JP7092021B2 - Manufacturing method of glass articles - Google Patents

Manufacturing method of glass articles Download PDF

Info

Publication number
JP7092021B2
JP7092021B2 JP2018239407A JP2018239407A JP7092021B2 JP 7092021 B2 JP7092021 B2 JP 7092021B2 JP 2018239407 A JP2018239407 A JP 2018239407A JP 2018239407 A JP2018239407 A JP 2018239407A JP 7092021 B2 JP7092021 B2 JP 7092021B2
Authority
JP
Japan
Prior art keywords
transfer pipe
tubular portion
glass
tank
molten glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018239407A
Other languages
Japanese (ja)
Other versions
JP2020100531A (en
Inventor
周作 玉村
陸朗 愛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2018239407A priority Critical patent/JP7092021B2/en
Priority to KR1020217014817A priority patent/KR102655115B1/en
Priority to PCT/JP2019/045474 priority patent/WO2020129528A1/en
Priority to CN201980070843.XA priority patent/CN112912348B/en
Priority to TW108143785A priority patent/TWI835935B/en
Publication of JP2020100531A publication Critical patent/JP2020100531A/en
Application granted granted Critical
Publication of JP7092021B2 publication Critical patent/JP7092021B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls

Description

本発明は、板ガラスその他のガラス物品を製造する方法に関する。 The present invention relates to a method for manufacturing flat glass and other glass articles.

周知のように、液晶ディスプレイ、有機ELディスプレイ等のフラットパネルディスプレイには、板ガラスが使用される。板ガラスを製造する方法としては、ダウンドロー法やフロート法等の各種成形法が用いられる。 As is well known, flat glass is used for flat panel displays such as liquid crystal displays and organic EL displays. As a method for producing flat glass, various molding methods such as a down draw method and a float method are used.

例えば板ガラスは、溶解工程、清澄工程、均質化工程、成形工程等の各工程を経て板状とされる。特許文献1には、上記の各工程を実行する製造装置として、溶解槽と、清澄槽と、攪拌槽と、成形装置と、これらの構成要素を相互に接続するガラス供給管とを備えたものが開示される。清澄槽やガラス供給管は、融点が高く耐食性に優れる白金材料(白金又は白金合金)により構成される。また、清澄槽は、溶融ガラスから発生するガスを排出するベント部(通気管)を備える。 For example, the plate glass is formed into a plate shape through each step such as a melting step, a clarification step, a homogenization step, and a molding step. Patent Document 1 includes, as a manufacturing apparatus for executing each of the above steps, a melting tank, a clarification tank, a stirring tank, a molding apparatus, and a glass supply pipe for interconnecting these components. Will be disclosed. The clarification tank and the glass supply pipe are made of a platinum material (platinum or platinum alloy) having a high melting point and excellent corrosion resistance. Further, the clarification tank is provided with a vent portion (vent pipe) for discharging the gas generated from the molten glass.

特開2014-028734号公報Japanese Unexamined Patent Publication No. 2014-028734

清澄槽の構造によっては、溶融ガラスが滞留し、溶融ガラスから発生したガスがベント部から排出されずに、当該清澄槽内に溜る場合がある。清澄槽内にガス溜りが形成されると、当該清澄槽を構成する白金材料の酸化が進行し、白金酸化物が溶融ガラスに混入する。その結果、製造される板ガラスにブツ等の異常が発生し、品質の低下や製品不良となる。 Depending on the structure of the clarification tank, the molten glass may stay and the gas generated from the molten glass may not be discharged from the vent portion but may be accumulated in the clarification tank. When a gas pool is formed in the clarification tank, the platinum material constituting the clarification tank is oxidized, and the platinum oxide is mixed in the molten glass. As a result, abnormalities such as lumps occur in the manufactured flat glass, resulting in deterioration of quality and defective products.

ガス溜りの発生原因について、図8を参照しながら説明する。清澄槽Cは、管状部Caと、管状部Caの上流側端部に設けられるフランジ部F1とを備える。管状部Caは、その内面に頂部Cbと底部Ccとを有する。フランジ部F1は、円板状に構成され、円形の開口部O1を有する。開口部O1の直径は、管状部Caの内径よりも小さく設定されている。開口部O1は、その下端部が管状部Caの底部Ccと一致するようにフランジ部F1を貫通している。開口部O1よりも上方の部分では、フランジ部F1の壁部が、管状部Caの端部を閉塞している。清澄槽Cの内部には、溶融ガラスGMが充満している。すなわち、溶融ガラスGMの液面は、管状部Caの頂部Cbに接触している。 The cause of the gas pool will be described with reference to FIG. The clarification tank C includes a tubular portion Ca and a flange portion F1 provided at an upstream end portion of the tubular portion Ca. The tubular portion Ca has a top Cb and a bottom Cc on its inner surface. The flange portion F1 is formed in a disk shape and has a circular opening O1. The diameter of the opening O1 is set smaller than the inner diameter of the tubular portion Ca. The opening portion O1 penetrates the flange portion F1 so that the lower end portion thereof coincides with the bottom portion Cc of the tubular portion Ca. In the portion above the opening O1, the wall portion of the flange portion F1 closes the end portion of the tubular portion Ca. The inside of the clarification tank C is filled with molten glass GM. That is, the liquid level of the molten glass GM is in contact with the top Cb of the tubular portion Ca.

清澄槽Cの上流側端部には、移送管P1が接続されている。移送管P1は、その下流側端部に、フランジ部F2と、円形の開口部O2とを有する。移送管P1は、フランジ部F2を清澄槽Cのフランジ部F1に接触させ、開口部O2を清澄槽Cの開口部O1に重ね合わせた状態で、清澄槽Cに接続されている。 A transfer pipe P1 is connected to the upstream end of the clarification tank C. The transfer pipe P1 has a flange portion F2 and a circular opening O2 at its downstream end. The transfer pipe P1 is connected to the clearing tank C in a state where the flange portion F2 is in contact with the flange portion F1 of the clearing tank C and the opening O2 is overlapped with the opening O1 of the clearing tank C.

上記の構成では、清澄槽Cの上流側端部における頂部Cbとフランジ部F1の壁部との間の領域で溶融ガラスGMが滞留しやすい。この溶融ガラスGMが滞留する領域に、溶融ガラスGMから発生したガスが浮上して到達すると、ガスが停滞することでガス溜りGAが発生し得る。 In the above configuration, the molten glass GM tends to stay in the region between the top portion Cb and the wall portion of the flange portion F1 at the upstream end portion of the clarification tank C. When the gas generated from the molten glass GM floats and reaches the region where the molten glass GM stays, the gas stagnates and a gas pool GA may be generated.

本発明は上記の事情に鑑みてなされたものであり、清澄槽の内部におけるガス溜りの発生を防止することを技術的課題とする。 The present invention has been made in view of the above circumstances, and it is a technical subject to prevent the generation of gas pools inside the clarification tank.

本発明は上記の課題を解決するためのものであり、溶解槽でガラス原料を加熱溶融して溶融ガラスを生成する工程と、前記溶解槽の流出口から流出した前記溶融ガラスを移送管で移送する工程と、前記移送管から移送された前記溶融ガラスを清澄槽の管状部に充満させた状態で、前記溶融ガラスに清澄処理を施す工程と、を備えるガラス物品の製造方法であって、前記移送管は、前記溶解槽に接続される上流側端部と、前記管状部に接続される下流側端部とを備え、前記移送管は、前記下流側端部における内面の頂部が前記管状部の内面の頂部と一致するように前記管状部に接続されることを特徴とする。 The present invention is for solving the above-mentioned problems, in which a step of heating and melting a glass raw material in a melting tank to generate molten glass and the molten glass flowing out from the outlet of the melting tank are transferred by a transfer pipe. A method for manufacturing a glass article, comprising: The transfer pipe includes an upstream end portion connected to the melting tank and a downstream end portion connected to the tubular portion, and the transfer pipe has the tubular portion at the top of the inner surface of the downstream end portion. It is characterized in that it is connected to the tubular portion so as to coincide with the top of the inner surface of the glass.

かかる構成によれば、移送管の内面の頂部を清澄槽が有する管状部の内面の頂部に一致させることで、移送管から清澄槽に流入する溶融ガラスは、移送管の内面の頂部及び管状部の内面の頂部に沿って滞留することなく流動できる。したがって、溶融ガラスから発生するガスは、浮上した後で溶融ガラスの流動に伴って、清澄槽内を移動できる。このため、ガス溜りの発生を防止できる。 According to this configuration, by aligning the top of the inner surface of the transfer pipe with the top of the inner surface of the tubular portion of the clearing tank, the molten glass flowing into the clearing tank from the transfer pipe is the top and tubular portion of the inner surface of the transfer pipe. Can flow along the top of the inner surface of the glass without stagnation. Therefore, the gas generated from the molten glass can move in the clarification tank as the molten glass flows after floating. Therefore, it is possible to prevent the generation of gas pools.

