JP7098356B2 - Ct画像の色の視覚化のためのシステムおよび方法 - Google Patents

Ct画像の色の視覚化のためのシステムおよび方法 Download PDF

Info

Publication number
JP7098356B2
JP7098356B2 JP2018039859A JP2018039859A JP7098356B2 JP 7098356 B2 JP7098356 B2 JP 7098356B2 JP 2018039859 A JP2018039859 A JP 2018039859A JP 2018039859 A JP2018039859 A JP 2018039859A JP 7098356 B2 JP7098356 B2 JP 7098356B2
Authority
JP
Japan
Prior art keywords
imaging
information
image
phase
contrast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018039859A
Other languages
English (en)
Other versions
JP2018183567A (ja
Inventor
ヴィンセント・アダム
サード・アフメド・シロヘイ
ギヨーム・ネビュー
ヤニック・ルベル
マウド・ボナード
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/454,616 external-priority patent/US10299751B2/en
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2018183567A publication Critical patent/JP2018183567A/ja
Application granted granted Critical
Publication of JP7098356B2 publication Critical patent/JP7098356B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/46Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/466Displaying means of special interest adapted to display 3D data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/481Diagnostic techniques involving the use of contrast agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/504Clinical applications involving diagnosis of blood vessels, e.g. by angiography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5217Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data extracting a diagnostic or physiological parameter from medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • A61B6/5247Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from an ionising-radiation diagnostic technique and a non-ionising radiation diagnostic technique, e.g. X-ray and ultrasound
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/008Specific post-processing after tomographic reconstruction, e.g. voxelisation, metal artifact correction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/20Editing of 3D images, e.g. changing shapes or colours, aligning objects or positioning parts
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/41Medical
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2211/00Image generation
    • G06T2211/40Computed tomography
    • G06T2211/404Angiography
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2219/00Indexing scheme for manipulating 3D models or images for computer graphics
    • G06T2219/20Indexing scheme for editing of 3D models
    • G06T2219/2012Colour editing, changing, or manipulating; Use of colour codes

