JP7093665B2 - Polyelectrolyte thin film - Google Patents
Polyelectrolyte thin film Download PDFInfo
- Publication number
- JP7093665B2 JP7093665B2 JP2018072259A JP2018072259A JP7093665B2 JP 7093665 B2 JP7093665 B2 JP 7093665B2 JP 2018072259 A JP2018072259 A JP 2018072259A JP 2018072259 A JP2018072259 A JP 2018072259A JP 7093665 B2 JP7093665 B2 JP 7093665B2
- Authority
- JP
- Japan
- Prior art keywords
- polyelectrolyte
- membrane
- thickness
- film
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Description
本発明は高分子電解質薄膜に関する。 The present invention relates to a polyelectrolyte thin film.
燃料電池における電解質膜は非常に重要な構成要素であるため、高性能化が提案されている。電解質膜のイオン導電性をより高めるためには、イオン交換基濃度を高くするすなわちイオン交換基当量(以下「EW」ともいう)を低くすることが一般的である。また電解質膜の膜厚を小さくして膜抵抗を低下させることによってもイオン導電性は向上しうる(非特許文献1)。しかし、EWが低くなるあるいは膜厚が小さくなると電池稼働中に電解質膜が膨潤しやすくなって強度が低下する。そのため、多孔質膜を補強材として用いることが提案されている(例えば特許文献1および2)。 Since the electrolyte membrane in a fuel cell is a very important component, high performance has been proposed. In order to further increase the ion conductivity of the electrolyte membrane, it is common to increase the ion exchange group concentration, that is, decrease the ion exchange group equivalent (hereinafter, also referred to as “EW”). Ion conductivity can also be improved by reducing the film thickness of the electrolyte membrane to reduce the membrane resistance (Non-Patent Document 1). However, when the EW becomes low or the film thickness becomes small, the electrolyte membrane tends to swell during battery operation, and the strength decreases. Therefore, it has been proposed to use a porous membrane as a reinforcing material (for example, Patent Documents 1 and 2).
多孔質膜を補強材として用いることは製造工程が煩雑となる。よって補強材を用いない方法が望まれている。補強材を用いない場合は、トレードオフの関係にある膜厚と強度のバランスを最適化する必要があり、現在のところEWが800~1100g/molで膜厚が25~250μm程度の高分子電解質膜が市販されている(例えば、シグマ-アルドリッチ社から販売されているNafion(登録商標)、Aquivion(登録商標)等)。しかし、より高いイオン導電性および強度を有する高分子電解質膜が要求されている。かかる事情を鑑み、本発明は高いイオン導電性および強度を有する高分子電解質薄膜を提供することを課題とする。 Using a porous membrane as a reinforcing material complicates the manufacturing process. Therefore, a method that does not use a reinforcing material is desired. When the reinforcing material is not used, it is necessary to optimize the balance between the film thickness and the strength, which are in a trade-off relationship. At present, the polyelectrolyte has an EW of 800 to 1100 g / mol and a film thickness of about 25 to 250 μm. Membranes are commercially available (eg, Nafion®, Aquivion®, etc. sold by Sigma-Aldrich). However, there is a demand for a polyelectrolyte membrane with higher ionic conductivity and strength. In view of such circumstances, it is an object of the present invention to provide a polyelectrolyte thin film having high ionic conductivity and strength.
発明者らは膜厚をより小さくしてバルク部を減らし表面部を増やすことでイオン伝導性を高め、かつEWをある値よりも高くして強度を向上させることで前記課題を解決した。すなわち、前記課題は以下の本発明によって解決される。
[1]イオン交換基当量が1100g/molを超え、かつ厚みが8μm以下である高分子電解質膜。
[2]前記厚みが6μm以下である、[1]に記載の高分子電解質。
[3]前記厚みが3μm以下である、[1]に記載の高分子電解質。
[4]前記厚みが0.1以上である、[1]~[3]のいずれかに記載の高分子電解質。
[5]前記[1]~[4]のいずれかに記載の高分子電解質膜を備える燃料電池。
The inventors have solved the above-mentioned problems by increasing the ionic conductivity by reducing the film thickness, reducing the bulk portion and increasing the surface portion, and increasing the EW above a certain value to improve the strength. That is, the above-mentioned problem is solved by the following invention.
