JP7095375B2 - Bearing abnormality diagnosis method and bearing abnormality diagnosis system - Google Patents

Bearing abnormality diagnosis method and bearing abnormality diagnosis system Download PDF

Info

Publication number
JP7095375B2
JP7095375B2 JP2018078992A JP2018078992A JP7095375B2 JP 7095375 B2 JP7095375 B2 JP 7095375B2 JP 2018078992 A JP2018078992 A JP 2018078992A JP 2018078992 A JP2018078992 A JP 2018078992A JP 7095375 B2 JP7095375 B2 JP 7095375B2
Authority
JP
Japan
Prior art keywords
magnetic field
information
bearing
abnormality
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018078992A
Other languages
Japanese (ja)
Other versions
JP2019184540A (en
Inventor
大輔 小林
晃一朗 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2018078992A priority Critical patent/JP7095375B2/en
Publication of JP2019184540A publication Critical patent/JP2019184540A/en
Application granted granted Critical
Publication of JP7095375B2 publication Critical patent/JP7095375B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Rolling Contact Bearings (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Description

本発明は、軸受の異常を診断する技術に関する。 The present invention relates to a technique for diagnosing an abnormality in a bearing.

軸受を使用した鋳造機や抄紙機などの生産機械では、定期的にメンテナンスが行われる。その定期メンテナンスに際し、この種の生産機械では、生産機械のハウジングから軸受が抜き取られ、分解、洗浄、点検等のメンテナンスが行われる。 Production machines such as casting machines and paper machines that use bearings are regularly maintained. In this type of production machine, bearings are removed from the housing of the production machine during the regular maintenance, and maintenance such as disassembly, cleaning, and inspection is performed.

特開2004-198246号公報Japanese Unexamined Patent Publication No. 2004-198246

ここで、上記メンテナンス時に、軸受の異常を事前(特に異常を起こす前に)把握することにより、軸受の交換を行うことができれば、生産機械の稼動時における軸受軌道面のはく離により生産機械の稼動停止を防止できる。また、製造している製品をはく離片により傷付けることも防止できる。
このような課題に対し、例えば特許文献1に記載の技術は、渦電流によって生じるインピーダンスの変化を検出することで、疲労進行に伴う鋼中の組織変化による残留オーステナイトの減少量を軸受全体として測定し、軸受の疲労傾向情報と疲労パターン情報とを比較して軸受の負荷状態を診断し、これにより、軸受軌道面の早期剥離等の損傷原因を究明したり、ユーザの設備上の問題を究明したり、その改善方法を見出したりする手段として利用できるとしている。
Here, if the bearing can be replaced by grasping the abnormality of the bearing in advance (especially before the abnormality occurs) at the time of the above maintenance, the production machine is operated due to the peeling of the bearing raceway surface during the operation of the production machine. You can prevent the stop. In addition, it is possible to prevent the manufactured product from being damaged by peeling pieces.
To solve such problems, for example, the technique described in Patent Document 1 detects a change in impedance caused by an eddy current, and measures the amount of decrease in retained austenite due to a change in structure in steel due to progress of fatigue as a whole bearing. Then, the load state of the bearing is diagnosed by comparing the bearing fatigue tendency information and the bearing pattern information, thereby investigating the cause of damage such as early peeling of the bearing raceway surface and investigating the user's equipment problems. It is said that it can be used as a means to find out how to improve it.

しかし、同文献記載の技術は、渦電流によって生じるインピーダンスの変化を検出することにより軸受の負荷状態を推定する技術であり、また、同文献には、軸受の異常の有無およびその程度との因果関係は記載されておらず、そのため、軸受の分解前に、軸受の異常の有無を診断する技術として解決すべき課題が残される。
そこで、本発明では、このような問題点に着目してなされたものであって、軸受の分解前に、軸受の異常の有無を診断し得る軸受の異常診断方法および軸受の異常診断システムを提供することを課題とする。
However, the technique described in the same document is a technique for estimating the load state of a bearing by detecting a change in impedance caused by an eddy current, and in the same document, the presence or absence of an abnormality in the bearing and its degree and effect are causal. The relationship is not described, and therefore, there remains a problem to be solved as a technique for diagnosing the presence or absence of an abnormality in the bearing before disassembling the bearing.
Therefore, the present invention has been made by paying attention to such a problem, and provides a bearing abnormality diagnosis method and a bearing abnormality diagnosis system capable of diagnosing the presence or absence of bearing abnormality before disassembling the bearing. The challenge is to do.

上記課題を解決するために、本発明の一態様に係る軸受の異常診断方法は、軸受に対する複数の測定位置での磁場をそれぞれ測定する測定工程と、前記測定工程で測定された磁場測定面での磁場のN極とS極の磁極性分布情報を生成する情報生成工程と、前記情報生成工程で生成された磁極性分布情報に基づいて、前記軸受を診断する診断工程と、を含むことを特徴とする。
但し、「磁場測定面」とは、軸受の測定対象となる転動面および/または軌道面をいう。
In order to solve the above problems, the method for diagnosing an abnormality in a bearing according to one aspect of the present invention includes a measurement step of measuring magnetic fields at a plurality of measurement positions with respect to the bearing, and a magnetic field measurement surface measured in the measurement step. Includes an information generation step of generating magnetic field distribution information of the north and south poles of the magnetic field of the magnetic field, and a diagnostic step of diagnosing the bearing based on the magnetic pole distribution information generated in the information generation step. It is a feature.
However, the "magnetic field measurement surface" means a rolling surface and / or a raceway surface to be measured by the bearing.

また、上記課題を解決するために、本発明の一態様に係る軸受の異常診断システムは、本発明の一態様に係る軸受の異常診断方法を、コンピュータを含む情報処理装置を用いて実行する軸受の異常診断システムであって、磁場測定器により測定される軸受の磁場測定面における複数の測定位置の磁場の情報を取得する磁場情報取得ステップと、前記磁場情報取得ステップで取得された前記磁場測定面における複数の測定位置の磁場の各測定値を、N極とS極との磁極性およびその強さに応じた前記磁極性分布情報として生成する情報生成ステップと、その生成された磁極性分布情報に基づいて軸受の異常の有無とその進行度合とを診断する診断ステップと、を含むことを特徴とする。 Further, in order to solve the above-mentioned problems, the bearing abnormality diagnosis system according to one aspect of the present invention implements the bearing abnormality diagnosis method according to one aspect of the present invention using an information processing apparatus including a computer. The magnetic field information acquisition step for acquiring information on the magnetic fields at a plurality of measurement positions on the magnetic field measurement surface of the bearing measured by the magnetic field measuring device, and the magnetic field measurement acquired in the magnetic field information acquisition step. An information generation step that generates each measured value of a magnetic field at a plurality of measurement positions on a surface as the magnetic field distribution information according to the magnetic field properties of the N pole and the S pole and their strength, and the generated magnetic field property distribution. It is characterized by including a diagnostic step for diagnosing the presence or absence of an abnormality in a bearing and the degree of progress thereof based on information.

本発明によれば、N極とS極との磁極性およびその強さに応じた磁極性分布情報として軸受の磁場測定面における磁場変化を把握することにより、軸受の分解前に軸受の異常の有無を診断できる。 According to the present invention, by grasping the change in the magnetic field on the magnetic field measurement surface of the bearing as the magnetic pole property between the N pole and the S pole and the magnetic pole property distribution information according to the strength thereof, the abnormality of the bearing before the bearing is disassembled. The presence or absence can be diagnosed.