Description

関連出願の相互参照
本出願は、2016年3月16日に出願された米国特許出願第15/072,071号明細書“Systems and Methods for Progressive Imaging”の一部継続出願であり、優先権を主張し、その全体が参照により本明細書に組み込まれる。
本明細書で開示される発明の主題は、一般的に、例えば、プログレッシブおよび/またはバリューベースの撮像のためのシステムおよび方法などのためのコンピュータ断層撮影(CT)撮像などの撮像のためのシステムおよび方法に関する。
医用撮像は、診断を行うのに役立つであろう。ある種の撮像は、相対的に迅速に、および/または比較的低い放射線で完了することができるが、比較的低いレベルの詳細を提供し、一方、他の種類の撮像は、よりゆっくりおよび/または比較的高い放射線で完了することができるが、比較的高いレベルの詳細を提供する。場合によっては、正確な診断のために必要なレベルの詳細を提供する撮像の種類がわからない可能性がある。従来、このような状況では、医師は、実行すべき異なるレベルの詳細の多数の異なるスキャンを命令し、診断を試みる際に各スキャンの結果を解析する可能性がある。しかしながら、このような多数のスキャンの実行は、正確な診断のために必要とされなかったスキャンを実行するのに費やされる不必要な時間および/または放射線を必要とする可能性がある。
米国特許第8364254号明細書
一実施形態では、CT撮像ユニットと、ディスプレイユニットと、少なくとも1つのプロセッサとを含むコンピュータ断層撮影(CT)撮像システムが提供される。CT撮像ユニットは、X線源およびCT検出器を含む。少なくとも1つのプロセッサは、撮像ユニットおよびディスプレイユニットに動作可能に結合され、CT撮像ユニットを介してCT撮像情報の少なくとも3つの位相を取得し、CT撮像情報で示された血管の撮像強度に関するタイミング情報を決定し、タイミング情報に基づいて血管に対応する色を割り当て、少なくとも3つの位相からCT撮像情報を使用して画像を再構成するよう構成され、再構成画像に描かれた血管は、タイミング情報に基づいて対応する色を用いて表され、少なくとも1つのプロセッサはさらに、ディスプレイユニットに画像を表示するよう構成される。
別の実施形態では、方法は、X線源およびCT検出器を備えるCT撮像ユニットを介して、コンピュータ断層撮影(CT)撮像情報の少なくとも3つの位相を取得するステップを含む。本方法はまた、少なくとも1つのプロセッサを使用して、CT撮像情報に示される血管の撮像強度に関するタイミング情報を決定するステップを含む。さらに、本方法は、タイミング情報に基づいて血管に対応する色を割り当てるステップを含む。また、本方法は、少なくとも3つの位相からのCT撮像情報を使用して画像を再構成するステップを含み、再構成画像に描かれた血管は、タイミング情報に基づいて対応する色を用いて表される。本方法は、画像をディスプレイユニットに表示するステップをさらに含む。
別の実施形態では、1つまたは複数のコンピュータソフトウェアモジュールを含む有形の非一時的コンピュータ可読媒体が提供される。1つまたは複数のコンピュータソフトウェアモジュールは、1つまたは複数のプロセッサに、X線源およびCT検出器を備えるCT撮像ユニットを介してコンピュータ断層撮影(CT)撮像情報の少なくとも3つの位相を取得し、CT撮像情報で示された血管の撮像強度に関するタイミング情報を決定し、タイミング情報に基づいて血管に対応する色を割り当て、少なくとも3つの位相からCT撮像情報を使用して画像を再構成するよう指示するように構成され、再構成画像に描かれた血管は、タイミング情報に基づいて対応する色を用いて表され、1つまたは複数のコンピュータソフトウェアモジュールは、さらに、1つまたは複数のプロセッサに、ディスプレイユニットに画像を表示するよう指示するように構成される。
様々な実施形態による撮像システムを示す概略ブロック図である。 様々な実施形態による方法のフローチャートである。 様々な実施形態による例示的な表示を示す図である。 様々な実施形態による例示的な表示を示す図である。 様々な実施形態による例示的な表示を示す図である。 様々な実施形態による例示的な表示を示す図である。 様々な実施形態による例示的な表示を示す図である。 様々な実施形態による撮像システムの概略ブロック図である。 脳における血流のCTA解析のためのCT撮像情報の様々な位相を取得する例示的タイムラインを示す図である。 図9のCT撮像情報取得の位相に対応する例示的な画像を示す図である。 図10の様々な画像の例示的な強度を示す図である。 様々な実施形態による特定のボクセルについての強度曲線およびベースラインを含む例示的なプロットを示す図である。 様々な実施形態による特定のボクセルについての経時的な強度の例示的プロットを示す図である。 様々な実施形態による決定されたタイミング情報を使用して生成される頭部の軸方向図を示す図である。 様々な実施形態による血管を色付けした脳の例示的な側面図である。 様々な実施形態による方法のフローチャートである。
特定の実施形態についての以下の詳細な説明は、添付の図面と共に読むと、より良く理解されよう。図面が様々な実施形態の機能ブロックの図を示す程度まで、機能ブロックは必ずしも器具回路間の分割を示しているわけではない。例えば、機能ブロック(例えば、プロセッサまたはメモリ)のうちの1つまたは複数は、単一の器具(例えば、汎用信号プロセッサまたはランダムアクセスメモリ、ハードディスクなどのブロック)、または複数の器具で実現することができる。同様に、プログラムは、スタンドアロンのプログラムであってもよいし、オペレーティングシステム内のサブルーチンとして組み込まれてもよいし、あるいはインストールされたソフトウェアパッケージの機能などであってもよい。様々な実施形態は、図面に示す配置および手段に限定されないことを理解すべきである。
本明細書で使用する「システム」、「ユニット」、または「モジュール」という用語は、1つまたは複数の機能を実行するよう動作するハードウェアおよび/またはソフトウェアシステムを含むことができる。例えば、モジュール、ユニット、またはシステムは、コンピュータメモリなどの、有形の、非一時的コンピュータ可読記憶媒体に格納された命令に基づき動作を実行する、コンピュータプロセッサまたはその他の論理ベースデバイスを備えることができる。あるいは、モジュール、ユニット、またはシステムは、デバイスの有線論理に基づき動作を実行する、有線デバイスを備えてもよい。図に示す添付図面に示す様々なモジュールまたはユニットは、ソフトウェアもしくは有線命令、またはそれらの組み合わせに基づき動作するハードウェアを表すことができ、ソフトウェアは、ハードウェアに指示して、動作を実行する。
「システム」、「ユニット」、または「モジュール」は、本明細書で説明する1つまたは複数の動作を実行するハードウェアおよび関連する命令(例えば、コンピュータハードドライブ、ROM、またはRAMなどの有形および非一時的なコンピュータ可読記憶媒体に格納されるソフトウェア)を含むか、または表すことができる。ハードウェアは、マイクロプロセッサ、プロセッサ、またはコントローラなどの1つまたは複数の論理ベースのデバイスを含むおよび/またはそのような論理ベースのデバイスに接続された、電子回路を含むことができる。これらのデバイスは、上記した命令から本明細書に記載された動作を実行するよう適切にプログラムまたは指示された既製のデバイスであってもよい。さらに、またはあるいは、これらのデバイスのうちの1つまたは複数は、これらの動作を実行するために論理回路でハードワイヤ接続してもよい。
本明細書で使用する場合、単数で記載されるかまたは単語「1つの(a)」または「1つの(an)」が前にある要素またはステップは、そのような除外が明示的に述べられていない限り、複数の前記要素またはステップを除外しないものとして理解されるべきである。さらに、「一実施形態」という言及は、記載した特徴を含む追加の実施形態の存在を除外すると解釈されるべきではない。さらに、明示的に反対のことが言及されない限り、特定の特性を有する一要素または複数の要素を「備える」または「有する」実施形態は、その特性を有さない、追加の要素を含む可能性がある。
様々な実施形態は、プログレッシブまたはバリューベースの撮像のためのシステムおよび方法を提供する。いくつかの実施形態は、患者の疑わしい医学的状態についての医用画像のバリューベースの取得に関する。様々な実施形態は、プログレッシブ精細化ベースの画像化処理による最小限の画像取得を可能にする一方で、各段階で証拠(例えば、表示画像)を提供して、停止基準を用いてその患者からのさらなる継続的な取得を停止する決定を可能にする。撮像情報取得は、停止基準が満たされるまで継続される。いくつかの実施形態では、停止基準は、プログレッシブ解析を実行し、解析結果の視覚化を提供する取得システムに結合された解析ソフトウェアでプログラムされたプロセッサを使用して決定される。例えば、人間のユーザは、表示された画像および/または表示された画像に関連する情報(例えば、表示された画像を使用して決定された定量的尺度)に基づいて、患者からのさらなる画像取得を停止することを選択することができる。プログレッシブ精細化ベースの撮像処理は、病理検出率を改善するために漸進的に詳細な情報を提供しながら、取得の負担を最小限にするよう構成することができる。本明細書で使用される場合、取得の負担は、必要とされる時間、患者への放射線、患者への不快感、または患者への不便さのうちの少なくとも1つを含む。病理検出率、速度、および/または患者の不快感の間の変化するトレードオフは、撮像処理によってもたらされる可能性がある。例えば、第1の撮像処理は、例えば、病理学的検出の確実性を提供しながら、スキャンに必要な時間、患者に提供される放射線(放射および/または造影)、患者への不快感、および/または患者への不便さを最小化または低減することができる。時間、放射線、および/または不便さが増加する可能性があるが、第1のスキャンに比べて病理検出率も増加した可能性がある、第2のスキャン(および可能であれば、追加のスキャン)を、第1のスキャンの結果が診断に関して充分な確実性を提供しない場合に実行することができる。
一例では、脳卒中解析に関連する患者の撮像が実行される。まず、非造影コンピュータ断層撮影(CT)を取得する。非造影CT画像に基づいて、患者が出血性脳卒中に罹患していると判定された場合、撮像処理は停止され、出血性脳卒中に対処するために手術が行われる。非造影CT画像が出血性脳卒中を示さない場合には、マルチ位相CT情報を取得する次の撮像ステップが実行され、マルチ位相CT情報を用いて再構成された画像が解析されて、停止基準(例えば、血栓の即時除去を可能にするための充分な側副路充満)を判定する。停止基準が満たされている場合、撮像を終了し、患者を手術のために移動させることができる。停止基準が満たされない場合(例えば、充分な側副路充満があるかどうかが画像から判定できない場合)、プログレッシブ撮像を進めてCT灌流撮像データを取得することができる。CT灌流撮像後に停止基準が満たされない場合、例えば、いくつかの実施形態では、プログレッシブ撮像は、MR灌流撮像情報を取得するために進めることができる
別の例では、撮像シーケンスまたは処理は、より大きな領域を迅速に評価するために、第1のスキャンで低線量、厚いスライス、大カバレッジCTスキャンで開始することができる。薄いスライスおよび/または高い放射線を使用して、より小さいFOV(例えば、特定された病変および/または特定の解剖学的構造)上で、次の1回のスキャン(または複数のスキャン)を漸進的に標的にすることができる。
一般に、様々な実施形態において、第1のモダリティのデータの第1の種類またはジャンルが取得され、データの第1の種類またはジャンルを取得した後に停止基準が満たされるかどうかが判定される。停止基準が満たされた場合、さらなる撮像は行われないが、停止基準が満たされない場合、第1のモダリティのデータの種類の漸進的に改良された第2のジャンル(例えば、より詳細なおよび/または複雑な種類のスキャン)が実行される。停止基準が満たされない限り、処理は、第1のモダリティの漸進的に改良されたデータの異なるジャンルまたは種類を取得することによって継続される可能性がある。いくつかの実施形態では、停止基準を満足することなく、第1のモダリティの所定数の種類の画像が再構成された後、第2の撮像モダリティの1つまたは複数のジャンルもしくは種類のスキャンを実行することができる。スキャンの種類および/またはスキャンのモダリティは、停止基準が満たされるかまたは満足されるまで更新することができる。
様々な実施形態は、撮像を改善する少なくとも1つの実施形態の技術的効果は、(例えば、充分な情報が前のスキャンから利用可能である場合に不要な後続のスキャンを排除することによる)スキャン数の低減を含む。少なくとも1つの実施形態の技術的効果は、(例えば、充分な情報が前のスキャンから利用可能である場合に不要な後続のスキャンを排除することによる)放射線量の低減を含む。少なくとも1つの実施形態の技術的効果は、(例えば、前のスキャンを解析して次のスキャンを準備することによって)一連のスキャンを実行する効率の改善を含む。少なくとも1つの実施形態の技術的効果は、脳卒中などの医学的状態を正確に診断するために使用する画像を提供することである。少なくとも1つの実施形態の技術的効果は、スキャンと医療処置の実行との間の遅延の低減を含む。
図1は、一実施形態による撮像システム100を示す。撮像システム100は、例えば、1つまたは複数の撮像モダリティ(例えば、コンピュータ断層撮影(CT)、X線、磁気共鳴撮像(MRI)、超音波、陽電子放射断層撮影(PET)、単一光子放射断層撮影(SPECT))を使用して患者のプログレッシブまたはバリューベースの撮像を実行するよう構成することができる。図示された実施形態は、例えば、第1のモダリティの第1の撮像ユニット102と、第2のモダリティの第2の撮像ユニット104と、処理ユニット120と、出力ユニット(またはディスプレイ)140と、入力ユニット150とを含む。例えば、第1のモダリティはCTとすることができ、第2のモダリティはMRIとすることができる。追加のまたは代替のモダリティ撮像ユニットを様々な実施形態で使用することができる。一般に、撮像システム100は、患者を漸進的に撮像するよう構成される。撮像システム100は、一連の画像データセットを取得するよう構成され、後続の各画像データセットは、先行する画像データセットよりも、より多くの取得負担を必要とする、および/またはさらなる診断詳細を提供する。連続する次の撮像スキャンを続行する前に、撮像システム100は(例えば、処理ユニット120が自動的におよび/またはユーザ入力の使用によって)停止基準に達したかどうかを判定する。既に取得された画像の解析に基づいて停止基準が満たされた場合、プログレッシブ撮像処理は終了し、追加の時間を要する、および/または患者にさらなる放射線(例えば、放射線量、造影放射線)をもたらす、より複雑な撮像スキャンを回避する。しかしながら、停止基準が達成されていない場合(例えば、既に得られたスキャンが診断判定を行うのに充分な情報を提供しない場合)、その後の、より詳細な、煩わしい、および/または複雑な撮像スキャンが実行される。
一例として、撮像システムは、脳卒中患者の解析の一部として利用することができる。患者が出血性脳卒中または虚血性脳卒中に罹患しているかどうかを判定するために、第1のスキャンを行うことができる。第1のスキャン中に取得された情報を用いて再構成された画像に基づいて、その脳卒中が出血性であると判定された場合、さらなるスキャンは行われず、患者は出血性脳卒中の治療を受けることができる。しかしながら、脳卒中が虚血性であると判定された場合、側副路充満が、識別された血栓を外科的処置によって除去することを可能にするのに充分であるかどうかが判定される画像が得られるまで、1回または複数回の後続スキャンを実行することができる。
一般に、第1の撮像ユニット102および第2の撮像ユニット104は、投影データまたは撮像データ(例えば、CTデータまたはCT撮像情報)を取得するよう構成され、処理ユニット120は、1つまたは複数の撮像ユニットによって取得されたデータを使用して画像を再構成するよう構成される。様々な実施形態は、追加の構成要素を含むことができ、または図1に示される構成要素のすべてを含まなくてもよいことに留意されたい(例えば、様々な実施形態は、撮像システムを提供するために、他のサブシステムと共に使用するためのサブシステムを提供してもよく、様々な実施形態は、第1のモダリティの第1の撮像ユニット102のみを含んでもよい)。さらに、図1の別個のブロックとして示される撮像システム100の特定の態様は、単一の物理的実体に組み込まれてもよく、および/または図1の単一ブロックとして示される態様は、2つ以上の物理的実体の間で共有または分割されてもよい。
図示の第1の撮像ユニット102は、X線源112とCT検出器114とを含むCT取得ユニット110を含む。(例示的CTシステムに関する追加情報については、図8および関連する本明細書の説明を参照のこと)。X線源112およびCT検出器114(ボウタイフィルタ、ソースコリメータ、または検出器コリメータなど(図1には図示せず)などの関連部品と共に)は、システム100のガントリ116のボアの中心軸の周りを回転することができる。
一般に、X線源112からのX線は、ソースコリメータおよびボウタイフィルタを介して撮像対象に導くことができる。撮像対象は、例えば、人間の患者またはその一部(例えば、頭部または胴体)とすることができる。ソースコリメータは、所望の視野域(FOV)内のX線が、他のX線を遮断しながら撮像対象を通過することを可能にするよう構成することができる。ボウタイフィルタモジュールは、X線源112からの放射線を吸収して、撮像対象を通過するX線の分布を制御するよう構成することができる。
撮像対象を通過するX線は、対象物によって減衰され、CT検出器114(これに関連する検出器コリメータを有することができる)によって受信され、減衰されたX線を検出し、撮像情報を処理ユニット120に提供する。次いで、処理ユニット120は、CT検出器114によって提供される撮像情報(または投影情報)を使用して、対象物のスキャンされた部分の画像を再構成することができる。処理ユニット120は、図示の実施形態では、画像、例えば、CT検出器114からの撮像情報を使用して処理ユニット120によって再構成された画像を表示するよう構成された出力ユニット140を含むか、または動作可能に結合される。図示された入力ユニット150は、実行されるスキャンに対応する入力を取得するよう構成され、処理ユニット120は、入力を使用して1つまたは複数のスキャン設定(例えば、管電圧、管電流、またはスキャン回転速度など)を決定する。入力ユニット150は、オペレータからの入力を受け取るためのキーボード、マウス、またはタッチスクリーンなどを含むことができ、ならびに/もしくはコンピュータまたは他のソースから入力を受け取るためのポートまたは他の接続装置を含むことができる。
図示の実施形態では、X線源112は、対象物の周りを回転するよう構成される。例えば、X線源112およびCT検出器114は、ガントリ116のボア118の周りに配置され、撮像対象の周りを回転することができる。撮像スキャン中にX線源112が対象物の周りを回転すると、CT検出器114によって1回の完全な回転中に受け取られたX線は、対象物を通過したX線の360度の図を提供する。代替実施形態では、他の撮像スキャン範囲を使用することができる。CT撮像情報は、共に回転またはその一部を構成する一連の図として収集することができる。帰線期間は、第1の図または投影を連続する次の図または投影から分離することができる期間である。
