitting device.
(Wavelength conversion member 20)

波長変換部材20は、発光素子10が発する光の波長を変換して異なる波長の光を発する部材である。この波長変換部材20は、発光素子10の素子主面と素子側面を連続して覆っている。波長変換部材20は、素子主面から出射される光を受けて、その光の波長を変換して、側面から出射する。 The wavelength conversion member 20 is a member that converts the wavelength of the light emitted by the light emitting element 10 to emit light having a different wavelength. The wavelength conversion member 20 continuously covers the element main surface and the element side surface of the light emitting element 10. The wavelength conversion member 20 receives the light emitted from the main surface of the element, converts the wavelength of the light, and emits the light from the side surface.

波長変換部材20は、発光素子10からの光で励起されて、異なる波長の光を発光する波長変換物質を含む。このようにして発光素子10が発する光の内、波長変換部材20を透過する成分と、波長変換部材20で波長変換された成分とが混色されて、混色光が出射される。 The wavelength conversion member 20 contains a wavelength conversion substance that is excited by the light from the light emitting element 10 and emits light having a different wavelength. Of the light emitted by the light emitting element 10 in this way, the component transmitted through the wavelength conversion member 20 and the component wavelength-converted by the wavelength conversion member 20 are mixed in color, and mixed color light is emitted.

このように発光素子10の周囲のみならず、上面も含めて連続的に波長変換部材20で覆うことにより、発光素子10が発する光を広い面積で波長変換部材20により波長変換して、発光素子本来の発光との混色を効率良く行うことが可能となる。よって限られた空間の中で、発光素子の上面である素子主面の光と、側面の素子側面の光とをまとめて効率良く利用でき、小型化、薄型化の発光装置においても高効率化に寄与する構成となる。 By continuously covering not only the periphery of the light emitting element 10 but also the upper surface with the wavelength conversion member 20, the light emitted by the light emitting element 10 is wavelength-converted by the wavelength conversion member 20 over a wide area, and the light emitting element is converted. It is possible to efficiently mix colors with the original light emission. Therefore, in a limited space, the light on the main surface of the element, which is the upper surface of the light emitting element, and the light on the side surface of the element on the side surface can be efficiently used together, and the efficiency is improved even in a miniaturized and thin light emitting device. It is a configuration that contributes to.

波長変換部材20は、波長変換物質を母材となる第一樹脂22に分散させたものとできる。また、波長変換部材20を、複数層で構成してもよい。 The wavelength conversion member 20 may have a wavelength conversion substance dispersed in a first resin 22 as a base material. Further, the wavelength conversion member 20 may be composed of a plurality of layers.

母材となる第一樹脂を構成する材質は、例えばフェニル系樹脂、エポキシ樹脂、シリコーン樹脂、これらを混合した樹脂、又はガラスなどの透光性材料を用いることができる。中でも、硬化後に硬度が高く、加工性に優れるフェニル系樹脂とすることが好ましい。波長変換部材20の耐光性及び成形容易性の観点からは、第一樹脂としてシリコーン樹脂を選択すると有益である。また、第一樹脂を、後述する導光板70を構成する材料よりも高い屈折率を有する材料が好ましい。これにより研削等で加工し易い利点が得られる。 As the material constituting the first resin serving as the base material, for example, a phenyl resin, an epoxy resin, a silicone resin, a resin in which these are mixed, or a translucent material such as glass can be used. Above all, it is preferable to use a phenyl resin having high hardness after curing and excellent processability. From the viewpoint of light resistance and moldability of the wavelength conversion member 20, it is beneficial to select a silicone resin as the first resin. Further, the first resin is preferably a material having a higher refractive index than the material constituting the light guide plate 70 described later. This has the advantage of being easy to process by grinding or the like.

波長変換部材20が含有する波長変換物質には、蛍光体が好適に利用できる。例えば、YAG蛍光体、βサイアロン蛍光体、KSF系蛍光体又はMGF系蛍光体等のフッ化物系蛍光体、窒化物系蛍光体などが挙げられる。組成式の具体例としては、以下の一般式(I)、(II)、(III)を挙げることができる。 A fluorescent substance can be preferably used as the wavelength conversion substance contained in the wavelength conversion member 20. Examples thereof include fluoride-based phosphors such as YAG phosphors, β-sialone phosphors, KSF-based phosphors or MGF-based phosphors, and nitride-based phosphors. Specific examples of the composition formula include the following general formulas (I), (II), and (III).

2[M1-aMn4+ a6]・・・(I)
(ただし、上記一般式(I)中、Aは、K+、Li+、Na+、Rb+、Cs+及びNH4+からなる群から選ばれる少なくとも1種であり、Mは、第4族元素及び第14族元素からなる群から選ばれる少なくとも1種の元素であり、aは0<a<0.2を満たす。)
A 2 [M 1-a Mn 4 + a F 6 ] ... (I)
(However, in the above general formula (I), A is at least one selected from the group consisting of K + , Li + , Na + , Rb + , Cs + and NH 4+ , and M is Group 4 It is at least one element selected from the group consisting of elements and Group 14 elements, and a satisfies 0 <a <0.2).

(x-a)MgO・a(Ma)O・b/2(Mb)23・yMgF2・c(Mc)X2・(1-d-e)GeO2・d(Md)O2・e(Me)23:Mn・・・(II)
(ただし、上記一般式(II)中、Maは、Ca,Sr,Ba,Znから選択された少なくとも1種であり、Mbは、Sc,La,Luから選択された少なくとも1種であり、Mcは、Ca,Sr,Ba,Znから選択された少なくとも1種であり、Xは、F,Clから選択された少なくとも1種であり、Mdは、Ti,Sn,Zrから選択された少なくとも1種であり、Meは、B,Al,Ga,Inから選択された少なくとも1種である。また、x、y、a、b、c、d、eについて、2≦x≦4、0<y≦2、0≦a≦1.5、0≦b<1、0≦c≦2、0≦d≦0.5、0≦e<1)
(X-a) MgO ・ a (Ma) O ・ b / 2 (Mb) 2 O 3・ yMgF 2・ c (Mc) X 2・ (1-d-e) GeO 2・ d (Md) O 2・e (Me) 2 O 3 : Mn ... (II)
(However, in the above general formula (II), Ma is at least one selected from Ca, Sr, Ba, Zn, and Mb is at least one selected from Sc, La, Lu, and Mc Is at least one selected from Ca, Sr, Ba, Zn, X is at least one selected from F, Cl, and Md is at least one selected from Ti, Sn, Zr. Me is at least one selected from B, Al, Ga, and In. For x, y, a, b, c, d, and e, 2 ≦ x ≦ 4, 0 <y ≦. 2, 0 ≦ a ≦ 1.5, 0 ≦ b <1, 0 ≦ c ≦ 2, 0 ≦ d ≦ 0.5, 0 ≦ e <1)

MaxMbyAl3z:Eu・・・(III)
(ただし、上記一般式(III)中、Maは、Ca、Sr及びBaからなる群から選択される少なくとも1種の元素であり、Mbは、Li、Na及びKからなる群から選択される少なくとも1種の元素であり、x、y及びzはそれぞれ、0.5≦x≦1.5、0.5≦y≦1.2、及び3.5≦z≦4.5を満たす。
Max MbyAl 3 N z : Eu ... (III)
(However, in the above general formula (III), Ma is at least one element selected from the group consisting of Ca, Sr and Ba, and Mb is at least selected from the group consisting of Li, Na and K. It is one kind of element, and x, y and z satisfy 0.5 ≦ x ≦ 1.5, 0.5 ≦ y ≦ 1.2 and 3.5 ≦ z ≦ 4.5, respectively.