本発明に係る軸受の異常診断方法に用いる軸受の異常診断システムの一実施形態を説明する図であり、同図(a)はそのうちの磁場測定器の模式的斜視図、(b)はシステムのブロック図である。It is a figure explaining one Embodiment of the bearing abnormality diagnosis system used in the bearing abnormality diagnosis method which concerns on this invention, FIG. It is a block diagram. 本発明に係る軸受の異常診断方法にて異常を診断する軸受の一実施形態を説明する図であり、同図は軸線に沿った断面の要部を拡大して示している。It is a figure explaining one Embodiment of the bearing which diagnoses an abnormality by the abnormality diagnosis method of the bearing which concerns on this invention, and the figure shows the main part of the cross section along the axis in an enlarged manner. 本発明に係る軸受の異常診断システムによる軸受の異常診断方法の一実施形態を説明する模式図((a)、(b))である。It is a schematic diagram ((a), (b)) explaining one embodiment of the bearing abnormality diagnosis method by the bearing abnormality diagnosis system which concerns on this invention. 本発明に係る軸受の異常診断方法での磁場測定面の一例の説明図であり、同図は軸受軌道面の負荷圏を展開して示している。It is explanatory drawing of an example of the magnetic field measurement surface in the abnormality diagnosis method of a bearing which concerns on this invention, and this figure shows the load area of a bearing raceway surface expanded. 本発明に係る軸受の異常診断方法での磁場測定面の一例の説明図であり、同図は軸受軌道面の負荷圏を展開して示している。It is explanatory drawing of an example of the magnetic field measurement surface in the abnormality diagnosis method of a bearing which concerns on this invention, and this figure shows the load area of a bearing raceway surface expanded. 本発明に係る軸受の異常診断方法にて異常を診断する転がり軸受の転動体の転動姿勢の一例を説明する図であり、同図(a)はころ正常姿勢、(b)はころ傾倒姿勢(ミスアライメント時)のイメージを示している。It is a figure explaining an example of the rolling posture of the rolling element of the rolling bearing which diagnoses an abnormality by the abnormality diagnosis method of the bearing which concerns on this invention, FIG. The image (at the time of misalignment) is shown. 本発明に係る軸受の異常診断方法にて採用する、磁場の大きさに応じた色分け(第一識別情報)とその基本色の濃さで濃淡分け(第二識別情報)した基準例を示す図である。但し、図7~図10に示すモニタ表示では、公報で色彩表示が困難な理由から、赤色であるイメージを記号Nで示し、青色であるイメージを記号Sで示している。The figure which shows the reference example which was adopted in the abnormality diagnosis method of a bearing which concerns on this invention, and was color-coded according to the magnitude of a magnetic field (first identification information), and shade-coded by the density of the basic color (second identification information). Is. However, in the monitor displays shown in FIGS. 7 to 10, the red image is indicated by the symbol N and the blue image is indicated by the symbol S because it is difficult to display colors in the publication. 図4ないし図5で示した磁場測定面において、本発明に係る軸受の異常診断方法での診断の結果、磁場測定面が正常時の画像情報のモニタ表示例のイメージを示す図である。4 is a diagram showing an image of a monitor display example of image information when the magnetic field measurement surface is normal as a result of diagnosis by the bearing abnormality diagnosis method according to the present invention on the magnetic field measurement surface shown in FIGS. 4 to 5. 図4ないし図5で示した磁場測定面において、本発明に係る軸受の異常診断方法での診断の結果、磁場測定面に対し転動体のミスアライメントが生じているときの画像情報モニタ表示例のイメージを示す図である。An image information monitor display example when a rolling element is misaligned with respect to the magnetic field measurement surface as a result of diagnosis by the bearing abnormality diagnosis method according to the present invention on the magnetic field measurement surface shown in FIGS. 4 to 5. It is a figure which shows the image. 図4ないし図5で示した磁場測定面において、本発明に係る軸受の異常診断方法での診断の結果、磁場測定面が異常時の画像情報のモニタ表示例のイメージを示す図である。4 is a diagram showing an image of a monitor display example of image information when the magnetic field measurement surface is abnormal as a result of diagnosis by the bearing abnormality diagnosis method according to the present invention on the magnetic field measurement surface shown in FIGS. 4 to 5. 本発明に係る軸受の異常診断システムによる軸受の異常診断方法の他の実施形態を説明する模式図である。It is a schematic diagram explaining another embodiment of the bearing abnormality diagnosis method by the bearing abnormality diagnosis system which concerns on this invention.

以下、本発明の実施形態および実施例について、図面を適宜参照しつつ説明する。なお、図面は模式的なものである。そのため、厚みと平面寸法との関係、比率等は現実のものとは異なることに留意すべきであり、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。また、以下に示す実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記の実施形態ないし実施例に特定するものではない。 Hereinafter, embodiments and examples of the present invention will be described with reference to the drawings as appropriate. The drawings are schematic. Therefore, it should be noted that the relationship, ratio, etc. between the thickness and the plane dimension are different from the actual ones, and there are parts where the relationship and ratio of the dimensions are different between the drawings. Further, the embodiments shown below exemplify devices and methods for embodying the technical idea of the present invention, and the technical idea of the present invention describes the material, shape, structure, and arrangement of constituent parts. Etc. are not specified in the following embodiments or examples.

<異常診断システム>
図1に、本発明に係る軸受の異常診断方法に用いる軸受の異常診断システムの一実施形態を示す。同図に示すように、この異常診断システムは、テスラメータ(磁場測定器)10と、情報処理装置7とを備える。
テスラメータ10は、磁場(磁束密度)を計測する計測器であり、同図に示すように、手で持ち運び可能で計測値を表示可能な箱型の本体部5と、この本体部5に信号線6を介して接続されたプローブ2と、を有する。
プローブ2端部には感磁部1が設けられている。感磁部1の内部には、磁場に比例した電圧を出力するホール素子が設けられるとともに、ホール素子の出力電圧から磁場(磁束密度)を計測する処理部3がプローブ2内にパッケージ化されている。なお、本実施例では、テスラメータ(磁場測定器)として、製造メーカ:日本電磁測器、(型番GV-400)を使用した。
<Abnormal diagnosis system>
FIG. 1 shows an embodiment of a bearing abnormality diagnosis system used in the bearing abnormality diagnosis method according to the present invention. As shown in the figure, this abnormality diagnosis system includes a teslamometer (magnetic field measuring device) 10 and an information processing device 7.
The teslamometer 10 is a measuring instrument that measures a magnetic field (magnetic flux density), and as shown in the figure, it has a box-shaped main body 5 that can be carried by hand and can display measured values, and a signal line on the main body 5. It has a probe 2 connected via 6.
A magnetoreceptive portion 1 is provided at the end of the probe 2. Inside the magnetic sensing unit 1, a Hall element that outputs a voltage proportional to the magnetic field is provided, and a processing unit 3 that measures the magnetic field (magnetic flux density) from the output voltage of the Hall element is packaged in the probe 2. There is. In this embodiment, a manufacturer: Nippon Electromagnetic Meter (model number GV-400) was used as the teslamometer (magnetic field measuring instrument).

プローブ2は、磁場に比例した電圧を出力するホール素子の出力電圧から磁場(磁束密度)を計測可能になっている。プローブ2には、外部出力部4が設けられ、外部出力部4は、処理部3での磁場(磁束密度)の計測結果を、信号線6を介して本体部5に出力可能に構成されている。さらに、本体部5は、処理部3での磁場(磁束密度)の計測結果を、外部の情報処理装置7に出力可能になっている。
情報処理装置7は、コンピュータと、磁場モニタ用ソフトウェアとを含み、所定のモニタ処理を実行することにより、テスラメータ10を制御して、時系列の磁場測定データを記録するとともに、その処理の結果を、モニタ等の不図示の表示部にオペレータが目視で認識可能な画像情報として表示可能になっている。
The probe 2 can measure a magnetic field (magnetic flux density) from the output voltage of a Hall element that outputs a voltage proportional to the magnetic field. The probe 2 is provided with an external output unit 4, and the external output unit 4 is configured to be able to output the measurement result of the magnetic flux (magnetic flux density) in the processing unit 3 to the main body unit 5 via the signal line 6. There is. Further, the main body portion 5 can output the measurement result of the magnetic field (magnetic flux density) in the processing unit 3 to the external information processing device 7.
The information processing apparatus 7 includes a computer and software for magnetic field monitoring, controls the teslamometer 10 by executing a predetermined monitoring process, records time-series magnetic field measurement data, and records the result of the process. , It can be displayed as image information that can be visually recognized by the operator on a display unit (not shown) such as a monitor.