本明細書に示すように、処理ユニット120は、取得ユニットの様々な態様を制御し、および/または取得ユニットを介して取得された情報を使用して画像を再構成するよう構成される。例えば、処理ユニット120は、CT取得ユニット110によって収集された情報を使用して、CT画像(または異なる時間に取得された情報を使用した一連のCT画像)を再構成するよう構成することができる。
図示された処理ユニット120は、入力ユニット150、出力ユニット140、第1の撮像ユニット102、および第2の撮像ユニット104に動作可能に結合される。例えば、処理ユニット120は、CT撮像情報を取得する際に使用されるスキャンパラメータを決定する際に利用することができる入力ユニット150からのスキャンに関する情報を受信することができる。様々な実施形態の処理ユニット120は、停止基準(例えば、既に実行したスキャンから、必要なまたは望ましい後続のスキャンを実行するのに情報が充分であるかどうか)を満たしたこと(または満たしていないこと)に対応する入力ユニット150からのユーザ入力を受信する。別の例として、処理ユニット120は、撮像ユニット(例えば、CT検出器114)から撮像データまたは投影データを受信することができる。もう1つの例として、処理ユニット120は、例えば、X線源112およびCT検出器114などのCT取得ユニット110などの撮像ユニットの1つまたは複数の態様に制御信号を提供することができる。処理ユニット120は、本明細書で説明する1つまたは複数のタスク、機能、またはステップを実行するよう構成された処理回路を含むことができる。本明細書で使用する「処理ユニット」は、必ずしも単一のプロセッサまたはコンピュータに限定されるものではないことに留意されたい。例えば、処理ユニット120は、複数のプロセッサおよび/またはコンピュータを含むことができ、それらは共通のハウジングまたはユニットに統合してもよく、もしくは様々なユニットまたはハウジングに分散してもよい。
図示の処理ユニット120は、第1の撮像ユニット102および第2の撮像ユニット104を制御して、撮像情報を取得するよう構成される。例えば、図示された処理ユニット12は、撮像スキャン中にCT撮像情報を収集するように(例えば、X線源112の起動および停止を制御することによって)CT取得ユニット110を制御するよう構成される。図示した実施形態の処理ユニット120は、CT取得ユニット110を制御して、異なるスキャン手順を用いて異なる種類の撮像情報を取得するよう構成される。例えば、図示された処理ユニット120は、非造影CT撮像スキャン、多相CT撮像スキャン、およびCT灌流撮像スキャンを実行するようCT取得ユニット110を制御するよう構成される。
図1に示す実施形態では、処理ユニットは、再構成モジュール122と、判定モジュール124と、制御モジュール126と、メモリ128とを含む。代替実施形態では、モジュールの他の種類、数、または組み合わせを採用してもよく、および/または本明細書に記載されたモジュールの様々な態様を、異なるモジュールに関連して追加的にまたは代替的に利用してもよいことに留意されたい。一般に、処理ユニット120の様々な態様は、本明細書で説明する方法、ステップ、または処理の1つまたは複数の態様(例えば、方法200またはその態様)を実行するために、他の態様と個別にまたは協力して動作する。
図示した再構成モジュール122は、(例えば、第1の撮像ユニット102のCT検出器114からの)第1の撮像ユニット102および/または第2の撮像ユニット104から取得された撮像または投影データを使用して1つまたは複数の画像を再構成するよう構成される。例えば、再構成モジュール122は、多数の図にわたって取られる(例えば、フル回転もしくはその一部の間、または多くの回転の間、撮像対象の長さに沿った様々な位置で取られる)CT検出器114からの撮像情報を受信し、診断目的で使用される画像を再構成することができる。
図示の実施形態では、判定モジュール124は、第1の撮像ユニット102および/または第2の撮像ユニット104からの情報(例えば、CT取得ユニット110からのCT撮像情報)および/または再構成モジュール122からの情報(例えば、再構成画像)および/または入力ユニット150からの情報(例えば、停止基準を満たしたか、満たしていないかを示すユーザ入力などの停止基準に対応する情報)を受信し、停止基準が満たされているか、または次のスキャンを実行するべきかどうかを判定するよう構成される。いくつかの実施形態では、判定モジュール124は、実行すべき次のスキャンの種類を判定する。
例えば、判定モジュール124は、まず、停止基準が満たされているかどうかを判定することができる。いくつかの実施形態では、判定モジュール124は、再構成画像の解析を介して自動的に判定される対象物または測定可能な1つのパラメータ(または複数のパラメータ)に基づいて停止基準が満たされているかどうかを判定する。いくつかの実施形態では、判定モジュール124は、ユーザ入力の受信(または受信の失敗)に基づいて停止基準が満たされているかどうかを判定する。例えば、いくつかの実施形態では、判定モジュール124(または処理ユニット120の他の態様)は、所定の停止基準が満たされたことに対応する入力が所定の時間内に受信されない場合、所定の停止基準が満たされないと判定し、対応する画像を表示する。例えば、所与の再構成画像の表示後、判定モジュール124は、タイミング期間を開始することができる。タイミング期間が満了する前にオペレータから入力が受信されない場合、判定モジュール124は、停止基準が満たされていないと判定し、処理ユニット120は、次の、より詳細な、または複雑な撮像スキャンを連続して取得するように撮像システム100を制御する。
状況の一例では、脳卒中を罹患している患者は、撮像システム100を使用するプログレッシブ撮像処理を使用して診断することができる。例示的な状況では、最大3回の連続したCT撮像スキャンが実行され、その後の各スキャンでは、必要に応じて、前のスキャンに対する追加的な取得負担が発生する。第1の撮像スキャンは非造影CT撮像スキャンであり、第2の撮像スキャンは多相CT撮像スキャンであり、第3の撮像スキャンは灌流CT撮像スキャンである。第1および第2のスキャンに対して異なる停止基準が採用される。
例示的状況では、CT取得ユニット110でCT撮像情報を収集した後、再構成モジュール122は、非造影画像を再構成し、出力ユニット140を介して(診断支援のために後処理を受けた可能性がある)画像を表示する。例示的な状況における第1のスキャンの停止基準は、出血性脳卒中に対応する出血のレベルの判定に対応する。この例示的状況における停止基準の満足度は、ユーザ入力に基づく。ユーザが、表示された画像に基づいて、出血性脳卒中に対応する出血量が判定されたことを示す入力を入力ユニット150に提供する場合、判定モジュール124は、停止基準が満たされたと判定し、それ以上のスキャンは行わない。その代わりに、患者は、追加のスキャンをするためにさらに時間を取られることなく、出血性脳卒中の治療を受けることができる。しかし、ユーザが出血性脳卒中に対応する出血量が識別されていないことを示す入力を行った(または所定時間内に入力が提供されなかった)場合、判定モジュール124は、停止基準を満たしていないと判定し、その後のスキャンが行われる。
この例示的状況では、次のスキャンは多相CT血管造影(CTA)検査である。造影剤が患者に導入され、CT取得ユニット110は、多相CTA撮像情報を取得する。多相CTAは、例えば、虚血性脳卒中患者の脳における動脈充填の程度を判定する補助をするために使用することができる血管に関する時間的情報を提供する。充分な動脈充填が判定された場合、血栓を識別して除去することができるが、充填が不充分であると、血栓を除去した後の圧力変化による血管破裂の危険性がある。CT取得ユニット110でCT撮像情報が収集された後、再構成モジュール122は、1つまたは複数の画像(例えば、異なる位相または時点で脳の血管に対応する1つまたは複数の画像)を再構成し、および画像(診断支援のために後処理を行っている可能性がある)が出力ユニット140を介して表示される。例示的状況における第2のスキャンの停止基準は、充分なレベルの血管の側副路充満(例えば、血管破裂の過度のリスクを伴うことなく血栓の除去を可能にするのに充分なレベル)の判定に対応する。この例示的状況における第2の停止基準の満足度は、ユーザ入力に基づく。ユーザが、表示された画像に基づいて、充分なレベルの側副路充満が判定されたことを示す入力を入力ユニット150に提供する場合、判定モジュール124は、停止基準が満たされたと判定し、それ以上のスキャンは行わない。その代わりに、患者は、追加のスキャンをするためにさらに時間を取られることなく、虚血性脳卒中の治療(例えば、血栓の除去)を受けることができる。しかし、ユーザが、側副路充満のレベルが不充分であることを示す入力を提供するか、充分なレベルの側副路充満が存在するかどうかを判定することができないことを示す入力を提供する(または、ユーザが所定の期間内に入力を提供できない)場合、判定モジュール124は、停止基準が満たされなかったと判定し、次のスキャンを実行する。
この例示的状況では、続くスキャンはCT灌流検査である。多相CTA検査に関連する造影剤が充分に洗い流された後、異なる造影剤がCT灌流解析のために患者に導入され、CT取得ユニット110がCT灌流撮像情報を取得する。多相CTAは、脳組織に関する情報、および組織を生きたままにするのに充分な血流が提供されているかどうかの情報を提供する。多相CTA撮像情報が、側副路充満が充分であるかどうかを判定するのに充分でない場合、側副路充満が充分であるかどうかをより良く判定するためにCT灌流情報を取得することができる。
漸進的な一連のスキャンにおける様々な撮像スキャンは、対応するスキャンパラメータまたは設定(例えば、情報を取得するために使用されるパラメータまたは設定)ならびに表示パラメータまたは設定(例えば、表示に便利な後処理で使用されるパラメータまたは設定)を有することができることに留意されたい。いくつかの実施形態では、判定モジュール124(および/または処理ユニット120の他の態様もしくは部分)は、実行されるスキャンの次の種類、ならびにスキャンおよび表示パラメータを判定する。例えば、いくつかの実施形態では、プログレッシブ脳卒中撮像シーケンスの場合、非造影CT画像の解析後に停止基準が満たされない場合、判定モジュール124は、多相CTA撮像スキャンが実行されるべきであると判定し、多相CTA画像取得のための適切な設定を使用するよう制御モジュール126に指示する。さらに、判定モジュール124は、多相CTAで使用するために調整された後処理ルーチンが使用されるべきであると判定し、多相CTA撮像情報を使用して再構成された画像を後処理および表示するのに使用するために再構成モジュール122(または、処理ユニット120の他の態様)に適切な情報を提供する。
図示の実施形態では、判定モジュール124は、制御モジュール126と通信可能に接続され、制御モジュール126は、第1の撮像ユニット102および/または第2の撮像ユニット104(例えば、CT取得ユニット110および/またはシステム100の他の態様)を制御し、判定モジュール124によって要求される撮像スキャンを実行するよう構成される。
出力ユニット140は、ユーザに情報を提供するよう構成される。出力ユニット140は、例えば、画像(例えば、本明細書で説明するように再構成され、後処理された画像)を表示するよう構成される。さらに、出力ユニット140は、とりわけ、停止基準の判定に関する指示を提供し、判定モジュール124が、表示された画像に対応する逆入力、測定または判定されたパラメータがないため停止基準を満たさないと判定した時点を示すタイマを表示する。出力ユニット140は、スクリーン、タッチスクリーン、またはプリンタなどのうちの1つまたは複数を含むことができる。
入力ユニット150は、実行されるスキャンまたは逐次スキャンの1つまたは複数の設定または特性に対応する入力を取得し、入力(または入力に対応する情報)を処理ユニット120に提供するよう構成することができ、入力を使用して、撮像情報を取得し、撮像情報を再構成し、または表示するために1つもしくは複数の画像を後処理もしくは準備することなどができる。例えば、入力ユニット150は、手順を指定する命令を受け取ることができ、次いで、処理ユニットは、スキャンの適切なシーケンスおよび対応する再構成および後処理ルーチンを決定する。入力は、例えば、脳卒中解析などの実行すべきプログレッシブ撮像の種類を含むことができる。入力ユニット150から入力を受け取ったことに応答して、処理ユニット120は、対応する一連のスキャンを自動的に開始し、停止基準が満たされるまで選択的に実行することができる。入力ユニット150は、タッチスクリーン、キーボード、またはマウスなどを介して、手動のユーザ入力を受け入れるよう構成することができる。さらに、またはあるいは、入力ユニット150は、例えば、ポートまたは他の接続装置を介して、撮像システム100の別の態様、別のシステム、またはリモートコンピュータから情報を受信することができる。様々な実施形態において、入力ユニット150は、基準満足度に関する入力も受け取る。いくつかの実施形態では、ユーザは、表示画像の目視検査に基づいて、停止基準が満たされているかどうか(および/または画像が判定を行うのに充分な情報を提供していないかどうか)の入力を提供することができる。いくつかの実施形態では、ユーザは、停止基準が満たされているかどうかの指示を提供することができ、処理ユニット120は、所定の期間内に入力が受信されない場合、自動的に連続して次のスキャンに進むことができる。次の撮像段階へ自動的に進むために所定の時間を使用することは、様々な実施形態における一連のスキャンのために要する時間を減少させる。
図2は、様々な実施形態による、例えば脳卒中解析の一部として患者などの対象物を漸進的に撮像する方法200のフローチャートを提供する。方法200は、例えば、本明細書で説明した様々な実施形態の構造または態様(例えば、システムおよび/または方法)を用いることができ、あるいはそれらによって実行することができる。様々な実施形態では、特定のステップを省略または追加することができ、特定のステップを組み合わせることができ、特定のステップを同時に実行することができ、特定のステップを並行して実行することができ、特定のステップを複数のステップに分割することができ、特定のステップを異なる順序で実行することができ、あるいは特定のステップまたは一連のステップを反復的な形式で再実行することができる。様々な実施形態では、方法200の部分、態様、および/または変形は、ハードウェア(例えば、処理ユニット120の1つまたは複数の態様)に指示する1つまたは複数のアルゴリズムとして使用して、本明細書で説明する1つまたは複数の動作を実行することを可能にすることができる。
202において、対象物(例えば、患者)が位置決めされる。例えば、対象物は、例えば、CT取得ユニット(例えば、CT取得ユニット110)を含むことができる、撮像システム(例えば、第1の撮像ユニット102または第2の撮像ユニット104)のボア内のテーブル上に位置づけられた人間の患者とすることができる。
204において、プログレッシブ撮像ルーチンまたは手順が選択される。様々な実施形態におけるプログレッシブ撮像ルーチンは、状態の診断を助けるために行われる増加する取得負担または詳細の一連のスキャンを指定する。例えば、脳卒中診断プログレッシブ撮像ルーチンの場合、一連のスキャンは、非造影CTスキャン、多相造影CTAスキャン、およびCT灌流スキャンを含むことができる。プログレッシブ撮像ルーチンは、処理ユニット(例えば、入力ユニット150を介して処理ユニット120)に供給されるユーザ入力に基づいて選択または決定することができる。図3は、プログレッシブ撮像ルーチンを選択するためにユーザが入力を提供するために使用することができる様々な実施形態によるディスプレイ300の例示的な図を提供する。ディスプレイ300は、ユーザがスキャンされる身体の一部を特定することを可能にする様々なユーザ誘導機能310を含む。図3に示すように、図示のディスプレイはまた、利用可能なスキャン手順に対応するユーザ選択ボタン320を含む。図示された実施形態では、ユーザは「Fast脳卒中」を選択した。ユーザ選択に応答して、処理ユニットは、選択されたルーチンの所定の取得、再構成、および表示パラメータを使用して一連のスキャンを実行するようにシステムを準備することができる。
206において、第1の種類の撮像情報が取得される。例えば、様々な実施形態における第1の種類の撮像情報は、第1の撮像ユニットの第1のモダリティを使用して取得される。いくつかの実施形態では、第1の種類の撮像情報は非造影情報である。いくつかの実施形態では、X線源および検出器を、撮像される対象物の周りに回転させ、検出器で撮像情報を収集するために所定のスキャンパラメータによって規定される方法で動作させることができる。一例として、図示された実施形態では、208において、第1の種類の診断撮像情報は、非造影CTであり(例えば、CT取得ユニット110を介して取得される)、第1の停止基準は、出血性脳卒中に対応する出血のレベルの判定である。
210において、第1の画像が再構成される。第1の画像は、206で取得された第1の撮像情報を用いて再構成される。212において、再構成された画像は自動的に後処理される。例えば、様々な実施形態において、処理ユニット(例えば、処理ユニット120)は、選択されたプログレッシブ撮像ルーチンに基づいて、所定の後処理ルーチンを使用して再構成された第1の画像を後処理して、停止基準が満たされたかどうかを判定するために便利で容易に利用可能な表示をユーザに提供することができる。図4は、様々な実施形態による例示的な非造影CTディスプレイ400を示す。ディスプレイ400は、ディスプレイの観察者が使用可能な4つの図(すなわち、斜め図410、軸方向図420、矢状図430、および冠状図440)を含み、出血性脳卒中に対応する出血のレベルが存在するかどうかを判定する。
214において、第1の画像が解析されて、第1の画像によって撮像を終了するための第1の停止基準が満たされているかどうかを判定する。いくつかの実施形態における解析は、ディスプレイ(例えば、ディスプレイユニット140)上の画像を見るオペレータまたはユーザによって実行することができる。ディスプレイは、撮像システムの他の態様から離れていてもよく、したがって、スキャン設備に医師がいなくても、停止基準が満たされたかどうかを判定することができることに留意されたい。いくつかの実施形態では、処理ユニット(例えば、処理ユニット120)は、停止基準が満たされているかどうかを判定するために、再構成画像に対応する1つまたは複数の決定可能なパラメータまたは客観的測定値を解析するよう構成することができる。図示の実施形態では、216において、出血性脳卒中に対応する出血のレベルが存在するかどうかを判定するために、第1の画像が解析される。
218において、第1の停止基準が満たされているか、すなわち満足されているかが判定される。一般に、停止基準が満たされている場合、プログレッシブ撮像ルーチンは、先のスキャンが特定の診断のための充分な情報を提供する場合に不要な追加のより複雑なスキャンを実行する前に終了することができる。第1の停止基準が満たされている場合、方法200は220に進み、一連の撮像は終了する。停止基準が満たされない、すなわち満足されない場合、方法は222に進む。例えば、出血性脳卒中と一致する出血のレベルが存在する場合、患者は、出血性脳卒中の治療のために即座に撮像装置から移され、スキャンを行う時間をさらに費やすことはない。しかし、出血のレベルが出血性脳卒中に対応しない場合、虚血性脳卒中を診断することができ、例えば、血栓の位置ならびに側副路充満の程度を判定するために、追加の撮像を行うのが有益である。