[1] A polymer electrolyte membrane having an ion exchange group equivalent of more than 1100 g / mol and a thickness of 8 μm or less.
[2] The polymer electrolyte according to [1], wherein the thickness is 6 μm or less.
[3] The polymer electrolyte according to [1], wherein the thickness is 3 μm or less.
[4] The polymer electrolyte according to any one of [1] to [3], wherein the thickness is 0.1 or more.
[5] A fuel cell provided with the polymer electrolyte membrane according to any one of the above [1] to [4].
本発明により、高いイオン導電性および強度を有する高分子電解質薄膜を提供できる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a polymer electrolyte thin film having high ionic conductivity and strength.
以下、本発明を詳細に説明する。本発明において「X~Y」は端値であるXとYを含む。
1.高分子電解質膜
(1)イオン交換基当量
本発明の高分子電解質膜は、1100g/molを超えるイオン交換基当量(EW)を有する。EWは1100g/mol超であれば限定されないが、1200g/mol以上であることが好ましく、1300g/mol以上であることがより好ましい。
Hereinafter, the present invention will be described in detail. In the present invention, "X to Y" includes X and Y which are fractional values.
1. 1. Polyelectrolyte film (1) Ion exchange group equivalent The polyelectrolyte film of the present invention has an ion exchange group equivalent (EW) of more than 1100 g / mol. The EW is not limited as long as it exceeds 1100 g / mol, but is preferably 1200 g / mol or more, and more preferably 1300 g / mol or more.
イオン交換基としては、カチオン交換用の酸型官能基や、アニオン交換用の塩基型官能基が挙げられる。前者はPEMFCに、後者はAEMFCに好適である。酸型官能基としては、スルホン酸基、リン酸基、カルボン酸基等が挙げられる。これらの中でもプロトン伝導性に優れることから、スルホン酸基が好ましい。塩基型官能基としては、4級アンモニウム基または4級ピリジル基等の4級塩基型官能基が挙げられる。 Examples of the ion exchange group include an acid type functional group for cation exchange and a base type functional group for anion exchange. The former is suitable for PEMFC and the latter is suitable for AEMFC. Examples of the acid type functional group include a sulfonic acid group, a phosphoric acid group, a carboxylic acid group and the like. Among these, a sulfonic acid group is preferable because it has excellent proton conductivity. Examples of the basic functional group include a quaternary basic functional group such as a quaternary ammonium group or a quaternary pyridyl group.
(2)膜厚
本発明の高分子電解質膜の厚みは8μm以下である。当該厚みの上限は6μm以下であることが好ましく、3μm以下であることがより好ましく、2μm以下であることがさらに好ましく、1μm以下であることが特に好ましい。厚みの下限は限定されないが、0.1μm以上であることが好ましく、0.5μm以上であることがより好ましい。
(2) Film thickness The thickness of the polyelectrolyte membrane of the present invention is 8 μm or less. The upper limit of the thickness is preferably 6 μm or less, more preferably 3 μm or less, further preferably 2 μm or less, and particularly preferably 1 μm or less. The lower limit of the thickness is not limited, but is preferably 0.1 μm or more, and more preferably 0.5 μm or more.