本実施形態の異常診断システムでは、情報処理装置7が実行する所定のモニタ処理は、磁場情報取得ステップと、画像情報生成ステップと、診断ステップと、を含む軸受の異常診断処理を実行可能に構成されている。
磁場情報取得ステップは、テスラメータ10により測定される、図2に示す軸受20の磁場測定面である軌道面22mにおける複数の測定位置の磁場の情報である測定値を取得するステップである。本実施形態の異常診断システムにおいて、磁場情報取得ステップは、軸受20の少なくとも負荷圏における軌道面22mの磁場の測定値を取得する。なお、複数の測定位置の磁場の情報を取得するに際し、測定範囲を走査可能な走査装置(不図示)を用いてもよいし、オペレータが手で一点ずつ測定を行ってもよい。
In the abnormality diagnosis system of the present embodiment, the predetermined monitoring process executed by the information processing apparatus 7 is configured to be capable of executing the abnormality diagnosis process of the bearing including the magnetic field information acquisition step, the image information generation step, and the diagnosis step. Has been done.
The magnetic field information acquisition step is a step of acquiring the measured value which is the information of the magnetic fields of a plurality of measurement positions on the raceway surface 22 m which is the magnetic field measurement surface of the bearing 20 shown in FIG. 2, which is measured by the teslamometer 10. In the abnormality diagnosis system of the present embodiment, the magnetic field information acquisition step acquires the measured value of the magnetic field of the raceway surface 22 m at least in the load zone of the bearing 20. When acquiring information on the magnetic fields at a plurality of measurement positions, a scanning device (not shown) capable of scanning the measurement range may be used, or the operator may manually measure one point at a time.

画像情報生成ステップは、磁場情報取得ステップで取得された軌道面22mにおける複数の測定位置の磁場の各測定値を、N極とS極との磁極性に応じた異なる2つの基本色で色分けするとともに、その色分けされた各測定値をその磁場の大きさに応じて基本色の濃さで濃淡分けすることで、複数の測定位置の磁場の各測定値を濃淡分けされた2つの基本色の画像情報として生成するステップである。 In the image information generation step, each measured value of the magnetic field at a plurality of measurement positions on the raceway surface 22 m acquired in the magnetic field information acquisition step is color-coded with two different basic colors according to the magnetic pole properties of the N pole and the S pole. At the same time, by dividing each color-coded measurement value by the intensity of the basic color according to the magnitude of the magnetic field, each measurement value of the magnetic field at a plurality of measurement positions is shade-divided into two basic colors. This is a step to generate as image information.

本実施形態の異常診断システムにおいて、画像情報生成ステップは、軸受20の負荷圏における磁場の測定値をN極とS極との磁極性およびその大きさの分布状況に対応する色とその濃淡を含む画像情報を生成するとともにその画像情報をモニタに表示する。このような構成であれば、オペレータがモニタ上で異常診断状況を確認する上で視認性に優れるため、診断ステップでの処理に加え、軸受20の異常の有無とその進行度合とを人が目視診断する上で好適である。 In the abnormality diagnosis system of the present embodiment, in the image information generation step, the measured value of the magnetic field in the load zone of the bearing 20 is the color and the shade corresponding to the magnetic pole property between the N pole and the S pole and the distribution state of the magnitude thereof. The included image information is generated and the image information is displayed on the monitor. With such a configuration, the operator has excellent visibility when checking the abnormality diagnosis status on the monitor. Therefore, in addition to the processing in the diagnosis step, a person visually checks the presence or absence of the abnormality in the bearing 20 and the degree of progress thereof. Suitable for diagnosis.

診断ステップは、画像情報生成ステップで生成された画像情報に基づいて、軸受の異常の有無とその進行度合とを診断するステップである。本実施形態の異常診断システムにおいて、診断ステップは、表示された画像情報の色の濃淡の分布状況と、この画像情報に対比可能に紐付けされた異常進行度合の比較情報とに基づいて、軸受20の異常の有無とその進行度合とを診断する。 The diagnosis step is a step of diagnosing the presence or absence of an abnormality in the bearing and the degree of progress thereof based on the image information generated in the image information generation step. In the abnormality diagnosis system of the present embodiment, the diagnosis step is based on the distribution of color shades of the displayed image information and the comparative information of the degree of abnormality associated with the image information in a contrastable manner. The presence or absence of 20 abnormalities and the degree of their progress are diagnosed.

<軸受の構成>
図2に、本発明に係る軸受の異常診断方法にて異常を診断する軸受の一実施形態を示す。同図に示す例は自動調心ころ軸受である。なお、本発明で診断可能な軸受はこれに限らず、玉軸受、円すい軸受、円筒軸受など、軌道輪が円筒状の鋼材であればよい。また、ころ(つまり、その外周の転動面)が診断対象(つまり磁場測定面)である場合には、ころが鋼材であればよい。
同図に示すように、本実施形態の自動調心ころ軸受20(以下、単に「軸受」ともいう。)は、内輪21および外輪22と、これら内輪21および外輪22の間に、2列に配列され、不図示の保持器で回動自在に保持される転動体である複数の球面ころ23(以下、単に「ころ」ともいう。)と、を有する。この自動調心ころ軸受20は、ころ23、内輪21および外輪22が、円筒状の鋼材である。
<Bearing configuration>
FIG. 2 shows an embodiment of a bearing for diagnosing an abnormality by the bearing abnormality diagnosis method according to the present invention. The example shown in the figure is a self-aligning roller bearing. The bearing that can be diagnosed by the present invention is not limited to this, and any bearing such as a ball bearing, a conical bearing, or a cylindrical bearing may be used as long as the raceway ring is a cylindrical steel material. Further, when the roller (that is, the rolling surface on the outer periphery thereof) is the diagnosis target (that is, the magnetic field measurement surface), the roller may be a steel material.
As shown in the figure, the self-aligning roller bearing 20 of the present embodiment (hereinafter, also simply referred to as “bearing”) is arranged in two rows between the inner ring 21 and the outer ring 22 and the inner ring 21 and the outer ring 22. It has a plurality of spherical rollers 23 (hereinafter, also simply referred to as “rollers”), which are rolling elements that are arranged and rotatably held by a cage (not shown). The self-aligning roller bearing 20 has a roller 23, an inner ring 21, and an outer ring 22 made of a cylindrical steel material.

各ころ23は、外輪22の磁場測定面である軌道面22mと内輪21の磁場測定面である軌道面21mとの間にそれぞれ介装され、不図示の保持器によって回動自在に保持される。不図示の保持器には、ころ23を収容する複数のポケットが画成され、各ポケットに、ころ23が回動自在に保持される。
内輪21は、軸方向(同図中左右方向)中央側が凸となるように複列の軌道面21m、21mが形成されている。両軌道面21m、21mの間の軸方向中央部には、ほぼ平坦な頂面21tが形成されている。軸方向両端部には、一対の鍔部21s、21sが設けられ、軸受の外方へのころ23の脱落を防止している。
外輪22は、内周面に複列一体の凹球面状の軌道面22mが形成されている。また、外輪22の外周面の軸方向中央部には、潤滑剤を注入する油穴22hが貫通形成され、この油穴22hから軸受20内に潤滑剤を供給可能になっている。
Each roller 23 is interposed between the raceway surface 22m, which is the magnetic field measurement surface of the outer ring 22, and the raceway surface 21m, which is the magnetic field measurement surface of the inner ring 21, and is rotatably held by a cage (not shown). .. A plurality of pockets for accommodating the rollers 23 are defined in the cage (not shown), and the rollers 23 are rotatably held in each pocket.
The inner ring 21 is formed with a double row of raceway surfaces 21m and 21m so that the central side in the axial direction (left-right direction in the figure) is convex. A substantially flat top surface 21t is formed at the central portion in the axial direction between the two raceway surfaces 21m and 21m. A pair of crossguards 21s and 21s are provided at both ends in the axial direction to prevent the rollers 23 from falling off to the outside of the bearing.
The outer ring 22 has a concave spherical surface 22m formed in a double row on the inner peripheral surface. Further, an oil hole 22h for injecting a lubricant is formed through the central portion of the outer peripheral surface of the outer ring 22 in the axial direction, and the lubricant can be supplied into the bearing 20 from the oil hole 22h.