222において、第2の種類の診断撮像情報が取得される。例えば、様々な実施形態では、第2の種類の診断撮像情報は、第1の種類の診断撮像情報と同じ第1のモダリティであり、同じ第1の撮像ユニットで取得され、第1の種類の診断撮像情報に比べて取得負担のレベルが増大する。いくつかの実施形態では、第2の種類の撮像情報は多相情報である。例えば、図示した実施形態では、224において、第2の種類の診断撮像情報は多相CTA情報であり、第2の停止基準は血管の充分なレベルの側副路充満の判定である。図示の実施形態では、多相CTA撮像処理の一部としてCT情報を取得する前に、造影剤が患者に導入される。
226において、第2の画像が再構成される。第1の画像は、222で取得された第2の種類の診断撮像情報を用いて再構成される。228において、再構成された画像は自動的に後処理される。例えば、様々な実施形態において、処理ユニット(例えば、処理ユニット120)は、選択されたプログレッシブ撮像ルーチンに基づいて、所定の後処理ルーチンを使用して再構成された第2の画像を後処理して(例えば、多相CTAに併せて調整された後処理)、停止基準が満たされたかどうかを判定するために便利で容易に利用可能な表示をユーザに提供することができる。図5は、例示的なCTAディスプレイ500を示し、図6は、様々な実施形態による例示的なCTAディスプレイ600を示す。処理ユニット120は、226で再構成された画像の受信に応答して、様々な実施形態において、226で再構成された画像に対して後処理を自動的に実行してディスプレイ500およびディスプレイ600を使用するように準備する。ディスプレイ500は、冠状図510、軸方向図520、および矢状図530の3つの異なる図で最大強度投影(MIP)の一部として頚動脈を表示する。ディスプレイ600は、第1の位相図610、第2の位相図620、および第3の位相図630の異なる時間または位相の3つの軸方向図を表示する。ディスプレイ500およびディスプレイ600は、充分な側副路充満があるかどうかを判定するために観察者によって使用することができる。例えば、充分な側副路充満がある場合、患者は血栓を除去する血管内処置に進むことができるが、そうでなければ、血栓除去後の圧力変化による血管破裂のリスクのために別の方法を選択することができる。
230において、第2の画像が解析されて、第2の画像によって撮像を終了するための第2の停止基準が満たされているかどうかを判定する。いくつかの実施形態における解析は、ディスプレイ(例えば、ディスプレイユニット140)上の1つまたは複数の画像を見るオペレータまたはユーザによって実行することができる。ディスプレイは、撮像システムの他の態様から離れていてもよく、したがって、スキャン設備に医師がいなくても、停止基準が満たされたかどうかを判定することができることに留意されたい。いくつかの実施形態では、処理ユニット(例えば、処理ユニット120)は、停止基準が満たされているかどうかを判定するために、再構成画像に対応する1つまたは複数の決定可能なパラメータまたは客観的測定値を解析するよう構成することができる。図示された実施形態では、232において、血栓除去を可能にするのに充分な側副路充満があるかどうかを判定するために、第1の画像がディスプレイの観察者によって解析される。様々な実施形態において、除去すべき血栓の位置を234で決定することもできることに留意されたい。
236において、第2の停止基準が満たされているか、すなわち満足されているかが判定される。第2の停止基準が満たされている場合、方法200は238に進み、一連の撮像は終了する。停止基準が満たされない、すなわち満足されない場合、方法は240に進む。例えば、充分な側副路充満が存在する場合、スキャンを実施する追加の時間を費やさずに、虚血性脳卒中の治療(例えば、識別された血栓の除去)のために患者を撮像装置から即座に移すことができる。しかし、側副路充満レベルが充分でない場合や、側副路充満が充分であるかどうかが多相CTA解析から判断できない場合は、例えば、側副路充満の程度を判定するために追加の撮像を行うことが有益である可能性がある。
240において、第3の種類の診断撮像情報が取得される。例えば、様々な実施形態では、第3の種類の診断撮像情報は、第1の種類および第2の種類の診断撮像情報と同じ第1のモダリティであり、同じ第1の撮像ユニットで取得され、第2の種類の診断撮像情報に比べて取得負担のレベルが増大する。図示した実施形態では、242において、第3の種類の診断撮像情報は、CT灌流情報である。CTAは、マクロレベルで血管を見ることにより理解することができ、CT灌流は、組織レベルで患者に関する情報を提供することによって、さらなる複雑さまたは詳細を提供することができる。組織レベルパラメータは、様々な実施形態におけるCT灌流解析の一部として計算され、1つまたは複数の定量的測定値を提供して、側副路充満のレベルを決定するのを助ける。図示の実施形態では、CT灌流撮像処理の一部としてCT情報を取得する前に、造影剤が患者に導入される。様々な実施形態では、第2の撮像情報に関する再構成および関連解析は、第2の撮像情報を取得する際に使用される造影剤のウォッシュアウト期間中に実行することができる。様々な実施形態において、患者は、第2の種類の診断撮像情報の取得、第2の画像の再構成、第2の画像の解析、および第3の種類の診断撮像情報の取得の間に第1の撮像ユニットのテーブル上に維持されることに留意されたい。
244において、第3の画像が再構成される。第3の画像は、240で取得された第3の種類の診断撮像情報を用いて再構成される。246において、再構成された画像は自動的に後処理される。例えば、様々な実施形態において、処理ユニット(例えば、処理ユニット120)は、選択されたプログレッシブ撮像ルーチンに基づいて、所定の後処理ルーチンを使用して再構成された第3の画像を後処理して(例えば、CT灌流に合わせて調整された後処理)、便利で容易に利用可能な表示をユーザに提供することができる。図7は、様々な実施形態による例示的なCT灌流700を示す。処理ユニット120は、244で再構成された画像の受信に応答して、様々な実施形態において、244で再構成された画像に対して後処理を自動的に実行してディスプレイ700を使用するように準備する。ディスプレイ700は、1つまたは複数の定量的測定値に対応する画像図710、730、および740、ならびにグラフ720を含む。提示された特定の図および様々な実施形態におけるディスプレイ700(および/または本明細書で説明する他のディスプレイ)の提示された図のフォーマットは、例えば、所定の観察者の好みに基づいて、処理ユニットによって自動的に選択される。例えば、所定の種類の再構成画像を受信したことに応答して、処理ユニットは、所与の種類の再構成画像に対応する所定の後処理ルーチンを自動的に選択して、表示するためにディスプレイを準備することができる。
248において、第3の画像が解析される(例えば、プログレッシブ撮像ルーチンに追加のスキャンが残っている場合に停止基準が満たされているかどうかを判定するため)。いくつかの実施形態における解析は、ディスプレイ(例えば、ディスプレイユニット140)上の1つまたは複数の画像を見るオペレータまたはユーザによって実行することができる。ディスプレイは、撮像システムの他の態様から離れていてもよく、したがって、スキャン設備に医師がいなくても、停止基準が満たされたかどうかを判定することができることに留意されたい。いくつかの実施形態では、処理ユニット(例えば、処理ユニット120)は、停止基準が満たされているかどうかを判定するために、再構成画像に対応する1つまたは複数の決定可能なパラメータまたは客観的測定値(例えば、CT灌流撮像処理によって提供される1つまたは複数の客観的測定値)を解析するよう構成することができる。いくつかの実施形態では、第3の画像は側副路充満について解析され、対応する停止基準は、血栓を除去するための手術を受けさせるために患者を移動させることが可能となるのに側副路充満の量が充分であると判定される場合である。
250において、図示の実施形態では、第4の画像取得が実行される。様々な実施形態における第4の画像取得は、第1、第2、および第3の種類の診断情報に使用されたものとは異なる第2のモダリティを使用する。例えば、第1、第2、および第3の種類の診断情報に対してCTを用いることができるが、第4の画像取得はMRIを用いて行うことができる。いくつかの実施形態では、第4の画像取得は、以前に取得された情報にさらなる複雑さまたは詳細を提供するために実行することができ、他の実施形態では、第4の画像取得を用いて異なる解剖構造または診断に関する情報を提供することができる。様々な実施形態において、第4の画像取得は、第3の種類の診断撮像情報に対応する停止基準が満たされない場合にのみ実行される。
異なる実施形態において、撮像段階または取得(または潜在的な撮像段階もしくは取得)の回数を変更してもよいことに留意されたい。一般に、いくつかの実施形態では、各撮像段階またはステップは、取得、再構成、表示、解析、および停止基準が満たされた場合の判定を含む。本シーケンスは、停止基準が満たされるまで、各後続の段階またはステップごとに(例えば、異なる撮像技術を使用して)繰り返すことができる。
本明細書に記載される様々な方法および/またはシステム(および/またはその態様)は、医用撮像システムを使用して実施することができる。例えば、図8は、本明細書で説明される様々な実施形態を実施するために利用することができる例示的なCT撮像システム900のブロック概略図である。CT撮像システム900は、スタンドアロン撮像システムとして示されているが、いくつかの実施形態では、CT撮像システム900がマルチモダリティ撮像システムの一部を形成することができることに留意すべきである。例えば、マルチモダリティ撮像システムは、CT撮像システム900および陽電子放射断層撮影(PET)撮像システム、または単一光子放射断層撮影(SPECT)撮像システムを含むことができる。また、本明細書に記載された機能を実行することができる他の撮像システムが使用されると考えられることも理解されるべきである。
CT撮像システム900は、ガントリ910の反対側の検出器アレイ914に向かってX線ビームを投影するX線源912を有するガントリ910を含む。X線源912に近接してソースコリメータ913が設けられている。様々な実施形態において、ソースコリメータ913は、本明細書で説明するような広いコリメーションを提供するよう構成することができる。検出器アレイ914は、被験者917を通過する投影X線を共に感知する行およびチャネルに配置された複数の検出器要素916を含む。撮像システム900はまた、検出器アレイ914から投影データを受信し、投影データを処理して被験者917の画像を再構成するコンピュータ918を含む。コンピュータ918は、例えば、処理ユニット120の1つまたは複数の態様を含むことができ、または処理ユニット120の1つまたは複数の態様に動作可能に結合することができる。動作時、オペレータから供給されるコマンドおよびパラメータがコンピュータ918によって使用されて、制御信号および情報を提供して電動テーブル922を再配置する。より具体的には、電動テーブル922は、被験者917をガントリ910に出し入れするために利用される。特に、テーブル922は、ガントリ910を通って延びるガントリ開口(図示せず)を介して被験者917の少なくとも一部を移動させる。さらに、テーブル922を使用して、ガントリ910のボア内で被験者917を垂直方向に移動させることができる。
示されている検出器アレイ914は、複数の検出器要素916を含む。各検出器要素916は、衝突するX線ビームの強度を表す電気信号または出力を生成し、それによって、ビームが被験者917を通過する際のビームの減衰を推定することを可能にする。X線投影データを取得するためのスキャン中、ガントリ910およびガントリ910に取り付けられた構成要素は、回転中心940の周りを回転する。図8は、検出器要素916の単一列(すなわち、検出器列)のみを示すしかしながら、マルチスライス検出器アレイ914は、複数のスライスに対応する投影データをスキャン中に同時に取得することができるように、検出器要素916の複数の平行な検出器列を含む。
ガントリ910の回転およびX線源912の動作は、制御機構942によって制御される。制御機構942は、X線源912に電力およびタイミング信号を供給するX線コントローラ944と、ガントリ910の回転速度および位置を制御するガントリモータコントローラ946とを含む。制御機構942内のデータ収集システム(DAS)948は、検出器要素916からのアナログデータをサンプリングし、そのデータを、後続処理のために、デジタル信号に変換する。画像再構成装置950は、DAS948からサンプリングされデジタル化されたX線データを受け取り、高速画像再構成を実行する。再構成された画像は、記憶装置952に画像を記憶するコンピュータ918に入力される。コンピュータ918はまた、キーボードを有するコンソール960を介してオペレータからコマンドおよびスキャンパラメータを受信することもできる。関連する視覚的ディスプレイユニット962は、オペレータがコンピュータからの再構成された画像および他のデータを観察することを可能にする。コンピュータ918またはコントローラなどの1つまたは複数は、本明細書で説明する処理ユニット120などの処理ユニットの一部として組み込んでもよいことに留意されたい。
オペレータから供給されたコマンドおよびパラメータは、DAS948、X線コントローラ944、およびガントリモータコントローラ946に制御信号および情報を提供するためにコンピュータ918によって使用される。さらに、コンピュータ918は、電動テーブル922を制御して被験者917をガントリ910内で位置決めするテーブルモータコントローラ964を動作させる。具体的には、テーブル922は、ガントリ開口を介して被験者917の少なくとも一部を移動させる。
様々な実施形態では、コンピュータ918は、デバイス970、例えば、CD-ROMドライブ、DVDドライブ、磁気光学ディスク(MOD)デバイス、またはネットワークもしくはインターネットなどのCD-ROM、DVD、もしくは別のデジタルソースなどの、信号を除外する、有形の非一時的コンピュータ可読媒体972から命令および/またはデータを読み取るイーサネットデバイスなどのネットワーク接続デバイスを含む任意の他のデジタルデバイス、ならびにまだ開発されていないデジタル手段を含む。別の実施形態において、コンピュータ918は、ファームウェア(図示せず)に格納される命令を実行する。コンピュータ918は、本明細書で説明する機能を実行するようプログラムされており、本明細書で使用される場合、コンピュータという用語は、当技術分野でコンピュータと呼ばれる集積回路に限定されず、コンピュータ、プロセッサ、マイクロコントローラ、マイクロコンピュータ、プログラマブル論理コントローラ、特定用途向け集積回路、および他のプログラマブル回路に関し、これらの用語は本明細書では互換的に使用される。
例示的な実施形態では、X線源912および検出器アレイ914は、X線ビーム974が被験者917と交差する角度が常に変化するように、撮像面内でガントリ910を用いて撮像対象の被験者917の周りを回転する。1つのガントリ角度での検出器アレイ914からのX線減衰測定値のグループ、すなわち、投影データは、「図」または「投影」と呼ばれる。被験者917の「スキャン」は、X線源912および検出器アレイ914の1つまたは複数の回転中に異なるガントリ角度または図角度で行われる図のセットを備える。CTスキャンでは、投影データを処理して、被験者917の3次元ボリュームに対応する画像を再構成する。いくつかの実施形態では、1回転未満のデータを使用して画像を再構成することができることに留意されたい。例えば、マルチソースシステムでは、実質的に1回転未満のものを利用することができる。したがって、いくつかの実施形態では、360度図に対応するスキャン(またはスラブ)は、1回転未満で取得することができる。
上述したように、図1に示す例では、判定モジュール124は、1つまたは複数の撮像ユニットからの情報ならびに/もしくは再構成モジュール122および/または入力ユニット150からの情報を受信し、例えば、停止基準が満たされているかどうか、または後続のスキャンが実行されるべきかどうかを判定するよう構成される。いくつかの実施形態では、判定モジュール124は、実行すべき次のスキャンの種類を判定する。またさらに、代替的または追加的に、判定モジュール124(および/または処理ユニット120の他の態様)を使用して、画像の血管などの画像の表示のための配色を決定することができ、停止基準が満たされたかどうかを判定すること、および/または後続のスキャンの判定と関連して使用することができる。
例えば、いくつかの実施形態では、図1を続けて参照すると、CT撮像システム100は、CT撮像ユニット110(X線源112およびCT検出器114を含む)、ディスプレイユニット140、および処理ユニット120を含む。上述した処理ユニット120の構成に加えて、またはこれに代えて、様々な実施形態における処理ユニット120は、CT撮像ユニット110を介してCT撮像情報の少なくとも3つの位相を取得し、CT撮像情報で示された血管の撮像強度に関するタイミング情報を決定し、タイミング情報に基づいて血管に対応する色を割り当て、少なくとも3つの位相からCT撮像情報を使用して画像を再構成するよう構成され、再構成画像で示される血管は、決定されたタイミング情報に基づいて対応する色を用いて表示され、処理ユニット120はさらに、ディスプレイユニット140にその画像を表示するよう構成される。タイミング関連情報を提供することに加えて、表示された画像は、1つまたは複数の血管における造影剤の取り込みがどれほど強いかに関する情報または表示を提供することもできることに留意されたい。例えば、様々な実施形態では、重要なまたは強い流れを有さない血管は、比較的より重要または強い流れを有する血管よりも透明に表示される。したがって、タイミング情報に基づいて異なる流れに色を割り当てることに加えて、処理ユニット120は、1つまたは複数の血管内の対応する流れの強度に関する情報を提供するために、提供された色に相対的透明度または強度を割り当てることもできる。
CT撮像情報の少なくとも3つの位相は、異なる時間に取得される。例えば、CT撮像情報の少なくとも3つの位相は、造影剤が少なくともいくつかの位相について血管を通って移動するにつれて、異なる時間に取得することができる。いくつかの実施形態では、例えば、脳の血管内の閉塞を判定および/または識別するために、CTAを実行することができる。様々な実施形態では、3つ以上の位相を取得することができる。例えば、非造影CT情報、または造影剤の導入前に取得された情報として、CT撮像情報の追加の位相を取得することができる。さらに、造影剤が血管を通って移動するにつれて、3つ以上の位相が取得される可能性もある。例えば、いくつかの実施形態では、造影剤が血管を通って移動するにつれて9つの位相を取得する可能性がある。一般に、より多くの位相が取得されるほど、タイミング情報(例えば、血管の所与の部分に対する最大強度の時間)の達成可能な分解能が高くなり、一方で、取得した位相が少なくなると、X線量および計算要件が低減する。したがって、取得される位相の特定の数は、所与の特定の用途に合わせて調整することができる。
図9は、脳における血流のCTA解析のためにCT撮像情報の様々な位相を取得する1つの例示的タイムライン975を示す。図9に見られるように、図示された例について取得された位相は、事前造影位相980、第1の造影位相982、第2の造影位相984、および第3の造影位相986を含む。事前造影位相980は、造影剤の導入前に取得される。事前造影位相980で取得されたCT撮像情報は、事前造影情報として理解することができる。例えば、事前造影情報は、1つまたは複数の造影位相の間に取得された情報の相対最大強度を判定するために(例えば、処理ユニット120によって)使用される可能性のあるベースライン強度を決定するために利用することができる。