(3)材質
本発明の高分子電解質膜には、公知のポリマーにイオン交換基を導入したポリマーを用いることができる。また、本発明の高分子電解質膜の膜厚は極めて薄いので、高分子電解質膜として公知のポリマー中に非水溶性の無機電解質または有機電解質を分散させた組成物を用いることもできる。公知のポリマーとしては、ポリテトラフルオロエチレンや、ポリトリフルオロスチレン等のフッ素系脂肪族ポリマーや、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルスルホン等の芳香族ポリエーテル、芳香族ポリイミド、ポリベンズイミダゾール等の芳香族ポリマーが挙げられる。イオン交換基の導入は公知の方法に従って実施できる。非水溶性の無機電解質としては例えば、Li3PO4、Li3PO4Nx、LiBO2Nx、Li4SiO4-Li3PO4、Li4SiO4-Li3VO4等が挙げられる。非水溶性の有機電解質としてはプロピレンカーボネート、ジエチルカーボネート、エチレンカーボネートなどの炭酸エステルが挙げられる。
(3) Material As the polyelectrolyte membrane of the present invention, a polymer in which an ion exchange group is introduced into a known polymer can be used. Further, since the thickness of the polyelectrolyte film of the present invention is extremely thin, a composition in which a water-insoluble inorganic electrolyte or an organic electrolyte is dispersed in a polymer known as a polyelectrolyte film can also be used. Known polymers include fluoroaliphatic polymers such as polytetrafluoroethylene and polytrifluorostyrene, aromatic polyethers such as polyetherketone, polyetheretherketone, and polyethersulfone, aromatic polyimides, and polybenz. Examples include aromatic polymers such as imidazole. The introduction of the ion exchange group can be carried out according to a known method. Examples of the water-insoluble inorganic electrolyte include Li 3 PO 4 , Li 3 PO 4 N x , LiBO 2 N x , Li 4 SiO 4 -Li 3 PO 4 , Li 4 SiO 4 -Li 3 VO 4 . .. Examples of the water-insoluble organic electrolyte include carbonic acid esters such as propylene carbonate, diethyl carbonate and ethylene carbonate.
(4)特性
本発明の高分子電解質膜は、優れたイオン伝導性と強度を有する。一般に高分子電解質膜の膜厚が小さくなると、膨潤しやすくなることで強度が低下する傾向にある。しかし本発明の高分子電解質膜は、前述のとおりに高いEW、すなわち低いイオン交換基濃度を有するので電池稼働中に電解質膜が膨潤しにくので優れた強度および耐久性を有する。また、一般にEWが高くなるとイオン伝導性が低下するが、本発明の高分子電解質膜は膜厚が極めて小さいため膜抵抗が低く、優れたイオン伝導性を発現する。
(4) Characteristics The polymer electrolyte membrane of the present invention has excellent ionic conductivity and strength. Generally, when the film thickness of the polyelectrolyte membrane becomes small, it tends to swell and the strength tends to decrease. However, as described above, the polyelectrolyte membrane of the present invention has a high EW, that is, a low ion exchange group concentration, so that the electrolyte membrane does not easily swell during battery operation, and thus has excellent strength and durability. In general, when the EW is high, the ionic conductivity decreases, but since the polyelectrolyte membrane of the present invention has an extremely small film thickness, the membrane resistance is low and excellent ionic conductivity is exhibited.
本発明の高分子電解質膜は高いEW、すなわち低いイオン交換基濃度を有するので、上記に加えて、優れたフィルム形成性、優れた化学安定性、優れた耐熱性を有する。また、イオン交換基濃度が低いので、NMP、DMSO等の非常に極性が高い有機溶媒のみならずDMF、THF等の比較的極性が低い有機溶媒へも溶解するので、幅広い有機溶媒選択性を有する。さらに、イオン交換基濃度が低いので本発明の高分子電解質膜は低コストで製造できるという利点も有する。 Since the polymer electrolyte membrane of the present invention has a high EW, that is, a low ion exchange group concentration, in addition to the above, it has excellent film forming property, excellent chemical stability, and excellent heat resistance. In addition, since the ion exchange group concentration is low, it dissolves not only in highly polar organic solvents such as NMP and DMSO but also in relatively low polar organic solvents such as DMF and THF, so that it has a wide range of organic solvent selectivity. .. Further, since the ion exchange group concentration is low, the polyelectrolyte membrane of the present invention has an advantage that it can be produced at low cost.