本実施形態の自動調心ころ軸受20は、内輪21が、産業機械の支軸(不図示)に取付けられ、外輪22が産業機械のハウジング(不図示)に取付けられて使用される。産業機械の支軸とともに内輪21が回転すると、ころ23は内輪軌道面21mと外輪軌道面22mとの間を転動する。このとき、外輪22の油穴22hから軸受20内に供給された潤滑油が軸受の各部に供給され、各部接触面の潤滑状態を良好に維持し、発熱による温度上昇、摩耗、及び振動が抑制される。 In the self-aligning roller bearing 20 of the present embodiment, the inner ring 21 is attached to a support shaft (not shown) of an industrial machine, and the outer ring 22 is attached to a housing (not shown) of the industrial machine. When the inner ring 21 rotates together with the support shaft of the industrial machine, the roller 23 rolls between the inner ring raceway surface 21 m and the outer ring raceway surface 22 m. At this time, the lubricating oil supplied into the bearing 20 from the oil hole 22h of the outer ring 22 is supplied to each part of the bearing, the lubrication state of the contact surface of each part is maintained well, and the temperature rise, wear, and vibration due to heat generation are suppressed. Will be done.

<本発明における測定・診断原理>
本発明の測定・診断原理は、軸受の負荷圏での磁場測定面の磁場変化に基づくものであり、特に、本実施形態のような転がり軸受20の負荷圏での軌道面22mの磁極性の分布情報に基づくものである。
つまり、例えば内輪21が回転する使用状態において、図3(a)に示すように、外輪22の軌道面22mは、転動体23の移動に伴い繰り返し荷重を受ける。これにより、外輪22の軌道面22mには、疲労による組織変化(マルテンサイト組織のひずみの減少や、残留オーステナイトの減少)や金属接触を起因とする軸受の磁化変化が生じ、磁歪の逆効果として、軌道面22mの変形に伴って磁気特性が変化する。よって、この磁気特性の変化を、図3(b)に示すように、テスラメータ(磁場測定器)10を用いて監視すれば、疲労による組織変化の状況に基づいて、軌道面22mの異常の有無とその進行度合を診断することができる。
<Measurement / Diagnostic Principle in the Present Invention>
The measurement / diagnosis principle of the present invention is based on the change in the magnetic field of the magnetic field measurement surface in the load zone of the bearing, and in particular, the magnetic pole property of the raceway surface 22 m in the load zone of the rolling bearing 20 as in the present embodiment. It is based on distribution information.
That is, for example, in a used state in which the inner ring 21 rotates, as shown in FIG. 3A, the raceway surface 22m of the outer ring 22 is repeatedly loaded with the movement of the rolling element 23. As a result, the raceway surface 22m of the outer ring 22 undergoes a structural change due to fatigue (decrease in martensitic structure strain and reduction in retained austenite) and a change in bearing magnetization due to metal contact, which has the opposite effect of magnetostriction. The magnetic characteristics change with the deformation of the raceway surface 22 m. Therefore, if the change in the magnetic characteristics is monitored by using the teslamator (magnetic field measuring instrument) 10 as shown in FIG. 3 (b), the presence or absence of an abnormality in the raceway surface 22 m is based on the state of the tissue change due to fatigue. And its progress can be diagnosed.

<ミスアライメントについて>
ここで、ころ軸受は、図6(a)に転動体の転動姿勢の一例を示すように、転動体の転動姿勢が正常姿勢であれば、疲労によって寿命に達して損傷に至るものが一般的には多い。しかし、過大な荷重が軸受に負荷されたり、軸受の取付け対象(例えば、回転軸やハウジング)の精度の劣化により、図6(b)に転動体の転動姿勢が傾倒した状態を示すように、軌道面等が軸中心から傾き(α)、ミスアライメントが生じたりすると、軌道面の早期剥離や摩耗等の予期せぬ損傷を引き起こすことがある。
<About misalignment>
Here, as shown in FIG. 6A as an example of the rolling posture of the rolling element, if the rolling posture of the rolling element is a normal posture, the roller bearing reaches the end of its life due to fatigue and is damaged. Generally many. However, as shown in FIG. 6B, the rolling posture of the rolling element is tilted due to an excessive load being applied to the bearing or deterioration of the accuracy of the bearing mounting target (for example, the rotating shaft or the housing). If the raceway surface or the like tilts from the center of the axis (α) and misalignment occurs, unexpected damage such as premature peeling or wear of the raceway surface may occur.

そこで、軌道面等の磁場測定面のはく離前における磁場を検知し、その磁場の磁極性の分布状況とこれに紐付けされた異常進行度合との因果関係との比較に基づいて、軸受の異常の有無とその進行の程度を診断することで、軸受の磁場測定面がはく離を起こすことなく、軸受等を交換することができる。
すなわち、軸受の異常を事前に把握することにより、メンテナンス時に、軸受の交換を適切に行うことができれば、磁場測定面のはく離による、生産機械稼動時の不意の停止を防止できる。また、製造している製品をはく離片により傷付けることも防止される。
Therefore, the magnetic field before the detachment of the magnetic field measurement surface such as the raceway surface is detected, and the bearing abnormality is based on the comparison between the distribution of magnetic pole properties of the magnetic field and the degree of abnormal progress associated with it. By diagnosing the presence or absence of the bearing and the degree of its progress, the bearing or the like can be replaced without causing the magnetic field measurement surface of the bearing to peel off.
That is, if the bearing can be properly replaced at the time of maintenance by grasping the abnormality of the bearing in advance, it is possible to prevent the unexpected stop during the operation of the production machine due to the peeling of the magnetic field measurement surface. It also prevents the manufactured product from being damaged by flaking pieces.

<異常診断方法>
本実施形態では、図2に示した自動調心転がり軸受20を用意し、その外輪22の軌道面22mに対して、図1に示した異常診断システムを用い、テスラメータ10の測定部1の大きさ(面積X*Y(図1参照))に合わせて、図4に示すように、外輪22の軌道面22mの負荷圏の測定範囲にメッシュを設け、軸受20の軌道面22mにおける複数の測定位置の磁場を順にテスラメータ10でそれぞれ測定して測定値を得る(磁場情報取得ステップ:測定工程)。
<Abnormal diagnosis method>
In the present embodiment, the self-aligning rolling bearing 20 shown in FIG. 2 is prepared, and the abnormality diagnosis system shown in FIG. 1 is used for the raceway surface 22 m of the outer ring 22 thereof, and the size of the measuring unit 1 of the teslamometer 10 is large. As shown in FIG. 4, a mesh is provided in the measurement range of the load zone of the raceway surface 22 m of the outer ring 22, and a plurality of measurements are performed on the raceway surface 22 m of the bearing 20. The magnetic field at the position is measured in order with the teslamometer 10 to obtain a measured value (magnetic field information acquisition step: measurement step).

測定結果は、情報処理装置7に送られ、情報処理装置7により、それら複数点の磁場測定面での磁場の各測定値をその磁場のN極とS極との磁極性に応じた異なる2つの基本色で色分けするとともに、その磁場の大きさに応じて基本色の濃さで濃淡分けした画像情報を生成する(情報生成ステップ:情報生成工程)。
さらに、情報処理装置7は、その生成した画像情報をモニタに表示するとともに、その生成した画像情報と異常進行度合との因果関係との比較に基づいて、鋼製軌道面の異常の有無を診断する(診断ステップ:診断工程)。なお、この異常診断は、情報処理装置7の実行するプログラムによらず、オペレータが画像情報を目視することにより判断してもよい。
The measurement result is sent to the information processing apparatus 7, and the information processing apparatus 7 sets each measured value of the magnetic field on the magnetic field measurement planes at the plurality of points according to the magnetic pole properties of the north and south poles of the magnetic field. The image information is color-coded according to one basic color and shaded according to the intensity of the basic color according to the magnitude of the magnetic field (information generation step: information generation step).
Further, the information processing apparatus 7 displays the generated image information on the monitor, and diagnoses the presence or absence of an abnormality on the steel track surface based on the comparison between the generated image information and the causal relationship between the degree of abnormality progress. (Diagnosis step: Diagnostic process). The abnormality diagnosis may be determined by the operator visually observing the image information regardless of the program executed by the information processing apparatus 7.