前記移送管は、前記上流側端部における内面の頂部が前記流出口の内面の頂部と一致すると共に、前記上流側端部における内面の底部が前記流出口の内面の底部と一致するように前記溶解槽に接続されてもよい。これにより、溶融ガラスを滞留させることなく溶解槽から移送管へと流動させることができる。 The transfer pipe is said so that the top of the inner surface at the upstream end coincides with the top of the inner surface of the outlet and the bottom of the inner surface at the upstream end coincides with the bottom of the inner surface of the outlet. It may be connected to a melting tank. As a result, the molten glass can be flowed from the melting tank to the transfer pipe without staying.

前記移送管は、前記下流側端部における内面の底部が前記管状部の内面の底部と一致するように前記管状部に接続されてもよい。ここで、移送管の内径よりも清澄槽の管状部の内径が大きい場合、管状部の内面の底部が下流側端部における内面の底部と一致しないので、管状部の内面の底部周辺で溶融ガラスが滞留しやすい。例えば、移送管の内径と管状部の内径を略等しくすること等により、管状部の内面の底部を下流側端部における内面の底部と一致させれば、管状部の内面の底部周辺で溶融ガラスが滞留するのを防止できる。 The transfer pipe may be connected to the tubular portion so that the bottom of the inner surface at the downstream end thereof coincides with the bottom of the inner surface of the tubular portion. Here, when the inner diameter of the tubular portion of the clarification tank is larger than the inner diameter of the transfer pipe, the bottom of the inner surface of the tubular portion does not coincide with the bottom of the inner surface at the downstream end, so that the molten glass is around the bottom of the inner surface of the tubular portion. Is easy to stay. For example, if the bottom of the inner surface of the tubular portion is made to coincide with the bottom of the inner surface at the downstream end portion by making the inner diameter of the transfer pipe substantially equal to the inner diameter of the tubular portion, the molten glass is formed around the bottom of the inner surface of the tubular portion. Can be prevented from staying.

前記移送管は、前記下流側端部に向かうにつれて内径が漸次増加する拡径部を備え得る。移送管は、これにより、移送管の内径よりも清澄槽の管状部の内径が大きい場合であっても、下流側端部における内面の底部と管状部の内面の底部とを一致させることができ、管状部の内面の底部周辺で溶融ガラスが滞留するのを防止できる。また、流出口の直径と清澄槽の管状部の内径とが異なる既存の設備において、移送管を変更するだけで、清澄槽の内部におけるガス溜りの発生の防止が可能となる。 The transfer pipe may include an enlarged diameter portion whose inner diameter gradually increases toward the downstream end portion. This allows the transfer pipe to match the bottom of the inner surface at the downstream end with the bottom of the inner surface of the tubular, even if the inner diameter of the tubular portion of the clarification tank is larger than the inner diameter of the transfer pipe. , It is possible to prevent the molten glass from staying around the bottom of the inner surface of the tubular portion. Further, in the existing equipment in which the diameter of the outlet and the inner diameter of the tubular portion of the clarification tank are different, it is possible to prevent the generation of gas pool inside the clarification tank simply by changing the transfer pipe.

前記移送管は、直管状に構成されており、前記移送管は、前記下流側端部における内面の底部が前記管状部の内面の底部よりも高くなるように前記管状部に接続されてもよい。ここで、移送管の外面は耐火物で支持されるが、前述のように移送管が拡径部を備えると、移送管と耐火物とで熱膨張量が異なることから、耐火物と移送管との間に隙間が生じやすい。このため、移送管が変形や破損により、移送管を使用可能な期間(寿命)が短くなるおそれがある。直管状に構成された移送管を採用すれば、移送管の外面を容易に支持することができ、移送管を使用可能な期間を維持することができる。また、移送管の製造コストの増大も抑制できる。さらに、流出口の直径と清澄槽の管状部の内径とが異なる既存の設備において、移送管を変更するだけで、清澄槽の内部におけるガス溜りの発生の防止が可能となる。 The transfer pipe is configured in a straight tubular shape, and the transfer pipe may be connected to the tubular portion so that the bottom of the inner surface at the downstream end portion is higher than the bottom of the inner surface of the tubular portion. .. Here, the outer surface of the transfer pipe is supported by a refractory material, but if the transfer pipe is provided with a diameter-expanded portion as described above, the amount of thermal expansion differs between the transfer pipe and the refractory material. A gap is likely to occur between the and. Therefore, if the transfer pipe is deformed or damaged, the usable period (life) of the transfer pipe may be shortened. If a transfer tube configured in a straight tube is adopted, the outer surface of the transfer tube can be easily supported, and the transfer tube can be maintained for a usable period. In addition, an increase in manufacturing cost of the transfer pipe can be suppressed. Further, in the existing equipment in which the diameter of the outlet and the inner diameter of the tubular portion of the clarification tank are different, it is possible to prevent the generation of gas pool inside the clarification tank simply by changing the transfer pipe.

本方法は、前記移送管と前記管状部とを分離させた状態で加熱する工程を備え得る。移送管と清澄槽の管状部とを分離させた状態で加熱することで、事前に移送管及び清澄槽の管状部を膨張させることができる。移送管及び清澄槽の管状部を膨張させた後に接続することで、清澄処理の実施中における清澄槽の管状部及び移送管の膨張を防止し、熱応力による変形を防止できる。 The method may include a step of heating the transfer tube and the tubular portion in a separated state. By heating the transfer pipe and the tubular portion of the clarification tank in a separated state, the tubular portion of the transfer pipe and the clarification tank can be inflated in advance. By connecting the transfer pipe and the tubular portion of the clarification tank after expanding them, it is possible to prevent the tubular portion of the clarification tank and the transfer pipe from expanding during the clarification treatment and prevent deformation due to thermal stress.

本発明によれば、清澄槽の内部におけるガス溜りの発生を防止できる。 According to the present invention, it is possible to prevent the generation of gas pools inside the clarification tank.

第一実施形態に係るガラス物品の製造装置を示す側面図である。It is a side view which shows the manufacturing apparatus of the glass article which concerns on 1st Embodiment. 溶解槽、清澄槽及び移送管の断面図である。It is sectional drawing of a melting tank, a clarification tank and a transfer pipe. 清澄槽の上流側端部と移送管の下流側端部とを示す図である。It is a figure which shows the upstream side end part of a clarification tank and the downstream side end part of a transfer pipe. ガラス物品の製造方法に係るフローチャートである。It is a flowchart which concerns on the manufacturing method of a glass article. 予熱工程における移送管と清澄槽を示す断面図である。It is sectional drawing which shows the transfer pipe and the clarification tank in a preheating process. 第二実施形態に係る溶解槽、清澄槽及び移送管の断面図である。It is sectional drawing of the melting tank, the clarification tank and the transfer pipe which concerns on 2nd Embodiment. 第三実施形態に係る清澄槽及び移送管の断面図である。It is sectional drawing of the clarification tank and transfer pipe which concerns on 3rd Embodiment. ガス溜りの発生原理を説明する断面図である。It is sectional drawing explaining the generation principle of a gas pool.

以下、本発明を実施するための形態について、図面を参照しながら説明する。図1乃至図5は、本発明に係るガラス物品の製造方法及び製造装置の第一実施形態を示す。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. 1 to 5 show a method for manufacturing a glass article and a first embodiment of a manufacturing apparatus according to the present invention.

図1に示すように、本実施形態に係るガラス物品の製造装置は、上流側から順に、溶解槽1と、清澄槽2と、均質化槽(攪拌槽)3と、ポット4と、成形体5と、これらの各構成要素1~5を連結するガラス供給路6a~6dとを備える。この他、製造装置は、成形体5により成形された板ガラスGR(ガラス物品)を徐冷する徐冷炉(図示せず)及び徐冷後に板ガラスGRを切断する切断装置(図示せず)を備える。 As shown in FIG. 1, the apparatus for manufacturing a glass article according to the present embodiment has a melting tank 1, a clarification tank 2, a homogenization tank (stirring tank) 3, a pot 4, and a molded product in this order from the upstream side. 5 and glass supply paths 6a to 6d connecting these components 1 to 5 are provided. In addition, the manufacturing apparatus includes a slow cooling furnace (not shown) for slowly cooling the plate glass GR (glass article) formed by the molded body 5, and a cutting device (not shown) for cutting the plate glass GR after slow cooling.

