JP2016035869A - Method for manufacturing cathode catalyst layer for fuel battery - Google Patents

Method for manufacturing cathode catalyst layer for fuel battery Download PDF

Info

Publication number
JP2016035869A
JP2016035869A JP2014158845A JP2014158845A JP2016035869A JP 2016035869 A JP2016035869 A JP 2016035869A JP 2014158845 A JP2014158845 A JP 2014158845A JP 2014158845 A JP2014158845 A JP 2014158845A JP 2016035869 A JP2016035869 A JP 2016035869A
Authority
JP
Japan
Prior art keywords
cathode catalyst
mass
catalyst layer
copper
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014158845A
Other languages
Japanese (ja)
Inventor
桂一 金子
Keiichi Kaneko
桂一 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014158845A priority Critical patent/JP2016035869A/en
Publication of JP2016035869A publication Critical patent/JP2016035869A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a cathode catalyst layer, which never causes the increase in the amount of platinum over a conventional amount thereof, and when used for a fuel battery, enables the rise of an output of the fuel battery.SOLUTION: A method for manufacturing a cathode catalyst layer for a fuel battery, which includes metal-supporting carbon including platinum or a platinum cobalt alloy as a catalyst component, and an ionomer comprises the step of preparing a cathode catalyst ink by mixing the metal-supporting carbon, the ionomer, a copper compound and a dispersant so that the mass mof copper and the mass mof the metal-supporting carbon satisfy a mixing ratio given by the expression (1) below, and the step of forming the cathode catalyst layer by use of the cathode catalyst ink: 0 mass%<{m/(m+m)}<0.117 mass% Expression (1).SELECTED DRAWING: Figure 1

Description

本発明は、白金量を従来よりも増やすことなく、燃料電池に用いられた際に当該燃料電池の出力を向上させることのできるカソード触媒層の製造方法に関する。   The present invention relates to a method for producing a cathode catalyst layer that can improve the output of a fuel cell when used in a fuel cell without increasing the amount of platinum than in the prior art.

燃料電池のカソードには、通常、酸素還元触媒として白金担持カーボンが使用される。特許文献1には、白金及び白金合金の少なくとも一方を粒子状のカーボン担体に担持してなる担持触媒とプロトン電導性固体電解質とを含有し、前記担持触媒の一部は所定の特性を有する凝集体を形成した固体高分子型燃料電池用カソード触媒層が開示されている。   For the cathode of a fuel cell, platinum-supported carbon is usually used as an oxygen reduction catalyst. Patent Document 1 includes a supported catalyst obtained by supporting at least one of platinum and a platinum alloy on a particulate carbon support and a proton conductive solid electrolyte, and a part of the supported catalyst has a predetermined characteristic. A cathode catalyst layer for a polymer electrolyte fuel cell in which an aggregate is formed is disclosed.

特開2005−056593号公報JP 2005-056593 A

しかし、上記特許文献1に開示された固体高分子型燃料電池用カソード触媒層においては、出力を増やすために白金量を単に増やせばよいことになるが、白金量の増加は製造コストを引き上げる要因となる。
本発明は、上記実状を鑑みて成し遂げられたものであり、白金量を従来よりも増やすことなく、燃料電池に用いられた際に当該燃料電池の出力を向上させることのできるカソード触媒層の製造方法を提供することを目的とする。
However, in the cathode catalyst layer for a polymer electrolyte fuel cell disclosed in Patent Document 1, it is only necessary to increase the amount of platinum in order to increase the output, but the increase in the amount of platinum is a factor that increases the manufacturing cost. It becomes.
The present invention has been accomplished in view of the above circumstances, and the production of a cathode catalyst layer capable of improving the output of the fuel cell when used in a fuel cell without increasing the amount of platinum than in the prior art. It aims to provide a method.

本発明の燃料電池用カソード触媒層の製造方法は、白金又は白金コバルト合金を触媒成分とする金属担持カーボンとアイオノマとを含む燃料電池用カソード触媒層の製造方法であって、銅の質量mCuと前記金属担持カーボンの質量mM/Cとが下記式(1)を満たす混合比となるように、前記金属担持カーボン、前記アイオノマ、銅化合物、及び分散媒を混合してカソード触媒インクを調製し、前記カソード触媒インクを用いてカソード触媒層を形成することを特徴とする。
0質量%<{mCu/(mCu+mM/C)}<0.117質量% 式(1)
The method for producing a cathode catalyst layer for a fuel cell according to the present invention is a method for producing a cathode catalyst layer for a fuel cell comprising metal-supported carbon and ionomer containing platinum or a platinum-cobalt alloy as catalyst components, and the mass of copper m Cu The cathode metal is prepared by mixing the metal-supported carbon, the ionomer, the copper compound, and the dispersion medium so that the mass ratio of the metal-supported carbon m M / C satisfies the following formula (1). And a cathode catalyst layer is formed using the cathode catalyst ink.
0% by mass <{m Cu / (m Cu + m M / C )} <0.117% by mass Formula (1)

本発明によれば、高価な白金又は白金合金の含有量を増やさずとも、カソード触媒インク中の銅の質量割合(mCu/(mCu+mM/C))が式(1)に示す適切な割合となるように金属担持カーボン等の原料を混合することによって、得られるカソード触媒層を燃料電池に使用した際、当該燃料電池の放電特性を向上させることができる。 According to the present invention, the copper mass ratio (m Cu / (m Cu + m M / C )) in the cathode catalyst ink can be appropriately expressed by the formula (1) without increasing the content of expensive platinum or platinum alloy. When the obtained cathode catalyst layer is used in a fuel cell, the discharge characteristics of the fuel cell can be improved by mixing the raw materials such as metal-supported carbon so that the ratio becomes a proper ratio.