《実施例:確認試験》
以下の試験条件において、軌道面22mの負荷圏における観察部(図5参照)を観察した。ここで、例えば測定範囲としては、図5に示すように、最も負荷がかかる位置を中心に±60°の範囲(周方向に120°の範囲=軸受軌道面の1/3の範囲)を測定することが望ましい。また、テスラメータ10の測定部1の大きさに合せて設けるメッシュの一例としては、例えば図4に示したように、上記測定範囲を20mm×20mmに区切って測定することは好ましい。
試験機名:玉軸受寿命試験機
使用軸受:呼び番号23152(自動調心ころ軸受)
試験荷重:ラジアル荷重 52.4tf(P/C=0.4)
軸受回転数:800rpm
潤滑方式:強制循環給油
<< Example: Confirmation test >>
Under the following test conditions, the observation section (see FIG. 5) in the load zone of the track surface 22 m was observed. Here, for example, as a measurement range, as shown in FIG. 5, a range of ± 60 ° (a range of 120 ° in the circumferential direction = a range of 1/3 of the bearing raceway surface) is measured around the position where the load is most applied. It is desirable to do. Further, as an example of a mesh provided according to the size of the measuring unit 1 of the teslamometer 10, it is preferable to divide the measurement range into 20 mm × 20 mm as shown in FIG. 4, for example.
Testing machine name: Ball bearing life testing machine Bearing used: Nominal number 23152 (self-aligning roller bearing)
Test load: Radial load 52.4tf (P / C = 0.4)
Bearing rotation speed: 800 rpm
Lubrication method: Forced circulation refueling

本実施例では、軸受の異常診断方法として、軸受20の軌道面22mにおける複数の測定位置での磁場をテスラメータ(磁場測定器)10によりそれぞれ測定し(測定工程)、それら複数点の磁場の各測定値を、その磁場のN極とS極との磁極性に応じた異なる2つの基本色で色分け(第一識別情報)するとともに、その磁場の大きさに応じた基本色の濃さで濃淡分け(第二識別情報)した画像情報を磁極性分布情報として生成し(情報生成工程)、その生成した画像情報に基づいて、軌道面22mの異常等の状態を診断する(診断工程)。 In this embodiment, as a method for diagnosing an abnormality in the bearing, the magnetic fields at a plurality of measurement positions on the raceway surface 22 m of the bearing 20 are measured by a teslamator (magnetic field measuring device) 10 (measurement step), and each of the magnetic fields at the plurality of points is measured. The measured values are color-coded (first identification information) with two different basic colors according to the magnetic pole properties of the north and south poles of the magnetic field, and the density of the basic colors according to the magnitude of the magnetic field is used for shading. The divided (second identification information) image information is generated as magnetic pole distribution information (information generation step), and based on the generated image information, a state such as an abnormality of the raceway surface 22 m is diagnosed (diagnosis step).

この実施例では、図2に示した自動調心転がり軸受20を分解し、外輪22の軌道面22m表面の汚れ等の付着物を落とした。
次いで、図1に示した異常診断システムを用い、テスラメータ(ガウスメータ(磁場測定器))10の測定部1の大きさ(面積X*Y(図1参照))に合わせて、外輪22の軌道面22mの負荷圏に実際にメッシュを設け、軸受の軌道面における複数の測定位置として、メッシュにより区分された各領域の内周面での磁場を、図3(b)に示したように、順にテスラメータ10でそれぞれ測定して測定値を得た。この例では、油穴が配置される非走行面と軌道面の両方を測定した。
なお、本実施例では、2つの基本色として、N極性を赤色、S極性を青色とする表示例であるが、図7~図10に示すモニタ表示では、図面を公報にてカラー表示が困難な理由から、赤色であるイメージを記号Nで示し、青色であるイメージを記号Sで示している。
In this embodiment, the self-aligning rolling bearing 20 shown in FIG. 2 was disassembled to remove deposits such as dirt on the surface of the raceway surface 22 m of the outer ring 22.
Next, using the abnormality diagnosis system shown in FIG. 1, the raceway surface of the outer ring 22 is adjusted to the size (area XY (see FIG. 1)) of the measuring unit 1 of the teslamometer (Gauss meter (magnetic field measuring instrument)) 10. A mesh is actually provided in a load zone of 22 m, and the magnetic fields on the inner peripheral surface of each region divided by the mesh are sequentially provided as a plurality of measurement positions on the raceway surface of the bearing, as shown in FIG. 3 (b). The measured values were obtained by measuring with the teslamometer 10 respectively. In this example, both the non-running surface and the raceway surface where the oil holes are arranged were measured.
In this embodiment, the two basic colors are a display example in which the N polarity is red and the S polarity is blue, but in the monitor display shown in FIGS. 7 to 10, it is difficult to display the drawings in color in the publication. For this reason, the red image is indicated by the symbol N, and the blue image is indicated by the symbol S.

図8に、軸受組付けが正常時における60時間後の磁極性分布情報の結果を示す。
同図に示すように、軸受組付けが正常であれば、磁極が軌道面全体に一様な分布であることがわかる。本実施形態では、同図の磁極性分布情報(画像情報)が、生成した画像情報との因果関係を有する異常進行度合の比較情報である。このように、異常進行度合の比較情報は、対応する軸受の軌道面の異常の有無とその進行度合の程度を実験によって予め取得したときの磁極性分布情報を用いることができる。
FIG. 8 shows the result of the magnetic pole distribution information after 60 hours when the bearing assembly is normal.
As shown in the figure, if the bearing assembly is normal, it can be seen that the magnetic poles are uniformly distributed over the entire raceway surface. In the present embodiment, the magnetic pole distribution information (image information) in the figure is comparative information of the degree of abnormal progress having a causal relationship with the generated image information. As described above, as the comparison information of the degree of abnormal progress, it is possible to use the magnetic pole distribution information when the presence or absence of abnormality in the raceway surface of the corresponding bearing and the degree of the degree of progress are obtained in advance by the experiment.

ここで、図8に示したように、軸受の組み付け状態が正常な時には、磁極が軌道面全体にある程度一様な磁場分布を持っている。これに対し、生成した磁極性分布情報(画像情報)の例として、軸受組付けがミスアライメント時における60時間後の結果を図9に示す。
同図に示すように、軸受組付けがミスアライメント時には、比較情報である、軸受組付けが正常時のときに比べて、軌道面非走行側と軌道面外側においてエッジロードが発生しており、磁極の偏りが見られることがわかる。つまり、軸受組付において、ミスアライメントが発生する時には、軌道面の幅方向にて磁極の偏りが発生する(軌道面外側ではN極よりに磁極の偏り、非走行面側ではS極よりに磁極の偏り、あるいはその逆が発生する。)。
Here, as shown in FIG. 8, when the bearing is normally assembled, the magnetic poles have a magnetic field distribution that is uniform to some extent over the entire raceway surface. On the other hand, as an example of the generated magnetic pole distribution information (image information), FIG. 9 shows the result after 60 hours when the bearing assembly is misaligned.
As shown in the figure, when the bearing assembly is misaligned, edge load occurs on the non-running side of the raceway surface and the outside of the raceway surface as compared with the case where the bearing assembly is normal, which is comparative information. It can be seen that the magnetic poles are biased. That is, in bearing assembly, when misalignment occurs, the magnetic poles are biased in the width direction of the raceway surface (the magnetic poles are biased from the N pole on the outside of the raceway surface, and the magnetic poles are biased from the S pole on the non-traveling surface side. Bias, or vice versa.).

ここで、図6(b)に示したように、ミスアライメント時には、軌道面の非走行面側において転動体のエッジが軌道面に強く接触するため激しい応力集中が生じる。一方、軌道面の外側では、転動体のエッジが軌道面に接触しない(あるいは弱く接触する)ため応力集中が生じていない。これにより、軌道面非走行側と軌道面外側とにおいて磁極の偏りが見られ、転動体の両側のエッジが軌道面に強く接触するため、磁極が軸方向に変化していることがわかる。 Here, as shown in FIG. 6B, at the time of misalignment, the edge of the rolling element strongly contacts the raceway surface on the non-running surface side of the raceway surface, so that intense stress concentration occurs. On the other hand, on the outside of the raceway surface, stress concentration does not occur because the edge of the rolling element does not contact (or weakly contact) the raceway surface. As a result, bias of the magnetic poles is observed between the non-running side of the raceway surface and the outside of the raceway surface, and the edges on both sides of the rolling element are in strong contact with the raceway surface, so that it can be seen that the magnetic poles are changing in the axial direction.