造影位相(第1の造影位相982、第2の造影位相984、および第3の造影位相986)は、造影剤の流れに対応し、造影剤の導入後に取得される。CT撮像情報の造影位相は、異なる時間に取得される。例えば、CT撮像情報の第1の造影位相982は、第1の時間990で取得することができ、第2の造影位相984は、第2の時間992(図示の実施形態では、第1の時間990の10秒後)で、および第3の位相986は、第3の時間994(図示の実施形態では、第1の時間990の18秒後)で取得することができる。いくつかの実施形態では、CT撮像情報取得の位相は、一般に、脳を通る血流の位相に対応することができる。例えば、CT撮像情報の第1の造影位相982は、血流の動脈位相(例えば、流れが正常な動脈が撮像強度ピークに到達する血流の位相)に対応することができ、CT撮像情報の第2の造影位相984は、血流の静脈位相(例えば、流れが正常な静脈が撮像強度ピークに到達する血流の位相)に対応することができ、CT撮像情報の第3の造影位相986は、血流の後部静脈位相(例えば、流れが遅れている動脈が撮像強度ピークに到達する血流の位相)に対応することができる。しかし、他の実施形態では、CT撮像情報取得の位相は、血流の特定の位相に直接対応する必要はないことに留意されたい。
図10は、図9のCT撮像情報取得の位相に対応する例示的な画像を示す。図10は、(事前造影位相980の間に取得された)事前造影画像1010、(第1の造影位相920の間に取得された)第1の造影位相画像1020、(第2の造影位相930の間に取得された)第2の造影位相画像1030、および(第3の造影位相940の間に取得された)第3の造影位相画像1040を含む。図10に関連して説明する例では、2つの血管(図10に示す脳の右側の正常動脈1002および図10で示す脳の左側の遅延動脈1004)の撮像について説明される。正常動脈1002は、正常または遮断されていない流れを有すると理解され得るが、遅延動脈1004は、遅延流(例えば、流れを完全に遮断しない遅延動脈1004の閉塞による遅延)の影響を受ける。
造影剤が導入された後、取得の第1の造影位相920からの情報が、第1の造影位相画像1020を再構成するために使用される。同様に、取得の第2の造影位相930からの情報は、第2の造影位相画像1030を再構成するために使用され、取得の第3の造影位相940からの情報は、第3の造影位相画像1040を再構成するために使用される。次に、各画像について正常動脈1002と遅延動脈1004との両方の強度が判定される。
図11は、正常動脈1002に対する正常強度曲線1121および遅延動脈1004に対する遅延強度曲線1123を含む、図10の様々な画像の例示的強度を示す。図11に見られるように、正常動脈1002に対応する位置における事前造影画像1010の強度は、ベースライン1112を提供する。また、遅延動脈1004に対応する位置における事前造影画像1010の強度は、ベースライン1114を提供する。
さらに、正常動脈1002における第1の造影画像1020の強度は、正常動脈1002に対する正常強度曲線1121の点1122を提供し、遅延動脈1004における第1の造影画像1020の強度は、遅延動脈1004に対する遅延強度曲線1123の点1124を提供する。また、正常動脈1002における第2の造影画像1030の強度は、正常強度曲線1121の点1132を提供し、遅延動脈1004における第2の造影画像1030の強度は、遅延強度曲線1123の点1134を提供する。同様に、正常動脈1002における第3の造影画像1040の強度は、正常強度曲線1121の点1142を提供し、遅延動脈1004における第3の造影画像1040の強度は、遅延強度曲線1123の点1144を提供する。一般に、対象の撮像ボリュームの各ボクセルの強度は、経時的に各ボクセルの強度に対する曲線を生成するために各取得された位相についてプロットすることができる。その場合、タイミング情報は、各ボクセルについて個別に決定されて、取得された位相からの撮像情報を使用して再構成画像内のその特定のボクセルの色付けを決定することができる。例えば、タイミング情報は、ボクセル単位での経時的なCT撮像情報の最大強度に基づくことができる。したがって、様々な実施形態では、その特定のボクセルの最大強度点を記述する時間または対応する時間を使用して、画像内のボクセルを表すためにどの色を使用するかを決定することができる。
図11に示す例では、通常の強度曲線1121は1122(すなわち、t=0秒)でピーク値となり、遅延強度曲線1123は1144(すなわち、t=18秒)でピーク値となる。したがって、正常動脈1102に関連するボクセルには、t=0秒に関連する(またはt=0秒を含む時間範囲に関連する)第1の色を割り当てることができ、遅延動脈1104に関連するボクセルは、t=18秒に関連する(またはt=18秒を含む時間範囲に関連する)異なる色を割り当てることができる。
例えば、いくつかの実施形態では、CT画像取得位相からの情報を用いて再構成画像の第1の色が動脈位相に対応する(例えば、動脈位相に対応する時間範囲内で最大強度を有する血管のボクセルに第1の色が割り当てられる)。また、再構成画像の第2の色は静脈位相に対応する(例えば、静脈位相に対応する時間範囲内で最大強度を有する血管のボクセルに第2の色が割り当てられる)。さらに、再構成画像の第3の色は、後部静脈または遅延位相に対応する(例えば、後部静脈または遅延位相に対応する時間範囲内で最大強度を有する血管のボクセルに第3の色が割り当てられる)。例えば、いくつかの実施形態では、第1の色は赤色であり、第2の色は緑色であり、第3の色は青色である。したがって、血流の動脈位相の間に(例えば、造影剤の存在により)最大強度に達する血管が赤で示され、血流の静脈位相の間に最大強度に達する血管が緑色で示され、血流の後部静脈または遅延位相の間に最大強度に達する血管が青色で示される。期間が適切に設定されると、画像内で赤色に見える血管は正常な流れを有すると理解することができ、ブロー内に現れる血管は遅延流を有すると理解することができ、それにより閉塞がどこで起こるか、および閉塞による脳への損傷の程度を判定するのを助けることができる。
図12は、特定のボクセルの強度曲線1200およびベースライン1202を含む例示的なプロットを示す。強度曲線1200の強度値は、造影剤の導入後の異なる時点で取得され、ベースライン1202の強度は造影剤の導入前に取得される。図12に示される例示的な強度曲線1200は、血流の静脈位相に対応する中間時間において最大値となり、静脈のボクセルを示すものとして理解することができる。図12に見られるように、強度曲線1200は、強度(例えば、ハウンズフィールド単位)を経時的にプロットしたものである。相対強調1210は、強度曲線1200とベースライン1202との間の差として測定することができ、造影剤による所与の時間におけるボクセルの強調を表す。図12のプロットは、経時的な血管の強度を示す最大強度画像を生成するために使用することができる。このような画像は、異なる時間に取得された複数の画像の強度の概要を提供する。画像は、各ボクセルについて、CTA値の時間的最大値として生成することができる。図12のプロットは、(例えば、造影剤が導入される前に取得される)造影剤を用いずに対応するボクセルについて得られたベースライン強度に対する異なる時間における測定強度と造影剤との間の差異を示す相対強調画像を生成するためにも使用することができる。このような最大強度画像または相対強調画像を使用して生成されたボリュームのスライスに対する図は、現在のスライス位置の上および下の血管を示すために他のスライスと組み合わせることができることに留意されたい。ノイズの影響を低減するために、および/または背景構造または組織によって引き起こされる撮像強度を説明するために、様々な実施形態において相対強調を使用することができる。
様々な実施形態では、処理ユニット120は、CT撮像情報の個々のボクセルについて、経時的な強度のプロットを生成し、プロットによって画定された曲線の下の領域を決定し、曲線の下の領域を使用して、(特定のボクセルに色を割り当てるために使用される)タイミング情報を決定するよう構成される。図13は、特定のボクセルに対する経時的な強度のプロット1300の一例を示す。プロット1300は、造影剤が存在しない場合の強度値に対応するベースライン1303を含む、経時的な強度によって定義される曲線1302を含む。例えば、3つ以上の位相の撮像情報が取得され、対応する位相の時間に対して各位相の強度の点がプロットされ、曲線1302がプロットされた点に適合する。領域1304は、曲線1302の下に画定され、様々な実施形態において、タイミング情報を決定するために使用される。曲線1302の下の領域1304は、血液量に相関し、(例えば、血液量または領域1304の所定の割合が達成された時間に基づいて)タイミング情報を決定するために使用することができる。例えば、タイミング情報は、特定のボクセルに関して生成された対応する曲線の下の総領域の半分を達成するのに必要な時間に基づいて、特定のボクセルについて決定することができる。
図示された実施形態では、(斜線領域1308として示されている)全領域1304の半分を達成するのに対応する時間1306が示されている。3つの時間範囲、すなわち、第1の時間範囲1310(例えば、動脈流の赤色時間範囲)、第2の時間範囲1320(例えば、静脈流の緑色時間範囲)、および第3の時間範囲1330(例えば、遅延動脈流の青色時間範囲)が示される。曲線1302の例では、曲線1302の下の領域1304の半分は、第2の時間範囲1320の間に生じる時間1306で達成される。したがって、曲線1302に対応するボクセルは、第2の時間範囲1320(例えば、緑色)に関連する色で着色される。対象の撮像ボリュームの各ボクセルに対して同様の処理が実行され、結合画像を生成するために使用される。したがって、取得位相に対応する一連の中間画像は、血流に対応するタイミング情報を決定するためにプロットされる経時的な強度を判定するために使用することができ、次に、血管を通る血流のタイミングを示すために異なる色を使用する最終的な画像または合成画像を着色するために使用することができる。
図14は、図13に関連して説明したものと同様のプロットを使用して決定されたタイミング情報を使用して生成される頭部の軸方向図1400を示す。図14に見られるように、血管1410は、動脈位相の間の流れに対応する第1の色(例えば、赤色)である第1の部分1412、着色されていない(例えば黒色の)第2の部分1414、静脈位相の間の流れに対応する第2の色(例えば、緑色)である第3の部分1416、および後部静脈もしくは遅延位相の間の流れに対応する第3の色(例えば、青色)である第4の部分1418を含む。図1400は、閉塞の位置および影響を判定するために使用することができる。例えば、図示された部分では、第1の部分1412は、正常な動脈の流れを示すために色付けされている(例えば、赤色)。しかしながら、第2の部分1414は着色されておらず、造影剤による増強をほとんどまたは全く示さず、閉塞を表すものとして識別することができる。閉塞部または第2の部分1414の下流では、第3の部分1416(例えば、流れの静脈位相に対して緑色)および第4の部分1418(例えば、流れの遅延位相に対して青色)は、動脈位相より漸進的に遅い流れを示す。したがって、血流は、第3の部分1416および第4の部分1418の近くの脳の部分に到達し、脳の対応する部分が死んでいないが、流れが遅れていると理解することができる。したがって、図1400は、閉塞(例えば、第2の部分1414)の位置ならびに閉塞によって引き起こされる損傷の程度を判定するために使用することができる。例えば、第3の部分1416および第4の部分1418が着色されておらず、代わりに、造影の増強または血流がないことを示す無着色(例えば、黒色)の場合、脳の対応する部分は死んでいると理解され得る。代替的にまたは追加的に、他の図(例えば、冠状、矢状)を生成することができることに留意されたい。
様々な実施形態では、処理ユニット120は、時間の範囲に基づいて対応する色を自律的に割り当てる。例えば、処理ユニット120は、色を設定するために、所定のデフォルトの時間範囲(例えば、最大強度の時間および/または曲線の下の領域に対応する時間)を使用することができる。タイミングの調整可能性を提供するために(例えば、血流のタイミングが、期待されるよりも速いまたは遅い血流速度などの、所定の値から変化する場合)、いくつかの実施形態では、処理ユニット120は、ユーザ入力(例えば、入力ユニット150を介して提供される)に応じて時間の範囲を調整する。例えば、図15は、着色された血管を有する脳の例示的な側面図1500を示す。図1500は、第1の色1504(例えば、正常な動脈流の場合は赤色)を有する脳の前方に近接して位置する血管1502を含む。図1500は、第2の色1508(例えば、静脈流に対する緑色)を有する脳の背部付近に位置する血管1506を含む。脳の後方に向かう流れは、血流の静脈位相にあると予想され、したがって、図1500を見て、血管1506に対する静脈流の緑色を観察するユーザは、配色が適切であると結論付けることができる。しかしながら、脳の背面に向かう血管1506が異なる色を呈した場合、ユーザは、配色が適切でないと判断し、時間範囲を調整することができる。処理ユニット120は、各調整の後に図を更新し、脳の後方に向かう血管の予想されるまたは所望の配色が実現されるまで、その後の調整を実行する。
経時的な強度プロファイルを生成する前(および/または後)に撮像情報の追加の処理を実行し、タイミング情報を決定することができることに留意されたい。例えば、処理ユニット120は、タイミング情報を決定する前に動き補正を行うことができる。動き補正は、異なる時間に取得された画像取得位相の対応するボクセル間の正確な位置合わせを確実にするのを助けるために使用することができる。別の例として、血管の視覚化を改善するために骨除去を行うことができる。
図16は、様々な実施形態による、例えば、脳卒中解析の一部として患者の血流を判定し描写するための方法1600のフローチャートを提供する。方法1600は、例えば、(例えば、方法200のステップ222から230の一部として、またはそれらに関連して)本明細書で説明した様々な実施形態の構造または態様(例えば、システムおよび/または方法)を用いることができ、あるいはそれらによって実行することができる。様々な実施形態では、特定のステップを省略または追加することができ、特定のステップを組み合わせることができ、特定のステップを同時に実行することができ、特定のステップを並行して実行することができ、特定のステップを複数のステップに分割することができ、特定のステップを異なる順序で実行することができ、あるいは特定のステップまたは一連のステップを反復的な形式で再実行することができる。様々な実施形態では、方法1600の部分、態様、および/または変形は、ハードウェア(例えば、処理ユニット120の1つまたは複数の態様)に指示する1つまたは複数のアルゴリズムとして使用して、本明細書で説明する1つまたは複数の動作を実行することを可能にすることができる。
1602において、撮像対象(例えば、患者)が位置決めされる。例えば、対象物は、CT取得ユニット(例えば、CT取得ユニット110)のボア内のテーブル上に位置づけされた人間の患者とすることができる。様々な実施形態における患者の頭部は、閉塞の位置および/または閉塞によって引き起こされる損傷の程度を判定するために、脳内の血流を判定するために撮像を実行するためにボア内に配置される。
1604において、事前造影情報が取得される。任意の造影剤が撮像対象の患者に導入される前に、(例えば、CT取得ユニット110を使用して)事前造影情報が取得される。事前造影情報は、例えば、後続の画像の造影剤に起因する造影強調の相対量を決定する際に使用される各ボクセルのベースライン強度を提供するために使用することができる。このような事前造影情報およびベースラインを使用することは、ノイズおよび/またはバックグラウンド構造の影響を低減するのに役立つ。
1606において、造影剤が撮像対象(患者)に導入される。造影剤の量、タイミング、および種類は、造影剤が脳を通る血流を判定および描写する際に使用するために患者の脳の血管を通過するよう選択される。
1608において、(例えば、CT取得ユニット110を使用して)少なくとも3つの位相のCT撮像情報が取得される。1608で取得されたCT撮像情報の少なくとも3つの位相は、造影剤が脳の血管を通って流れて造影強調をもたらす場合に取得される。位相は異なる時間に取得され、造影剤に起因する対応する強度を判定する。
図示された実施形態では、1610で、正常な動脈流に対応する撮像情報の第1の位相が(例えば、第1の時点で)取得される。1612において、静脈流に対応する撮像情報の第2位相が(例えば、第1の時間の後の第2の時間、例えば、第1の時間の10秒後に)取得される。1614において、後部静脈または遅延動脈の流れに対応する撮像情報の第3の位相が(例えば、第2の時間の後の第3の時間、例えば、第1の時間の18秒後に)取得される。様々な実施形態において、追加の位相を取得することができることに留意されたい。取得位相は、血流位相(例えば、動脈、静脈、および後部静脈)に対して1:1または直接対応する必要はないことにさらに留意されたい。
1615において、取得されたCT撮像情報に対して前処理が実行される。例えば、動き補正を実行することができる。別の例として、骨除去(例えば、骨マスクを使用する)を実行することができる。
1616において、(例えば、処理ユニット120を使用して)タイミング情報が決定される。タイミング情報は、CT撮像情報に表された血管の撮像強度に対応する。経時的な様々な画像のボクセルの強度のレベルまたは変動は、造影剤が血管を通過することによる強調の量に対応する。タイミング情報は、血管を通る造影剤の流れの時間に基づいて血管を区別するために使用される配色を決定するために使用することができる。様々な実施形態では、タイミング情報は、経時的な強度(例えば、造影剤による相対強調)のプロットまたは表現を使用して決定される。本明細書で使用されるように、プロットは印刷または表示する必要はなく、その代わりに強度と時間との間の決定された関係を意味することができることに留意されたい。様々な実施形態におけるプロットおよび/またはタイミング情報は、個々のボクセルごとに、またはボクセル単位で別々に決定される。1618では、解析される各ボクセルについての事前造影情報からのベースラインを使用して相対最大強度が決定される。相対最大強度は、最大測定値を表すことができ、または、測定点に適合する曲線上の最大点を表すことができる。代替的または追加的に、タイミング情報は、(例えば、曲線の下の総領域の所定の比率または割合の達成に基づいて)経時的な強度の曲線の下の領域を使用して決定することができる。
例えば、図16に見られるように、1620において、CT撮像情報の個々のボクセル(例えば、血管に対応するボクセル、造影強調の閾値レベルを超えるボクセル)について、経時的な強度のプロットが生成される。特定のボクセルに対して取得された位相の各々について決定された強度に曲線を適合させることができる。1622において、経時的な強度のプロットによって定義される曲線の下の領域が決定される。曲線の下の領域は、血流のボリュームに対応する。1624において、タイミング情報は、曲線の下の領域を使用して決定される。例えば、解析される特定のボクセルについての配色を決定するために使用される決定された時間と共に、曲線下の全領域の半分(または他の所定の割合または部分)が達成される時間を判定することができる。