一般式(I)に表されるKSF蛍光体の半値幅は、10nm以下とできる。また、一般式(II)に表されるMGF蛍光体の半値幅は、15nm以上35nm以下とできる。上記一般式(I)に示されるように、KSF蛍光体の組成K2SiF6:Mn4+を構成するSiの一部を、別の4価の元素であるTiやSiで置換(組成式では、K2(Si,Ti,Ge)F6:Mnと表される)したり、またKSF蛍光体の組成K2SiF6:Mn4+を構成するKの一部を別のアルカリ金属に置換したり、Siの一部を3価の元素のAl等で置換したり、複数の元素の置換を組み合わせたりしても構わない。 The full width at half maximum of the KSF phosphor represented by the general formula (I) can be 10 nm or less. The half width of the MGF phosphor represented by the general formula (II) can be 15 nm or more and 35 nm or less. As shown in the above general formula (I), a part of Si constituting the composition K 2 SiF 6 : Mn 4+ of the KSF phosphor is replaced with another tetravalent element Ti or Si (composition formula). Then, K 2 (Si, Ti, Ge) F 6 : Mn is expressed), and a part of K constituting the composition of KSF phosphor K 2 SiF 6 : Mn 4+ is changed to another alkali metal. Substitution may be performed, a part of Si may be replaced with Al or the like of a trivalent element, or substitution of a plurality of elements may be combined.

波長変換部材20は、一つの波長変換物質が含有されていてもよいし、複数の波長変換物質が含有されていてもよい。複数の波長変換物質を含有する場合は、例えば、波長変換部材が緑色系の発光をするβサイアロン蛍光体と赤色系の発光をするKSF系蛍光体等のフッ化物系蛍光体とを含むことができる。これにより、発光装置の色再現範囲を広げることができる。この場合、発光素子は、波長変換部材を効率良く励起できる短波長の光を出射することが可能な窒化物系半導体(InxAlyGa1-x-yN、0≦X、0≦Y、X+Y≦1)を備えることが好ましい。また、例えば、青色系の光を出射する発光素子10を用いた際に、発光装置として赤色系の光を得たい場合は、波長変換部材にKSF系蛍光体(赤色蛍光体)を60重量%以上、好ましくは90重量%以上含有させてもよい。つまり、特定の色の光を出射する波長変換物質を波長変換部材に含有させることで、特定の色の光を出射するようにしてもよい。また、波長変換物質は量子ドットであってもよい。波長変換部材内において、波長変換物質はどのように配置されていてもよい。例えば、略均一に分布していてもよく、一部に偏在してもよい。また、波長変換部材をそれぞれ含有する複数の層が積層されて設けられていてもよい。また波長変換部材は、光を拡散、反射させる部材を付加してもよい。例えば波長変換部材の内部に光拡散部材を混入させてもよい。 The wavelength conversion member 20 may contain one wavelength conversion substance or may contain a plurality of wavelength conversion substances. When a plurality of wavelength conversion substances are contained, for example, the wavelength conversion member may include a β-sialon phosphor that emits green light and a fluoride fluorescent substance such as a KSF phosphor that emits red light. can. As a result, the color reproduction range of the light emitting device can be expanded. In this case, the light emitting device is a nitride semiconductor (In x Ally Ga 1-xy N , 0 ≦ X, 0 ≦ Y, X + Y) capable of emitting short wavelength light capable of efficiently exciting the wavelength conversion member. It is preferable to provide ≦ 1). Further, for example, when a light emitting element 10 that emits blue light is used and it is desired to obtain red light as a light emitting device, 60% by weight of a KSF phosphor (red phosphor) is added to the wavelength conversion member. As described above, preferably 90% by weight or more may be contained. That is, a wavelength conversion substance that emits light of a specific color may be contained in the wavelength conversion member to emit light of a specific color. Moreover, the wavelength conversion substance may be a quantum dot. The wavelength conversion substance may be arranged in any way in the wavelength conversion member. For example, it may be distributed substantially uniformly, or may be unevenly distributed in a part. Further, a plurality of layers each containing a wavelength conversion member may be laminated and provided. Further, the wavelength conversion member may be provided with a member that diffuses and reflects light. For example, a light diffusing member may be mixed inside the wavelength conversion member.

波長変換部材20の厚さは、0.02mm~0.40mmとすることが好ましい。発光モジュールの薄型化及び種々の波長変換の効果を発揮するため、上記範囲内とすることが好ましい。
(光拡散層30)
The thickness of the wavelength conversion member 20 is preferably 0.02 mm to 0.40 mm. It is preferably within the above range in order to reduce the thickness of the light emitting module and exert the effects of various wavelength conversions.
(Light diffusion layer 30)

波長変換部材20の外側面は、光拡散層30で覆われている。図2の水平断面図の例では、平面視において矩形状に形成された波長変換部材20の外周をすべて、光拡散層30で被覆している。この光拡散層30は、発光装置100から光を外部に放射させる発光領域となる。光拡散層30は、発光素子10が発する光と、波長変換部材20で波長変換された光とをさらに拡散させて、これらの混色を促進する。このような光拡散層30を設けることで、発光装置100から放射される光をより均一にできる。なお光拡散層30は、光拡散層過率50%以上が好ましい。また、複数の光拡散層を外周方向に積層させて、光拡散領域を構成する。 The outer surface of the wavelength conversion member 20 is covered with the light diffusion layer 30. In the example of the horizontal cross-sectional view of FIG. 2, the entire outer circumference of the wavelength conversion member 20 formed in a rectangular shape in a plan view is covered with the light diffusion layer 30. The light diffusion layer 30 serves as a light emitting region for radiating light from the light emitting device 100 to the outside. The light diffusing layer 30 further diffuses the light emitted by the light emitting element 10 and the light whose wavelength has been converted by the wavelength conversion member 20, and promotes color mixing thereof. By providing such a light diffusion layer 30, the light emitted from the light emitting device 100 can be made more uniform. The light diffusion layer 30 preferably has a light diffusion layer excess ratio of 50% or more. Further, a plurality of light diffusion layers are laminated in the outer peripheral direction to form a light diffusion region.

光拡散層30は、母材に拡散材を添加して構成できる。例えば第二樹脂を母材として、これに拡散材としてSiO2やTiO2等の白色の無機微粒子を含有させたものを、光拡散層30として用いることができる。母材となる第二樹脂の樹脂材料には、フェニル系樹脂、エポキシ樹脂、シリコーン樹脂、これらを混合した樹脂、又はガラスなどの透光性材料が利用できる。好ましくは、硬化後に硬度が高く、加工性に優れるフェニル系樹脂を用いる。光拡散層30の母材に、波長変換部材20と同じ樹脂を用いることで、接着性に優れ、硬化時の樹脂引けや膨張時の変形などによって波長変換部材20と光拡散との接合界面に応力が生じて剥離の原因となることを抑制できる。 The light diffusing layer 30 can be formed by adding a diffusing material to the base material. For example, a second resin containing white inorganic fine particles such as SiO 2 and TiO 2 as a diffusing material can be used as the light diffusing layer 30. As the resin material of the second resin serving as the base material, a phenyl resin, an epoxy resin, a silicone resin, a resin in which these are mixed, or a translucent material such as glass can be used. Preferably, a phenyl resin having high hardness and excellent processability after curing is used. By using the same resin as the wavelength conversion member 20 for the base material of the light diffusion layer 30, it has excellent adhesiveness, and at the junction interface between the wavelength conversion member 20 and light diffusion due to resin shrinkage during curing and deformation during expansion. It is possible to prevent stress from being generated and causing peeling.