次に、生成した磁極性分布情報(画像情報)の例として、摩耗発生時における24時間後の結果を図10に示す。
同図に示すように、摩耗発生時においては、比較情報である、軸受組付けが正常時のときに比べて、軌道面全体的に磁極が変化していることがわかる。軸受の軌道面に摩耗が発生するときには、軌道面全面に大きな偏りが発生する。つまり、摩耗時においては、負荷圏軌道面に応力が集中して組織変化が生じるため、正常時と比較して、軌道面全体に、複列にまたがり大きな磁極の偏りが認められる。
Next, as an example of the generated magnetic pole distribution information (image information), FIG. 10 shows the result after 24 hours at the time of wear occurrence.
As shown in the figure, it can be seen that when wear occurs, the magnetic poles of the entire raceway surface change as compared with the case where the bearing assembly is normal, which is comparative information. When wear occurs on the raceway surface of the bearing, a large bias occurs on the entire raceway surface. That is, during wear, stress is concentrated on the track surface of the load zone and a structural change occurs, so that a large bias of magnetic poles is observed over the entire track surface over multiple rows as compared with the normal state.

軌道面に過大な荷重が負荷されると、軌道面の残留オーステナイトが分解し、さらに、マルテンサイトのひずみも減少する。ここで、残留オーステナイトは非磁性相であり、マルテンサイトのひずみは磁壁の移動しやすさに影響する。さらに、転動体が軌道面を繰り返し通過することで、引張または圧縮の力が軌道面に繰り返し加えられて磁性が変化(逆磁歪効果)する。特に、内輪の回転時における外輪軌道面は、一定箇所を転動体が通過するため、負荷圏に磁歪が多く蓄積されるものと考えられる。
このように、本発明に係る軸受の異常診断システムおよび軸受の異常診断方法であれば、生成した磁極性分布情報(画像情報)と、この磁極性分布情報との因果関係を有する異常進行度合の比較情報との比較に基づいて、磁場測定面の異常の有無とその進行度合を診断することができる。
When an excessive load is applied to the raceway surface, the retained austenite on the raceway surface is decomposed, and the strain of martensite is also reduced. Here, the retained austenite is a non-magnetic phase, and the strain of martensite affects the mobility of the domain wall. Further, when the rolling element repeatedly passes through the raceway surface, a tensile or compressive force is repeatedly applied to the raceway surface to change the magnetism (reverse magnetostrictive effect). In particular, it is considered that a large amount of magnetostriction is accumulated in the load zone because the rolling element passes through a certain place on the outer ring raceway surface when the inner ring is rotating.
As described above, in the case of the bearing abnormality diagnosis system and the bearing abnormality diagnosis method according to the present invention, the degree of abnormality progress having a causal relationship between the generated magnetic pole distribution information (image information) and the magnetic pole distribution information. Based on the comparison with the comparative information, it is possible to diagnose the presence or absence of an abnormality in the magnetic field measurement surface and the degree of its progress.

よって、本発明に係る軸受の異常診断システムおよび軸受の異常診断方法であれば、従来の診断方法のように軸受を切断せずとも、メンテナンス時に、転がり軸受の異常の有無およびその進行の程度を非分解状態で事前に把握できる。これにより、メンテナンス時に、適切な判断下にて軸受を交換できる。そのため、生産機械の稼動時における、磁場測定面のはく離による生産機械の不意の停止を防止できる。また、製造している製品がはく離片により傷付けられるようなことも防止できる。 Therefore, in the case of the bearing abnormality diagnosis system and the bearing abnormality diagnosis method according to the present invention, the presence or absence of an abnormality in the rolling bearing and the degree of its progress can be checked at the time of maintenance without cutting the bearing as in the conventional diagnosis method. It can be grasped in advance in a non-disassembled state. As a result, the bearing can be replaced at the time of maintenance under appropriate judgment. Therefore, it is possible to prevent the production machine from unexpectedly stopping due to the peeling of the magnetic field measurement surface during the operation of the production machine. In addition, it is possible to prevent the manufactured product from being damaged by flakes.

なお、本発明に係る軸受の異常診断方法は、上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しなければ種々の変形が可能である。
例えば、上記実施形態では、磁場測定面の測定例として、軸受20の軌道面22mを内周面の側から測定した例について説明したが、これに限定されず、本発明は、磁場測定面での磁場のN極とS極の磁極性分布情報を取得可能であれば、他の磁場測定面(つまり、内輪21の軌道面、および/またはころ23外周の転動面)を測定対象にできることは勿論である。
例えば、図11に変形例(他の実施形態)として模式図を示すように、軸受20の軌道面22mを外周面の側から測定することができる。このような測定によれば、軸受の分解前に、軸受の異常の有無を診断し得る軸受の異常診断方法および軸受の異常診断システムを提供する上で好適である。
The method for diagnosing an abnormality of a bearing according to the present invention is not limited to the above embodiment, and various modifications can be made without departing from the gist of the present invention.
For example, in the above embodiment, as a measurement example of the magnetic field measurement surface, an example in which the raceway surface 22 m of the bearing 20 is measured from the inner peripheral surface side has been described, but the present invention is not limited to this, and the present invention is limited to the magnetic field measurement surface. If the magnetic field distribution information of the N pole and the S pole of the magnetic field can be acquired, another magnetic field measurement surface (that is, the raceway surface of the inner ring 21 and / or the rolling surface around the roller 23) can be measured. Of course.
For example, as shown in a schematic diagram as a modified example (another embodiment) in FIG. 11, the raceway surface 22 m of the bearing 20 can be measured from the side of the outer peripheral surface. Such measurement is suitable for providing a bearing abnormality diagnosis method and a bearing abnormality diagnosis system capable of diagnosing the presence or absence of bearing abnormality before disassembling the bearing.

また、例えば上記実施形態では、磁極性分布情報の第一識別情報と第二識別情報の例として、2つの第一識別情報が、相互に色相の異なる色の情報(赤と青)であり、第二識別情報が、相互に色相の異なる色の情報(赤と青)それぞれについて、各測定値それぞれの磁場の大きさに応じて色の明度または彩度を複数の段階に区分して表示(濃淡)する画像情報である例を示したが、これに限定されない。
つまり、本発明にて生成する磁極性分布情報としては、複数点の磁場の各測定値をその磁場のN極とS極との磁極性に対応して相互を識別可能に表示する異なる2つの第一識別情報と、各測定値それぞれの磁場の大きさに応じて段階的に各段階を識別可能に設定された第二識別情報と、の組み合わせによるものであれば、種々の態様とすることができる。
Further, for example, in the above embodiment, as an example of the first identification information and the second identification information of the magnetic pole distribution information, the two first identification information are information (red and blue) of colors having different hues from each other. The second identification information displays the lightness or saturation of the color in multiple stages according to the magnitude of the magnetic field of each measured value for each of the information (red and blue) of colors having different hues from each other (red and blue). An example of image information to be shaded) is shown, but the present invention is not limited to this.
That is, as the magnetic pole distribution information generated in the present invention, two different magnetic pole measurement values are displayed so as to be distinguishable from each other according to the magnetic pole properties of the north pole and the south pole of the magnetic field. Various modes shall be used as long as it is a combination of the first identification information and the second identification information set so that each stage can be identified step by step according to the magnitude of the magnetic field of each measured value. Can be done.

例えば、図7~図10において示す態様「そのもの」とすることができる。つまり、2つの第一識別情報が、相互に異なる磁極記号S、Nの情報であり、第二識別情報が、相互に異なる磁極記号の情報それぞれについて、各測定値それぞれの磁場の大きさに応じて前記磁極記号またはその背景を表示する部分の明度または彩度を複数の段階に区分して表示する情報とすることができる。
また、色を用いる場合において、青と赤に限定されないことも勿論であり、種々の色を組み合わせることができる。また、磁極記号についても、S、Nを用いることが好ましいが、これに限らず、相互に異なる磁極記号であれば、種々の記号を対応させることができる。
For example, the embodiment "itself" shown in FIGS. 7 to 10 can be used. That is, the two first identification information is the information of the different magnetic pole symbols S and N, and the second identification information is the information of the different magnetic pole symbols according to the magnitude of the magnetic field of each measured value. The lightness or saturation of the magnetic pole symbol or the portion displaying the background thereof can be divided into a plurality of stages and displayed.
Further, when colors are used, it is of course not limited to blue and red, and various colors can be combined. Further, it is preferable to use S and N as the magnetic pole symbols, but the present invention is not limited to this, and various symbols can be associated with each other as long as they are different magnetic pole symbols.