1626において、タイミング情報に基づいて、対応する色が血管に割り当てられる。色は、ボクセル単位で割り当てることができる。例えば、いくつかの実施形態では、第1の時間範囲にわたって発生するピーク強度を有するボクセル(または、強度曲線下の全領域の所定の割合の達成)は、第1の色が割り当てられ、第2の時間範囲にわたって発生するピーク強度を有するボクセル(または、強度曲線下の全領域の所定の割合の達成)は、第2の色が割り当てられ、第3の時間範囲にわたって発生するピーク強度を有するボクセル(または、強度曲線下の全領域の所定の割合の達成)は、第3の色が割り当てられる。例えば、いくつかの実施形態では、正常動脈流に対応するタイミング情報を有するボクセルは赤色に着色され、静脈流に対応するタイミング情報を有するボクセルは緑色に着色され、遅延動脈流(例えば、閉塞による遅延)に対応するタイミング情報は青色に着色される。
図示された実施形態の1628において、色は、時間の範囲に基づいて(例えば、処理ユニット120によって)自律的に割り当てられる。1630において、色を割り当てるために使用される時間の範囲は、(例えば、上述のような)ユーザ入力に応じて調整される。
1632において、画像が再構成される。図示された実施形態では、画像は、取得のすべての位相からのCT撮像情報を使用して再構成される。再構成画像内の血管は、タイミング情報に基づいて着色されて描かれている。したがって、再構成されたものを用いて、どの時点で、または血流のどの位相で、おおむねどの血管に流れが生じているかを迅速に、簡便に、および正確に判定することができる。
1634において、(例えば、ディスプレイユニット140を使用して)画像が表示される。表示された画像は、例えば、タイミング/配色スキームの任意の調整を提供するために使用することができる。表示された画像はまた、診断目的で使用することができる。
1636において、閉塞および/または損傷の量が判定される。例えば、正常な動脈の流れから離れて動脈の流れの遅延に向かう血管内の移行点は、血管のボクセルの色の1つまたは複数の変化に基づいて判定することができ、閉塞の位置を特定するために使用することができる。閉塞は、それ自体、無着色部分によって表すことができ、血管の一部を、その隣に静脈流がある場合に配色することができる。閉塞の下流に遅延流がある場合、脳の関連する部分がまだ生存しており、血液を受けていると判定することができる(閉塞のために遅れているが)。しかし、閉塞部の下流の部分が、静脈および/または遅延動脈流に対応する着色をされていない場合、脳の対応する部分が血液を受けておらず死んでいると判定することができる。
様々な実施形態は、ハードウェア、ソフトウェア、またはそれらの組み合わせで実施することができることに留意されたい。様々な実施形態および/もしくは構成要素、例えばモジュール、またはそれらの中の構成要素およびコントローラもまた、1つまたは複数のコンピュータもしくはプロセッサの一部として実装することができる。コンピュータまたはプロセッサは、例えばインターネットにアクセスするために、コンピューティング機器、入力機器、ディスプレイユニットおよびインターフェースを含むことができる。コンピュータまたはプロセッサは、マイクロプロセッサを含むことができる。マイクロプロセッサは、通信バスに接続することができる。コンピュータまたはプロセッサはまた、メモリを含むことができる。メモリは、ランダムアクセスメモリ(RAM)および読み出し専用メモリ(ROM)を含むことができる。コンピュータまたはプロセッサは、記憶装置をさらに含むことができ、これはハードディスクドライブ、または固体状態ドライブ、光ディスクドライブなどのリムーバブルストレージドライブであってもよい。記憶装置はまた、コンピュータプログラムまたは他の命令をコンピュータまたはプロセッサにロードするための他の類似の手段であってもよい。
本明細書で使用される場合、「コンピュータ」または「モジュール」という用語は、マイクロコントローラ、縮小命令セットコンピュータ(RISC)、ASIC、論理回路、および本明細書に記載した機能を実行可能な任意の他の回路もしくはプロセッサを使用するシステムを含む、任意のプロセッサベースまたはマイクロプロセッサベースのシステムを含むことができる。上記の例は例示のためだけであり、それ故に「コンピュータ」という用語の定義および/または意味を何ら限定することを意図しない。
コンピュータまたはプロセッサは、入力データを処理するために1つまたは複数のストレージ素子に記憶される一組の命令を実行する。ストレージ素子はまた、所望または必要に応じてデータまたは他の情報を記憶することができる。ストレージ素子は、処理機械内の情報源または物理メモリ素子の形態であってもよい。
命令のセットは、処理機械としてのコンピュータまたはプロセッサに、様々な実施形態の方法および処理などの特定の動作を実行するよう指示する様々なコマンドを含むことができる。命令のセットは、ソフトウェアプログラムの形式とすることができる。ソフトウェアは、システムソフトウェアまたはアプリケーションソフトウェアなどの様々な形態としてもよく、有形の非一時的コンピュータ可読媒体として実現してもよい。さらに、ソフトウェアは、別々のプログラムまたはモジュールの集合、より大きなプログラム内のプログラムモジュール、またはプログラムモジュールの一部の形式としてもよい。ソフトウェアはまた、オブジェクト指向プログラミングの形式のモジュラープログラミングを含んでもよい。処理機械による入力データの処理は、オペレータコマンドへの応答、または以前の処理の結果に対する応答、または他の処理機械によってなされた要求に対する応答とすることができる。
本明細書で使用される場合、タスクまたは動作を実行するように「構成され」ている構造、制限、または要素は、特に、タスクまたは動作に対応する方法で構造的に形成、構築、または適合される。明瞭さおよび疑念回避のため、単にタスクまたは動作を実行するように変更可能な物体は、本明細書で使用されるタスクまたは動作を実行するように「構成」されていない。むしろ、本明細書で使用される「構成された」とは、構造的な適合または特性を意味し、タスクまたは動作を実行するよう「構成されている」と記載されている任意の構造、制限、または要素の構造要件を意味する。例えば、タスクまたは動作を実行するように「構成された」処理ユニット、プロセッサ、またはコンピュータは、タスクまたは動作を実行するように特に構成されていると理解することができる(例えば、1つまたは複数のプログラムもしくは命令がそこに格納され、またはタスクもしくは動作を実行するよう調整または意図されて使用され、ならびに/もしくはタスクもしくは動作を実行するために調整または意図された処理回路の構成を有する)。明瞭化および疑念回避のために、汎用コンピュータ(適切にプログラムされている場合にタスクまたは動作を実行する「よう構成」されている可能性がある)は、タスクまたは動作を実行するよう具体的にプログラムまたは構造的に変更されない限り、タスクまたは動作を実行する「よう構成」されない。
本明細書で使用される場合、「ソフトウェア」および「ファームウェア」は交換可能であり、RAMメモリ、ROMメモリ、EPROMメモリ、EEPROMメモリ、および不揮発性RAM(NVRAM)メモリを含む、コンピュータが実行するメモリ内に格納された任意のコンピュータプログラムを含む。上記のメモリの種類は単なる例であり、したがって、コンピュータプログラムのストレージのために使用可能なメモリの種類について限定するものではない。
上記の説明は例示するものであって、限定することを意図したものではないことを理解すべきである。例えば、上記の実施形態(および/またはその態様)は、互いに組み合わせて使用されてもよい。さらに、様々な実施形態の範囲から逸脱することなく、特定の状況または材料を様々な実施形態の教示に適合させるために、多くの変形を行うことができる。本明細書で説明した材料の寸法および種類は、様々な実施形態のパラメータを定義することを意図するが、それらは、限定するものではなく、単なる例である。多くの他の実施形態は、上記の説明を検討すると当業者には明らかであろう。したがって、様々な実施形態の範囲が、添付の特許請求の範囲、およびそのような特許請求の範囲による等価物の全範囲を参照して判断される。添付の特許請求の範囲において、「含む(including)」および「その中で(in which)」という用語は、それぞれの用語「備える(comprising)」および「そこで(wherein)」の平易な英語の等価物として用いられる。さらに、以下の特許請求の範囲において、「第1の」、「第2の」、および「第3の」等の用語は、単にラベルとして用いており、それらの対象物に対して数の要件を課すことを意図するものではない。また、以下の特許請求の範囲の制限は、このようなクレームの制限が、さらなる構造を欠いた機能の記述の後に、明示的に「~する手段(means for)」という語句を用いていない限り、ミーンズプラスファンクションの形式では書かれておらず、米国特許法112条に基づいて解釈されることを意図していない。
本明細書は最良の形態を含む様々な実施形態を開示するため、および、あらゆるデバイスまたはシステムを製作し、ならびに使用し、およびあらゆる組込方法を実行することを含む任意の当業者が様々な実施形態を実施することを可能にするための例を用いる。様々な実施形態の特許可能な範囲は、特許請求の範囲によって定義され、当業者が想到するその他の実施例を含むことができる。このような他の実施例が請求項の文字通りの言葉と異ならない構造要素を有する場合、または、実施例が請求項の文字通りの言葉と実質的な差異がなく等価な構造要素を含む場合には、このような他の実施例は特許請求の範囲内であることを意図している。
[実施態様1]
コンピュータ断層撮影(CT)撮像システム(100)であって、
X線源(112)およびCT検出器(114)を備えるCT撮像ユニット(110)と、
ディスプレイユニット(140)と、
前記撮像ユニットおよび前記ディスプレイユニット(140)に動作可能に結合される少なくとも1つのプロセッサとを備え、前記少なくとも1つのプロセッサが、
前記CT撮像ユニット(110)を介してCT撮像情報の少なくとも3つの位相を取得し、
前記CT撮像情報で示された血管の撮像強度に関するタイミング情報を決定し、
前記タイミング情報に基づいて前記血管に対応する色を割り当て、
前記少なくとも3つの位相から前記CT撮像情報を使用して画像を再構成するよう構成され、前記再構成画像に描かれた前記血管は、前記タイミング情報に基づいて前記対応する色を用いて表され、
前記少なくとも1つのプロセッサはさらに、前記ディスプレイユニット(140)に前記画像を表示するよう構成される、
コンピュータ断層撮影(CT)撮像システム(100)。
[実施態様2]
前記少なくとも1つのプロセッサが、ボクセル単位で前記CT撮像情報の最大強度に基づいて前記タイミング情報を決定するよう構成される、実施態様1に記載のCT撮像システム(100)。
[実施態様3]
前記対応する色は、血流の動脈位相に対応する第1の色、血流の静脈位相に対応する第2の色、および血流の後部静脈位相に対応する第3の位相に対応する第3の色を含む、実施態様1に記載のCT撮像システム(100)。
[実施態様4]
前記少なくとも3つの位相は、造影剤の流れに対応する位相を備え、前記CT撮像情報が、前記造影剤の導入前に取得された事前造影情報を含み、前記少なくとも1つのプロセッサが、前記事前造影情報からのベースライン(1112、1114)を使用して相対最大強度を決定するようさらに構成される、実施態様1に記載のCT撮像システム(100)。
[実施態様5]
前記少なくとも1つのプロセッサが、前記CT撮像情報の個々のボクセルに対して、経時的な強度のプロットを生成し、前記プロットによって定義される曲線の下の領域を決定し、前記曲線の下の前記領域を使用して前記タイミング情報を決定するよう構成される、実施態様1に記載のCT撮像システム(100)。
[実施態様6]
前記タイミング情報が、前記曲線の下の前記対応する領域の半分に達成することに対応する時間に基づいて前記個々のボクセルについて決定される、実施態様5に記載のCT撮像システム(100)。
[実施態様7]
前記少なくとも1つのプロセッサが、時間の範囲に基づいて前記対応する色を自律的に割り当てるよう構成される、実施態様1に記載のCT撮像システム(100)。
[実施態様8]
前記少なくとも1つのプロセッサが、ユーザ入力に応答して時間の前記範囲を調整するよう構成される、実施態様7に記載のCT撮像システム(100)。
[実施態様9]
前記少なくとも1つのプロセッサが、前記タイミング情報を決定する前に、前記少なくとも3つの位相から前記CT撮像情報を動き補正するよう構成される、実施態様1に記載のCT撮像システム(100)。
[実施態様10]
方法であって、
X線源(112)およびCT検出器(114)を備えるCT撮像ユニット(110)を介してコンピュータ断層撮影(CT)撮像情報の少なくとも3つの位相を取得するステップと、
少なくとも1つのプロセッサを使用して、前記CT撮像情報で示された血管の撮像強度に関するタイミング情報を決定するステップと、
前記タイミング情報に基づいて前記血管に対応する色を割り当てるステップと、
前記少なくとも3つの位相から前記CT撮像情報を使用して画像を再構成するステップであって、前記再構成画像に描かれた前記血管が、前記タイミング情報に基づいて前記対応する色を用いて表される、ステップと、
ディスプレイユニット(140)に前記画像を表示するステップと、
を備える、方法。
[実施態様11]
前記タイミング情報が、ボクセル単位で経時的な前記CT撮像情報の最大強度に基づいて決定される、実施態様10に記載の方法。
[実施態様12]
前記少なくとも3つの位相を取得するステップが、血流の動脈位相に対応する第1の位相、血流の静脈位相に対応する第2の位相、および血流の後部静脈位相に対応する第3の位相を取得するステップを備え、前記対応する色は、血流の前記動脈位相に対応する第1の色、血流の前記静脈位相に対応する第2の色、および血流の後部静脈位相に対応する第3の色を含む、実施態様10に記載の方法。
[実施態様13]
事前造影情報を取得するステップと、
前記事前造影情報を取得するステップの後、撮像対象に造影剤を導入するステップであって、前記少なくとも3つの位相が、前記対象を通る前記造影剤の流れに対応する位相を備える、ステップと、
前記事前造影情報からのベースライン(1112、1114)を使用して相対最大強度を決定するステップと、
をさらに備える、実施態様10に記載の方法。
[実施態様14]
前記CT撮像情報の個々のボクセルに対して、経時的な強度のプロット(1300)を生成するステップと、
前記プロット(1300)によって定義される曲線の下の領域を決定するステップと、
前記曲線の下の前記領域を使用して前記タイミング情報を決定するステップと、
をさらに備える、実施態様10に記載の方法。
[実施態様15]
前記タイミング情報が、前記曲線の下の前記対応する領域の半分に達成することに対応する時間に基づいて各ボクセルについて決定される、実施態様14に記載の方法。
[実施態様16]
時間の範囲に基づいて前記対応する色を自律的に割り当てるステップをさらに備える、実施態様10に記載の方法。
[実施態様17]
ユーザ入力に応答して時間の前記範囲を調整するステップをさらに備える、実施態様16に記載の方法。
[実施態様18]
前記タイミング情報を決定する前に、前記少なくとも3つの位相から前記CT撮像情報を動き補正するステップをさらに備える、実施態様10に記載の方法。
[実施態様19]
有形の非一時的コンピュータ可読媒体(972)であって、1つまたは複数のコンピュータソフトウェアモジュールを備え、前記1つまたは複数のコンピュータソフトウェアモジュールが、1つまたは複数のプロセッサに、
X線源(112)およびCT検出器(114)を備えるCT撮像ユニット(110)を介してコンピュータ断層撮影(CT)撮像情報の少なくとも3つの位相を取得し、
前記CT撮像情報で示された血管の撮像強度に関するタイミング情報を決定し、
前記タイミング情報に基づいて前記血管に対応する色を割り当て、
前記少なくとも3つの位相から前記CT撮像情報を使用して画像を再構成するよう指示するように構成され、前記再構成画像に描かれた前記血管は、前記タイミング情報に基づいて前記対応する色を用いて表され、
前記1つまたは複数のコンピュータソフトウェアモジュールは、さらに、前記1つまたは複数のプロセッサに、ディスプレイユニット(140)に前記画像を表示するよう指示するように構成される、
有形の非一時的コンピュータ可読媒体(972)。
[実施態様20]
前記コンピュータ可読媒体(972)は、さらに、
前記CT撮像情報の個々のボクセルについて、経時的な強度のプロット(1300)を生成し、
前記プロット(1300)によって定義される曲線の下の領域を決定し、
前記曲線の下の前記領域を使用して前記タイミング情報を決定する、
よう構成される、実施態様19に記載の有形の非一時的コンピュータ可読媒体(972)。
100 CT撮像システム
104 第2の撮像ユニット
110 CT取得ユニット/CT撮像ユニット
112 X線源
114 CT検出器
116 ガントリ
118 ボア
120 処理ユニット
122 再構成モジュール
124 判定モジュール
126 制御モジュール
128 メモリ
140 ディスプレイユニット/出力ユニット
150 入力ユニット
200 方法
300 ディスプレイ
310 ユーザ誘導機能
320 ユーザ選択ボタン
400 ディスプレイ
410 斜め図
420 軸方向図
430 矢状図
440 冠状図
500 ディスプレイ
510 冠状図
520 軸方向図
530 矢状図
600 ディスプレイ
610 第1の位相図
620 第2の位相図
630 第3の位相図
700 ディスプレイ/CT灌流
710 画像図
720 グラフ
730 画像図
740 画像図
900 CT撮像システム
910 ガントリ
912 X線源
913 ソースコリメータ
914 検出器アレイ
916 検出器要素
917 被験者
918 コンピュータ
920 第1の造影位相
922 テーブル
930 第2の造影位相
940 第3の造影位相/回転中心
942 制御機構
944 X線コントローラ
946 ガントリモータコントローラ
948 データ収集システム(DAS)
950 画像再構成装置
952 記憶装置
960 コンソール
962 関連する視覚的ディスプレイユニット
964 テーブルモータコントローラ
970 デバイス
972 コンピュータ可読媒体
974 X線ビーム
975 タイムライン
980 事前造影位相
982 第1の造影位相
984 第2の造影位相
986 第3の造影位相
990 第1の時間
992 第2の時間
994 第3の時間
1002 正常動脈
1004 遅延動脈
1010 事前造影画像
1020 第1の造影位相画像
1030 第2の造影位相画像
1040 第3の造影位相画像
1102 正常動脈
1104 遅延動脈
1112 ベースライン
1114 ベースライン
1121 正常強度曲線
1122 点
1123 遅延強度曲線
1124 点
1132 点
1134 点
1142 点
1144 点
1200 強度曲線
1202 ベースライン
1210 相対強調
1300 プロット
1302 曲線
1303 ベースライン
1304 領域
1306 時間
1308 斜線領域
1310 第1の時間範囲
1320 第2の時間範囲
1330 第3の時間範囲
1400 軸方向図
1410 血管
1412 第1の部分
1414 第2の部分
1416 第3の部分
1418 第4の部分
1500 側面図
1502 血管
1504 第1の色
1506 血管
1508 第2の色
1600 方法