また拡散材には、光反射性部材である白色系の樹脂や金属を微粒子状に加工したものを使用することもできる。これらの拡散材は、母材の内部に不規則に含有されることで、光拡散層30の内部を通過する光を不規則に、かつ繰り返し反射させて、透過光を多方向に拡散することで、照射光が局部的に集中するのを抑制して、輝度ムラが生じるのを防止する。 Further, as the diffusing material, a material obtained by processing a white resin or metal, which is a light-reflecting member, into fine particles can also be used. These diffusing materials are irregularly contained inside the base material, so that the light passing through the inside of the light diffusing layer 30 is irregularly and repeatedly reflected to diffuse the transmitted light in multiple directions. Therefore, the irradiation light is suppressed from being locally concentrated to prevent uneven brightness.

加えて、光拡散層30及び後述する遮光層40が、波長変換部材20を覆うように配置されることにより、波長変換部材20を水分などから保護することができる。そのため、外部からの水分による悪影響を受けることがある蛍光体を用いる場合であっても、発光装置の製造を容易に行える。
(遮光層40)
In addition, by arranging the light diffusion layer 30 and the light-shielding layer 40 described later so as to cover the wavelength conversion member 20, the wavelength conversion member 20 can be protected from moisture and the like. Therefore, even when a phosphor that may be adversely affected by moisture from the outside is used, the light emitting device can be easily manufactured.
(Shading layer 40)

波長変換部材20の上方、及び光拡散層30の上方には、遮光層40が設けられる。遮光層40は、遮光性を備える部材であり、発光装置100の上面を遮光層40で覆うことにより、発光素子10や波長変換部材20からの光が発光素子10の上面の輝度が高くなることを抑制する。遮光層40は光の透過率50%以下が好ましい。このように遮光層40は、完全な遮光性を備えていることを必ずしも要求するものではなく、不完全であっても遮光性を発揮されていれば足りる。本明細書において「遮光性」とは、透過率0%を意味するものでない。 A light-shielding layer 40 is provided above the wavelength conversion member 20 and above the light diffusion layer 30. The light-shielding layer 40 is a member having a light-shielding property, and by covering the upper surface of the light-emitting device 100 with the light-shielding layer 40, the light from the light-emitting element 10 and the wavelength conversion member 20 increases the brightness of the upper surface of the light-emitting element 10. Suppress. The light-shielding layer 40 preferably has a light transmittance of 50% or less. As described above, the light-shielding layer 40 does not necessarily require to have a complete light-shielding property, and even if it is incomplete, it is sufficient if the light-shielding layer 40 exhibits the light-shielding property. As used herein, the term "light-shielding property" does not mean a transmittance of 0%.

この遮光層40は、母材となる第三樹脂41に光反射性材料を分散させて構成される。母材となる第三樹脂41の樹脂材料には、フェニル系樹脂、ジメチル系樹脂、エポキシ樹脂、シリコーン樹脂、これらを混合した樹脂、又はガラスなどの透光性材料が利用できる。好ましくは、フェニル系樹脂を用いる。これにより、樹脂硬化後に硬度が高く、加工し易い等の効果が得られる。特に遮光層40の母材に、波長変換部材20や光拡散層30と同じ樹脂を用いることで、接着性に優れ、硬化時の樹脂引けや膨張時の変形などによって接合界面に応力が生じて剥離の原因となることを抑制できる。また、遮光層40にジメチル系の樹脂を用いた場合は、波長変換部材20及び光拡散層30がフェニル系樹脂であれば、これらとの界面に屈折率差を設けることで遮光層40への入光を減らすことが可能となる。光反射性材料には、TiO2、SiO2、Al23又はガラスフィラー等が利用できる。ガラスフィラーを用いることで、屈折率を選択できる。ここではフィラーの含有量を調整することで、透過率を調整できる。光拡散層30は透過率50%以上、遮光層40は透過率50%以下とすることが好ましい。 The light-shielding layer 40 is configured by dispersing a light-reflecting material in a third resin 41 which is a base material. As the resin material of the third resin 41 serving as the base material, a phenyl resin, a dimethyl resin, an epoxy resin, a silicone resin, a resin in which these are mixed, or a translucent material such as glass can be used. Preferably, a phenyl resin is used. As a result, the hardness is high after the resin is cured, and effects such as easy processing can be obtained. In particular, by using the same resin as the wavelength conversion member 20 and the light diffusion layer 30 for the base material of the light-shielding layer 40, the adhesiveness is excellent, and stress is generated at the bonding interface due to resin shrinkage during curing and deformation during expansion. It is possible to suppress the cause of peeling. When a dimethyl-based resin is used for the light-shielding layer 40, if the wavelength conversion member 20 and the light diffusion layer 30 are phenyl-based resins, the light-shielding layer 40 is provided with a difference in refractive index at the interface between them. It is possible to reduce the amount of light entering. As the light-reflecting material, TiO 2 , SiO 2 , Al 2 O 3 or a glass filler can be used. The refractive index can be selected by using a glass filler. Here, the transmittance can be adjusted by adjusting the content of the filler. The light diffusing layer 30 preferably has a transmittance of 50% or more, and the light-shielding layer 40 preferably has a transmittance of 50% or less.

以上の発光装置100は、このような構成を採用したことで、輝度ムラを抑制して広配光な発光を実現できる。すなわち発光素子10の上面の発光面から発する、最も輝度が高い光を遮光層40で遮光しつつ、拡散層を通じて側面方向から光を出射する構成としたことで、この側面を導光板等の端面に光学的に結合させて、均一な発光を得ることができる。
(光反射性層50)
By adopting such a configuration, the above-mentioned light emitting device 100 can suppress brightness unevenness and realize wide light distribution. That is, the light emitting from the light emitting surface on the upper surface of the light emitting element 10 is blocked by the light shielding layer 40, and the light is emitted from the side surface through the diffusion layer. Can be optically coupled to to obtain uniform light emission.
(Light reflective layer 50)

また発光素子10の下面、波長変換部材20の下方、光拡散層30の下方には光反射性層50が配置される。光反射性層50は、発光素子10が発する光や波長変換部材20で波長変換された光を反射させて、発光装置100の下面から光が漏れることを抑止する。また発光素子10の電極12を、光反射性層50から露出させている。 Further, a light reflecting layer 50 is arranged on the lower surface of the light emitting element 10, below the wavelength conversion member 20, and below the light diffusing layer 30. The light-reflecting layer 50 reflects the light emitted by the light emitting element 10 and the light wavelength-converted by the wavelength conversion member 20 to prevent the light from leaking from the lower surface of the light emitting device 100. Further, the electrode 12 of the light emitting element 10 is exposed from the light reflecting layer 50.