また、例えば上記実施形態では自動調心ころ軸受を軸受の一例とし、さらに、実施例において、油穴が配置される非走行面と、軌道面両方を内周面側から測定した例を示したが、これに限定されず、例えば軌道面だけを測定してもよいし、当然に、軸受を非分解状態下にて外周面側から測定することができる。また、本発明に係る軸受の異常診断方法は、転がり軸受に限定されるものではないが、ころを転動体とする種々の軸受に好適である。例えば、自動調心ころ軸受の他、円すいころ軸受、円筒ころ軸受等の軸受の異常診断に好適である。 Further, for example, in the above embodiment, a self-aligning roller bearing is taken as an example of the bearing, and further, in the embodiment, an example in which both the non-running surface on which the oil holes are arranged and the raceway surface are measured from the inner peripheral surface side is shown. However, the present invention is not limited to this, and for example, only the raceway surface may be measured, and of course, the bearing can be measured from the outer peripheral surface side in a non-disassembled state. Further, the method for diagnosing an abnormality of a bearing according to the present invention is not limited to rolling bearings, but is suitable for various bearings using rollers as rolling elements. For example, in addition to self-aligning roller bearings, it is suitable for abnormal diagnosis of bearings such as tapered roller bearings and cylindrical roller bearings.

1 感磁部
2 プローブ
3 処理部
4 出力部
5 本体部
6 信号線
7 情報処理装置
10 テスラメータ(磁場測定器)
20 自動調心ころ軸受(軸受)
21 内輪(軌道輪)
22 外輪(軌道輪)
22m 外輪の軌道面(磁場測定面)
23 ころ(転動体)
1 Magnetic sensing part 2 Probe 3 Processing part 4 Output part 5 Main body part 6 Signal line 7 Information processing device 10 Teslamometer (magnetic field measuring instrument)
20 Self-aligning roller bearing (bearing)
21 Inner ring (orbital ring)
22 Outer ring (orbital ring)
Orbital plane of 22m outer ring (magnetic field measurement plane)
Around 23 (rolling body)

Claims (9)

磁場測定面を外周面に有する鋼製の内輪と、磁場測定面を内周面に有する鋼製の外輪と、これら内輪および外輪の間に介装される複数のころと、を備えるころ軸受のミスアライメントの状態を診断する方法であって、
前記ころ軸受の磁場測定面に対する複数の測定位置での磁場をそれぞれ測定する測定工程と、
前記測定工程で測定された磁場測定面での磁場のN極とS極の磁極性分布情報を生成する情報生成工程と、
前記情報生成工程で生成された磁極性分布情報に基づいて、前記ころ軸受の軌道面の幅方向での磁極の偏りの程度からミスアライメントの状態を診断する診断工程と、
を含むことを特徴とする軸受の異常診断方法。
但し、「磁場測定面」とは、前記ころ軸受の測定対象となる軌道面をいう。
A roller bearing comprising a steel inner ring having a magnetic field measuring surface on the outer peripheral surface, a steel outer ring having a magnetic field measuring surface on the inner peripheral surface, and a plurality of rollers interposed between the inner ring and the outer ring. It is a method of diagnosing the state of misalignment.
The measurement step of measuring the magnetic fields at a plurality of measurement positions with respect to the magnetic field measurement surface of the roller bearing, and the measurement step.
An information generation step of generating magnetic field distribution information of the north pole and the south pole of the magnetic field on the magnetic field measurement surface measured in the measurement step, and
Based on the magnetic pole distribution information generated in the information generation step, a diagnostic step of diagnosing the state of misalignment from the degree of deviation of the magnetic poles in the width direction of the raceway surface of the roller bearing, and a diagnostic step.
A method for diagnosing bearing abnormalities, which comprises.
However, the "magnetic field measurement surface" means a raceway surface to be measured by the roller bearing .
前記情報生成工程は、前記磁極性分布情報を、複数点の磁場の各測定値をその磁場のN極とS極との磁極性に対応して相互を識別する異なる2つの第一識別情報と、各測定位置それぞれの磁場の大きさに応じて段階的に各段階を識別可能な第二識別情報と、の組み合わせによる画像情報として生成し、
前記診断工程は、その生成された画像情報に基づいて前記ころ軸受のミスアライメントの状態を診断する請求項1に記載の軸受の異常診断方法。
In the information generation step, the magnetic pole distribution information is divided into two different first identification information that discriminate each measured value of a magnetic field at a plurality of points according to the magnetic pole properties of the north pole and the south pole of the magnetic field. , Generated as image information by combining with the second identification information that can identify each stage step by step according to the magnitude of the magnetic field of each measurement position.
The method for diagnosing an abnormality in a bearing according to claim 1, wherein the diagnostic step diagnoses a state of misalignment of the roller bearing based on the generated image information.
前記2つの第一識別情報は、相互に色相の異なる色の情報であり、
前記第二識別情報は、前記相互に色相の異なる色の情報それぞれについて、各測定位置それぞれの磁場の大きさに応じて色の明度または彩度を複数の段階に区分して表示する情報である請求項2に記載の軸受の異常診断方法。
The two first identification information is information on colors having different hues from each other.
The second identification information is information for displaying the lightness or saturation of colors in a plurality of stages according to the magnitude of the magnetic field of each measurement position for each of the information of colors having different hues from each other. The method for diagnosing an abnormality in a bearing according to claim 2.
前記2つの第一識別情報は、相互に異なる磁極記号の情報であり、
前記第二識別情報は、前記相互に異なる記号の情報それぞれについて、各測定位置それぞれの磁場の大きさに応じて前記磁極記号及び/またはその背景を表示する部分の明度または彩度を複数の段階に区分して表示する情報である請求項2に記載の軸受の異常診断方法。
The two first identification information is information on magnetic pole symbols that are different from each other.
The second identification information has a plurality of stages of brightness or saturation of the magnetic pole symbol and / or the portion displaying the background thereof according to the magnitude of the magnetic field of each measurement position for each of the information of the symbols different from each other. The method for diagnosing an abnormality in a bearing according to claim 2, which is information to be displayed separately in.
前記生成した磁極性分布情報と、該磁極性分布情報との因果関係を有する異常進行度合の比較情報との比較に基づいて、前記磁場測定面の異常の有無とその進行度合とからミスアライメントの状態を診断する請求項1~4のいずれか一項に記載の軸受の異常診断方法。 Based on the comparison between the generated magnetic field distribution information and the comparison information of the abnormal progress degree having a causal relationship with the magnetic pole distribution information, the misalignment is determined from the presence or absence of the abnormality on the magnetic field measurement surface and the progress degree. The method for diagnosing a bearing abnormality according to any one of claims 1 to 4 for diagnosing a condition . 前記生成する磁極性分布情報は、前記ころ軸受の負荷圏における磁場測定面の磁場の状態を測定した負荷圏測定値に基づくものであり、
前記異常進行度合の比較情報は、対応するころ軸受の磁場測定面の異常の有無とその進行度合の程度を実験によって予め取得したときの磁極性分布情報である請求項5に記載の軸受の異常診断方法。
The generated magnetic pole distribution information is based on the load zone measurement value obtained by measuring the state of the magnetic field on the magnetic field measurement surface in the load zone of the roller bearing .
The bearing abnormality according to claim 5, wherein the comparison information of the degree of abnormal progress is magnetic field distribution information when the presence or absence of an abnormality in the magnetic field measurement surface of the corresponding roller bearing and the degree of the degree of progress are acquired in advance by an experiment. Diagnostic method.
前記生成する磁極性分布情報は、前記ころ軸受の負荷圏における磁場測定面の磁場の状態を測定した負荷圏測定値に基づくものであり、
前記異常進行度合の比較情報は、前記ころ軸受の非負荷圏における磁場測定面の磁場の状態を測定した非負荷圏測定値に基づく磁極性分布情報である請求項5に記載の軸受の異常診断方法。
The generated magnetic pole distribution information is based on the load zone measurement value obtained by measuring the state of the magnetic field on the magnetic field measurement surface in the load zone of the roller bearing .
The bearing abnormality diagnosis according to claim 5, wherein the comparative information of the degree of abnormality is magnetic pole distribution information based on the non-load zone measurement value obtained by measuring the state of the magnetic field on the magnetic field measurement surface in the non-load zone of the roller bearing. Method.
請求項1~7のいずれか一項に記載の軸受の異常診断方法を、コンピュータを含む情報処理装置を用いて実行する軸受の異常診断システムであって、
磁場測定器により測定される前記ころ軸受における複数の測定位置の磁場の情報を取得する磁場情報取得ステップと、
前記磁場情報取得ステップで取得された前記磁場測定面における複数の測定位置の磁場の各測定値を、N極とS極との磁極性およびその強さに応じた前記磁極性分布情報として生成する情報生成ステップと、
前記情報生成ステップで生成された磁極性分布情報に基づいて前記ころ軸受の異常の有無とその進行度合とからミスアライメントの状態を診断する診断ステップと、
を含むことを特徴とする軸受の異常診断システム。
A bearing abnormality diagnosis system for executing the bearing abnormality diagnosis method according to any one of claims 1 to 7 using an information processing device including a computer.
A magnetic field information acquisition step for acquiring information on magnetic fields at a plurality of measurement positions in the roller bearing measured by a magnetic field measuring instrument, and a magnetic field information acquisition step.
Each measured value of the magnetic field at a plurality of measurement positions on the magnetic field measurement surface acquired in the magnetic field information acquisition step is generated as the magnetic field property distribution information according to the magnetic field properties of the N pole and the S pole and their strength. Information generation step and
A diagnostic step for diagnosing a misalignment state based on the presence or absence of an abnormality in the roller bearing and the degree of progress thereof based on the magnetic pole distribution information generated in the information generation step.
Bearing abnormality diagnostic system characterized by including.
前記磁場情報取得ステップは、前記ころ軸受の少なくとも負荷圏における磁場測定面の磁場の測定値を取得し、
前記情報生成ステップは、前記磁極性分布情報を、前記負荷圏における磁場の測定値をN極とS極との磁極性およびその大きさの分布状況に対応する色とその濃淡を含む画像情報を表示可能に生成し、
前記診断ステップは、前記生成された画像情報の色の濃淡の分布状況と、該画像情報に対比可能に紐付けされた異常進行度合の比較情報とに基づいて、前記ころ軸受の異常の有無とその進行度合とからミスアライメントの状態を診断する請求項に記載の軸受の異常診断システム。
The magnetic field information acquisition step acquires the measured value of the magnetic field on the magnetic field measuring surface at least in the load zone of the roller bearing .
In the information generation step, the magnetic pole distribution information is obtained, and the measured value of the magnetic field in the load zone is the image information including the color and the shade corresponding to the magnetic pole property between the N pole and the S pole and the distribution state of the magnitude thereof. Generated so that it can be displayed
In the diagnostic step, the presence or absence of an abnormality in the roller bearing is determined based on the distribution of color shades of the generated image information and the comparative information of the degree of abnormality progress associated with the image information in comparison. The bearing abnormality diagnosis system according to claim 8 , wherein a state of misalignment is diagnosed based on the degree of progress.
JP2018078992A 2018-04-17 2018-04-17 Bearing abnormality diagnosis method and bearing abnormality diagnosis system Active JP7095375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018078992A JP7095375B2 (en) 2018-04-17 2018-04-17 Bearing abnormality diagnosis method and bearing abnormality diagnosis system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018078992A JP7095375B2 (en) 2018-04-17 2018-04-17 Bearing abnormality diagnosis method and bearing abnormality diagnosis system