溶解槽1は、投入されたガラス原料を加熱溶融して溶融ガラスGMを得る溶解工程を行うための容器である。溶解槽1は、ガラス供給路6aによって清澄槽2に接続されている。図2に示すように、溶解槽1は、溶融ガラスGMをガラス供給路6aに供給する流出口1aを有する。流出口1aは、壁部1bを貫通する円形の孔である。 The melting tank 1 is a container for performing a melting step of heating and melting the charged glass raw material to obtain molten glass GM. The melting tank 1 is connected to the clarification tank 2 by a glass supply path 6a. As shown in FIG. 2, the melting tank 1 has an outlet 1a for supplying the molten glass GM to the glass supply path 6a. The outlet 1a is a circular hole penetrating the wall portion 1b.

清澄槽2は、溶融ガラスGMを移送しながら清澄剤等の作用により脱泡する清澄工程(清澄処理)を行う。清澄槽2は、ガラス供給路6bによって均質化槽3に接続されている。清澄槽2は、白金材料(白金又は白金合金)により管状に構成される。図2に示すように、清澄槽2は、管状部7と、当該管状部7の両端部に設けられるフランジ部8a,8bとを備える。 The clarification tank 2 performs a clarification step (clarification treatment) of defoaming by the action of a clarifying agent or the like while transferring the molten glass GM. The clarification tank 2 is connected to the homogenization tank 3 by a glass supply path 6b. The clarification tank 2 is formed in a tubular shape by a platinum material (platinum or platinum alloy). As shown in FIG. 2, the clarification tank 2 includes a tubular portion 7 and flange portions 8a and 8b provided at both ends of the tubular portion 7.

なお、図2において、溶融ガラスGMの流れる方向を符号Fで示す。以下、各構成要素の位置を説明する場合に、溶融ガラスGMの流れる方向Fに基づいて、「上流側」、「下流側」の語を用いる。 In FIG. 2, the flow direction of the molten glass GM is indicated by reference numeral F. Hereinafter, when the position of each component is described, the terms "upstream side" and "downstream side" are used based on the flow direction F of the molten glass GM.

管状部7は、円管状にされるが、この構成に限定されない。管状部7の内径は、100mm以上300mm以下とされることが望ましい。管状部7の肉厚は、0.3mm以上3mm以下とされることが望ましい。管状部7の長さは、300mm以上10000mm以下とされることが望ましい。これらの寸法は、上記の範囲に限定されず、溶融ガラスGMの種別、温度、製造装置の規模等に応じて適宜設定される。 The tubular portion 7 is made into a circular tube, but is not limited to this configuration. The inner diameter of the tubular portion 7 is preferably 100 mm or more and 300 mm or less. The wall thickness of the tubular portion 7 is preferably 0.3 mm or more and 3 mm or less. The length of the tubular portion 7 is preferably 300 mm or more and 10000 mm or less. These dimensions are not limited to the above range, and are appropriately set according to the type, temperature, scale of the manufacturing apparatus, and the like of the molten glass GM.

清澄槽2は、溶融ガラスGM中に発生するガスを排出するためのベント部7aを管状部7の頂部に備える。また、清澄槽2は、溶融ガラスGMが流れる方向を変更するための仕切り板(邪魔板)を管状部7の内部に備えてもよい。 The clarification tank 2 is provided with a vent portion 7a at the top of the tubular portion 7 for discharging the gas generated in the molten glass GM. Further, the clarification tank 2 may be provided with a partition plate (obstruction plate) for changing the flow direction of the molten glass GM inside the tubular portion 7.

図1及び図2に示すように、溶解槽1における溶融ガラスGMの液面GSは、管状部7における内面の頂部(頂点)7bよりも上方位置又はこの頂部7bと同じ位置に設定される。その高低差Hは、0mm以上200mm以下とされるが、この範囲に限定されるものではない。この設定により、管状部7の内部空間は全て、溶解槽1から流入した溶融ガラスGMが充満する。すなわち、管状部7の内部では、当該管状部7の上部内面と溶融ガラスGMとが離間することなく、当該内面全てに溶融ガラスGMが接触する(図2参照)。このように、管状部7の内面全てに溶融ガラスGMが接触することで、管状部7に気相空間が形成されず、管状部7の内面の酸化を防止できる。なお、各ガラス供給路6a~6dを構成する全ての移送管の位置についても、溶融ガラスGMの液面GSよりも下方に設定される。 As shown in FIGS. 1 and 2, the liquid level GS of the molten glass GM in the melting tank 1 is set at a position above the top (apex) 7b of the inner surface of the tubular portion 7 or at the same position as the top 7b. The height difference H is set to 0 mm or more and 200 mm or less, but is not limited to this range. With this setting, the entire internal space of the tubular portion 7 is filled with the molten glass GM flowing from the melting tank 1. That is, inside the tubular portion 7, the molten glass GM comes into contact with the entire inner surface of the tubular portion 7 without separating the upper inner surface of the tubular portion 7 from the molten glass GM (see FIG. 2). In this way, when the molten glass GM comes into contact with the entire inner surface of the tubular portion 7, no gas phase space is formed in the tubular portion 7, and oxidation of the inner surface of the tubular portion 7 can be prevented. The positions of all the transfer pipes constituting the glass supply paths 6a to 6d are also set below the liquid level GS of the molten glass GM.

清澄槽2のフランジ部8a,8bは、円形に構成されるが、この形状に限定されない。フランジ部8a,8bの上部には、電極を支持するための板状の突起部を形成してもよい。フランジ部8a,8bは、電源装置(図示せず)に接続される。清澄槽2は、各フランジ部8a,8bを介して管状部7に電流を流すことで生じる抵抗加熱(ジュール熱)によって、当該管状部7の内部を流れる溶融ガラスGMを加熱する。 The flange portions 8a and 8b of the clarification tank 2 are formed in a circular shape, but are not limited to this shape. A plate-shaped protrusion for supporting the electrode may be formed on the upper portions of the flange portions 8a and 8b. The flange portions 8a and 8b are connected to a power supply device (not shown). The clarification tank 2 heats the molten glass GM flowing inside the tubular portion 7 by resistance heating (Joule heat) generated by passing an electric current through the flange portions 8a and 8b to the tubular portion 7.

清澄槽2のフランジ部8a,8bは、管状部7の上流側端部2aに設けられる第一フランジ部8aと、清澄槽2(管状部7)の下流側端部2bに設けられる第二フランジ部8bとを含む。第一フランジ部8aは、管状部7に溶融ガラスGMを流入させる第一開口部9aを有する。第二フランジ部8bは、管状部7から溶融ガラスGMを流出させる第二開口部9bを有する。第一開口部9a及び第二開口部9bは、円形状に構成される。各開口部9a,9bの直径は、管状部7の内径よりも小さく設定される。 The flange portions 8a and 8b of the clarification tank 2 are a first flange portion 8a provided at the upstream end portion 2a of the tubular portion 7 and a second flange provided at the downstream end portion 2b of the clarification tank 2 (tubular portion 7). Includes part 8b. The first flange portion 8a has a first opening portion 9a through which the molten glass GM flows into the tubular portion 7. The second flange portion 8b has a second opening portion 9b that allows the molten glass GM to flow out from the tubular portion 7. The first opening 9a and the second opening 9b are formed in a circular shape. The diameter of each of the openings 9a and 9b is set to be smaller than the inner diameter of the tubular portion 7.

図2及び図3に示すように、第一開口部9aは、管状部7の上部に対応して形成される。すなわち、第一開口部9aにおいて最も上方に位置する部分(以下「上端部」という。他の開口部においても同じ)9aUは、管状部7の内面における頂部7bに一致している。同様に、第二開口部9bは、管状部7の上部に対応して形成される。第二開口部9bの上端部9bUは、管状部7の内面における頂部7bに一致している。 As shown in FIGS. 2 and 3, the first opening 9a is formed corresponding to the upper part of the tubular portion 7. That is, the uppermost portion (hereinafter referred to as “upper end portion”; the same applies to other openings) 9aU in the first opening 9a coincides with the top portion 7b on the inner surface of the tubular portion 7. Similarly, the second opening 9b is formed corresponding to the upper part of the tubular portion 7. The upper end portion 9bU of the second opening portion 9b coincides with the top portion 7b on the inner surface of the tubular portion 7.