実施例1及び比較例1−比較例3の膜・電極接合体のI−V曲線を重ねて示したグラフである。4 is a graph showing the IV curves of the membrane-electrode assemblies of Example 1 and Comparative Example 1 to Comparative Example 3 in an overlapping manner. 実施例1及び比較例1−比較例3の膜・電極接合体について、燃料電池用カソード触媒層中の銅の質量割合と、セル電圧との関係を示すグラフである。6 is a graph showing the relationship between the mass ratio of copper in the fuel cell cathode catalyst layer and the cell voltage for the membrane / electrode assembly of Example 1 and Comparative Example 1 to Comparative Example 3. 比較例1及び比較例3の膜・電極接合体についての複素インピーダンス曲線を重ねて示したグラフである。5 is a graph in which complex impedance curves for membrane / electrode assemblies of Comparative Example 1 and Comparative Example 3 are superimposed. 比較例1及び比較例3の膜・電極接合体についてのガス拡散抵抗を対比した棒グラフである。4 is a bar graph comparing gas diffusion resistances for membrane / electrode assemblies of Comparative Example 1 and Comparative Example 3. FIG.

本発明の燃料電池用カソード触媒層の製造方法は、白金又は白金コバルト合金を触媒成分とする金属担持カーボンとアイオノマとを含む燃料電池用カソード触媒層の製造方法であって、銅の質量mCuと前記金属担持カーボンの質量mM/Cとが下記式(1)を満たす混合比となるように、前記金属担持カーボン、前記アイオノマ、銅化合物、及び分散媒を混合してカソード触媒インクを調製し、前記カソード触媒インクを用いてカソード触媒層を形成することを特徴とする。
0質量%<{mCu/(mCu+mM/C)}<0.117質量% 式(1)
The method for producing a cathode catalyst layer for a fuel cell according to the present invention is a method for producing a cathode catalyst layer for a fuel cell comprising metal-supported carbon and ionomer containing platinum or a platinum-cobalt alloy as catalyst components, and the mass of copper m Cu The cathode metal is prepared by mixing the metal-supported carbon, the ionomer, the copper compound, and the dispersion medium so that the mass ratio of the metal-supported carbon m M / C satisfies the following formula (1). And a cathode catalyst layer is formed using the cathode catalyst ink.
0% by mass <{m Cu / (m Cu + m M / C )} <0.117% by mass Formula (1)

触媒の表面積を増やし、かつ触媒層のガス拡散性を向上させて燃料電池の高電流特性を向上させるには、触媒の微粒化による表面積増加や、触媒の目付増加等の対策が考えられる。しかし、これらの対策は、その背反として、触媒耐久性の低下や、製造コストの増加等のデメリットが考えられる。   In order to improve the high current characteristics of the fuel cell by increasing the surface area of the catalyst and improving the gas diffusibility of the catalyst layer, measures such as an increase in the surface area due to atomization of the catalyst and an increase in the basis weight of the catalyst can be considered. However, these countermeasures may have disadvantages such as a decrease in catalyst durability and an increase in manufacturing cost.

例えば、従来技術として、撥水処理した発泡剤を用いて触媒層を作製することにより疎水性細孔を形成し、触媒の表面積を増やす技術が知られている。しかし、この従来技術においては、発泡剤を除去する工程が必要なため製造工程が増え、さらに発泡剤除去の過程で疎水性細孔の構造が崩れるというデメリットが考えられる。   For example, as a conventional technique, a technique is known in which a hydrophobic layer is formed by producing a catalyst layer using a foaming agent subjected to a water repellent treatment to increase the surface area of the catalyst. However, this prior art requires a step of removing the foaming agent, which increases the number of manufacturing steps, and further has the demerit that the structure of the hydrophobic pores collapses in the process of removing the foaming agent.

また、従来技術として、白金触媒を微粒化することにより比表面積を増やす技術も知られている。しかし、一般的に、微粒化により白金粒子の表面エネルギーは大きくなり、白金のイオン化反応(Pt→Pt2++2e)が促進される。その結果、白金がより溶出しやすくなるため、触媒耐久性が低下するおそれがある。 As a conventional technique, a technique for increasing the specific surface area by atomizing a platinum catalyst is also known. However, in general, the surface energy of platinum particles increases due to atomization, and the ionization reaction of platinum (Pt → Pt 2+ + 2e ) is promoted. As a result, platinum becomes easier to elute, and the catalyst durability may be reduced.

本発明者は、鋭意努力の結果、従来の触媒に銅化合物を特定量添加することにより、得られるカソード触媒層が、燃料電池に用いられた際に当該燃料電池の出力を向上させることができることを見出し、本発明を完成させた。   As a result of diligent efforts, the present inventor can improve the output of a fuel cell when the obtained cathode catalyst layer is used in a fuel cell by adding a specific amount of a copper compound to a conventional catalyst. The present invention was completed.

本発明に係る製造方法は、(1)カソード触媒インクを調製する工程、及び(2)カソード触媒層を形成する工程を有する。ただし、本発明は、必ずしも上記2工程のみに限定されることはない。
以下、上記工程(1)及び(2)について、順に説明する。
The production method according to the present invention includes (1) a step of preparing a cathode catalyst ink, and (2) a step of forming a cathode catalyst layer. However, the present invention is not necessarily limited to the above two steps.
Hereinafter, the steps (1) and (2) will be described in order.

1.カソード触媒インクを調製する工程
本工程は、金属担持カーボン、アイオノマ、銅化合物、及び分散媒を、下記式(1)を満たすような混合比で混合してカソード触媒インクを調製する工程である。
0質量%<{mCu/(mCu+mM/C)}<0.117質量% 式(1)
(上記式(1)中、mCuは銅の質量を表し、mM/Cは金属担持カーボンの質量を表す。)
1. Step of preparing cathode catalyst ink This step is a step of preparing cathode catalyst ink by mixing metal-supporting carbon, ionomer, copper compound, and dispersion medium at a mixing ratio that satisfies the following formula (1).
0% by mass <{m Cu / (m Cu + m M / C )} <0.117% by mass Formula (1)
(In the above formula (1), m Cu represents the mass of copper, and m M / C represents the mass of the metal-supported carbon.)

本発明に使用される金属担持カーボンは、白金担持カーボン又は白金コバルト担持カーボンである。これら金属担持カーボンは、市販のものを用いてもよいし、予め公知の方法により調製したものを用いてもよい。   The metal-supported carbon used in the present invention is platinum-supported carbon or platinum-cobalt-supported carbon. These metal-supported carbons may be commercially available or may be prepared in advance by a known method.

本発明に使用されるアイオノマとしては、燃料電池において用いられる高分子電解質であり、ナフィオン(商品名)に代表されるパーフルオロカーボンスルホン酸樹脂のようなフッ素系高分子電解質の他、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリフェニレンエーテル、ポリパラフェニレン等のエンジニアリングプラスチックや、ポリエチレン、ポリプロピレン、ポリスチレン等の汎用プラスチック等の炭化水素系高分子にスルホン酸基、カルボン酸基、リン酸基、ボロン酸基等のプロトン酸基(プロトン伝導性基)を導入した炭化水素系高分子電解質等が挙げられる。   The ionomer used in the present invention is a polymer electrolyte used in a fuel cell. In addition to a fluorine-based polymer electrolyte such as perfluorocarbon sulfonic acid resin represented by Nafion (trade name), polyether ether ketone Hydrocarbon polymers such as engineering plastics such as polyetherketone, polyethersulfone, polyphenylene sulfide, polyphenylene ether, and polyparaphenylene, and general-purpose plastics such as polyethylene, polypropylene, and polystyrene. Examples thereof include hydrocarbon polymer electrolytes into which proton acid groups (proton conductive groups) such as acid groups and boronic acid groups have been introduced.

本発明に使用される銅化合物としては、水中で十分量の銅イオンが電離(イオン解離)するものであれば特に限定されないが、例えば、CuSO及びその水和物を使用することができる。 The copper compound used in the present invention is not particularly limited as long as a sufficient amount of copper ion is ionized (ion dissociated) in water. For example, CuSO 4 and hydrates thereof can be used.

上記式(1)に示す{mCu/(mCu+mM/C)}(以下、銅の質量割合と称する場合がある。)が0.117質量%以上の場合には、銅イオンがいわゆるカチオンコンタミの原因となり、銅イオンが白金や白金コバルトを被毒したり、銅イオンがアイオノマのスルホナート基(−SO )等のアニオン性官能基とイオン的に結合しプロトン伝導性を阻害したりする現象が生じる。その結果、カソード触媒層内アイオノマのプロトン抵抗が上昇する。
銅の質量割合は、0.110質量%以下であることが好ましく、0.100質量%以下であることがより好ましい。
When {m Cu / (m Cu + m M / C )} (hereinafter sometimes referred to as a copper mass ratio) represented by the above formula (1) is 0.117% by mass or more, copper ions are so-called Causes cation contamination, copper ions poison platinum and platinum cobalt, and copper ions ionically bind to anionic functional groups such as ionomer sulfonate groups (—SO 3 ) to inhibit proton conductivity. Phenomenon occurs. As a result, the proton resistance of the ionomer in the cathode catalyst layer increases.
The mass ratio of copper is preferably 0.110 mass% or less, and more preferably 0.100 mass% or less.

一方、銅の質量割合が0質量%であること、すなわち銅を全く含まない場合には、上記カチオンコンタミも生じない代わりに、放電特性も向上しない。銅を少しでも含むことにより燃料電池の放電性能が向上する理由は以下の通りである。アイオノマにおけるスルホナート基(−SO )等のアニオン性官能基は水との親和性を有するが、銅イオンが当該アニオン性官能基とイオン結合を形成する結果、水がアイオノマとなじみにくくなり、アイオノマにおける排水性が向上する。したがって、銅を含むことにより、カソード触媒層中におけるガス拡散性が向上する結果、燃料電池の出力が向上する。
銅の質量割合が上記式(1)を満たすように銅化合物を加えることによって、上記カチオンコンタミによる影響よりも、触媒表面積増加によるガス拡散性向上の効果の方が上回り、燃料電池の放電性能が向上する。後述する実施例1に示すように、銅の質量割合が0.08質量%となるように銅化合物を添加したところ、高電流領域(電流密度が2.5A/cm)における電圧が従来よりも3%向上することが明らかとなった。
銅の質量割合は、0.02質量%以上であることが好ましく、0.05質量%以上であることがより好ましい。
On the other hand, when the mass ratio of copper is 0% by mass, that is, when copper is not contained at all, the cation contamination is not generated, and the discharge characteristics are not improved. The reason why the discharge performance of the fuel cell is improved by including even a small amount of copper is as follows. Anionic functional groups such as sulfonate groups (—SO 3 ) in ionomers have an affinity for water, but as a result of copper ions forming ionic bonds with the anionic functional groups, water becomes less compatible with ionomers, Improved drainage in ionomers. Therefore, the inclusion of copper improves the gas diffusibility in the cathode catalyst layer, thereby improving the output of the fuel cell.
By adding the copper compound so that the mass ratio of copper satisfies the above formula (1), the effect of improving the gas diffusibility due to the increase in the catalyst surface area is greater than the effect due to the cation contamination, and the discharge performance of the fuel cell is improved. improves. As shown in Example 1 described later, when a copper compound was added so that the mass ratio of copper was 0.08 mass%, the voltage in the high current region (current density was 2.5 A / cm 2 ) was higher than before. Was also found to improve by 3%.
The mass ratio of copper is preferably 0.02 mass% or more, and more preferably 0.05 mass% or more.

なお、後述する実施例1に示す通り、低電流領域においても従来のカソード触媒層(比較例1)と比較して性能にほぼ差が生じないのは、銅の質量割合が上記式(1)に示す範囲内に収まっていれば、銅イオンが適度にアイオノマに捕捉される結果、銅イオンによる触媒被毒がほとんど問題とならないためである。   In addition, as shown in Example 1 described later, the difference in performance compared to the conventional cathode catalyst layer (Comparative Example 1) does not occur even in the low current region because the mass ratio of copper is the above formula (1). This is because copper poisoning is moderately trapped by the ionomer, and as a result, catalyst poisoning by copper ions hardly poses a problem.

以上のように、銅の質量割合が上記式(1)を満たすような混合比で、金属担持カーボン、アイオノマ、銅化合物、及び分散媒を混合することによって、高価な白金や白金合金の含有量を増やすことなく、燃料電池の性能を向上させることができる。   As described above, by mixing the metal-supporting carbon, the ionomer, the copper compound, and the dispersion medium in such a mixing ratio that the copper mass ratio satisfies the above formula (1), the content of expensive platinum or platinum alloy The performance of the fuel cell can be improved without increasing the value.

本発明に使用される分散媒は、適宜選択すればよく、例えば、メタノール、エタノール、プロパノール等のアルコール類、N−メチル−2−ピロリドン(NMP)、ジメチルスルホキシド(DMSO)等の有機溶媒、又はこれら有機溶媒の混合物やこれら有機溶媒と水との混合物を用いることができる。触媒インクには、上記金属担持カーボン、アイオノマ、及び銅化合物以外にも、必要に応じて結着剤や撥水性樹脂等のその他の成分を含有させてもよい。   The dispersion medium used in the present invention may be appropriately selected. For example, alcohols such as methanol, ethanol and propanol, organic solvents such as N-methyl-2-pyrrolidone (NMP) and dimethyl sulfoxide (DMSO), or A mixture of these organic solvents or a mixture of these organic solvents and water can be used. In addition to the metal-supported carbon, ionomer, and copper compound, the catalyst ink may contain other components such as a binder and a water-repellent resin as necessary.

2.カソード触媒層を形成する工程
カソード触媒層の形成方法は特に限定されず、例えば、触媒インクをガス拡散シートの表面に塗布、乾燥することによって、ガス拡散シート表面にカソード触媒層を形成してもよいし、或いは、高分子電解質膜表面に触媒インクを塗布、乾燥することによって、高分子電解質膜表面にカソード触媒層を形成してもよい。或いは、転写用基材表面に触媒インクを塗布、乾燥することによって、転写シートを作製し、該転写シートを、高分子電解質膜又はガス拡散シートと熱圧着等により接合した後、転写シートの基材フィルムを剥離する方法で、高分子電解質膜表面上にカソード触媒層を形成するか、ガス拡散シート表面にカソード触媒層を形成してもよい。
2. Step of forming cathode catalyst layer The method of forming the cathode catalyst layer is not particularly limited. For example, the cathode catalyst layer may be formed on the surface of the gas diffusion sheet by applying catalyst ink to the surface of the gas diffusion sheet and drying. Alternatively, the cathode catalyst layer may be formed on the surface of the polymer electrolyte membrane by applying a catalyst ink on the surface of the polymer electrolyte membrane and drying it. Alternatively, a transfer sheet is prepared by applying a catalyst ink to the surface of the transfer substrate and drying, and the transfer sheet is bonded to the polymer electrolyte membrane or the gas diffusion sheet by thermocompression bonding or the like. The cathode catalyst layer may be formed on the surface of the polymer electrolyte membrane or the cathode catalyst layer may be formed on the surface of the gas diffusion sheet by a method of peeling the material film.

高分子電解質膜としては、上述した高分子電解質を含む膜が挙げられる。
ガス拡散層を形成するガス拡散シートとしては、触媒層に効率良く燃料を供給することができるガス拡散性、導電性、及びガス拡散層を構成する材料として要求される強度を有するもの、例えば、カーボンペーパー等の炭素質多孔質体や、チタン等の金属多孔質体等が挙げられる。
Examples of the polymer electrolyte membrane include a membrane containing the polymer electrolyte described above.
As the gas diffusion sheet for forming the gas diffusion layer, a gas diffusion property capable of efficiently supplying fuel to the catalyst layer, conductivity, and a strength required as a material constituting the gas diffusion layer, for example, Examples thereof include a carbonaceous porous body such as carbon paper and a metal porous body such as titanium.

触媒インクの塗布方法、乾燥方法等は適宜選択することができる。例えば、塗布方法としては、スプレー法、バーコート法、スクリーン印刷法、ドクターブレード法、グラビア印刷法、ダイコート法等が挙げられる。また、乾燥方法としては、例えば、減圧乾燥、加熱乾燥、減圧加熱乾燥等が挙げられる。減圧乾燥、加熱乾燥における具体的な条件に制限はなく、適宜設定すればよい。また、カソード触媒層の厚さは、特に限定されないが、1〜50μm程度とすればよい。   The method for applying the catalyst ink, the drying method, and the like can be selected as appropriate. For example, the application method includes a spray method, a bar coating method, a screen printing method, a doctor blade method, a gravure printing method, a die coating method, and the like. Examples of the drying method include reduced pressure drying, heat drying, and reduced pressure heat drying. There is no restriction | limiting in the specific conditions in reduced pressure drying and heat drying, What is necessary is just to set suitably. The thickness of the cathode catalyst layer is not particularly limited, but may be about 1 to 50 μm.

本発明により製造されるカソード触媒層は、酸化剤ガス流路のガス流れ方向下流の末端近傍に対応するカソード部分に形成することが好ましい。当該カソード触媒層をガス流れ方向の最も下流に近い部分に形成することにより、銅イオンによる触媒被毒(カチオンコンタミ)の影響を極力抑え、かつ高電流領域における放電性能が更に向上すると考えられる。   The cathode catalyst layer produced according to the present invention is preferably formed on the cathode portion corresponding to the vicinity of the downstream end of the oxidant gas flow path in the gas flow direction. By forming the cathode catalyst layer in the portion closest to the downstream in the gas flow direction, it is considered that the influence of catalyst poisoning (cation contamination) by copper ions is suppressed as much as possible, and the discharge performance in a high current region is further improved.

以下に、実施例及び比較例を挙げて、本発明を更に具体的に説明するが、本発明は、これらの実施例のみに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited only to these examples.

1.燃料電池用カソード触媒層の製造
[実施例1]
まず、白金コバルト担持カーボン触媒(PtCo/C)、硫酸銅5水和物(CuSO・5HO)、及び水14.24gを遠心攪拌により混合し、触媒と水を馴染ませた。このとき、下記式(1a)により表される銅の質量割合が0.08質量%となり、かつPtCo/Cの質量が0.9gとなるように、PtCo/CとCuSO・5HOの量を調整した。
(銅の質量割合)=mCu/(mCu+mPtCo/C) 式(1a)
(上記式(1a)中、mCuは硫酸銅5水和物中の銅の質量を示し、mPtCo/Cは白金コバルト担持カーボンの質量を示す。)
次に、当該混合物にエタノール8.16gを加え、同様に遠心攪拌により混合物全体を均一にした。さらに、当該混合物にアイオノマ(デュポン社製、DE2020CS)1.9gを加え、同様に遠心攪拌により混合物を均一にし、触媒インク原料を得た。
乾燥雰囲気下、触媒インク原料20mL、及び破砕用PTFEボール(φ=2.4mm)60gを、PTFE製ポットに入れ、密閉した。その後、容器を遊星型ボールミル装置に取り付け、台盤回転数600rpm、20℃の温度条件下、処理時間1時間の条件でメカニカルミリングを行った。メカニカルミリング終了後、メッシュにより容器内の混合物を濾過してボールを除き、触媒インクを得た。
上記触媒インクをスプレーガン(Nordson社製、SpectrumS−920N)に充填し、電解質膜(デュポン社製、NR211)の一方の面(カソード側)に、触媒量300〜500μg/cm塗布した。そのまま乾燥させて、電解質膜表面に実施例1の燃料電池用カソード触媒層を形成した。
1. Production of cathode catalyst layer for fuel cell [Example 1]
First, a platinum-cobalt-supported carbon catalyst (PtCo / C), copper sulfate pentahydrate (CuSO 4 .5H 2 O), and 14.24 g of water were mixed by centrifugal stirring, and the catalyst and water were mixed. At this time, the mass ratio of copper represented by the following formula (1a) is 0.08 mass%, and the mass of PtCo / C is 0.9 g, so that the mass of PtCo / C and CuSO 4 .5H 2 O is 0.9 g. The amount was adjusted.
(Mass ratio of copper) = m Cu / (m Cu + m PtCo / C ) Formula (1a)
(In the above formula (1a), m Cu represents the mass of copper in the copper sulfate pentahydrate, and m PtCo / C represents the mass of platinum-cobalt-supported carbon.)
Next, 8.16 g of ethanol was added to the mixture, and the whole mixture was homogenized by centrifugal stirring. Furthermore, 1.9 g of Ionoma (DuPont, DE2020CS) was added to the mixture, and the mixture was similarly homogenized by centrifugal stirring to obtain a catalyst ink raw material.
Under a dry atmosphere, 20 mL of the catalyst ink raw material and 60 g of crushing PTFE balls (φ = 2.4 mm) were placed in a PTFE pot and sealed. Thereafter, the container was attached to a planetary ball mill apparatus, and mechanical milling was performed under conditions of a base plate rotation speed of 600 rpm and a temperature of 20 ° C. for a treatment time of 1 hour. After completion of the mechanical milling, the mixture in the container was filtered through a mesh to remove the balls, thereby obtaining a catalyst ink.
The catalyst ink was filled in a spray gun (manufactured by Nordson, Spectrum S-920N), and a catalyst amount of 300 to 500 μg / cm 2 was applied to one surface (cathode side) of the electrolyte membrane (manufactured by DuPont, NR211). It dried as it was, and the cathode catalyst layer for fuel cells of Example 1 was formed on the electrolyte membrane surface.

[比較例1]
まず、PtCo/C 0.9g、及び水14.24gを遠心攪拌により混合し、触媒と水を馴染ませた。すなわち、比較例1においては、CuSO・5HOを使用しなかった。
その後は、実施例1と同様に触媒インクを調製し、電解質膜の一方の面に触媒インクを塗布し、その後乾燥させることにより、電解質膜表面に比較例1の燃料電池用カソード触媒層を形成した。
[Comparative Example 1]
First, 0.9 g of PtCo / C and 14.24 g of water were mixed by centrifugal stirring to adjust the catalyst and water. That is, in Comparative Example 1, CuSO 4 · 5H 2 O was not used.
Thereafter, a catalyst ink was prepared in the same manner as in Example 1, and the catalyst ink was applied to one surface of the electrolyte membrane and then dried to form the cathode catalyst layer for the fuel cell of Comparative Example 1 on the electrolyte membrane surface. did.

[比較例2]
実施例1において、上記式(1a)により表される銅の質量割合が0.15質量%となり、かつPtCo/Cの質量が0.9gとなるように、PtCo/CとCuSO・5HOの量を調整したこと以外は、実施例1と同様に触媒インクを調製し、電解質膜の一方の面に触媒インクを塗布し、その後乾燥させることにより、電解質膜表面に比較例2の燃料電池用カソード触媒層を形成した。
[Comparative Example 2]
In Example 1, PtCo / C and CuSO 4 .5H 2 were used so that the mass ratio of copper represented by the above formula (1a) was 0.15 mass% and the mass of PtCo / C was 0.9 g. Except that the amount of O was adjusted, a catalyst ink was prepared in the same manner as in Example 1, and the catalyst ink was applied to one surface of the electrolyte membrane and then dried, whereby the fuel of Comparative Example 2 was applied to the electrolyte membrane surface. A cathode catalyst layer for a battery was formed.

[比較例3]
実施例1において、上記式(1a)により表される銅の質量割合が0.5質量%となり、かつPtCo/Cの質量が0.9gとなるように、PtCo/CとCuSO・5HOの量を調整したこと以外は、実施例1と同様に触媒インクを調製し、電解質膜の一方の面に触媒インクを塗布し、その後乾燥させることにより、電解質膜表面に比較例3の燃料電池用カソード触媒層を形成した。
[Comparative Example 3]
In Example 1, PtCo / C and CuSO 4 .5H 2 were used so that the mass ratio of copper represented by the above formula (1a) was 0.5 mass% and the mass of PtCo / C was 0.9 g. Except that the amount of O was adjusted, a catalyst ink was prepared in the same manner as in Example 1, the catalyst ink was applied to one surface of the electrolyte membrane, and then dried, so that the fuel of Comparative Example 3 was applied to the electrolyte membrane surface. A cathode catalyst layer for a battery was formed.

2.MEAを用いたIV評価
実施例1及び比較例1〜比較例3の燃料電池用カソード触媒層を形成した電解質膜について、それぞれ電解質膜の他方の面(アノード側)に、市販の白金担持カーボン(田中貴金属工業製)を、電極面積あたりの白金量を0.1mgとした以外は、カソード側と同様にインクを調製し、かつ塗布した。このようにして、電極面積20cmの膜・電極接合体を得た。以下、実施例1及び比較例1〜比較例3の各燃料電池用カソード触媒層をそれぞれ用いて作製した膜・電極接合体を、実施例1及び比較例1〜比較例3の膜・電極接合体と称する場合がある。
得られた膜・電極接合体について、以下の条件下でIV評価を実施した。
・燃料ガス:水素ガス、露点60℃
・酸化剤ガス:空気、露点60℃
・セル温度:60℃
・加湿度:100%
1A/secの掃引速度でOCVと0.2Vとの間を繰り返し掃引して測定した。測定中に安定したI−V曲線を、その燃料電池用カソード触媒層に関する定常I−V曲線として採用した。
2. IV Evaluation Using MEA For the electrolyte membranes on which the fuel cell cathode catalyst layers of Example 1 and Comparative Examples 1 to 3 were formed, commercially available platinum-supported carbon (on the anode side) ( Ink was prepared and applied in the same manner as the cathode side except that the amount of platinum per electrode area was 0.1 mg. In this way, a membrane / electrode assembly having an electrode area of 20 cm 2 was obtained. Hereinafter, the membrane / electrode assemblies produced using the fuel cell cathode catalyst layers of Example 1 and Comparative Examples 1 to 3 were used as the membrane / electrode assemblies of Example 1 and Comparative Examples 1 to 3, respectively. Sometimes called body.
The obtained membrane / electrode assembly was subjected to IV evaluation under the following conditions.
・ Fuel gas: Hydrogen gas, dew point 60 ℃
Oxidant gas: air, dew point 60 ° C
-Cell temperature: 60 ° C
-Humidification: 100%
Measurement was performed by repeatedly sweeping between OCV and 0.2 V at a sweep rate of 1 A / sec. The stable IV curve during the measurement was adopted as the steady IV curve for the fuel cell cathode catalyst layer.

3.燃料電池用カソード触媒層の評価
図1は、実施例1及び比較例1−比較例3の膜・電極接合体のI−V曲線を重ねて示したグラフである。図1は、縦軸に電圧(V)を、横軸に電流密度(A/cm)を、それぞれとったグラフである。図1中の黒四角形のプロットは実施例1のデータを、黒丸のプロットは比較例1のデータを、白小四角形のプロットは比較例2のデータを、白大四角形のプロットは比較例3のデータを、それぞれ示す。図1から分かるように、実施例1の膜・電極接合体は、電流密度のほぼ全ての範囲にわたって、比較例1−比較例3の膜・電極接合体よりも高い電圧を示す。
図2は、今回実験に供した膜・電極接合体について、燃料電池用カソード触媒層中の銅の質量割合と、セル電圧との関係を示すグラフである。図2は、縦軸に2.5A/cmの電流密度におけるセル電圧(V)を、横軸に燃料電池用カソード触媒層中の銅の質量割合(質量%)を、それぞれとったグラフである。ここで、縦軸のセル電圧(V)は図1のI−V曲線から求められるものであり、横軸の銅の質量割合は上記式(1a)から算出されるものである。銅の質量割合が0質量%、0.08質量%、0.15質量%、及び0.5質量%の各プロットは、それぞれ、比較例1、実施例1、比較例2、又は比較例3のデータをそれぞれ示す。また、図2中の破線は、銅の質量割合が0質量%のときのセル電圧(0.625V)を示すものである。
図2に示す通り、銅の質量割合が1質量%のとき(実施例1)のセル電圧は0.645Vであり、CuSO・5HOを加えなかったとき(比較例1)よりも0.020Vも高い。これは、CuSO・5HOを適量加えることにより、銅イオンによるカチオンコンタミの影響よりも、銅イオンによる排水性向上の効果が上回ったことを示すものである。
一方、銅の質量割合が0.15質量%のとき(比較例2)のセル電圧は0.59Vと比較例1よりも0.06V低下し、銅の質量割合が0.5質量%のとき(比較例3)のセル電圧は0.54Vとさらに低下した。これは、CuSO・5HOを加えすぎたことにより、銅イオンによるカチオンコンタミが進んだ結果、PtCo/Cの触媒性能が低下したことによるものである。
なお、図2のグラフ(ただし、銅の質量割合が0〜0.15質量%の範囲内のとき)は、以下の式(2)により表すことができる。
y=−6.6036x+0.7745x+0.6245 式(2)
3. Evaluation of Fuel Cell Cathode Catalyst Layer FIG. 1 is a graph in which IV curves of membrane-electrode assemblies of Example 1 and Comparative Example 1 to Comparative Example 3 are superimposed. FIG. 1 is a graph in which the vertical axis represents voltage (V) and the horizontal axis represents current density (A / cm 2 ). In FIG. 1, the black square plot shows the data of Example 1, the black circle plot shows the data of Comparative Example 1, the white small square plot shows the data of Comparative Example 2, and the white large square plot shows the data of Comparative Example 3. Data are shown respectively. As can be seen from FIG. 1, the membrane / electrode assembly of Example 1 exhibits a higher voltage than the membrane / electrode assembly of Comparative Example 1 to Comparative Example 3 over almost the entire range of current density.
FIG. 2 is a graph showing the relationship between the mass ratio of copper in the fuel cell cathode catalyst layer and the cell voltage for the membrane / electrode assembly used in this experiment. FIG. 2 is a graph in which the vertical axis represents the cell voltage (V) at a current density of 2.5 A / cm 2 and the horizontal axis represents the mass ratio (mass%) of copper in the fuel cell cathode catalyst layer. is there. Here, the cell voltage (V) on the vertical axis is obtained from the IV curve in FIG. 1, and the mass ratio of copper on the horizontal axis is calculated from the above formula (1a). The plots of the copper mass ratios of 0 mass%, 0.08 mass%, 0.15 mass%, and 0.5 mass% are Comparative Example 1, Example 1, Comparative Example 2, or Comparative Example 3, respectively. The data are shown respectively. Moreover, the broken line in FIG. 2 shows the cell voltage (0.625V) when the mass ratio of copper is 0 mass%.
As shown in FIG. 2, when the mass ratio of copper is 1% by mass (Example 1), the cell voltage is 0.645 V, which is 0 than when CuSO 4 .5H 2 O is not added (Comparative Example 1). .020V is also high. This indicates that by adding an appropriate amount of CuSO 4 .5H 2 O, the effect of improving drainage by copper ions has exceeded the effect of cation contamination by copper ions.
On the other hand, when the mass ratio of copper is 0.15 mass% (Comparative Example 2), the cell voltage is 0.59 V, which is 0.06 V lower than that of Comparative Example 1, and when the copper mass ratio is 0.5 mass%. The cell voltage of (Comparative Example 3) further decreased to 0.54V. This is because the catalytic performance of PtCo / C was lowered as a result of the progress of cation contamination by copper ions due to the excessive addition of CuSO 4 .5H 2 O.
In addition, the graph of FIG. 2 (however, when the mass ratio of copper is in the range of 0 to 0.15 mass%) can be represented by the following formula (2).
y = −6.6036x 2 + 0.7745x + 0.6245 Equation (2)

図3は、比較例1及び比較例3の膜・電極接合体についての複素インピーダンス曲線を重ねて示したグラフである。図3は、これら膜・電極接合体のアノード側に水素ガス(H)を、カソード側に窒素ガス(N)をそれぞれ供給し、周波数を変化させた際のインピーダンスをプロットしたグラフである。図3は、縦軸にインピーダンスの虚数成分(−Im Z)(Ω)を、横軸にインピーダンスの実数成分(Re Z)(Ω)を、それぞれとったグラフである。なお、測定時の相対湿度は165%(RH165%、過加湿条件)である。
図4は、比較例1及び比較例3の膜・電極接合体についてのガス拡散抵抗を対比した棒グラフである。図4は、図3の各複素インピーダンス曲線から求められるデータである。図4に示す通り、比較例1(銅の質量割合が0質量%)のガス拡散抵抗が91.2(sec/m)であるのに対し、比較例3(銅の質量割合が5質量%)のガス拡散抵抗は88.3(sec/m)と低い結果である。これは、CuSO・5HOの添加量が多いほど、銅イオンとアイオノマ上のアニオン性官能基とがイオン的に結合する結果、カソード触媒層内の排水性が向上することを示す。したがって、実施例1の膜・電極接合体についても同様に、比較例1の膜・電極接合体よりもカソード触媒層内の排水性が高くなると考えられ、ガス拡散抵抗が比較例1よりも低くなると推測される。
FIG. 3 is a graph in which complex impedance curves for the membrane / electrode assemblies of Comparative Example 1 and Comparative Example 3 are superimposed. FIG. 3 is a graph plotting the impedance when the frequency was changed by supplying hydrogen gas (H 2 ) to the anode side and nitrogen gas (N 2 ) to the cathode side of these membrane-electrode assemblies. . FIG. 3 is a graph in which the ordinate represents the imaginary component (−Im Z) (Ω) of the impedance and the abscissa represents the real component (Re Z) (Ω) of the impedance. In addition, the relative humidity at the time of measurement is 165% (RH165%, excessive humidification condition).
FIG. 4 is a bar graph comparing gas diffusion resistance for the membrane / electrode assemblies of Comparative Example 1 and Comparative Example 3. FIG. 4 is data obtained from each complex impedance curve of FIG. As shown in FIG. 4, the gas diffusion resistance of Comparative Example 1 (the mass ratio of copper is 0% by mass) is 91.2 (sec / m), while the Comparative Example 3 (the mass ratio of copper is 5% by mass). ) Is a low result of 88.3 (sec / m). This indicates that the greater the amount of CuSO 4 .5H 2 O added, the more the copper ions and the anionic functional groups on the ionomer are ionically bonded, resulting in improved drainage in the cathode catalyst layer. Accordingly, the membrane / electrode assembly of Example 1 is also considered to have higher drainage in the cathode catalyst layer than the membrane / electrode assembly of Comparative Example 1, and the gas diffusion resistance is lower than that of Comparative Example 1. Presumed to be.

以上より、上記式(1a)により示される銅の質量割合を、0質量%を超えかつ0.117質量%未満と適切な量に調整することにより、カソード触媒層中の銅イオンがPtCo/Cを被毒し、その結果カソード触媒層中に存在するアイオノマのプロトン抵抗を押し上げる影響よりも、カソード触媒層中の排水性が向上することによるガス拡散性向上の効果が勝ることが明らかとなった。その結果、上記適度な質量割合の銅を含むカソード触媒層は、燃料電池に使用されることにより、当該燃料電池の放電特性を向上させることが分かる。   From the above, the copper ion in the cathode catalyst layer is adjusted to PtCo / C by adjusting the mass ratio of copper represented by the above formula (1a) to an appropriate amount exceeding 0 mass% and less than 0.117 mass%. As a result, it became clear that the effect of improving gas diffusivity by improving drainage in the cathode catalyst layer was superior to the effect of increasing the proton resistance of the ionomer present in the cathode catalyst layer. . As a result, it can be seen that the cathode catalyst layer containing copper having an appropriate mass ratio improves the discharge characteristics of the fuel cell when used in a fuel cell.

Claims (1)

白金又は白金コバルト合金を触媒成分とする金属担持カーボンとアイオノマとを含む燃料電池用カソード触媒層の製造方法であって、
銅の質量mCuと前記金属担持カーボンの質量mM/Cとが下記式(1)を満たす混合比となるように、前記金属担持カーボン、前記アイオノマ、銅化合物、及び分散媒を混合してカソード触媒インクを調製し、
前記カソード触媒インクを用いてカソード触媒層を形成することを特徴とする、燃料電池用カソード触媒層の製造方法。
0質量%<{mCu/(mCu+mM/C)}<0.117質量% 式(1)
A method for producing a cathode catalyst layer for a fuel cell comprising a metal-supported carbon and an ionomer containing platinum or a platinum-cobalt alloy as a catalyst component,
The metal-carrying carbon, the ionomer, the copper compound, and the dispersion medium are mixed so that the mass m Cu of copper and the mass m M / C of the metal-carrying carbon have a mixing ratio satisfying the following formula (1). Preparing a cathode catalyst ink,
A method for producing a cathode catalyst layer for a fuel cell, comprising forming a cathode catalyst layer using the cathode catalyst ink.
0% by mass <{m Cu / (m Cu + m M / C )} <0.117% by mass Formula (1)
JP2014158845A 2014-08-04 2014-08-04 Method for manufacturing cathode catalyst layer for fuel battery Pending JP2016035869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014158845A JP2016035869A (en) 2014-08-04 2014-08-04 Method for manufacturing cathode catalyst layer for fuel battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014158845A JP2016035869A (en) 2014-08-04 2014-08-04 Method for manufacturing cathode catalyst layer for fuel battery

Publications (1)

Publication Number Publication Date
JP2016035869A true JP2016035869A (en) 2016-03-17

Family

ID=55523615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014158845A Pending JP2016035869A (en) 2014-08-04 2014-08-04 Method for manufacturing cathode catalyst layer for fuel battery

Country Status (1)

Country Link
JP (1) JP2016035869A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106450590A (en) * 2016-11-04 2017-02-22 中南大学 Copper/nitrogen double-doped porous fibrous carbon material as well as preparation method and application thereof
WO2021137514A1 (en) * 2019-12-31 2021-07-08 코오롱인더스트리 주식회사 Catalyst for fuel cell, method for manufacturing same, and membrane-electrode assembly comprising same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106450590A (en) * 2016-11-04 2017-02-22 中南大学 Copper/nitrogen double-doped porous fibrous carbon material as well as preparation method and application thereof
CN106450590B (en) * 2016-11-04 2019-03-01 中南大学 A kind of copper/porous fibrous carbon material of nitrogen codope, preparation method and applications
WO2021137514A1 (en) * 2019-12-31 2021-07-08 코오롱인더스트리 주식회사 Catalyst for fuel cell, method for manufacturing same, and membrane-electrode assembly comprising same
CN114342129A (en) * 2019-12-31 2022-04-12 可隆工业株式会社 Catalyst for fuel cell, method for preparing the same, and membrane-electrode assembly comprising the same
TWI771849B (en) * 2019-12-31 2022-07-21 南韓商可隆股份有限公司 Catalyst for fuel cell, method for manufacturing the same, and membrane-electrode assembly comprising the same
JP7346729B2 (en) 2019-12-31 2023-09-19 コーロン インダストリーズ インク Fuel cell catalyst, method for producing the same, and membrane-electrode assembly including the same

Similar Documents

Publication Publication Date Title
Talukdar et al. Minimizing mass-transport loss in proton exchange membrane fuel cell by freeze-drying of cathode catalyst layers
JP5458503B2 (en) Method for producing electrolyte membrane-electrode assembly
US20210159510A1 (en) Manufacturing method of membrane electrode assembly, membrane electrode assembly manufactured thereby, and fuel cell comprising membrane electrode assembly
US9034134B2 (en) Manufacturability of ePTFE laminated membranes
CA2850049C (en) Catalytic ink preparation method
JP6225468B2 (en) Fuel cell electrode
JP2005235706A (en) Electrode for solid polymer fuel cell
US10985381B2 (en) Nanostructured electrode for polymer electrolyte membrane fuel cell, and manufacturing method therefor
JP2006253042A (en) Manufacturing method of catalyst for polymer electrolyte fuel cell
KR20160039375A (en) Electrolyte membrane for fuel cell and preparation method thereof
JP6206371B2 (en) Method for producing electrode catalyst layer for fuel cell
KR102455396B1 (en) Catalyst ink for forming electrode catalyst layer of fuel cell and manufacturing method thereof
JP2016035869A (en) Method for manufacturing cathode catalyst layer for fuel battery
JP6819688B2 (en) Method for manufacturing membrane-electrode assembly, membrane-electrode assembly manufactured from now on, and fuel cell containing this
JP2007027064A (en) Catalyst layer for polymer electrolyte fuel cell and polymer electrolyte fuel cell equipped with the same
US20190267636A1 (en) Enhancing catalyst activity of a pem fuel cell electrode with an ionic liquid additive
JP5672645B2 (en) Electrocatalyst ink for fuel cell
JP2016110888A (en) Method of manufacturing electrode catalyst layer for fuel cell
KR101639783B1 (en) Method for preparing gas diffusion layer for fuel cell, gas diffustion layer prepared by the method, Electrode and Fuel cell comprising the same
JP2016035868A (en) Cathode catalyst layer for fuel battery
JP2006066309A (en) Method of manufacturing catalyst for solid polymer type fuel cell
JP7093665B2 (en) Polyelectrolyte thin film
JP5228339B2 (en) Electrode catalyst layer for fuel cell, MEA (electrolyte membrane electrode assembly) and polymer electrolyte fuel cell comprising the same
JP7052576B2 (en) Manufacturing method of electrode catalyst layer for fuel cell
JP2007149461A (en) Ink for electrode of polymer electrolyte fuel cell