Publications (2)

Publication Number Publication Date
JP2019184540A JP2019184540A (en) 2019-10-24
JP7095375B2 true JP7095375B2 (en) 2022-07-05

Family

ID=68340890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018078992A Active JP7095375B2 (en) 2018-04-17 2018-04-17 Bearing abnormality diagnosis method and bearing abnormality diagnosis system

Country Status (1)

Country Link
JP (1) JP7095375B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114026415A (en) * 2019-06-17 2022-02-08 日本精工株式会社 Fatigue diagnosis method for rolling machine element and fatigue diagnosis system for rolling machine element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000088812A (en) 1998-07-15 2000-03-31 Topy Ind Ltd Method and device for diagnosing defect of structural member applied with load
JP2004198246A (en) 2002-12-18 2004-07-15 Nsk Ltd Method for diagnosing load state of bearing
JP2014055941A (en) 2012-08-13 2014-03-27 Nsk Ltd Prediction method for progression degree of fatigue or remaining life of rolling bearing
US20140088889A1 (en) 2012-09-27 2014-03-27 Kinder Morgan, Inc. System, method and computer medium having computer program to determine presence of stress corrosion cracking in pipelines with pattern recognition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3015742B2 (en) * 1996-08-21 2000-03-06 鬼怒川ゴム工業株式会社 Automotive wind molding and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000088812A (en) 1998-07-15 2000-03-31 Topy Ind Ltd Method and device for diagnosing defect of structural member applied with load
JP2004198246A (en) 2002-12-18 2004-07-15 Nsk Ltd Method for diagnosing load state of bearing
JP2014055941A (en) 2012-08-13 2014-03-27 Nsk Ltd Prediction method for progression degree of fatigue or remaining life of rolling bearing
US20140088889A1 (en) 2012-09-27 2014-03-27 Kinder Morgan, Inc. System, method and computer medium having computer program to determine presence of stress corrosion cracking in pipelines with pattern recognition

Also Published As

Publication number Publication date
JP2019184540A (en) 2019-10-24

Similar Documents

Publication Publication Date Title
Karacay et al. Experimental diagnostics of ball bearings using statistical and spectral methods
JP2006077938A (en) Abnormality diagnosing device
JP2017032520A (en) State monitoring device and state monitoring method
JP2014055941A (en) Prediction method for progression degree of fatigue or remaining life of rolling bearing
JP7095375B2 (en) Bearing abnormality diagnosis method and bearing abnormality diagnosis system
Shakya et al. Bearing diagnosis using proximity probe and accelerometer
JP7371708B2 (en) Fatigue diagnosis method and fatigue diagnosis system for rolling machine elements
Zupan et al. EXPERIMENTAL DETERMINATION OF DAMAGE TO BEARING RACEWAYS IN ROLLING ROTATIONAL CONNECTIONS.
Abou El Anouar et al. A comparative experimental study of different methods in detection and monitoring bearing defects
JP2020024173A (en) Magnetic sensor device
JP4165260B2 (en) Rolling bearing unit with sensor
JP2019148311A (en) Ball screw device, and machine facility including ball screw device
JP4013056B2 (en) Bearing load condition diagnosis method
JP5910124B2 (en) Bearing remaining life prediction method
JP4101714B2 (en) Rotating equipment state diagnosis support apparatus and program thereof, recording medium storing the program, and state diagnosis support method
JP2020024172A (en) Nondegradable diagnostic method for bearing or direct-acting device
JP7351142B2 (en) Rolling bearing condition monitoring method and condition monitoring device
JP2004093357A (en) Evaluation method and evaluation device
Cureno-Osornio et al. Outer Bearing Race Diagnosis by Means of Stray Flux Signals and Shannon Entropy
JP6953747B2 (en) Rolling bearing condition monitoring device
EP4105501A1 (en) State determination device for hub unit bearing, state determination method for hub unit bearing, program, and hub unit bearing
Tóth et al. Methods for the detection and analysis of bearing failures
Bhingare et al. A Comparative Experimental Investigation on Defects in Rolling Contact Bearing by Vibration Analysis Technique Using FTT
JP2011012963A (en) System and method for inspecting machined finish surface
Mane et al. Design and Development of Experimental Test Rig for Fault Diagnosis of Ball Bearing Using Fuzzy Logic Concept

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220606

R150 Certificate of patent or registration of utility model

Ref document number: 7095375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150