溶解槽1と清澄槽2とを接続するガラス供給路6aは、白金材料(白金又は白金合金)により構成される移送管からなる。移送管10は、管状部11と、移送管10の両端部10a,10bに設けられるフランジ部12a,12bとを有する。各フランジ部12a,12bは、移送管10の上流側端部10aに形成される第一フランジ部12aと、下流側端部10bに形成される第二フランジ部12bとを含む。 The glass supply path 6a connecting the melting tank 1 and the clarification tank 2 is composed of a transfer pipe made of a platinum material (platinum or platinum alloy). The transfer pipe 10 has a tubular portion 11 and flange portions 12a, 12b provided at both end portions 10a, 10b of the transfer pipe 10. Each of the flange portions 12a and 12b includes a first flange portion 12a formed on the upstream end portion 10a of the transfer pipe 10 and a second flange portion 12b formed on the downstream end portion 10b.

移送管10の管状部11の内径は、100mm以上300mm以下とされることが望ましい。管状部11の肉厚は、0.3mm以上3mm以下とされることが望ましい。これらの寸法は、上記の範囲に限定されず、溶融ガラスGMの種別、温度、製造装置の規模等に応じて適宜設定される。本実施形態において、管状部11の内径Dは、清澄槽2に係る管状部7の内径よりも小さく設定されている。管状部11は、溶解槽1から清澄槽2に向かって上方に傾斜する。管状部11の水平方向に対する傾斜角度は、例えば3°以上30°以下に設定される。 It is desirable that the inner diameter of the tubular portion 11 of the transfer pipe 10 is 100 mm or more and 300 mm or less. The wall thickness of the tubular portion 11 is preferably 0.3 mm or more and 3 mm or less. These dimensions are not limited to the above range, and are appropriately set according to the type, temperature, scale of the manufacturing apparatus, and the like of the molten glass GM. In the present embodiment, the inner diameter D of the tubular portion 11 is set smaller than the inner diameter of the tubular portion 7 related to the clarification tank 2. The tubular portion 11 is inclined upward from the dissolution tank 1 toward the clarification tank 2. The inclination angle of the tubular portion 11 with respect to the horizontal direction is set to, for example, 3 ° or more and 30 ° or less.

移送管10の第一フランジ部12aは、溶解槽1の壁部1bに接触し、第二フランジ部12bは、清澄槽2の第一フランジ部8aに対向して接触する。各フランジ部12a,12bは、開口部13a,13bを有する。各開口部13a,13bは、上下方向に長い楕円状に構成されている。各開口部13a,13bにおける長軸の長さDLは、管状部11の内径Dと略等しい。ここで、「略等しい」とは、長軸の長さDLが管状部11の内径Dの90%以上110%以下であることを意味する。 The first flange portion 12a of the transfer pipe 10 is in contact with the wall portion 1b of the dissolution tank 1, and the second flange portion 12b is in contact with the first flange portion 8a of the clarification tank 2 so as to face each other. Each flange portion 12a, 12b has an opening portion 13a, 13b. Each of the openings 13a and 13b is formed in an elliptical shape that is long in the vertical direction. The length DL of the major axis in each of the openings 13a and 13b is substantially equal to the inner diameter D of the tubular portion 11. Here, "substantially equal" means that the length DL of the major axis is 90% or more and 110% or less of the inner diameter D of the tubular portion 11.

第一フランジ部12aの開口部13aは、溶解槽1の流出口1aに重ねられる。開口部13aの開口面積は、流出口1aの開口面積よりも小さく設定される。第一フランジ部12aに係る開口部13aの長軸の長さDLは、流出口1aの直径と略等しい。ここで、「略等しい」とは、長軸の長さDLが流出口1aの直径の90%以上110%以下であることを意味する。 The opening 13a of the first flange portion 12a is overlapped with the outlet 1a of the melting tank 1. The opening area of the opening 13a is set smaller than the opening area of the outlet 1a. The length DL of the long axis of the opening 13a related to the first flange portion 12a is substantially equal to the diameter of the outlet 1a. Here, "substantially equal" means that the length DL of the major axis is 90% or more and 110% or less of the diameter of the outlet 1a.

図2に示すように、移送管10の上流側端部10aにおける内面の頂部11aは、溶解槽1に係る流出口1aの内面の頂部と一致している。すなわち、移送管10の開口部13aの上端部13aUは、流出口1aの上端部1aUと一致している。移送管10の上流側端部10aにおける内面の底部11bは、流出口1aの底部と一致している。すなわち、移送管10の開口部13aの下端部13aDは、流出口1aの下端部1aDと一致している。 As shown in FIG. 2, the top portion 11a of the inner surface of the upstream end portion 10a of the transfer pipe 10 coincides with the top portion of the inner surface of the outlet 1a related to the melting tank 1. That is, the upper end portion 13aU of the opening portion 13a of the transfer pipe 10 coincides with the upper end portion 1aU of the outlet 1a. The bottom portion 11b of the inner surface of the upstream end portion 10a of the transfer pipe 10 coincides with the bottom portion of the outlet 1a. That is, the lower end portion 13aD of the opening portion 13a of the transfer pipe 10 coincides with the lower end portion 1aD of the outlet 1a.

第二フランジ部12bの開口部13bは、清澄槽2に係る第一フランジ部8aの第一開口部9aに重ねられる。この開口部13bの開口面積は、清澄槽2の第一開口部9aの開口面積よりも小さく設定される。開口部13bにおける長軸の長さDLは、清澄槽2の第一開口部9aの直径と略等しい。すなわち、長軸の長さDLは、第一開口部9aの直径の90%以上110%以下とされる。 The opening 13b of the second flange portion 12b is overlapped with the first opening 9a of the first flange portion 8a related to the clarification tank 2. The opening area of the opening 13b is set smaller than the opening area of the first opening 9a of the clarification tank 2. The length DL of the major axis in the opening 13b is substantially equal to the diameter of the first opening 9a of the clarification tank 2. That is, the length DL of the major axis is 90% or more and 110% or less of the diameter of the first opening 9a.

移送管10の下流側端部10bにおける内面の頂部11aは、清澄槽2の内面の頂部7bと一致している。すなわち、移送管10の下流側端部10bにおける開口部13bの上端部13bUは、清澄槽2の第一開口部9aの上端部9aUと一致している。また、移送管10の開口部13bの下端部13bDは、清澄槽2の第一開口部9aの下端部9aDと一致している。 The top portion 11a of the inner surface of the downstream end portion 10b of the transfer pipe 10 coincides with the top portion 7b of the inner surface of the clarification tank 2. That is, the upper end portion 13bU of the opening portion 13b in the downstream end portion 10b of the transfer pipe 10 coincides with the upper end portion 9aU of the first opening portion 9a of the clarification tank 2. Further, the lower end portion 13bD of the opening portion 13b of the transfer pipe 10 coincides with the lower end portion 9aD of the first opening portion 9a of the clarification tank 2.

清澄槽2と均質化槽3とを接続するガラス供給路6bは、白金材料(白金又は白金合金)により構成される移送管からなる。移送管14は直管状に構成されており、清澄槽2の下流側端部2bに接続される。図2に示すように、移送管14は、管状部15と、当該移送管14の両端部14a,14bに設けられる、フランジ部16a,16b及び開口部17a,17bとを有する。 The glass supply path 6b connecting the clarification tank 2 and the homogenization tank 3 is composed of a transfer pipe made of a platinum material (platinum or platinum alloy). The transfer pipe 14 has a straight tubular structure and is connected to the downstream end portion 2b of the clarification tank 2. As shown in FIG. 2, the transfer pipe 14 has a tubular portion 15 and flange portions 16a, 16b and openings 17a, 17b provided at both end portions 14a, 14b of the transfer pipe 14.

移送管14の管状部15の内径は、100mm以上300mm以下とされることが望ましい。管状部15の肉厚は、0.3mm以上3mm以下とされることが望ましい。これらの寸法は、上記の範囲に限定されず、溶融ガラスGMの種別、温度、製造装置の規模等に応じて適宜設定される。本実施形態において、管状部15の内径は、清澄槽2に係る管状部7の内径よりも小さく設定されている。 It is desirable that the inner diameter of the tubular portion 15 of the transfer pipe 14 is 100 mm or more and 300 mm or less. The wall thickness of the tubular portion 15 is preferably 0.3 mm or more and 3 mm or less. These dimensions are not limited to the above range, and are appropriately set according to the type, temperature, scale of the manufacturing apparatus, and the like of the molten glass GM. In the present embodiment, the inner diameter of the tubular portion 15 is set smaller than the inner diameter of the tubular portion 7 related to the clarification tank 2.