光反射性層50も、遮光層40と同じく、母材となる第四樹脂52に光反射性材料を分散させて構成される。母材となる第四樹脂52の樹脂材料には、フェニル系樹脂、エポキシ樹脂、シリコーン樹脂、これらを混合した樹脂、又はガラスなどの透光性材料が利用できる。好ましくは、フェニル系樹脂を用いる。これにより、樹脂硬化後に硬度が高く、加工し易い等の効果が得られる。特に光反射性層50の母材に、波長変換部材20や光拡散層30と同じ樹脂を用いることで、接着性に優れ、硬化時の樹脂引けや膨張時の変形などによって接合界面に応力が生じて剥離の原因となることを抑制できる。また光反射性材料には、TiO2、SiO2、Al23、ガラスフィラー等が利用できる。
(金属膜60)
Like the light-shielding layer 40, the light-reflecting layer 50 is also formed by dispersing the light-reflecting material in the fourth resin 52 which is the base material. As the resin material of the fourth resin 52 as the base material, a phenyl resin, an epoxy resin, a silicone resin, a resin in which these are mixed, or a translucent material such as glass can be used. Preferably, a phenyl resin is used. As a result, the hardness is high after the resin is cured, and effects such as easy processing can be obtained. In particular, by using the same resin as the wavelength conversion member 20 and the light diffusion layer 30 for the base material of the light reflective layer 50, the adhesiveness is excellent, and stress is applied to the bonding interface due to resin shrinkage during curing and deformation during expansion. It can be suppressed that it occurs and causes peeling. Further, as the light-reflecting material, TiO 2 , SiO 2 , Al 2 O 3 , glass filler and the like can be used.
(Metal film 60)

また光反射性層50から露出される発光素子10の電極12の端面は、金属膜60で覆われている。この金属膜60は、発光装置100の外部電極として機能する。金属膜60を、発光素子10の電極12の端面より大きくすることで、発光装置100を外部と電気接続し易くできる。この金属膜60を用いて、発光装置100を実装基板に実装したり、ワイヤボンディングするなどして、外部の配線と電気接続することにより、発光素子10に給電できる。金属膜60は、例えばAu、Pt、Pd、Rh、Ni、W、Mo、Cr、Ti等の金属又はこれらの合金の単層膜又は積層膜によって形成できる。具体的には、発光素子10側からTi/Rh/Au、W/Pt/Au、Rh/Pt/Au、W/Pt/Au、Ni/Pt/Au、Ti/Rh等のように積層された積層膜が利用できる。特に、酸化し易いCuをAu等の安定した金属で保護することにより、電気接続の信頼性が高められる。
[実施形態2]
Further, the end surface of the electrode 12 of the light emitting element 10 exposed from the light reflecting layer 50 is covered with a metal film 60. The metal film 60 functions as an external electrode of the light emitting device 100. By making the metal film 60 larger than the end face of the electrode 12 of the light emitting element 10, the light emitting device 100 can be easily electrically connected to the outside. Using this metal film 60, the light emitting device 100 can be mounted on a mounting substrate, wire bonded, or otherwise electrically connected to an external wiring to supply power to the light emitting element 10. The metal film 60 can be formed of, for example, a single layer film or a laminated film of a metal such as Au, Pt, Pd, Rh, Ni, W, Mo, Cr, Ti or an alloy thereof. Specifically, Ti / Rh / Au, W / Pt / Au, Rh / Pt / Au, W / Pt / Au, Ni / Pt / Au, Ti / Rh, etc. were laminated from the light emitting element 10 side. Laminated membranes are available. In particular, by protecting Cu, which is easily oxidized, with a stable metal such as Au, the reliability of the electrical connection is enhanced.
[Embodiment 2]

なお光反射性層50は、図1の模式断面図に示すように平板状に形成する他、部分的に凸形状を有することができる。このような例を実施形態2に係る発光装置として、図3の模式断面図に示す。この図に示す発光装置200は、波長変換部材20の下方では平板状に形成しつつ、波長変換部材20の外周において凸状51に形成している。これにより、光反射性層50と波長変換部材20との接着が強固になる。特にアンカー効果を発揮できる。
[実施形態3、4]
The light-reflecting layer 50 may be formed in a flat plate shape as shown in the schematic cross-sectional view of FIG. 1, or may have a partially convex shape. Such an example is shown in the schematic cross-sectional view of FIG. 3 as a light emitting device according to the second embodiment. The light emitting device 200 shown in this figure is formed in a flat plate shape below the wavelength conversion member 20, and is formed in a convex shape 51 on the outer periphery of the wavelength conversion member 20. As a result, the adhesion between the light reflecting layer 50 and the wavelength conversion member 20 is strengthened. In particular, it can exert an anchor effect.
[Embodiments 3 and 4]

以上の例では、発光装置の外形を、平面視において矩形状としている。図2に示した例では横長の長方形状としたが、図4に示す実施形態3に係る発光装置300のように、正方形状としてもよい。また矩形状に限らず、図5に示す実施形態4に係る発光装置400のように、隅部の一部で角を落とした六角形状としたり、四隅を落とした八角形状とする等、多角形状や円形とすることもできる。
[実施形態5]
In the above example, the outer shape of the light emitting device is rectangular in a plan view. In the example shown in FIG. 2, it has a horizontally long rectangular shape, but it may have a square shape like the light emitting device 300 according to the third embodiment shown in FIG. Further, the shape is not limited to a rectangular shape, and as in the light emitting device 400 according to the fourth embodiment shown in FIG. Or circular.
[Embodiment 5]

また以上の例では、平面視において波長変換部材20の全周を光拡散層30で覆う構成を示したが、本発明はこの構成に限らず、波長変換部材の周囲の一部を光拡散層で被覆し、周囲の他の部分を別の部材で被覆する構成としてもよい。例えば図6に示す実施形態5に係る発光装置500のように、波長変換部材20の対向する側面の一方(図6において波長変換部材20の左右)を光拡散層30で被覆しつつ、側面の他方(図6において波長変換部材20の上下)を、第二遮光層42で被覆してもよい。この構成では、発光装置500の側面の内、光拡散層30で被覆した部分を発光領域とし、第二遮光層42で被覆した面は非発光領域として、発光領域を制限することで余計な発光を規制できる。また発光領域を集中させることにより、輝度の向上も得られる。さらに発光素子の上下を遮光し、側方の4面のうち、主に左右方向への出射光を得ることで光に異方性を持たせ、左右方向にのみ輝度が求められる用途に好適となる。
(導光板70)
Further, in the above example, the configuration in which the entire circumference of the wavelength conversion member 20 is covered with the light diffusion layer 30 is shown in a plan view, but the present invention is not limited to this configuration, and a part around the wavelength conversion member is covered with the light diffusion layer. It may be covered with, and other parts around it may be covered with another member. For example, as in the light emitting device 500 according to the fifth embodiment shown in FIG. 6, one of the facing side surfaces of the wavelength conversion member 20 (left and right of the wavelength conversion member 20 in FIG. 6) is covered with the light diffusion layer 30 and the side surface is covered. The other (above and below the wavelength conversion member 20 in FIG. 6) may be covered with the second light-shielding layer 42. In this configuration, the portion of the side surface of the light emitting device 500 covered with the light diffusion layer 30 is designated as a light emitting region, and the surface covered with the second light shielding layer 42 is designated as a non-light emitting region, and extra light emission is performed by limiting the light emitting region. Can be regulated. Further, by concentrating the light emitting region, the brightness can be improved. Furthermore, it is suitable for applications where the top and bottom of the light emitting element are shielded and the light is anisotropy by mainly obtaining the emitted light in the left-right direction among the four lateral surfaces, and the brightness is required only in the left-right direction. Become.
(Light guide plate 70)

以上のような実施形態1から5の発光装置は、照明や液晶用バックライドなど、面状に発光させるための光源として利用できる。一例として、発光装置を面状発光体に適用する例を図7に示す。この例では、複数の発光装置100を、導光板70の背面に互いに離間させて配置している。各発光装置100は、導光板70と光学的に接続されている。このような発光装置を配置することにより、面状発光体の薄型化が可能となる。 The light emitting devices of the first to fifth embodiments as described above can be used as a light source for emitting light in a planar manner such as lighting and a backride for a liquid crystal display. As an example, FIG. 7 shows an example in which the light emitting device is applied to a planar light emitting body. In this example, a plurality of light emitting devices 100 are arranged on the back surface of the light guide plate 70 so as to be separated from each other. Each light emitting device 100 is optically connected to the light guide plate 70. By arranging such a light emitting device, it is possible to reduce the thickness of the planar light emitting body.