Claims (9)

  1. コンピュータ断層撮影(CT)撮像システム(100)であって、
    X線源(112)およびCT検出器(114)を備えるCT撮像ユニット(110)と、
    ディスプレイユニット(140)と、
    前記撮像ユニットおよび前記ディスプレイユニット(140)に動作可能に結合される少なくとも1つのプロセッサとを備え、前記少なくとも1つのプロセッサが、
    前記CT撮像ユニット(110)を介してCT撮像情報の少なくとも3つの位相を取得し、
    前記CT撮像情報で示された血管の撮像強度に関するタイミング情報を決定し、
    前記タイミング情報に基づいて前記血管に対応する色を割り当て、
    前記少なくとも3つの位相から前記CT撮像情報を使用して画像を再構成、前記再構成画像に描かれた前記血管は、前記タイミング情報に基づいて前記対応する色を用いて表され、
    記ディスプレイユニット(140)に前記画像を表示するよう構成され、
    前記少なくとも1つのプロセッサが、更に、血管のボクセルの色の1つまたは複数の変化に基づいて、正常な動脈の流れから離れて動脈の流れの遅延に向かう血管内の移行点を判定し、前記移行点を使用して閉塞の位置を特定するように構成される、コンピュータ断層撮影(CT)撮像システム(100)。
  2. 前記少なくとも1つのプロセッサが、ボクセル単位で前記CT撮像情報の最大強度に基づいて前記タイミング情報を決定するよう構成される、請求項1に記載のCT撮像システム(100)。
  3. 前記対応する色は、血流の動脈位相に対応する第1の色、血流の静脈位相に対応する第2の色、および血流の後部静脈位相に対応する第3の位相に対応する第3の色を含む、請求項1に記載のCT撮像システム(100)。
  4. 前記少なくとも3つの位相は、造影剤の流れに対応する位相を備え、前記CT撮像情報が、前記造影剤の導入前に取得された事前造影情報を含み、前記少なくとも1つのプロセッサが、前記事前造影情報からのベースライン(1112、1114)を使用して相対最大強度を決定するようさらに構成される、請求項1に記載のCT撮像システム(100)。
  5. 前記少なくとも1つのプロセッサが、前記CT撮像情報の個々のボクセルに対して、経時的な強度のプロットを生成し、前記プロットによって定義される曲線の下の領域を決定し、前記曲線の下の前記領域を使用して前記タイミング情報を決定するよう構成される、請求項1に記載のCT撮像システム(100)。
  6. 前記タイミング情報が、前記曲線の下の前記対応する領域の半分に達成することに対応する時間に基づいて前記個々のボクセルについて決定される、請求項5に記載のCT撮像システム(100)。
  7. 前記少なくとも1つのプロセッサが、時間の範囲に基づいて前記対応する色を自律的に割り当てるよう構成される、請求項1に記載のCT撮像システム(100)。
  8. 前記少なくとも1つのプロセッサが、ユーザ入力に応答して時間の前記範囲を調整するよう構成される、請求項7に記載のCT撮像システム(100)。
  9. 前記少なくとも1つのプロセッサが、前記タイミング情報を決定する前に、前記少なくとも3つの位相から前記CT撮像情報を動き補正するよう構成される、請求項1に記載のCT撮像システム(100)。
JP2018039859A 2017-03-09 2018-03-06 Ct画像の色の視覚化のためのシステムおよび方法 Active JP7098356B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/454,616 2017-03-09
US15/454,616 US10299751B2 (en) 2016-03-16 2017-03-09 Systems and methods for color visualization of CT images