一般に、高分子電解質膜の含水率が下がるとイオン伝導性は低下する。従来の高分子電解質膜では、電池の運転中にカソード側の含水率が高くアノード側の含水率が低くなるように含水率に傾斜が生じるため、イオン伝導性が低下するという問題があった。しかし、本発明の高分子電解質膜は膜厚が小さいので、カソード側からアノード側へ水が移動する逆拡散が起こりやすく前述のような含水率の傾斜が生じずにイオン伝導性を維持できるという効果も奏する。 Generally, as the water content of the polyelectrolyte membrane decreases, the ionic conductivity decreases. The conventional polymer electrolyte membrane has a problem that the ionic conductivity is lowered because the water content is inclined so that the water content on the cathode side is high and the water content on the anode side is low during the operation of the battery. However, since the polyelectrolyte membrane of the present invention has a small film thickness, backdiffusion in which water moves from the cathode side to the anode side is likely to occur, and the ion conductivity can be maintained without the above-mentioned inclination of the water content. It also has an effect.
2.製造方法
本発明の高分子電解質膜は公知の方法で製造できるが、膜厚が極めて小さいため、CCG(Catalyst Coated on GDL)法で製造することが好ましい。CCG法とは、ガス拡散層に触媒層を塗布する方法である。本発明においては以下の工程を含む方法にて製造することが好ましい。
工程1:ガス拡散層の上に触媒層を形成する工程ならびに
工程2:高分子電解質膜を形成するポリマーおよび溶媒または分散媒を含む組成物を調製し、当該組成物を前記触媒層の上に塗布して電解質膜を形成する工程。
2. 2. Manufacturing Method Although the polymer electrolyte membrane of the present invention can be manufactured by a known method, it is preferably manufactured by the CCG (Catalyst Coated on GDL) method because the film thickness is extremely small. The CCG method is a method of applying a catalyst layer to a gas diffusion layer. In the present invention, it is preferable to produce by a method including the following steps.
Step 1: A step of forming a catalyst layer on a gas diffusion layer and a step 2: a composition containing a polymer and a solvent or a dispersion medium for forming a polyelectrolyte film are prepared, and the composition is placed on the catalyst layer. The process of applying to form an electrolyte film.
(1)工程1
ガス拡散層としては公知のものを使用できる。触媒金属としては、白金、パラジウム、ロジウム、イリジウム、ルテニウム、鉄、チタン、ニッケル、コバルト、金、銀、銅、クロム、マンガン、モリブデン、タングステン、アルミニウム、ケイ素、レニウム、亜鉛、スズ、またはこれらの合金等が挙げられるが、白金が好ましい。担体とは触媒金属を担持するための支持体であり、炭素、金属窒化物、金属炭化物、または金属酸化物であることが好ましい。さらに担体は多孔質であることが好ましく、多孔質炭素であることが特に好ましい。担体は粒子状であることが好ましく、その平均粒子径は10~100nm程度であることが好ましい。本工程は、公知のとおりに実施できるが、触媒粒子、担体、高分子電解質膜を形成するポリマー、および溶媒または分散媒を含む組成物を調製して、これをガス拡散層の上に塗布して触媒層を形成することが好ましい。
(1) Step 1
A known gas diffusion layer can be used. Catalyst metals include platinum, palladium, rhodium, iridium, ruthenium, iron, titanium, nickel, cobalt, gold, silver, copper, chromium, manganese, molybdenum, tungsten, aluminum, silicon, renium, zinc, tin, or any of these. Examples thereof include alloys, but platinum is preferable. The carrier is a support for supporting the catalyst metal, and is preferably carbon, metal nitride, metal carbide, or metal oxide. Further, the carrier is preferably porous, and particularly preferably porous carbon. The carrier is preferably in the form of particles, and the average particle size thereof is preferably about 10 to 100 nm. This step can be carried out as known, but a composition containing catalyst particles, a carrier, a polymer forming a polymer electrolyte membrane, and a solvent or a dispersion medium is prepared and applied onto the gas diffusion layer. It is preferable to form a catalyst layer.
高分子電解質膜を形成するポリマーとしては前述のものが挙げられる。溶媒または分散媒としては、公知の非プロトン性極性溶媒が好ましい。その例としては、DMF、DMSO、NMP、NEP、THF等が挙げられる。組成物をガス拡散層に塗布する方法は限定されないが、組成物をスプレーすることが好ましい。 Examples of the polymer forming the polyelectrolyte film include the above-mentioned ones. As the solvent or dispersion medium, known aprotic polar solvents are preferable. Examples thereof include DMF, DMSO, NMP, NEP, THF and the like. The method of applying the composition to the gas diffusion layer is not limited, but it is preferable to spray the composition.