導光板70は、長方形や正方形などの矩形状に形成することが好ましい。また導光板70を構成する材質としては、アクリル、ポリカーボネート、環状ポリオレフィン、ポリエチレンテレフタレート、ポリエステル等の熱可塑性樹脂、エポキシ、シリコーン等の熱硬化性樹脂等の樹脂材料、ガラスなどの光学的に透明な材料を用いることができる。特に、熱可塑性の樹脂材料は、射出成型によって効率よく製造することができるため、好ましい。中でも、透明性が高く、安価なポリカーボネートが好ましい。また、導光板70は、単層で形成されていてもよく、複数の透光性の層が積層されて形成されていてもよい。複数の透光性の層が積層されている場合には、任意の層間に屈折率の異なる層、例えば空気の層等を設けることが好ましい。これにより、光をより拡散させやすくなり、輝度ムラを低減した面状発光体とすることができる。
(発光装置の製造方法)
The light guide plate 70 is preferably formed in a rectangular shape such as a rectangle or a square. The materials constituting the light guide plate 70 include thermoplastic resins such as acrylic, polycarbonate, cyclic polyolefin, polyethylene terephthalate and polyester, resin materials such as thermosetting resins such as epoxy and silicone, and optically transparent glass and the like. Materials can be used. In particular, a thermoplastic resin material is preferable because it can be efficiently produced by injection molding. Of these, polycarbonate, which has high transparency and is inexpensive, is preferable. Further, the light guide plate 70 may be formed of a single layer, or may be formed by laminating a plurality of translucent layers. When a plurality of translucent layers are laminated, it is preferable to provide layers having different refractive indexes, for example, an air layer, between arbitrary layers. As a result, it becomes easier to diffuse the light, and it is possible to obtain a planar illuminant with reduced brightness unevenness.
(Manufacturing method of light emitting device)

次に、実施形態1に係る発光装置の製造方法を、図8~図21の模式断面図に基づいて説明する。まず、図8に示すように、光反射性層50を準備する。ここでは、ベースシート80上に、光反射性材料を分散させた第四樹脂52を形成する。ベースシート80には、耐熱性を有する部材が好適に利用でき、例えば粘着層を有する耐熱テープが利用できる。このベースシート80上に、光反射性材料を分散させた第四樹脂52として白樹脂を塗布する。白樹脂は、フェニル系樹脂にTiO2を分散させている。ここでは、粘着層を有する耐熱テープを、リングRGに貼付け保持しているが、ベースシートを保持できれば、支持プレート等適宜使用できる。 Next, a method of manufacturing the light emitting device according to the first embodiment will be described with reference to the schematic cross-sectional views of FIGS. 8 to 21. First, as shown in FIG. 8, the light reflecting layer 50 is prepared. Here, the fourth resin 52 in which the light-reflecting material is dispersed is formed on the base sheet 80. A heat-resistant member can be preferably used for the base sheet 80, and for example, a heat-resistant tape having an adhesive layer can be used. A white resin is applied onto the base sheet 80 as a fourth resin 52 in which a light-reflecting material is dispersed. The white resin has TiO 2 dispersed in a phenyl resin. Here, a heat-resistant tape having an adhesive layer is attached and held on the ring RG, but if the base sheet can be held, a support plate or the like can be used as appropriate.

次に図9に示すように、白樹脂が未硬化の状態で、この上に発光素子10を実装する。ここでは白樹脂の上面に、複数の発光素子10を互いに離間して配置する。発光素子10は、GaN系半導体層をサファイア基板上に成長させた発光ダイオードである。発光ダイオードは、素子電極形成面から一対の電極12を突出させている。この素子電極形成面を、電極12が白樹脂から貫通させるように押し付ける。この状態で白樹脂を硬化させて、光反射性層50を形成する。 Next, as shown in FIG. 9, the light emitting element 10 is mounted on the white resin in an uncured state. Here, a plurality of light emitting elements 10 are arranged on the upper surface of the white resin so as to be separated from each other. The light emitting element 10 is a light emitting diode in which a GaN-based semiconductor layer is grown on a sapphire substrate. The light emitting diode projects a pair of electrodes 12 from the element electrode forming surface. The element electrode forming surface is pressed so that the electrode 12 penetrates from the white resin. In this state, the white resin is cured to form the light-reflecting layer 50.

次に図10に示すように、発光素子10を実装した光反射性層50の上面を、波長変換部材20で被覆する。ここでは、波長変換材料としてYAG蛍光体を分散させた第一樹脂22であるフェニル系樹脂を、光反射性層50の周囲及び上面を覆うように圧縮成形する。この状態で第一樹脂22を硬化させて、波長変換部材20を形成する。 Next, as shown in FIG. 10, the upper surface of the light reflecting layer 50 on which the light emitting element 10 is mounted is covered with the wavelength conversion member 20. Here, the phenyl resin, which is the first resin 22 in which the YAG phosphor is dispersed as the wavelength conversion material, is compression-molded so as to cover the periphery and the upper surface of the light-reflecting layer 50. In this state, the first resin 22 is cured to form the wavelength conversion member 20.

また必要に応じて、硬化された波長変換部材20を含む形成体の上面を研削して、所定の厚みに形成する。図11に示す例では、硬化された波長変換部材20の上面を、グラインダ等で機械的に研削している。なお、波長変換部材20の形成時に、第一樹脂22の量を調整する等して厚み制御が行える場合は、機械的な研削工程を省略することができる。 Further, if necessary, the upper surface of the formed body including the cured wavelength conversion member 20 is ground to form a predetermined thickness. In the example shown in FIG. 11, the upper surface of the cured wavelength conversion member 20 is mechanically ground with a grinder or the like. If the thickness can be controlled by adjusting the amount of the first resin 22 at the time of forming the wavelength conversion member 20, the mechanical grinding step can be omitted.

また図11に示す例では、成形体をベースシート80からUVテープ90に転写している。UVテープ90は、十分な粘着力を有しつつ、UV光(紫外線)を照射することにより粘着力を弱める性質を持った粘着テープである。UVテープ90を用いることで、波長変換部材20の研削や切断加工中は強力な粘着力でウエハを確実に固定しながら、加工終了後にはUV光を照射して粘着力を弱め、テープ剥離やダイピックアップを容易にする。これにより、半導体デバイス製造の品質向上やコストダウンが可能となる。 Further, in the example shown in FIG. 11, the molded product is transferred from the base sheet 80 to the UV tape 90. The UV tape 90 is an adhesive tape having a sufficient adhesive strength and having a property of weakening the adhesive strength by irradiating with UV light (ultraviolet rays). By using the UV tape 90, the wafer is firmly fixed with a strong adhesive force during the grinding and cutting processing of the wavelength conversion member 20, and after the processing is completed, UV light is irradiated to weaken the adhesive force, and the tape can be peeled off. Facilitates die pickup. This makes it possible to improve the quality of semiconductor device manufacturing and reduce costs.