Publications (2)

Publication Number Publication Date
JP2018183567A JP2018183567A (ja) 2018-11-22
JP7098356B2 true JP7098356B2 (ja) 2022-07-11

Family

ID=63259232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018039859A Active JP7098356B2 (ja) 2017-03-09 2018-03-06 Ct画像の色の視覚化のためのシステムおよび方法

Country Status (3)

Country Link
JP (1) JP7098356B2 (ja)
CN (1) CN108567443B (ja)
DE (1) DE102018105327A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111223563B (zh) * 2018-11-23 2023-11-03 佳能医疗系统株式会社 医用图像诊断装置以及医用图像诊断系统
DE102019211536A1 (de) * 2019-08-01 2021-02-04 Siemens Healthcare Gmbh Automatische Lokalisierung einer Struktur
CN111513738B (zh) * 2020-04-10 2023-08-01 北京东软医疗设备有限公司 血管造影方法、装置、设备及系统
WO2023068049A1 (ja) * 2021-10-21 2023-04-27 株式会社カネカ 予測システム、予測装置、及び、予測方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005253844A (ja) 2004-03-15 2005-09-22 Minoru Tomita 脳断層画像解析装置、及びそのプログラム
WO2006051831A1 (ja) 2004-11-10 2006-05-18 Hitachi Medical Corporation 画像生成方法及び画像生成装置
US7069068B1 (en) 1999-03-26 2006-06-27 Oestergaard Leif Method for determining haemodynamic indices by use of tomographic data
US20080292049A1 (en) 2007-05-21 2008-11-27 Estelle Camus Device for obtaining perfusion images
JP2012512729A (ja) 2008-11-14 2012-06-07 アポロ メディカル イメージング テクノロジー ピーティーワイ リミテッド 急性脳卒中の組織状態をマッピングする方法及びシステム
JP2015009019A (ja) 2013-07-01 2015-01-19 株式会社東芝 医用画像処理装置及び医用画像診断装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3495710B2 (ja) * 2001-02-01 2004-02-09 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 血流イメージング装置および超音波診断装置
DE102004036726A1 (de) * 2004-07-29 2006-03-16 Siemens Ag Verfahren und Vorrichtung zur Visualisierung von Ablagerungen in Blutgefäßen, insbesondere in Herzkranzgefäßen
CN101243980B (zh) * 2006-12-04 2010-12-22 株式会社东芝 X射线计算机断层成像装置和医用图像处理装置
DE102007014133B4 (de) * 2007-03-23 2015-10-29 Siemens Aktiengesellschaft Verfahren zur Visualisierung einer Sequenz tomographischer Volumendatensätze der medizinischen Bildgebung
JP5514397B2 (ja) * 2007-10-03 2014-06-04 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 画像表示装置およびx線断層撮影装置
CN101401728B (zh) * 2008-10-24 2012-07-11 东莞市厚街医院 数字化虚拟手与纵形断指解剖学结构模型的构建方法
JP5786108B2 (ja) * 2009-05-08 2015-09-30 セント・ジュード・メディカル・ルクセンブルク・ホールディング・エスエーアールエル カテーテルアブレーション治療において病変部サイズを制御するための方法および装置
AU2011205064B2 (en) * 2010-08-10 2016-03-03 Haier Us Appliance Solutions, Inc. Diagnostics using sub-metering device
EP2685899B1 (en) * 2011-03-17 2015-05-20 Koninklijke Philips N.V. Multiple modality cardiac imaging
US20130066197A1 (en) * 2011-09-13 2013-03-14 Celine Pruvot System and method for blood vessel stenosis visualization and navigation
DE102014201559A1 (de) * 2014-01-29 2015-07-30 Siemens Aktiengesellschaft Angiographisches Untersuchungsverfahren eines Gefäßsystems in einer interessierenden Körperregion eines Patienten
JP6566714B2 (ja) * 2014-05-19 2019-08-28 キヤノンメディカルシステムズ株式会社 X線コンピュータ断層撮影装置、画像表示装置および画像表示方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7069068B1 (en) 1999-03-26 2006-06-27 Oestergaard Leif Method for determining haemodynamic indices by use of tomographic data
JP2005253844A (ja) 2004-03-15 2005-09-22 Minoru Tomita 脳断層画像解析装置、及びそのプログラム
WO2006051831A1 (ja) 2004-11-10 2006-05-18 Hitachi Medical Corporation 画像生成方法及び画像生成装置
US20080292049A1 (en) 2007-05-21 2008-11-27 Estelle Camus Device for obtaining perfusion images
JP2012512729A (ja) 2008-11-14 2012-06-07 アポロ メディカル イメージング テクノロジー ピーティーワイ リミテッド 急性脳卒中の組織状態をマッピングする方法及びシステム
JP2015009019A (ja) 2013-07-01 2015-01-19 株式会社東芝 医用画像処理装置及び医用画像診断装置

Also Published As

Publication number Publication date
CN108567443A (zh) 2018-09-25
CN108567443B (zh) 2023-12-01
JP2018183567A (ja) 2018-11-22
DE102018105327A1 (de) 2018-09-13

Similar Documents

Publication Publication Date Title
JP6680768B2 (ja) コンピュータ断層撮影イメージングの画像相を選択するためのシステム
US7983460B2 (en) Method and system for performing high temporal resolution bolus detection using CT image projection data
JP7009379B2 (ja) プログレッシブ撮像のためのシステムおよび方法
JP7098356B2 (ja) Ct画像の色の視覚化のためのシステムおよび方法
EP2467832B1 (en) System and method for four dimensional angiography and fluoroscopy
US10238356B2 (en) X-ray computed tomography apparatus and medical image display apparatus
US8064986B2 (en) Method and system for displaying a cine loop formed from combined 4D volumes
US20220071584A1 (en) Medical image-processing apparatus, x-ray ct apparatus, and medical image-processing method performing fluid analysis to switch displayed color information
US11399787B2 (en) Methods and systems for controlling an adaptive contrast scan
JP2013059620A (ja) 血管狭窄の視覚化及びナビゲーションのシステム及び方法
JP6117228B2 (ja) マルチモダリティ画像分割を実行するためのシステムおよび方法
Matsuda et al. Adaptive statistical iterative reconstruction for volume-rendered computed tomography portovenography: improvement of image quality
JP2008537892A (ja) 解析から取得へのフィードバックを用いた心肺スクリーニング
JP2017537674A (ja) 複数回の取得にわたってコントラストを正規化するための方法およびシステム
JP7032111B2 (ja) 医用画像処理装置、x線ct装置及び医用画像処理プログラム
JP6981807B2 (ja) 医用情報処理装置、x線ct装置、医用情報処理プログラム、医用情報処理方法及び医用情報処理システム
US10299751B2 (en) Systems and methods for color visualization of CT images
US10159448B2 (en) X-ray CT apparatus, medical information processing apparatus, and medical information processing method
US20150282779A1 (en) Treating an Ischemic Stroke
KR102273022B1 (ko) 단층 촬영 장치 및 그에 따른 단층 영상 복원 방법
Golubickas et al. Image quality in computed tomography coronary angiography and radiation dose reduction
JP2024058392A (ja) 医用画像処理装置
Becker Cardiovascular Applications 15
Becker Cardiovascular Applications

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190530

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201202

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210520

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220629

R150 Certificate of patent or registration of utility model

Ref document number: 7098356

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150