(2)工程2
本工程では、前工程で調製した組成物から触媒および担体を除いた組成物を調製し、これを例えばスプレーすることで、触媒層の上に所望の厚みの高分子電解質膜を形成できる。スプレー法を常圧で実施すると、膜形成に時間を要するので高分子電解質を水とアルコールの混合溶媒に分散させた分散液を使用することが好ましい。あるいは、溶媒としてDMFのような適度な蒸気圧を有する溶媒を使用してもよい。
(2) Step 2
In this step, a composition obtained by removing the catalyst and the carrier from the composition prepared in the previous step is prepared, and by spraying the composition, for example, a polymer electrolyte membrane having a desired thickness can be formed on the catalyst layer. When the spray method is carried out at normal pressure, it takes time to form a film, so it is preferable to use a dispersion liquid in which a polyelectrolyte is dispersed in a mixed solvent of water and alcohol. Alternatively, a solvent having an appropriate vapor pressure such as DMF may be used as the solvent.
スプレー法以外に、転写法(デカール)、スクリーン印刷法、スピンコート法を用いて触媒層の上に所望の厚みの高分子電解質膜を形成することもできる。あるいは板状に成形されたGDLまたはGDEの片面を前記組成物に含浸させて所望の厚みの高分子電解質膜を形成することもできる。 In addition to the spray method, a transfer method (decal), a screen printing method, or a spin coating method can be used to form a polyelectrolyte film having a desired thickness on the catalyst layer. Alternatively, the composition may be impregnated with one side of a plate-shaped GDL or GDE to form a polyelectrolyte film having a desired thickness.
3.燃料電池
本発明の高分子電解質膜を備える燃料電池は、発電効率、耐久性に優れる。当該燃料電池の電極、触媒層、ガス拡散層としては公知の物を使用できる。
3. 3. Fuel cell The fuel cell provided with the polyelectrolyte membrane of the present invention is excellent in power generation efficiency and durability. Known materials can be used as the electrode, catalyst layer, and gas diffusion layer of the fuel cell.
[実施例1]
スルホン酸基を含有するポリエーテルスルホン(EW=1200g/mol)をDMSOに溶解して10重量%濃度のポリエーテルスルホン溶液を調製する。GDL(ガス拡散層)上に触媒層を形成した電極を準備し、この上にスルホン化ポリエーテルスルホン溶液をスプレーして塗布し、乾燥(60~200℃)させて薄膜を形成する。
[Example 1]
A polyether sulfone containing a sulfonic acid group (EW = 1200 g / mol) is dissolved in DMSO to prepare a 10 wt% concentration polyether sulfone solution. An electrode having a catalyst layer formed on a GDL (gas diffusion layer) is prepared, a sulfonated polyether sulfone solution is sprayed onto the electrode, and the mixture is dried (60 to 200 ° C.) to form a thin film.