さらに図12に示すように、発光装置の個片化を行う。ここでは、ダイサ等を用いて、波長変換層を発光素子10毎に切断して切り出す。個片化された波長変換層はそれぞれ、第二ベースシート82上に配置される。例えば図8と同様に、図13に示すように、第二ベースシート82上に、新たに光反射性層50を準備し、各個片を離間させて再配置する。なお、図13の前に図8と同様の工程を行って、光反射性層50を再度準備し、切り出した発光素子を再配列する。 Further, as shown in FIG. 12, the light emitting device is individualized. Here, the wavelength conversion layer is cut out for each light emitting element 10 by using a die or the like. Each individualized wavelength conversion layer is arranged on the second base sheet 82. For example, as in FIG. 8, as shown in FIG. 13, a new light-reflecting layer 50 is newly prepared on the second base sheet 82, and each piece is separated and rearranged. In addition, the same process as in FIG. 8 is performed before FIG. 13, the light reflecting layer 50 is prepared again, and the cut out light emitting elements are rearranged.

さらに光拡散層30を形成する。例えば、図14に示すように第二ベースシート82上に配置された各個片を覆うように、光拡散材を分散させた第二樹脂32を塗布する。ここでは、光拡散材としてSiO2を分散させた第二樹脂32であるフェニル系樹脂を、各個片の周囲及び上面を覆うように圧縮成形する。この状態で第二樹脂32を硬化させて、光拡散層30を形成する。 Further, the light diffusion layer 30 is formed. For example, as shown in FIG. 14, the second resin 32 in which the light diffusing material is dispersed is applied so as to cover each piece arranged on the second base sheet 82. Here, a phenyl resin, which is a second resin 32 in which SiO 2 is dispersed as a light diffusing material, is compression-molded so as to cover the periphery and the upper surface of each piece. In this state, the second resin 32 is cured to form the light diffusion layer 30.

また必要に応じて、硬化された光拡散層30の上面を研削して、所定の厚みに形成する。図15に示す例では、光拡散層30の上面を、グラインダ等で機械的に研削している。なお、光拡散層30の形成時に、第二樹脂32の量を調整するなどして厚み制御が行える場合は、機械的な研削工程を省略することができる。 If necessary, the upper surface of the cured light diffusion layer 30 is ground to form a predetermined thickness. In the example shown in FIG. 15, the upper surface of the light diffusion layer 30 is mechanically ground with a grinder or the like. If the thickness can be controlled by adjusting the amount of the second resin 32 at the time of forming the light diffusion layer 30, the mechanical grinding step can be omitted.

さらに波長変換部材20上に遮光層40を形成する。例えば図16に示すように、光拡散層30を設けた波長変換部材20を含む形成体の上面及び側面に、光反射性材料を分散させた第三樹脂41を塗布する。ここでは、光反射性材料としてTiO2を分散させた第三樹脂41であるフェニル系樹脂を形成体の周囲に圧縮成形する。この状態で第三樹脂41を硬化させて、遮光層40を形成する。 Further, a light shielding layer 40 is formed on the wavelength conversion member 20. For example, as shown in FIG. 16, a third resin 41 in which a light-reflecting material is dispersed is applied to the upper surface and side surfaces of a body including a wavelength conversion member 20 provided with a light diffusion layer 30. Here, a phenyl resin, which is a third resin 41 in which TiO 2 is dispersed as a light-reflecting material, is compression-molded around the formed body. In this state, the third resin 41 is cured to form the light-shielding layer 40.

さらに転写及び裏面研削を行う。例えば図17に示すように、第二ベースシート82上から形成体を剥離して、第二UVテープ92上に、光反射性層50(第四樹脂52)側が上面となる姿勢に転写する。 Further transfer and backside grinding are performed. For example, as shown in FIG. 17, the formed body is peeled off from the second base sheet 82 and transferred onto the second UV tape 92 in a posture in which the light reflecting layer 50 (fourth resin 52) side is the upper surface.

さらにまた、表出された電極12の表面を保護する。ここでは図18に示すように、端子保護膜14をスパッタ等で形成する。端子保護膜14にはAu等が利用できる Furthermore, it protects the surface of the exposed electrode 12. Here, as shown in FIG. 18, the terminal protection film 14 is formed by sputtering or the like. Au or the like can be used for the terminal protective film 14.

さらに端子保護のための金属膜60を形成する。ここでは図19のように発光素子毎に分離した後、図20に示すように、電極12の端面が光反射性層50から表出された形成体の上面に、金属被膜62を形成する。金属被膜62は、電極12と電気接続されるように形成される。この金属被膜62は、スパッタ、蒸着、原子層堆積(Atomic Layer Deposition;ALD)法や有機金属化学的気相成長(Metal Organic Chemical Vapor Deposition;MOCVD)法、プラズマCVD(Plasma-Enhanced Chemical Vapor Deposition;PECVD)法、大気圧プラズマ成膜法などによって形成できる。 Further, a metal film 60 for protecting the terminals is formed. Here, after separating each light emitting element as shown in FIG. 19, as shown in FIG. 20, a metal coating 62 is formed on the upper surface of the formed body in which the end surface of the electrode 12 is exposed from the light reflecting layer 50. The metal coating 62 is formed so as to be electrically connected to the electrode 12. The metal coating 62 is subjected to sputtering, vapor deposition, atomic layer deposition (ALD) method, metallic organic chemical vapor deposition (MOCVD) method, plasma CVD (Plasma-Enhanced Chemical Vapor Deposition); It can be formed by a PECVD) method, an atmospheric pressure plasma deposition method, or the like.

金属被膜62は、例えば最表面の層をAu、Pt等の白金族元素の金属とすることが好ましい。また、最表面にはんだ付け性の良好なAuを用いることもできる。なお金属膜は単一の材料の一層のみで構成されてもよく、異なる材料の層が積層されて構成されていてもよい。特に高融点の金属膜を用いるのが好ましく、例えばRu、Mo、Ta等を挙げることができる。また、これら高融点の金属を、発光素子10の電極12と最表面の層との間に設けることにより、はんだに含まれるSnが電極12や電極12に近い層に拡散することを低減することが可能な拡散防止層とすることができる。このような拡散防止層を備えた積層構造の例としては、Ni/Ru/Au、Ti/Pt/Au等が挙げられる。また、拡散防止層(例えばRu)の厚みとしては、10Å~1000Å程度が好ましい。 For the metal coating 62, for example, it is preferable that the outermost layer is a metal of a platinum group element such as Au or Pt. Further, Au having good solderability can be used on the outermost surface. The metal film may be composed of only one layer of a single material, or may be composed of layers of different materials laminated. In particular, it is preferable to use a metal film having a high melting point, and examples thereof include Ru, Mo, and Ta. Further, by providing these high melting point metals between the electrode 12 of the light emitting element 10 and the outermost layer, it is possible to reduce the diffusion of Sn contained in the solder to the electrode 12 and the layer close to the electrode 12. It can be an anti-diffusion layer that can be used. Examples of the laminated structure provided with such a diffusion prevention layer include Ni / Ru / Au, Ti / Pt / Au and the like. The thickness of the diffusion prevention layer (for example, Ru) is preferably about 10 Å to 1000 Å.

金属被膜62の厚みは、種々選択することができる。レーザアブレーションが選択的に起こる程度とすることができ、例えば1μm以下であることが好ましく、1000Å以下がより好ましい。また、電極12の腐食を低減することができる厚み、例えば5nm以上であることが好ましい。ここで、金属被膜62の厚みとは、金属膜が複数の層が積層されて構成されている場合には、該複数の層の合計の厚みのことをいう。 The thickness of the metal coating 62 can be variously selected. The degree to which laser ablation occurs selectively can be set to, for example, preferably 1 μm or less, and more preferably 1000 Å or less. Further, it is preferable that the thickness is such that the corrosion of the electrode 12 can be reduced, for example, 5 nm or more. Here, the thickness of the metal coating film 62 means the total thickness of the plurality of layers when the metal film is formed by laminating a plurality of layers.

そして、金属被膜62の一部を除去する。ここでは図21に示すように、金属被膜62にレーザ光を照射して、金属膜のない電極間スリットを絶縁領域10として設ける。レーザ光は、発光素子10の一対の電極12の間に設ける絶縁領域10に照射する。絶縁領域10は、発光素子10の一対の電極12の間だけでなく、その延長方向にある被覆部材3の表面にも伸びて、金属被膜62を分割している。 Then, a part of the metal coating 62 is removed. Here, as shown in FIG. 21, the metal film 62 is irradiated with laser light to provide an inter-electrode slit without the metal film as the insulating region 10. The laser beam irradiates the insulating region 10 provided between the pair of electrodes 12 of the light emitting element 10. The insulating region 10 extends not only between the pair of electrodes 12 of the light emitting element 10 but also on the surface of the covering member 3 in the extending direction thereof to divide the metal coating 62.

電極間スリットの絶縁領域10は、発光素子10の電極12間の幅と略同じ幅である。例えば絶縁領域10の幅を、電極12の幅よりも僅かに広くしている。絶縁領域10は、レーザアブレーションにより金属被膜62が除去される。金属被膜62が絶縁領域10で除去されて、発光素子10の一対の電極12の間にスリット状に被覆部材3が露出する。 The insulating region 10 of the inter-electrode slit has a width substantially the same as the width between the electrodes 12 of the light emitting element 10. For example, the width of the insulating region 10 is slightly wider than the width of the electrode 12. The metal film 62 is removed from the insulating region 10 by laser ablation. The metal coating 62 is removed in the insulating region 10, and the covering member 3 is exposed in a slit shape between the pair of electrodes 12 of the light emitting element 10.

レーザ光は、その照射スポットを部材上で連続的又は逐次移動させることにより、金属被膜62に照射することができる。レーザ光は、連続して照射してもよく、パルス照射でもよい。レーザ光の強度、照射スポットの径及び照射スポットの移動速度は、被覆部材3や金属被膜62の熱伝導率及びそれらの熱伝導率差等を考慮して、被覆部材3上の金属被膜62にレーザアブレーションが生じるように、設定することができる。 The laser beam can irradiate the metal film 62 by continuously or sequentially moving the irradiation spot on the member. The laser beam may be continuously irradiated or may be pulsed. The intensity of the laser beam, the diameter of the irradiation spot, and the moving speed of the irradiation spot are determined on the metal coating 62 on the coating member 3 in consideration of the thermal conductivity of the coating member 3 and the metal coating 62 and the difference in thermal conductivity between them. It can be set so that laser ablation occurs.

レーザー光の波長は、金属膜60に対する反射率が低い波長、例えば反射率が90%以下である波長を選択することが好ましい。例えば、金属膜60の最表面がAuである場合には、赤色領域(たとえば640nm)のレーザよりも、緑色領域(例えば550nm)より短い発光波長のレーザを用いることが好ましい。これにより、アブレーションを効率よく発生させ、量産性を高めることができる。 As the wavelength of the laser light, it is preferable to select a wavelength having a low reflectance with respect to the metal film 60, for example, a wavelength having a reflectance of 90% or less. For example, when the outermost surface of the metal film 60 is Au, it is preferable to use a laser having an emission wavelength shorter than that in the green region (for example, 550 nm) than that for the laser in the red region (for example, 640 nm). As a result, ablation can be efficiently generated and mass productivity can be improved.

このようにして得られた成形体を、所定の大きさに個片化して、発光装置100を得ることができる。 The molded product thus obtained can be individualized into a predetermined size to obtain a light emitting device 100.

本開示に係る発光装置は、テレビやタブレット、液晶ディスプレイ装置のバックライトとして、テレビやタブレット、スマートフォン、スマートウォッチ、ヘッドアップディスプレイ、デジタルサイネージ、掲示板などに好適に利用できる。また、照明用の光源としても利用でき、非常灯やライン照明、あるいは各種のイルミネーションや車載用のインストールなどにも利用できる。 The light emitting device according to the present disclosure can be suitably used as a backlight for a television, a tablet, a liquid crystal display device, a television, a tablet, a smartphone, a smart watch, a head-up display, a digital signage, a bulletin board, or the like. It can also be used as a light source for lighting, and can also be used for emergency lights, line lighting, various illuminations, and in-vehicle installations.

100、200、300、400、500…発光装置
10…発光素子
12…電極
14…端子保護膜
20…波長変換部材
22…第一樹脂
30…光拡散層
32…第二樹脂
40…遮光層
41…第三樹脂
42…第二遮光層
50…光反射性層
51…凸状
52…第四樹脂
60…金属膜
62…金属被膜
70…導光板
80…ベースシート
82…第二ベースシート
90…UVテープ
92…第二UVテープ
RG…リング
100, 200, 300, 400, 500 ... Light emitting device 10 ... Light emitting element 12 ... Electrode 14 ... Terminal protective film 20 ... Wavelength conversion member 22 ... First resin 30 ... Light diffusion layer 32 ... Second resin 40 ... Light shielding layer 41 ... Third resin 42 ... Second light-shielding layer 50 ... Light-reflecting layer 51 ... Convex 52 ... Fourth resin 60 ... Metal film 62 ... Metal coating 70 ... Light guide plate 80 ... Base sheet 82 ... Second base sheet 90 ... UV tape 92 ... Second UV tape RG ... Ring

Claims (10)

上面と、一対の電極を有する下面と、側面とを有する発光素子と、
前記上面と前記側面を連続して覆い、前記発光素子が発する光の波長を変換して異なる波長の光を発する、波長変換部材と、
前記電極が露出されるように前記下面及び前記波長変換部材の下方に配置される、光反射性材料を含有する樹脂で構成されてなる光反射性層と、
前記波長変換部材の上方に配置される、遮光性を備える遮光層と、
を備え
前記光反射性層は、前記波長変換部材の外周において凸形状を有してなる発光装置。
A light emitting element having an upper surface, a lower surface having a pair of electrodes, and a side surface,
A wavelength conversion member that continuously covers the upper surface and the side surface and converts the wavelength of light emitted by the light emitting element to emit light of different wavelengths.
A light-reflecting layer made of a resin containing a light-reflective material, which is arranged on the lower surface and below the wavelength conversion member so that the electrodes are exposed.
A light-shielding layer having a light-shielding property, which is arranged above the wavelength conversion member,
With
The light reflecting layer is a light emitting device having a convex shape on the outer periphery of the wavelength conversion member .
請求項1に記載の発光装置であって、さらに、
前記光反射性層から露出される前記電極の端面を覆い、前記電極の端面より大きい金属膜を備えてなる発光装置。
The light emitting device according to claim 1, further
A light emitting device that covers an end face of the electrode exposed from the light-reflecting layer and includes a metal film larger than the end face of the electrode.
請求項1又は2に記載の発光装置であって、
前記光反射性材料が、TiO2、SiO2、Al23又はガラスフィラーである発光装置。
The light emitting device according to claim 1 or 2.
A light emitting device in which the light-reflecting material is TiO 2 , SiO 2 , Al 2 O 3 , or a glass filler.
請求項3に記載の発光装置であって、
前記光反射性層の樹脂が、フェニル系樹脂で構成されてなる発光装置。
The light emitting device according to claim 3.
A light emitting device in which the resin of the light reflecting layer is made of a phenyl resin.
請求項1~4のいずれか一項に記載の発光装置であって、
前記遮光層が、TiO2、SiO2、Al23又はガラスフィラーを含む樹脂で構成されてなる発光装置。
The light emitting device according to any one of claims 1 to 4.
A light emitting device in which the light-shielding layer is made of a resin containing TiO 2 , SiO 2 , Al 2 O 3 or a glass filler.
請求項5に記載の発光装置であって、
前記遮光層の樹脂が、フェニル系樹脂で構成されてなる発光装置。
The light emitting device according to claim 5.
A light emitting device in which the resin of the light-shielding layer is made of a phenyl-based resin.
請求項5に記載の発光装置であって、
前記遮光層の樹脂が、ジメチル系樹脂で構成されてなる発光装置。
The light emitting device according to claim 5.
A light emitting device in which the resin of the light-shielding layer is made of a dimethyl resin.
請求項1~7のいずれか一項に記載の発光装置であって、
前記波長変換部材が、YAG蛍光体、βサイアロン蛍光体、KSF系蛍光体又はMGF系蛍光体の少なくともいずれかを含む発光装置。
The light emitting device according to any one of claims 1 to 7.
A light emitting device in which the wavelength conversion member includes at least one of a YAG phosphor, a β-sialone phosphor, a KSF-based phosphor, and an MGF-based phosphor.
請求項8に記載の発光装置であって、
前記波長変換部材が、フェニル系樹脂で構成されてなる発光装置。
The light emitting device according to claim 8.
A light emitting device in which the wavelength conversion member is made of a phenyl resin.
請求項1~9のいずれか一項に記載の発光装置であって、
波長変換部材の光反射層の上部に位置する領域の厚さは、0.02mm~0.40mmである発光装置。
The light emitting device according to any one of claims 1 to 9.
A light emitting device having a thickness of a region located above the light reflecting layer of the wavelength conversion member of 0.02 mm to 0.40 mm.
JP2020190199A 2020-11-16 2020-11-16 Luminescent device Active JP7104350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020190199A JP7104350B2 (en) 2020-11-16 2020-11-16 Luminescent device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020190199A JP7104350B2 (en) 2020-11-16 2020-11-16 Luminescent device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018248412A Division JP7284373B2 (en) 2018-12-28 2018-12-28 light emitting device

Publications (2)

Publication Number Publication Date
JP2021040149A JP2021040149A (en) 2021-03-11
JP7104350B2 true JP7104350B2 (en) 2022-07-21

Family

ID=74848806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020190199A Active JP7104350B2 (en) 2020-11-16 2020-11-16 Luminescent device

Country Status (1)

Country Link
JP (1) JP7104350B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7335520B2 (en) 2021-06-21 2023-08-30 日亜化学工業株式会社 WAVELENGTH CONVERSION MEMBER, LIGHT EMITTING DEVICE AND IMAGE DISPLAY DEVICE

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070086211A1 (en) 2005-10-18 2007-04-19 Goldeneye, Inc. Side emitting illumination systems incorporating light emitting diodes
WO2012099145A1 (en) 2011-01-20 2012-07-26 シャープ株式会社 Light emitting device, lighting device, display device, and method for manufacturing light emitting device
JP2013089645A (en) 2011-10-13 2013-05-13 Citizen Electronics Co Ltd Semiconductor light-emitting device and manufacturing method of the same
JP2013118244A (en) 2011-12-02 2013-06-13 Citizen Holdings Co Ltd Semiconductor light-emitting device and lighting apparatus using the same
JP2014003283A (en) 2012-05-25 2014-01-09 Toshiba Corp Semiconductor light-emitting device and light source unit
JP2014157991A (en) 2013-02-18 2014-08-28 Toshiba Corp Semiconductor light-emitting device and method of manufacturing the same
JP2016001750A (en) 2015-08-19 2016-01-07 株式会社東芝 Semiconductor light emitting device
JP2016072475A (en) 2014-09-30 2016-05-09 日亜化学工業株式会社 Ceramic package, light-emitting device and manufacturing method thereof
JP2017157611A (en) 2016-02-29 2017-09-07 日亜化学工業株式会社 Light-emitting device and manufacturing method thereof
JP2018092984A (en) 2016-11-30 2018-06-14 日亜化学工業株式会社 Method for manufacturing light-emitting device
JP2018107285A (en) 2016-12-27 2018-07-05 日亜化学工業株式会社 Light-emitting device and method for manufacturing the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070086211A1 (en) 2005-10-18 2007-04-19 Goldeneye, Inc. Side emitting illumination systems incorporating light emitting diodes
WO2012099145A1 (en) 2011-01-20 2012-07-26 シャープ株式会社 Light emitting device, lighting device, display device, and method for manufacturing light emitting device
JP2013089645A (en) 2011-10-13 2013-05-13 Citizen Electronics Co Ltd Semiconductor light-emitting device and manufacturing method of the same
JP2013118244A (en) 2011-12-02 2013-06-13 Citizen Holdings Co Ltd Semiconductor light-emitting device and lighting apparatus using the same
JP2014003283A (en) 2012-05-25 2014-01-09 Toshiba Corp Semiconductor light-emitting device and light source unit
JP2014157991A (en) 2013-02-18 2014-08-28 Toshiba Corp Semiconductor light-emitting device and method of manufacturing the same
JP2016072475A (en) 2014-09-30 2016-05-09 日亜化学工業株式会社 Ceramic package, light-emitting device and manufacturing method thereof
JP2016001750A (en) 2015-08-19 2016-01-07 株式会社東芝 Semiconductor light emitting device
JP2017157611A (en) 2016-02-29 2017-09-07 日亜化学工業株式会社 Light-emitting device and manufacturing method thereof
JP2018092984A (en) 2016-11-30 2018-06-14 日亜化学工業株式会社 Method for manufacturing light-emitting device
JP2018107285A (en) 2016-12-27 2018-07-05 日亜化学工業株式会社 Light-emitting device and method for manufacturing the same

Also Published As

Publication number Publication date
JP2021040149A (en) 2021-03-11

Similar Documents

Publication Publication Date Title
JP7284373B2 (en) light emitting device
KR102537648B1 (en) Light emitting device and manufacturing method for light emitting device
JP6680349B1 (en) Light emitting module
TWI794311B (en) Light-emitting module and integrated light-emitting module
JP6089686B2 (en) Light emitting device
JP2015097235A (en) Semiconductor light-emitting device and method of manufacturing the same
JP2014027208A (en) Light-emitting device and manufacturing method of the same
CN109616567B (en) Light emitting device
JP5543386B2 (en) LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, AND LIGHTING DEVICE
JP2019145690A (en) Light-emitting device and manufacturing method of light-emitting device
JP6265227B2 (en) Light distribution member manufacturing method, light emitting device manufacturing method, light distribution member, and light emitting device
JP2016063121A (en) Light-emitting device
JP7007591B2 (en) Luminous module
JP7104350B2 (en) Luminescent device
CN115188872A (en) Method for manufacturing light distribution member, method for manufacturing light emitting device, light distribution member, and light emitting device
JP7460937B2 (en) Planar light source and its manufacturing method
JP7082272B2 (en) Light emitting device
JP7248935B2 (en) light emitting device
JP2020096151A (en) Light-emitting module
JP7116320B2 (en) light emitting device
JP6863420B2 (en) Light emitting module and its manufacturing method, liquid crystal display device
JP2022096128A (en) Light emitting device and planar light source
JP6720747B2 (en) Semiconductor device, base and manufacturing method thereof
JP7044990B2 (en) Light emitting device
US11605766B2 (en) Light-emitting module and method of manufacturing light-emitting module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220620

R151 Written notification of patent or utility model registration

Ref document number: 7104350

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151