各フランジ部16a,16bは、円板状に構成される。各開口部17a,17bは、円形状に構成される。開口部17a,17bの開口面積は、清澄槽2の第二フランジ部8bにおける第二開口部9bの開口面積と略等しい。この構成により、移送管14の上流側端部14aにおける開口部17aの全周は、清澄槽2の第二開口部9bの全周と一致するように配置される。 Each of the flange portions 16a and 16b is formed in a disk shape. Each of the openings 17a and 17b is formed in a circular shape. The opening area of the openings 17a and 17b is substantially equal to the opening area of the second opening 9b in the second flange 8b of the clarification tank 2. With this configuration, the entire circumference of the opening 17a at the upstream end 14a of the transfer pipe 14 is arranged so as to coincide with the entire circumference of the second opening 9b of the clarification tank 2.

各移送管10,14の各フランジ部12a,12b,16a,16bは、電源装置(図示せず)に接続される。各ガラス供給路6a,6bでは、清澄槽2と同様に、各フランジ部12a,12b,16a,16bを介して各管状部11,15に電流を流すことで生じる抵抗加熱(ジュール熱)によって、当該移送管10,14の内部を流れる溶融ガラスGMを加熱する(他のガラス供給路6c,6dにおいて同じ)。 The flange portions 12a, 12b, 16a, 16b of the transfer pipes 10 and 14 are connected to a power supply device (not shown). In each of the glass supply paths 6a and 6b, similarly to the clarification tank 2, resistance heating (Joule heat) generated by passing an electric current through the flange portions 12a, 12b, 16a and 16b to the tubular portions 11 and 15 causes the glass supply passages 6a and 6b. The molten glass GM flowing inside the transfer pipes 10 and 14 is heated (the same applies to the other glass supply paths 6c and 6d).

均質化槽3は、清澄処理が施された溶融ガラスGMを攪拌し、均一化する工程(均質化工程)を行うための白金材料製の容器である。均質化槽3は、攪拌翼を有するスターラ3aを備える。均質化槽3は、ガラス供給路6cによってポット4に接続されている。このガラス供給路6cは、上記のガラス供給路6a、6bと同様に、白金材料(白金又は白金合金)により構成される移送管からなる。 The homogenization tank 3 is a container made of a platinum material for performing a step of stirring and homogenizing the clarified molten glass GM (homogenization step). The homogenization tank 3 includes a stirrer 3a having a stirring blade. The homogenization tank 3 is connected to the pot 4 by a glass supply path 6c. The glass supply path 6c is composed of a transfer tube made of a platinum material (platinum or platinum alloy), similarly to the above glass supply paths 6a and 6b.

ポット4は、溶融ガラスGMを成形に適した状態に調整する状態調整工程を行うための容器である。ポット4は、溶融ガラスGMの粘度調整及び流量調整のための容積部として例示される。ポット4は、ガラス供給路6dによって成形体5に接続されている。このガラス供給路6dは、上記のガラス供給路6a~6cと同様に、白金材料(白金又は白金合金)により構成される移送管からなる。 The pot 4 is a container for performing a state adjusting step of adjusting the molten glass GM to a state suitable for molding. The pot 4 is exemplified as a volume portion for adjusting the viscosity and adjusting the flow rate of the molten glass GM. The pot 4 is connected to the molded body 5 by a glass supply path 6d. The glass supply path 6d is composed of a transfer tube made of a platinum material (platinum or platinum alloy), similarly to the above glass supply paths 6a to 6c.

成形体5は、溶融ガラスGMを所望の形状に成形する。本実施形態では、成形体5は、オーバーフローダウンドロー法によって溶融ガラスGMを板状に成形する。詳細には、成形体5は、断面形状(図1の紙面と直交する断面形状)が略楔形状を成しており、この成形体5の上部には、オーバーフロー溝(図示せず)が形成されている。 The molded body 5 forms the molten glass GM into a desired shape. In the present embodiment, the molded body 5 forms the molten glass GM into a plate shape by the overflow down draw method. Specifically, the molded body 5 has a substantially wedge-shaped cross-sectional shape (cross-sectional shape orthogonal to the paper surface of FIG. 1), and an overflow groove (not shown) is formed on the upper portion of the molded body 5. Has been done.

成形体5は、溶融ガラスGMをオーバーフロー溝から溢れ出させて、成形体5の両側の側壁面(紙面の表裏面側に位置する側面)に沿って流下させる。成形体5は、流下させた溶融ガラスGMを側壁面の下頂部で融合させる。これにより、帯状の板ガラスGRが成形される。なお、成形体5は、スロットダウンドロー法などの他のダウンドロー法を実行するものであってもよい。また、成形体5に代えてフロート法を利用する成形装置を配備してもよい。 The molded body 5 causes the molten glass GM to overflow from the overflow groove and flows down along the side wall surfaces (side surfaces located on the front and back sides of the paper surface) on both sides of the molded body 5. The molded body 5 fuses the flowed molten glass GM at the lower top portion of the side wall surface. As a result, the strip-shaped flat glass GR is formed. The molded body 5 may execute another down-draw method such as the slot down-draw method. Further, instead of the molded body 5, a molding device using the float method may be deployed.

このようにして得られた板ガラスGRは、例えば、厚みが0.01~10mmであって、液晶ディスプレイや有機ELディスプレイなどのフラットパネルディスプレイ、有機EL照明、太陽電池などの基板や保護カバーに利用される。本発明に係るガラス物品は、板ガラスGRに限定されず、ガラス管その他の各種形状を有するものを含む。例えば、ガラス管を形成する場合には、成形体5に代えてダンナー法を利用する成形装置が配備される。 The flat glass GR thus obtained has a thickness of, for example, 0.01 to 10 mm, and is used for flat panel displays such as liquid crystal displays and organic EL displays, substrates for organic EL lighting, solar cells, and protective covers. Will be done. The glass article according to the present invention is not limited to the flat glass GR, and includes a glass tube and other objects having various shapes. For example, when forming a glass tube, a molding apparatus using the Dunner method is deployed instead of the molded body 5.

板ガラスGRの材料としては、ケイ酸塩ガラス、シリカガラスが用いられ、好ましくはホウ珪酸ガラス、ソーダライムガラス、アルミノ珪酸塩ガラス、化学強化ガラスが用いられ、最も好ましくは無アルカリガラスが用いられる。ここで、無アルカリガラスとは、アルカリ成分(アルカリ金属酸化物)が実質的に含まれていないガラスのことであって、具体的には、アルカリ成分の重量比が3000ppm以下のガラスのことである。本発明におけるアルカリ成分の重量比は、好ましくは1000ppm以下であり、より好ましくは500ppm以下であり、最も好ましくは300ppm以下である。 As the material of the flat glass GR, silicate glass and silica glass are used, preferably borosilicate glass, soda lime glass, aluminosilicate glass and chemically strengthened glass are used, and most preferably non-alkali glass is used. Here, the non-alkali glass is a glass that does not substantially contain an alkaline component (alkali metal oxide), and specifically, a glass having a weight ratio of an alkaline component of 3000 ppm or less. be. The weight ratio of the alkaline component in the present invention is preferably 1000 ppm or less, more preferably 500 ppm or less, and most preferably 300 ppm or less.

以下、上記構成の製造装置によってガラス物品(板ガラスGR)を製造する方法について説明する。図4に示すように、本方法は、予熱工程S1、組立工程S2、溶解工程S3、溶融ガラス供給工程S4、成形工程S5、徐冷工程S6、及び切断工程S7を主に備える。 Hereinafter, a method of manufacturing a glass article (flat glass GR) by the manufacturing apparatus having the above configuration will be described. As shown in FIG. 4, this method mainly includes a preheating step S1, an assembly step S2, a melting step S3, a molten glass supply step S4, a molding step S5, a slow cooling step S6, and a cutting step S7.

予熱工程S1では、製造装置の各構成要素1~5,6a~6dを個別に分離した状態で、これらを昇温する。一例として、移送管10と清澄槽2とを分離した状態を図5に示す。なお、予熱工程S1では、溶解槽1の流出口1aは、閉塞部材によって塞がれる。予熱工程S1により、各構成要素1~5,6a~6dは所定の温度に加熱される。この加熱により、各構成要素1~5,6a~6dのうち、白金材料製の部分が膨張する。例えば、清澄槽2の管状部7及び移送管10の管状部11は、図5において二点鎖線で示すように、その長手方向に膨張する。 In the preheating step S1, each component 1 to 5, 6a to 6d of the manufacturing apparatus is individually separated, and the temperature is raised. As an example, FIG. 5 shows a state in which the transfer pipe 10 and the clarification tank 2 are separated. In the preheating step S1, the outlet 1a of the melting tank 1 is closed by the closing member. In the preheating step S1, each component 1 to 5, 6a to 6d is heated to a predetermined temperature. By this heating, the portion made of platinum material in each of the components 1 to 5, 6a to 6d expands. For example, the tubular portion 7 of the clarification tank 2 and the tubular portion 11 of the transfer pipe 10 expand in the longitudinal direction thereof, as shown by the two-dot chain line in FIG.

組立工程S2では、分離させている各構成要素1~5、6a~6dを相互に連結し、製造装置が組み立てられる。例えば、溶解槽1の流出口1aに、移送管10の上流側端部10aが接続される。具体的には、移送管10の第一フランジ部12aを溶解槽1の壁部1bに接触させるとともに、開口部13aを流出口1aに重ね合わせる。 In the assembly step S2, the separated components 1 to 5 and 6a to 6d are connected to each other to assemble the manufacturing apparatus. For example, the upstream end 10a of the transfer pipe 10 is connected to the outlet 1a of the melting tank 1. Specifically, the first flange portion 12a of the transfer pipe 10 is brought into contact with the wall portion 1b of the melting tank 1, and the opening portion 13a is overlapped with the outlet 1a.

次に、移送管10の下流側端部10bを清澄槽2の上流側端部2aに接続する。すなわち、移送管10の第二フランジ部12bと、清澄槽2の第一フランジ部8aとを対向させ、相互に接触させる。このとき、清澄槽2の第一開口部9aの上端部9aUが移送管10の開口部13bにおける上端部13bUと一致するように、各フランジ部8a,12bを重ね合わせる。 Next, the downstream end 10b of the transfer pipe 10 is connected to the upstream end 2a of the clarification tank 2. That is, the second flange portion 12b of the transfer pipe 10 and the first flange portion 8a of the clarification tank 2 face each other and are brought into contact with each other. At this time, the flange portions 8a and 12b are overlapped so that the upper end portion 9aU of the first opening portion 9a of the clarification tank 2 coincides with the upper end portion 13bU of the opening portion 13b of the transfer pipe 10.

その後、清澄槽2に移送管14を接続する。すなわち、移送管14のフランジ部16aと、清澄槽2の第二フランジ部8bとを対向させ、相互に接触させる。このとき、移送管14における開口部17aが、清澄槽2における第二開口部9bと一致するように、各フランジ部8b,16aを重ね合わせる。 After that, the transfer pipe 14 is connected to the clarification tank 2. That is, the flange portion 16a of the transfer pipe 14 and the second flange portion 8b of the clarification tank 2 face each other and are brought into contact with each other. At this time, the flange portions 8b and 16a are overlapped so that the opening 17a in the transfer pipe 14 coincides with the second opening 9b in the clarification tank 2.

さらに、均質化槽3、ポット4、成形体5、及びガラス供給路6c,6dを接続することで、製造装置が組み立てられる。 Further, by connecting the homogenization tank 3, the pot 4, the molded body 5, and the glass supply paths 6c and 6d, the manufacturing apparatus is assembled.

溶解工程S3では、溶解槽1内に供給されたガラス原料が加熱され、溶融ガラスGMが生成される。なお、製造装置の立ち上げ期間を短縮するため、組立工程S2以前に溶解槽1内で予め溶融ガラスGMを生成してもよい。 In the melting step S3, the glass raw material supplied into the melting tank 1 is heated to generate molten glass GM. In addition, in order to shorten the start-up period of the manufacturing apparatus, the molten glass GM may be generated in advance in the melting tank 1 before the assembly step S2.

溶融ガラス供給工程S4では、溶解槽1の溶融ガラスGMを、各ガラス供給路6a~6dを介して、清澄槽2、均質化槽3、ポット4、そして成形体5へと順次移送する。溶融ガラス供給工程S4では、溶融ガラスGMが清澄槽2の管状部7内を流通する際、ガラス原料に配合された清澄剤の作用により溶融ガラスGMからガス(泡)が発生する。このガスは、清澄槽2のベント部7aから外部に排出される(清澄工程)。また、均質化槽3において、溶融ガラスGMは、攪拌されて均質化される(均質化工程)。溶融ガラスGMがポット4、ガラス供給路6dを通過する際には、その状態(例えば粘度や流量)が調整される(状態調整工程)。 In the molten glass supply step S4, the molten glass GM of the melting tank 1 is sequentially transferred to the clarification tank 2, the homogenization tank 3, the pot 4, and the molded body 5 via the glass supply paths 6a to 6d. In the molten glass supply step S4, when the molten glass GM circulates in the tubular portion 7 of the clarification tank 2, gas (foam) is generated from the molten glass GM by the action of the clarifying agent blended in the glass raw material. This gas is discharged to the outside from the vent portion 7a of the clarification tank 2 (clarification step). Further, in the homogenization tank 3, the molten glass GM is stirred and homogenized (homogenization step). When the molten glass GM passes through the pot 4 and the glass supply path 6d, its state (for example, viscosity and flow rate) is adjusted (state adjustment step).

成形工程S5では、溶融ガラス供給工程S4を経て溶融ガラスGMが成形体5に供給される。成形体5は、溶融ガラスGMをオーバーフロー溝から溢れ出させ、その側壁面に沿って流下させる。成形体5は、流下させた溶融ガラスGMを下頂部で融合させることで、帯状の板ガラスGRを成形する。 In the molding step S5, the molten glass GM is supplied to the molded body 5 through the molten glass supply step S4. The molded body 5 causes the molten glass GM to overflow from the overflow groove and flow down along the side wall surface thereof. The molded body 5 forms a strip-shaped flat glass GR by fusing the flowed molten glass GM at the lower top portion.

その後、帯状の板ガラスGRは、徐冷工程S6で徐冷炉によって冷却され、切断工程S7で切断装置によって切断される。これにより、帯状の板ガラスGRから所定寸法の板ガラス(ガラス物品)が切り出される。或いは、切断工程S7で板ガラスGRの幅方向の両端を除去した後に、帯状の板ガラスGRをロール状に巻き取り、ガラス物品としてのガラスロールを得てもよい(巻取工程)。 After that, the strip-shaped flat glass GR is cooled by the slow cooling furnace in the slow cooling step S6, and is cut by the cutting device in the cutting step S7. As a result, a plate glass (glass article) having a predetermined size is cut out from the strip-shaped plate glass GR. Alternatively, after removing both ends of the plate glass GR in the width direction in the cutting step S7, the strip-shaped plate glass GR may be wound into a roll to obtain a glass roll as a glass article (winding step).

以上説明した本実施形態に係るガラス物品の製造方法によれば、移送管10と清澄槽2とが接続されている状態において、移送管10の下流側端部10bにおける内面の頂部11a(開口部13bの上端部13bU)を清澄槽2の上流側端部2aにおける内面の頂部7b(第一開口部9aの上端部9aU)と一致させることで、移送管10から清澄槽2に流入する溶融ガラスGMは、移送管10の頂部11a及び清澄槽2の頂部7bに沿って滞留することなく流動できる。したがって、溶融ガラスGMから発生するガスは、当該溶融ガラスGMの流動に伴って、ガス溜りを発生させることなく清澄槽2内を移動し、ベント部7aから確実に排出される。また、清澄槽2の底部7c周辺で溶融ガラスGMからガスが発生しても、ガスが浮上することから、上述の溶融ガラスGMの流動に伴って清澄槽2内を移動し、ベント部7aから確実に排出される。 According to the method for manufacturing a glass article according to the present embodiment described above, the top portion 11a (opening portion) of the inner surface of the downstream end portion 10b of the transfer pipe 10 in a state where the transfer pipe 10 and the clarification tank 2 are connected. The molten glass flowing into the clarification tank 2 from the transfer pipe 10 by aligning the upper end portion 13bU of 13b with the top portion 7b of the inner surface of the upstream end portion 2a of the clarification tank 2 (the upper end portion 9aU of the first opening 9a). The GM can flow along the top 11a of the transfer pipe 10 and the top 7b of the clarification tank 2 without staying. Therefore, the gas generated from the molten glass GM moves in the clarification tank 2 without generating a gas pool with the flow of the molten glass GM, and is surely discharged from the vent portion 7a. Further, even if gas is generated from the molten glass GM around the bottom 7c of the clarification tank 2, the gas floats. It is surely discharged.

ここで、第一実施形態に係る製造装置では、清澄槽2の底部7c周辺で溶融ガラスGMが滞留しやすく、特に清澄槽2の上流側端部2aにおける底部7c周辺で溶融ガラスGMが滞留しやすい。この場合、滞留する溶融ガラスGMが変質するおそれがある。これを防止する観点から、後述の第二実施形態又は第三実施形態を採用するのが好ましい。 Here, in the manufacturing apparatus according to the first embodiment, the molten glass GM tends to stay around the bottom 7c of the clarification tank 2, and in particular, the molten glass GM stays around the bottom 7c of the upstream end 2a of the clarification tank 2. Cheap. In this case, the accumulated molten glass GM may be deteriorated. From the viewpoint of preventing this, it is preferable to adopt the second embodiment or the third embodiment described later.

図6は、第二実施形態に係る製造装置の一部を示す。本実施形態に係る製造装置において、移送管10の管状部11は、直管状の第一管状部11Aと、テーパ状の第二管状部11Bとを備える。第一管状部11Aは、移送管10の上流側端部10a側に形成されており、溶解槽1に接続される。第二管状部11Bは、移送管10の下流側端部10b側に形成されており、清澄槽2に接続される。 FIG. 6 shows a part of the manufacturing apparatus according to the second embodiment. In the manufacturing apparatus according to the present embodiment, the tubular portion 11 of the transfer pipe 10 includes a straight tubular first tubular portion 11A and a tapered second tubular portion 11B. The first tubular portion 11A is formed on the upstream end portion 10a side of the transfer pipe 10 and is connected to the melting tank 1. The second tubular portion 11B is formed on the downstream end portion 10b side of the transfer pipe 10 and is connected to the clarification tank 2.

第二管状部11Bは、移送管10の中途部から下流側端部10bに向かうにつれて内径が漸次増加する拡径部により構成される。この構成により、移送管10の下流側端部10bの開口部13bは、円形に構成される。 The second tubular portion 11B is composed of an enlarged diameter portion whose inner diameter gradually increases from the middle portion of the transfer pipe 10 toward the downstream end portion 10b. With this configuration, the opening 13b of the downstream end 10b of the transfer pipe 10 is formed in a circular shape.

移送管10の下流側端部10bにおける第二管状部11Bの内径は、清澄槽2の管状部7の内径と略等しい。すなわち、移送管10の下流側端部10bに係る開口部13bの直径は、清澄槽2に係る管状部7の内径の90%以上110%以下とされる。また、清澄槽2の第一フランジ部8aに形成される第一開口部9aの直径は、管状部7の内径と略等しい。この構成により、移送管10の第二管状部11Bの開口部13bにおける底部13bDは、清澄槽2の上流側端部2aの第一開口部9aにおける底部9aDと一致する。これにより、移送管10から清澄槽2に流入する溶融ガラスGMは、移送管10の頂部11a及び清澄槽2の頂部7bに沿って滞留することなく流動するのみならず、移送管10の底部11b及び清澄槽2の底部7cに沿って滞留することなく流動する。 The inner diameter of the second tubular portion 11B at the downstream end portion 10b of the transfer pipe 10 is substantially equal to the inner diameter of the tubular portion 7 of the clarification tank 2. That is, the diameter of the opening 13b related to the downstream end portion 10b of the transfer pipe 10 is 90% or more and 110% or less of the inner diameter of the tubular portion 7 related to the clarification tank 2. Further, the diameter of the first opening 9a formed in the first flange portion 8a of the clarification tank 2 is substantially equal to the inner diameter of the tubular portion 7. With this configuration, the bottom 13bD in the opening 13b of the second tubular portion 11B of the transfer pipe 10 coincides with the bottom 9aD in the first opening 9a of the upstream end 2a of the clarification tank 2. As a result, the molten glass GM flowing into the clarification tank 2 from the transfer pipe 10 not only flows along the top 11a of the transfer pipe 10 and the top 7b of the clarification tank 2 without staying, but also flows at the bottom 11b of the transfer pipe 10. And flows along the bottom 7c of the clarification tank 2 without staying.

図7は、第三実施形態に係る製造装置の一部を示す。上記の第二実施形態では、移送管10の第二管状部11Bは、拡径部として構成されていたが、本実施形態に係る移送管10の第二管状部11Bは、内径が一定の直管状に構成される。 FIG. 7 shows a part of the manufacturing apparatus according to the third embodiment. In the second embodiment described above, the second tubular portion 11B of the transfer pipe 10 is configured as a diameter-expanded portion, but the second tubular portion 11B of the transfer pipe 10 according to the present embodiment has a constant inner diameter. It is configured in a tubular shape.

移送管10(第二管状部11B)の下流側端部10bの開口部13bは、第一実施形態と同様に、上下方向に長い楕円形に構成される。第三実施形態では、第一実施形態と異なり、開口部13bにおける長軸の長さDLが、清澄槽2の管状部7の内径と略等しい。このため、本実施形態においても、移送管10の第二管状部11Bの開口部13bにおける底部13bDは、清澄槽2の上流側端部2aの第一開口部9aにおける底部9aDと一致する。したがって、移送管10から清澄槽2に流入する溶融ガラスGMは、移送管10の頂部11a及び清澄槽2の頂部7bに沿って滞留することなく流動するのみならず、移送管10の底部11b及び清澄槽2の底部7cに沿って滞留することなく流動する。 The opening 13b of the downstream end portion 10b of the transfer pipe 10 (second tubular portion 11B) is formed in an elliptical shape long in the vertical direction as in the first embodiment. In the third embodiment, unlike the first embodiment, the length DL of the long axis in the opening 13b is substantially equal to the inner diameter of the tubular portion 7 of the clarification tank 2. Therefore, also in this embodiment, the bottom portion 13bD in the opening portion 13b of the second tubular portion 11B of the transfer pipe 10 coincides with the bottom portion 9aD in the first opening portion 9a of the upstream end portion 2a of the clarification tank 2. Therefore, the molten glass GM flowing from the transfer pipe 10 into the clarification tank 2 not only flows along the top 11a of the transfer pipe 10 and the top 7b of the clarification tank 2 without staying, but also flows at the bottom 11b of the transfer pipe 10 and It flows along the bottom 7c of the clarification tank 2 without staying.

なお、本発明は、上記実施形態の構成に限定されるものではなく、上記した作用効果に限定されるものでもない。本発明は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。 The present invention is not limited to the configuration of the above embodiment, and is not limited to the above-mentioned action and effect. The present invention can be modified in various ways without departing from the gist of the present invention.

上記の第二実施形態では、移送管10の中途部から下流側端部10bまでの範囲に拡径部(第二管状部11B)を設けた例を示したが、本発明はこの構成に限定されるものではない。例えば、移送管10の上流側端部10aから下流側端部10bの全長に亘って管状部11を拡径部として構成してもよい。 In the above second embodiment, an example in which the enlarged diameter portion (second tubular portion 11B) is provided in the range from the middle portion of the transfer pipe 10 to the downstream end portion 10b is shown, but the present invention is limited to this configuration. It is not something that will be done. For example, the tubular portion 11 may be configured as a diameter-expanded portion over the entire length from the upstream side end portion 10a to the downstream side end portion 10b of the transfer pipe 10.

1 溶解槽
1a 流出口
1aU 流出口の上端部(頂部)
2 清澄槽
7 管状部
7b 管状部の内面の頂部
10 移送管
10a 上流側端部
10b 下流側端部
11a 移送管の内面の頂部
11B 第二管状部(拡径部)
GM 溶融ガラス
GR 板ガラス(ガラス物品)
S1 予熱工程
S3 溶解工程
S4 溶融ガラス供給工程
1 Dissolution tank 1a Outlet 1aU Outlet top (top)
2 Clarification tank 7 Tubular part 7b Top of the inner surface of the tubular part 10 Transfer pipe 10a Upstream side end 10b Downstream side end 11a Top of the inner surface of the transfer pipe 11B Second tubular part (diameter expansion part)
GM molten glass GR flat glass (glass article)
S1 preheating process S3 melting process S4 molten glass supply process

Claims (6)

溶解槽でガラス原料を加熱溶融して溶融ガラスを生成する工程と、前記溶解槽の流出口から流出した前記溶融ガラスを移送管で移送する工程と、前記移送管から移送された前記溶融ガラスを清澄槽の管状部に充満させた状態で、前記溶融ガラスに清澄処理を施す工程と、を備えるガラス物品の製造方法であって、
前記移送管は、前記溶解槽に接続される上流側端部と、前記管状部に接続される下流側端部とを備え、
前記移送管は、前記下流側端部における内面の頂部が前記管状部の内面の頂部と一致するように前記管状部に接続されることを特徴とするガラス物品の製造方法。
The step of heating and melting the glass raw material in the melting tank to generate molten glass, the step of transferring the molten glass flowing out from the outlet of the melting tank by a transfer pipe, and the step of transferring the molten glass from the transfer pipe. A method for manufacturing a glass article, comprising a step of performing a clarification treatment on the molten glass while the tubular portion of the clarification tank is filled.
The transfer pipe comprises an upstream end connected to the melting tank and a downstream end connected to the tubular portion.
A method for manufacturing a glass article, wherein the transfer pipe is connected to the tubular portion so that the top of the inner surface at the downstream end thereof coincides with the top of the inner surface of the tubular portion.
前記移送管は、前記上流側端部における内面の頂部が前記流出口の内面の頂部と一致すると共に、前記上流側端部における内面の底部が前記流出口の内面の底部と一致するように前記溶解槽に接続される請求項1に記載のガラス物品の製造方法。 In the transfer pipe, the top of the inner surface at the upstream end coincides with the top of the inner surface of the outlet, and the bottom of the inner surface at the upstream end coincides with the bottom of the inner surface of the outlet. The method for manufacturing a glass article according to claim 1, which is connected to a melting tank. 前記移送管は、前記下流側端部における内面の底部が前記管状部の内面の底部と一致するように前記管状部に接続される請求項1又は2に記載のガラス物品の製造方法。 The method for manufacturing a glass article according to claim 1 or 2, wherein the transfer pipe is connected to the tubular portion so that the bottom portion of the inner surface at the downstream end portion coincides with the bottom portion of the inner surface of the tubular portion. 前記移送管は、前記下流側端部に向かうにつれて内径が漸次増加する拡径部を備える請求項3に記載のガラス物品の製造方法。 The method for manufacturing a glass article according to claim 3, wherein the transfer pipe includes an enlarged diameter portion whose inner diameter gradually increases toward the downstream end portion. 前記移送管は、直管状に構成されており、
前記移送管は、前記下流側端部における内面の底部が前記管状部の内面の底部よりも高くなるように前記管状部に接続される請求項1又は2に記載のガラス物品の製造方法。
The transfer pipe is configured in a straight tubular shape.
The method for manufacturing a glass article according to claim 1 or 2, wherein the transfer pipe is connected to the tubular portion so that the bottom of the inner surface at the downstream end portion is higher than the bottom of the inner surface of the tubular portion.
前記移送管と前記管状部とを分離させた状態で加熱する工程を備える請求項1から5のいずれか一項に記載のガラス物品の製造方法。

The method for manufacturing a glass article according to any one of claims 1 to 5, further comprising a step of heating the transfer tube and the tubular portion in a separated state.

JP2018239407A 2018-12-21 2018-12-21 Manufacturing method of glass articles Active JP7092021B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018239407A JP7092021B2 (en) 2018-12-21 2018-12-21 Manufacturing method of glass articles
KR1020217014817A KR102655115B1 (en) 2018-12-21 2019-11-20 Method of manufacturing glass articles
PCT/JP2019/045474 WO2020129528A1 (en) 2018-12-21 2019-11-20 Method for manufacturing glass article
CN201980070843.XA CN112912348B (en) 2018-12-21 2019-11-20 Method for manufacturing glass article
TW108143785A TWI835935B (en) 2018-12-21 2019-11-29 How to make glass items

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018239407A JP7092021B2 (en) 2018-12-21 2018-12-21 Manufacturing method of glass articles

Publications (2)

Publication Number Publication Date
JP2020100531A JP2020100531A (en) 2020-07-02
JP7092021B2 true JP7092021B2 (en) 2022-06-28

Family

ID=71101221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018239407A Active JP7092021B2 (en) 2018-12-21 2018-12-21 Manufacturing method of glass articles

Country Status (3)

Country Link
JP (1) JP7092021B2 (en)
CN (1) CN112912348B (en)
WO (1) WO2020129528A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022050001A (en) * 2020-09-17 2022-03-30 日本電気硝子株式会社 Glass plate production method and production device
JP7319316B2 (en) * 2021-03-29 2023-08-01 AvanStrate株式会社 Glass substrate equipment
WO2024038740A1 (en) * 2022-08-19 2024-02-22 日本電気硝子株式会社 Method for manufacturing glass article, and device for manufacturing glass article

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013216535A (en) 2012-04-06 2013-10-24 Avanstrate Inc Method and device for manufacturing glass plate
JP2016501815A (en) 2012-11-28 2016-01-21 コーニング インコーポレイテッド Glass manufacturing apparatus and method
JP2016533313A (en) 2013-10-18 2016-10-27 コーニング インコーポレイテッド Glass manufacturing apparatus and method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000128548A (en) * 1998-10-28 2000-05-09 Asahi Techno Glass Corp Glass melting furnace
US7854144B2 (en) * 2005-07-28 2010-12-21 Corning Incorporated Method of reducing gaseous inclusions in a glass making process
CN101935146B (en) * 2010-03-24 2012-07-04 东旭集团有限公司 Treatment method of glass metal in platinum channel
CN202785956U (en) * 2012-07-30 2013-03-13 彩虹显示器件股份有限公司 Humidifier used during delivering of molten glass
JP6616183B2 (en) * 2015-12-28 2019-12-04 AvanStrate株式会社 Glass substrate manufacturing method and glass substrate manufacturing apparatus
CN106698893B (en) * 2016-11-17 2019-09-10 陕西彩虹电子玻璃有限公司 A kind of device and method reducing cover-plate glass production defect
JP6768216B2 (en) * 2016-12-16 2020-10-14 日本電気硝子株式会社 Plate glass manufacturing method, clarification container and plate glass manufacturing equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013216535A (en) 2012-04-06 2013-10-24 Avanstrate Inc Method and device for manufacturing glass plate
JP2016501815A (en) 2012-11-28 2016-01-21 コーニング インコーポレイテッド Glass manufacturing apparatus and method
JP2016533313A (en) 2013-10-18 2016-10-27 コーニング インコーポレイテッド Glass manufacturing apparatus and method

Also Published As

Publication number Publication date
KR20210101209A (en) 2021-08-18
WO2020129528A1 (en) 2020-06-25
TW202108516A (en) 2021-03-01
JP2020100531A (en) 2020-07-02
CN112912348B (en) 2023-11-14
CN112912348A (en) 2021-06-04

Similar Documents

Publication Publication Date Title
JP7092021B2 (en) Manufacturing method of glass articles
JP5387564B2 (en) Vacuum degassing apparatus and vacuum degassing method for molten glass
JP7273372B2 (en) Glass article manufacturing method and its manufacturing apparatus
JP7393742B2 (en) Glass article manufacturing method and glass article manufacturing device
JP6969573B2 (en) Glass manufacturing equipment, glass manufacturing method, glass supply pipe and molten glass transfer method
TWI757566B (en) Manufacturing method and manufacturing apparatus of glass article
JP2005231992A (en) Apparatus for manufacturing thin sheet glass, and drawing tank
KR20190113755A (en) Glass manufacturing method and preheating method of glass supply pipe
JP6979172B2 (en) Manufacturing method of glass articles
JP7174360B2 (en) Glass article manufacturing method, melting furnace and glass article manufacturing apparatus
TWI746726B (en) Methods and apparatuses for controlling glass flow into glass forming machines
WO2021002260A1 (en) Manufacturing method for glass article and manufacturing device for glass article
JP7138843B2 (en) Method for manufacturing glass article
KR102655115B1 (en) Method of manufacturing glass articles
KR20220021921A (en) glass conveying device
TWI835935B (en) How to make glass items
WO2021210495A1 (en) Glass article manufacturing method and glass article manufacturing device
KR20210053812A (en) Glass article manufacturing apparatus and manufacturing method
WO2023234083A1 (en) Glass article manufacturing apparatus and glass article manufacturing method
WO2021210493A1 (en) Method for manufacturing glass article, and device for manufacturing glass article
JP7473872B2 (en) Glass article manufacturing method and glass article manufacturing device
JP7115156B2 (en) Glass article manufacturing method
WO2023053923A1 (en) Glass article manufacturing device and glass article manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220530

R150 Certificate of patent or registration of utility model

Ref document number: 7092021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150