Claims (3)
The fuel cell provided with the polyelectrolyte layer according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018072259A JP7093665B2 (en) | 2018-04-04 | 2018-04-04 | Polyelectrolyte thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018072259A JP7093665B2 (en) | 2018-04-04 | 2018-04-04 | Polyelectrolyte thin film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019185909A JP2019185909A (en) | 2019-10-24 |
JP7093665B2 true JP7093665B2 (en) | 2022-06-30 |
Family
ID=68341624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018072259A Active JP7093665B2 (en) | 2018-04-04 | 2018-04-04 | Polyelectrolyte thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7093665B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006210326A (en) | 2004-12-27 | 2006-08-10 | Kuraray Co Ltd | Polymer electrolyte film for solid polymer fuel cells, membrane-electrode assembly, and fuel cell |
JP2008146859A (en) | 2006-12-06 | 2008-06-26 | Toyota Motor Corp | Membrane-electrode assembly and fuel cell having it |
JP2009252480A (en) | 2008-04-04 | 2009-10-29 | Toyobo Co Ltd | Ion-conducting polymer electrolyte membrane and its manufacturing method |
JP2010015960A (en) | 2008-07-01 | 2010-01-21 | Kyc Solutions Co Ltd | Electrolyte film for fuel cell |
JP2016004658A (en) | 2014-06-16 | 2016-01-12 | 学校法人早稲田大学 | Electrolyte membrane, membrane electrode assembly, fuel cell, and method of producing electrolyte membrane |
-
2018
- 2018-04-04 JP JP2018072259A patent/JP7093665B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006210326A (en) | 2004-12-27 | 2006-08-10 | Kuraray Co Ltd | Polymer electrolyte film for solid polymer fuel cells, membrane-electrode assembly, and fuel cell |
JP2008146859A (en) | 2006-12-06 | 2008-06-26 | Toyota Motor Corp | Membrane-electrode assembly and fuel cell having it |
JP2009252480A (en) | 2008-04-04 | 2009-10-29 | Toyobo Co Ltd | Ion-conducting polymer electrolyte membrane and its manufacturing method |
JP2010015960A (en) | 2008-07-01 | 2010-01-21 | Kyc Solutions Co Ltd | Electrolyte film for fuel cell |
JP2016004658A (en) | 2014-06-16 | 2016-01-12 | 学校法人早稲田大学 | Electrolyte membrane, membrane electrode assembly, fuel cell, and method of producing electrolyte membrane |
Also Published As
Publication number | Publication date |
---|---|
JP2019185909A (en) | 2019-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2774203B1 (en) | Method for the preparation of catalyst-coated membranes | |
KR100668353B1 (en) | Metal catalyst and a fuel cell employing an electrode including the same | |
JP6514713B2 (en) | Catalyst layer for a fuel cell and method of making such catalyst layer | |
EP3520892A1 (en) | Carrier, electrode for fuel cell, membrane-electrode assembly, and fuel cell comprising same | |
JP6225468B2 (en) | Fuel cell electrode | |
JP4987857B2 (en) | Polymer dispersion and electrocatalyst ink | |
WO2017159820A1 (en) | Paste for forming electrode catalyst layer and method for manufacturing same, and methods for manufacturing membrane-electrode catalyst layer assembly, gas diffusion electrode, solid polymer fuel cell and solid polymer water electrolysis cell | |
EP3382783B1 (en) | Polymer electrolyte membrane, membrane electrode assembly comprising same, and fuel cell comprising membrane electrode assembly | |
KR100668354B1 (en) | Method for preparing metal catalyst and electrode including the same | |
JP4919005B2 (en) | Method for producing electrode for fuel cell | |
JP2006253042A (en) | Manufacturing method of catalyst for polymer electrolyte fuel cell | |
WO2017154475A1 (en) | Catalyst composition, method for producing polymer electrolyte membrane electrode assembly, and polymer electrolyte membrane electrode assembly | |
JP2006134752A (en) | Solid polymer fuel cell and vehicle | |
EP2036927B1 (en) | Ionic polymer particle dispersion liquid and method for producing the same | |
JP7093665B2 (en) | Polyelectrolyte thin film | |
JP2005294175A (en) | Electrode catalyst layer and its manufacturing method | |
JP2019204700A (en) | Fuel cell manufacturing method | |
JP7498271B2 (en) | Highly durable fuel cell electrode, method for producing same, and membrane-electrode assembly including same | |
JP7207023B2 (en) | Catalyst ink and catalyst layer | |
JP2016035869A (en) | Method for manufacturing cathode catalyst layer for fuel battery | |
KR20170127250A (en) | Electrolyte membrane and fuel cell comprising the same | |
KR102721948B1 (en) | Highly activated oxygen evolution reaction electrode for polymer electrolyte water electrolysis | |
JP2007149461A (en) | Ink for electrode of polymer electrolyte fuel cell | |
JP2006147345A (en) | Electrode catalyst layer and its manufacturing method | |
JP7247693B2 (en) | Fuel cell catalyst layer and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210401 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211227 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20220208 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220429 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220606 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220620 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7093665 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |