JP7089938B2 - Heat-resistant paint composition, heat-resistant coating film, base material with heat-resistant coating film and its manufacturing method - Google Patents

Heat-resistant paint composition, heat-resistant coating film, base material with heat-resistant coating film and its manufacturing method Download PDF

Info

Publication number
JP7089938B2
JP7089938B2 JP2018097040A JP2018097040A JP7089938B2 JP 7089938 B2 JP7089938 B2 JP 7089938B2 JP 2018097040 A JP2018097040 A JP 2018097040A JP 2018097040 A JP2018097040 A JP 2018097040A JP 7089938 B2 JP7089938 B2 JP 7089938B2
Authority
JP
Japan
Prior art keywords
heat
coating film
resistant coating
base material
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018097040A
Other languages
Japanese (ja)
Other versions
JP2019006982A (en
Inventor
康人 引地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Marine Paints Ltd
Original Assignee
Chugoku Marine Paints Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Marine Paints Ltd filed Critical Chugoku Marine Paints Ltd
Publication of JP2019006982A publication Critical patent/JP2019006982A/en
Application granted granted Critical
Publication of JP7089938B2 publication Critical patent/JP7089938B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • C09D5/084Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/18Fireproof paints including high temperature resistant paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2272Ferric oxide (Fe2O3)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/328Phosphates of heavy metals

Description

本発明は、耐熱塗料組成物、耐熱塗膜、耐熱塗膜付き基材およびその製造方法に関する。 The present invention relates to a heat-resistant coating composition, a heat-resistant coating film, a substrate with a heat-resistant coating film, and a method for producing the same.

プラント構造物等の配管には、外気への放熱や外気からの吸熱を防ぎ、エネルギーロスを抑制するため、配管(鋼管)の周りに保温材を設置することが多い。しかし、前記保温材と鋼(例:炭素鋼、低合金鋼)管との隙間に侵入した雨水や、当該箇所で凝集した水分が、鋼管表面に水膜を形成し、保温材下腐食(CUI:Corrosion Under Insulation)を生じることがある。該CUIは、前記水膜に起因して鋼管表面に腐食電池を形成することで、局所的な腐食浸食が発生することをいう。その腐食速度は、屋外大気中で発生する全面腐食より速いため、プラント構造物の保守管理において大きな問題となっている。 In the pipes of plant structures, etc., heat insulating materials are often installed around the pipes (steel pipes) in order to prevent heat dissipation to the outside air and heat absorption from the outside air and to suppress energy loss. However, rainwater that has entered the gap between the heat insulating material and the steel (eg, carbon steel, low alloy steel) pipe and the water that has aggregated at that location form a water film on the surface of the steel pipe, causing corrosion under the heat insulating material (CUI). : Corrosion Under Insulation) may occur. The CUI means that local corrosion erosion occurs by forming a corrosive battery on the surface of a steel pipe due to the water film. Its corrosion rate is faster than the total corrosion that occurs in the outdoor atmosphere, which poses a major problem in the maintenance of plant structures.

さらに、前記CUIは、腐食浸食箇所が保温材下である(保温材で囲まれている)ため、一度侵入した水分が留まり易く、湿潤状態が長期にわたって維持されること、プラントの運転条件によっては、配管が高温に曝されることがあるため、酸化反応である腐食の進行が促進されること、また、プラント構造物は腐食因子となりうる海塩粒子が豊富な海浜地域に設けられることが多いため、該海塩粒子が腐食の進行を促進すること等に起因して、前記腐食浸食が深刻化し易い。 Further, in the CUI, since the corroded erosion site is under the heat insulating material (surrounded by the heat insulating material), the moisture once invaded easily stays and the moist state is maintained for a long period of time, depending on the operating conditions of the plant. Since the pipes may be exposed to high temperatures, the progress of corrosion, which is an oxidation reaction, is promoted, and plant structures are often installed in beach areas rich in sea salt particles, which can be a corrosion factor. Therefore, the corrosion erosion is likely to become serious because the sea salt particles promote the progress of corrosion.

そこで、前記腐食等を防ぐことを目的として、プラント構造物等に用いられる配管には、その外面に防食塗膜(耐熱塗膜)が設けられている。
プラント構造物等に用いられる配管は、そのプラントの運転条件によって、様々な温度環境に曝されるため、該配管に用いられる防食塗膜(耐熱塗膜)に求められる耐熱温度や耐加熱冷却サイクル条件も広範囲わたっており、例えば、600℃以上の超高温に対する耐性が要求されることもある。このため、従来では、前記プラントの運転条件(温度条件)を精査し、その条件に適合する防食塗膜(耐熱塗膜)をその条件に応じて選択し、適用する必要があった。
Therefore, for the purpose of preventing the corrosion and the like, the piping used for the plant structure and the like is provided with an anticorrosion coating film (heat resistant coating film) on the outer surface thereof.
Piping used for plant structures, etc. is exposed to various temperature environments depending on the operating conditions of the plant. Therefore, the heat resistant temperature and heat resistant cooling cycle required for the anticorrosion coating film (heat resistant coating film) used for the piping. The conditions are also wide-ranging, and for example, resistance to an ultra-high temperature of 600 ° C. or higher may be required. Therefore, conventionally, it has been necessary to carefully examine the operating conditions (temperature conditions) of the plant and select and apply an anticorrosion coating film (heat-resistant coating film) suitable for the conditions.

通常、150℃以上の高温に曝されることが想定される部位には、シリコーンレジン系耐熱塗料から得られる耐熱塗膜が適用されている。
このようなシリコーンレジン系耐熱塗料に関して、特許文献1には、500℃の高温下に曝された後であっても、防食性を有する塗膜を形成可能な組成物が開示されており、特許文献2には、2回以上の重ね塗りで乾燥膜厚が100~400μmの塗膜を形成可能な組成物が開示されており、また、特許文献3には、5~30℃もしくは40℃の範囲で硬化可能であり、耐腐食性、耐熱性を有する塗膜を形成可能な組成物がそれぞれ開示されている。
Usually, a heat-resistant coating film obtained from a silicone resin-based heat-resistant paint is applied to a portion that is expected to be exposed to a high temperature of 150 ° C. or higher.
Regarding such a silicone resin-based heat-resistant paint, Patent Document 1 discloses a composition capable of forming a coating film having corrosion resistance even after being exposed to a high temperature of 500 ° C., and is patented. Document 2 discloses a composition capable of forming a coating film having a dry film thickness of 100 to 400 μm by recoating two or more times, and Patent Document 3 discloses a composition at 5 to 30 ° C. or 40 ° C. Disclosed are compositions that can be cured within a range and can form a coating film having corrosion resistance and heat resistance.

特開2003-213210号公報Japanese Unexamined Patent Publication No. 2003-2132010 特開平11―279488号公報Japanese Unexamined Patent Publication No. 11-279488 特表2009-522388号公報Special Table 2009-522388 Gazette

前述のように、乾燥膜厚が100~400μmの塗膜を形成可能な耐熱塗料組成物、常温下で塗膜を形成した場合であっても防食性、耐熱性を有する塗膜を形成可能な塗料組成物、および500℃の高温に曝された後であっても防食性を有する塗膜を形成可能な耐熱塗料組成物は知られていたが、特許文献1~3のいずれにも、乾燥膜厚が100μm以上の厚膜の塗膜を形成することができ、かつ、通常の環境温度(常温)下で塗膜を形成した場合であっても、優れた防食性を有する塗膜を形成できるとともに、600℃以上の耐熱性を有する塗膜を形成可能な耐熱塗料組成物は開示されていない。 As described above, a heat-resistant coating film capable of forming a coating film having a dry film thickness of 100 to 400 μm, and a coating film having corrosion resistance and heat resistance can be formed even when the coating film is formed at room temperature. Although a coating composition and a heat-resistant coating composition capable of forming a coating film having corrosion resistance even after being exposed to a high temperature of 500 ° C. have been known, they are dried in any of Patent Documents 1 to 3. A thick coating film having a film thickness of 100 μm or more can be formed, and even when the coating film is formed at a normal environmental temperature (normal temperature), a coating film having excellent corrosion resistance is formed. A heat-resistant coating composition capable of forming a coating film having a heat resistance of 600 ° C. or higher is not disclosed.

600℃以上の超高温に曝されるプラント構造物等の配管の外面に形成される、耐熱塗膜が厚膜である場合、該耐熱塗膜は、高温の温度環境、温度変化の繰り返しによって、膨れやクラックが発生しやすい。より具体的には、耐熱塗膜が高温に曝されることで、該塗膜中の残留溶剤の揮発、および、該塗膜を構成するシリコーンレジン成分の反応・分解等で生じるガスによる膨れ、また、該シリコーンレジン成分の反応・分解等による塗膜の内部応力が増大することに起因したクラックを生じることがある。これらの塗膜欠陥は、特に、厚膜に塗装された場合に生じやすいため、従来のシリコーンレジン系耐熱塗料から得られる耐熱塗膜の膜厚は、80μm未満であることが通常であり、100μm以上の厚膜の塗装仕様とすることは困難であった。
しかしながら、プラント構造物等の配管において、CUIが保守管理上の大きな問題となっており、その厳しい腐食環境に対して、前述のような80μm未満の薄膜では、長期の防食性を維持することはできないことが分かった。
When the heat-resistant coating film formed on the outer surface of piping of a plant structure or the like exposed to an ultra-high temperature of 600 ° C. or higher is a thick film, the heat-resistant coating film is subjected to a high temperature environment and repeated temperature changes. Bulging and cracking are likely to occur. More specifically, when the heat-resistant coating film is exposed to a high temperature, the residual solvent in the coating film volatilizes, and the silicone resin component constituting the coating film swells due to gas generated by the reaction / decomposition. In addition, cracks may occur due to an increase in the internal stress of the coating film due to the reaction / decomposition of the silicone resin component. Since these coating film defects are particularly likely to occur when a thick film is coated, the film thickness of the heat-resistant coating film obtained from the conventional silicone resin-based heat-resistant paint is usually less than 80 μm, and is 100 μm. It was difficult to achieve the above thick film coating specifications.
However, CUI has become a major maintenance problem in piping of plant structures, etc., and it is not possible to maintain long-term corrosion resistance with a thin film of less than 80 μm as described above against the severe corrosive environment. I found that I couldn't.

また、従来のシリコーンレジン系耐熱塗料を用いる場合、一定の条件で加熱乾燥(焼付)しないと、本来期待される十分な防食性等の塗膜性能を有する塗膜を得ることができないことが分かった。しかしながら、プラント構造物は大型の構造物であるため、既設の構造物に対して補修塗装する場合、加熱乾燥(焼付)すること自体が困難であることが多い。また、プラント構造物の建造時に、鋼管等の各部材に対して耐熱塗膜を形成する場合、加熱乾燥(焼付)することは可能であるが、工程数の増加、および、加熱のためのエネルギー等により製造コストが増加する。したがって、常温(5~40℃)乾燥により塗膜を形成しても、プラント構造物に求められる十分な防食性等の塗膜性能を有する耐熱塗膜を形成可能な塗料が求められていた。
さらに、プラント構造物は、運転条件によって様々な温度環境となるため、その環境に耐えうる防食塗膜(耐熱塗膜)および塗装仕様を選択する必要があるが、施工管理や設備の補修において、その管理が煩雑となっている。
Further, it was found that when a conventional silicone resin-based heat-resistant paint is used, a coating film having sufficient coating film performance such as corrosion resistance, which is originally expected, cannot be obtained unless it is heat-dried (baked) under certain conditions. rice field. However, since the plant structure is a large structure, it is often difficult to heat-dry (bake) the existing structure for repair painting. Further, when a heat-resistant coating film is formed on each member such as a steel pipe at the time of construction of a plant structure, it can be heat-dried (baked), but the number of steps is increased and energy for heating is increased. The manufacturing cost increases due to such factors. Therefore, there has been a demand for a paint capable of forming a heat-resistant coating film having sufficient coating film performance such as corrosion resistance required for a plant structure even if the coating film is formed by drying at room temperature (5 to 40 ° C.).
Furthermore, since the plant structure has various temperature environments depending on the operating conditions, it is necessary to select an anticorrosion coating film (heat resistant coating film) and coating specifications that can withstand the environment. The management is complicated.

本発明は、前記問題に鑑みてなされたものであり、塗膜を形成する際に加熱乾燥を行わなくても、「保温材下」などの厳しい腐食環境において、優れた防食性を示す塗膜を形成可能な耐熱塗料組成物を提供する。
また、様々な温度下に曝されても、十分な耐熱性、防食性および基材への付着性を維持できる塗膜を形成可能な耐熱塗料組成物を提供する。
The present invention has been made in view of the above problems, and a coating film exhibiting excellent corrosion resistance in a severe corrosive environment such as "under a heat insulating material" without heat-drying when forming the coating film. Provided is a heat resistant coating composition capable of forming the above.
Further, the present invention provides a heat-resistant coating composition capable of forming a coating film capable of maintaining sufficient heat resistance, corrosion resistance and adhesion to a substrate even when exposed to various temperatures.

発明者が、前記課題を解決する方法について鋭意検討を重ねた結果、以下の構成によれば前記課題を解決できることを見出し、本発明を完成するに至った。
本発明の構成例は以下の通りである。
As a result of diligent studies on a method for solving the above-mentioned problem, the inventor has found that the above-mentioned problem can be solved by the following configuration, and has completed the present invention.
The configuration example of the present invention is as follows.

<1> シロキサン系バインダー(A)、マイカ(B)および雲母状酸化鉄(C)を含む耐熱塗料組成物。 <1> A heat-resistant coating composition containing a siloxane-based binder (A), mica (B) and mica-like iron oxide (C).

<2> 前記マイカ(B)と前記雲母状酸化鉄(C)との質量比が90:10~30:70の範囲にある、<1>に記載の耐熱塗料組成物。
<3> 前記耐熱塗料組成物の顔料容積濃度(PVC)が30~50%である、<1>または<2>に記載の耐熱塗料組成物。
<2> The heat-resistant coating composition according to <1>, wherein the mass ratio of the mica (B) to the mica-like iron oxide (C) is in the range of 90:10 to 30:70.
<3> The heat-resistant coating composition according to <1> or <2>, wherein the pigment volume concentration (PVC) of the heat-resistant coating composition is 30 to 50%.

<4> 前記シロキサン系バインダー(A)が、重量平均分子量(Mw)が15,000以上300,000以下のシリコーンレジン(A1)および重量平均分子量が15,000未満のシリコーンオリゴマー(A2)からなる群より選択される少なくとも1つを含む、<1>~<3>の何れかに記載の耐熱塗料組成物。
<5> 前記シロキサンバインダー(A)がエチルシリケート(A3)を含む、<4>に記載の耐熱塗料組成物。
<4> The siloxane-based binder (A) is composed of a silicone resin (A1) having a weight average molecular weight (Mw) of 15,000 or more and 300,000 or less and a silicone oligomer (A2) having a weight average molecular weight of less than 15,000. The heat-resistant coating composition according to any one of <1> to <3>, which comprises at least one selected from the group.
<5> The heat-resistant coating composition according to <4>, wherein the siloxane binder (A) contains ethyl silicate (A3).

<6> さらに、アマイド系揺変剤(D)を含む、<1>~<5>の何れかに記載の耐熱塗料組成物。
<7> さらに、防錆顔料(E)を含む、<1>~<6>の何れかに記載の耐熱塗料組成物。
<6> The heat-resistant coating composition according to any one of <1> to <5>, further comprising an amide-based rocking agent (D).
<7> The heat-resistant coating composition according to any one of <1> to <6>, further comprising a rust preventive pigment (E).

<8> <1>~<7>の何れかに記載の耐熱塗料組成物から形成された耐熱塗膜。
<9> 基材と<8>に記載の耐熱塗膜とを含む耐熱塗膜付き基材。
<10> 前記基材がプラント構造物である、<9>に記載の耐熱塗膜付き基材。
<8> A heat-resistant coating film formed from the heat-resistant coating composition according to any one of <1> to <7>.
<9> A base material with a heat-resistant coating film containing the base material and the heat-resistant coating film according to <8>.
<10> The base material with a heat-resistant coating film according to <9>, wherein the base material is a plant structure.

<11> 下記工程[1]および[2]を含む、耐熱塗膜付き基材の製造方法。
[1]基材に、<1>~<7>の何れかに記載の耐熱塗料組成物を塗装する工程
[2]基材上に塗装された耐熱塗料組成物を乾燥させて耐熱塗膜を形成する工程
<11> A method for producing a base material with a heat-resistant coating film, which comprises the following steps [1] and [2].
[1] Step of applying the heat-resistant coating composition according to any one of <1> to <7> on the base material [2] The heat-resistant coating composition coated on the base material is dried to form a heat-resistant coating film. Forming process

本発明によれば、塗膜を形成する際に加熱乾燥を行わなくても、「保温材下」などの厳しい腐食環境において、長期にわたって優れた防食性を示すとともに、ステンレス鋼等の基材との付着性に優れ、また、600℃を超えるような超高温を含む幅広い温度下においても、十分な耐熱性、防食性および基材への付着性を維持できる塗膜を形成可能な耐熱塗料組成物を提供することができる。 According to the present invention, even if heat-drying is not performed when forming a coating film, excellent corrosion resistance is exhibited for a long period of time in a severe corrosive environment such as "under a heat insulating material", and a base material such as stainless steel is used. A heat-resistant paint composition capable of forming a coating film capable of maintaining sufficient heat resistance, corrosion resistance and adhesion to a substrate even under a wide range of temperatures including ultra-high temperatures exceeding 600 ° C. Can provide things.

図1は、実施例における防食性評価に用いた、スクライブを入れた試験片の概略平面図である。FIG. 1 is a schematic plan view of a test piece containing a scribe used for evaluation of corrosion resistance in Examples.

≪耐熱塗料組成物≫
本発明の一実施形態に係る耐熱塗料組成物(以下単に「本組成物」ともいう。)は、シロキサン系バインダー(A)、マイカ(B)および雲母状酸化鉄(C)を含有する。
本組成物は、これら成分(A)~(C)を含有するため、該本組成物によれば、乾燥膜厚が100μm以上の厚膜であり、かつ、600℃を超える高温環境に晒された後でも、防食性および基材に対する付着性を維持することができ、また、常温乾燥により形成しても十分な防食性を有する耐熱塗膜を得ることができる。
また、本組成物によれば、特に、炭素鋼と比較して線膨張係数の大きい、400℃以上の高温環境に曝されることが想定される場合に適用されるステンレス鋼(例:SUS304、SUS316L等)等との付着性が良好な耐熱塗膜を形成することができる。
このため、本組成物は、種々の温度条件での運転が想定される、また保温材の設置がなされる、プラント構造物用の配管外面に好適に用いられ、CUIの抑制に適した耐熱/防食塗膜を形成可能な塗料として好適に用いられる。
≪Heat-resistant paint composition≫
The heat-resistant coating composition according to one embodiment of the present invention (hereinafter, also simply referred to as “the present composition”) contains a siloxane-based binder (A), mica (B), and mica-like iron oxide (C).
Since the present composition contains these components (A) to (C), according to the present composition, it is a thick film having a dry film thickness of 100 μm or more and is exposed to a high temperature environment exceeding 600 ° C. Even after that, it is possible to maintain the corrosion resistance and the adhesiveness to the substrate, and it is possible to obtain a heat-resistant coating film having sufficient corrosion resistance even if it is formed by drying at room temperature.
Further, according to the present composition, stainless steel (eg, SUS304, which is applied when it is expected to be exposed to a high temperature environment of 400 ° C. or higher, which has a larger coefficient of linear expansion than carbon steel, is particularly applicable. It is possible to form a heat-resistant coating film having good adhesion to SUS316L or the like).
For this reason, this composition is suitably used for the outer surface of pipes for plant structures, which is expected to operate under various temperature conditions and in which a heat insulating material is installed, and is heat resistant / suitable for suppressing CUI. It is suitably used as a paint capable of forming an anticorrosion coating film.

本組成物は、成分(A)~(C)を含有すれば特に制限されず、所望により、本発明の効果を損なわない範囲で、アマイド系揺変剤(D)、防錆顔料(E)、その他の成分として、成分(B)、(C)および(E)以外の顔料、顔料分散剤、消泡剤、成分(D)以外のタレ止め・沈降防止剤、脱水剤等の添加剤、有機溶剤および硬化触媒等を含んでいてもよい。 The present composition is not particularly limited as long as it contains the components (A) to (C), and if desired, the amide-based rocking agent (D) and the rust preventive pigment (E) are used as long as the effects of the present invention are not impaired. As other components, pigments other than the components (B), (C) and (E), pigment dispersants, defoamers, anti-sagging / sedimentation agents other than the component (D), additives such as dehydrating agents, etc. It may contain an organic solvent, a curing catalyst and the like.

<シロキサン系バインダー(A)>
前記シロキサン系バインダー(A)としては、シロキサン結合を有する化合物であれば特に制限されない。該シロキサン系バインダー(A)は、シロキサン系結合剤でもある。
本組成物では、バインダーとしてシロキサン系バインダー(A)を用いるため、特に耐熱性に優れる耐熱塗膜を得ることができる。
本組成物中に含まれるシロキサン系バインダー(A)は、1種でもよく、2種以上でもよい。
<siloxane binder (A)>
The siloxane-based binder (A) is not particularly limited as long as it is a compound having a siloxane bond. The siloxane-based binder (A) is also a siloxane-based binder.
Since the siloxane-based binder (A) is used as the binder in this composition, a heat-resistant coating film having particularly excellent heat resistance can be obtained.
The siloxane-based binder (A) contained in the present composition may be one kind or two or more kinds.

前記シロキサン系バインダー(A)としては、例えば、分子中にシロキサン結合を介して反応性基を有し、該反応性基が互いに反応することで、高分子量化または三次元架橋構造を形成し、硬化する化合物が挙げられる。
なお、前記反応としては、例えば、縮合反応および付加反応が挙げられ、縮合反応としては、脱水反応、脱アルコール反応等が挙げられる。
The siloxane-based binder (A) has, for example, a reactive group in the molecule via a siloxane bond, and the reactive groups react with each other to form a high molecular weight or three-dimensional crosslinked structure. Examples include compounds that cure.
Examples of the reaction include a condensation reaction and an addition reaction, and examples of the condensation reaction include a dehydration reaction and a dealcoholization reaction.

前記シロキサン系バインダー(A)は、例えば、下記式(I)で示される化合物であることが好ましく、下記シリコーンレジン(A1)および/またはシリコーンオリゴマー(A2)を含有することが好ましく、さらにエチルシリケート(A3)を含有することができる。
特に、本組成物は、耐熱性および防食性により優れる耐熱塗膜を得ることができる等の点から、シロキサンバインダー(A)として、シリコーンレジン(A1)を含有することが好ましく、塗料性状や塗膜性能の調整を目的として、より重量平均分子量が低いシリコーンオリゴマー(A2)と組み合わせて用いることがより好ましく、さらにエチルシリケート(A3)を組み合わせて用いることができる。
前記シロキサン系バインダー(A)は、直鎖状または分岐状であってよい。
The siloxane-based binder (A) is preferably, for example, a compound represented by the following formula (I), preferably contains the following silicone resin (A1) and / or silicone oligomer (A2), and further ethyl silicate. (A3) can be contained.
In particular, the present composition preferably contains a silicone resin (A1) as the siloxane binder (A) from the viewpoint that a heat-resistant coating film having excellent heat resistance and corrosion resistance can be obtained, and the coating properties and coating are preferably contained. For the purpose of adjusting the film performance, it is more preferable to use it in combination with a silicone oligomer (A2) having a lower weight average molecular weight, and further, ethyl silicate (A3) can be used in combination.
The siloxane-based binder (A) may be linear or branched.

Figure 0007089938000001
(式(I)中、R1はそれぞれ独立に、炭素数1~8のアルキル基、炭素数6~8のアリール基または炭素数1~8のアルコキシ基を示し、R2はそれぞれ独立に、炭素数1~8のアルキル基、炭素数6~8のアリール基または水素原子を示す。また、nは繰り返し数を示し、シロキサン系バインダーの重量平均分子量が200~300,000の範囲となるように選択される。)
Figure 0007089938000001
(In the formula (I), R 1 independently represents an alkyl group having 1 to 8 carbon atoms, an aryl group having 6 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms, and R 2 independently represents each other. An alkyl group having 1 to 8 carbon atoms, an aryl group having 6 to 8 carbon atoms or a hydrogen atom is indicated. In addition, n indicates the number of repetitions so that the weight average molecular weight of the siloxane-based binder is in the range of 200 to 300,000. Is selected.)

前記R1およびR2における炭素数1~8のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基が挙げられる。
前記R1およびR2における炭素数6~8のアリール基は、芳香環上にアルキル基等の置換基を有する基であってもよく、例えば、フェニル基、メチルフェニル基、ジメチルフェニル基が挙げられる。
前記R1における炭素数1~8のアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、フェノキシ基が挙げられる。
Examples of the alkyl group having 1 to 8 carbon atoms in R 1 and R 2 include a methyl group, an ethyl group, a propyl group, a butyl group, and a pentyl group.
The aryl group having 6 to 8 carbon atoms in R 1 and R 2 may be a group having a substituent such as an alkyl group on the aromatic ring, and examples thereof include a phenyl group, a methylphenyl group and a dimethylphenyl group. Be done.
Examples of the alkoxy group having 1 to 8 carbon atoms in R 1 include a methoxy group, an ethoxy group, a propoxy group, and a phenoxy group.

前記シロキサン系バインダー(A)の、GPC(ゲル浸透クロマトグラフィー)法により測定される標準ポリスチレン換算の重量平均分子量(以下単に「Mw」ともいう。)は、好ましくは200~300,000であり、より好ましくは400~200,000である。
該Mwは、具体的には、下記実施例に記載の方法で測定することができる。
The weight average molecular weight (hereinafter, also simply referred to as “Mw”) in terms of standard polystyrene measured by the GPC (gel permeation chromatography) method of the siloxane-based binder (A) is preferably 200 to 300,000. More preferably, it is 400 to 200,000.
Specifically, the Mw can be measured by the method described in the following Examples.

前記シロキサン系バインダー(A)の含有量は、防食性および耐熱性により優れる耐熱塗膜を得ることができる等の点から、本組成物の固形分100質量%に対し、好ましくは20~45質量%、より好ましくは25~43質量%、特に好ましくは28~38質量%である。 The content of the siloxane-based binder (A) is preferably 20 to 45% by mass with respect to 100% by mass of the solid content of the present composition from the viewpoint that a heat-resistant coating film having excellent corrosion resistance and heat resistance can be obtained. %, More preferably 25 to 43% by mass, and particularly preferably 28 to 38% by mass.

〈シリコーンレジン(A1)〉
前記シリコーンレジン(A1)は、後述するエチルシリケート(A3)以外の化合物であれば特に制限されないが、前記式(I)で表される化合物であることが好ましく、式(I)におけるR1がメチル基、エチル基、プロピル基またはフェニル基である化合物がより好ましく、また、式(I)におけるR2がメチル基、エチル基、フェニル基または水素原子である化合物がより好ましい。
本組成物中に含まれるシリコーンレジン(A1)は、1種でもよく、2種以上でもよい。
<Silicone resin (A1)>
The silicone resin (A1) is not particularly limited as long as it is a compound other than the ethyl silicate (A3) described later, but is preferably a compound represented by the formula (I), and R 1 in the formula (I) is A compound having a methyl group, an ethyl group, a propyl group or a phenyl group is more preferable, and a compound in which R 2 in the formula (I) is a methyl group, an ethyl group, a phenyl group or a hydrogen atom is more preferable.
The silicone resin (A1) contained in the present composition may be one kind or two or more kinds.

前記シリコーンレジン(A1)は、メチルシリコーンレジン、メチルフェニルシリコーンレジン等の耐熱性を有する樹脂であることが好ましく、下記、ジメチルシロキサン単位(a1)、ジフェニルシロキサン単位(a2)、モノメチルシロキサン単位(a3)、モノプロピルシロキサン単位(a4)およびモノフェニルシロキサン単位(a5)からなる群より選択される1種以上の構成単位を含有することがより好ましい。 The silicone resin (A1) is preferably a heat-resistant resin such as a methylsilicone resin or a methylphenylsilicone resin, and is described below as a dimethylsiloxane unit (a1), a diphenylsiloxane unit (a2), or a monomethylsiloxane unit (a3). ), It is more preferable to contain one or more constituent units selected from the group consisting of the monopropylsiloxane unit (a4) and the monophenylsiloxane unit (a5).

Figure 0007089938000002
(式(a1)~(a5)中、Si-O-における、Oに結合し、Siに結合していない「-」は、結合手を示し、Si-O-は、必ずしもSi-O-CH3を示すわけではない。)
Figure 0007089938000002
(In the formulas (a1) to (a5), "-" in Si—O— that is bound to O and not bound to Si indicates a bond, and Si—O— is necessarily Si—O—CH. It does not indicate 3. )

前記シリコーンレジン(A1)のMwは、耐熱性および防食性により優れる耐熱塗膜を得ることができる等の点から、15,000以上300,000以下であり、好ましくは18,000以上200,000以下である。
Mwが前記範囲より大きいシリコーンレジン(A1)は、粘度が高いため、取り扱い性を考慮した場合、このようなシリコーンレジン(A1)を含む本組成物の粘度を下げるために、有機溶剤等による希釈が必要となる場合が多い。この結果、本組成物中の溶剤分が増加することとなり、本組成物中のVOC(Volatile Organic Compounds/揮発性有機化合物)を低減できない場合がある。
The Mw of the silicone resin (A1) is 15,000 or more and 300,000 or less, preferably 18,000 or more and 200,000 or more, from the viewpoint that a heat-resistant coating film having excellent heat resistance and corrosion resistance can be obtained. It is as follows.
Since the silicone resin (A1) having Mw larger than the above range has a high viscosity, it is diluted with an organic solvent or the like in order to reduce the viscosity of the present composition containing such a silicone resin (A1) in consideration of handleability. Is often required. As a result, the solvent content in the composition increases, and VOCs (Volatile Organic Compounds) in the composition may not be reduced.

前記シリコーンレジン(A1)は、従来公知の合成方法で合成して得てもよく、市販品でもよい。該市販品としては、例えば、「SILRES REN60」、「SILRES REN80」(いずれも旭化成ワッカーシリコーン(株)製)、「SILIKOPHEN P80/X」(Evonik社製)が挙げられる。 The silicone resin (A1) may be obtained by synthesizing it by a conventionally known synthetic method, or may be a commercially available product. Examples of the commercially available product include "SILRES REN60", "SILRES REN80" (all manufactured by Asahi Kasei Wacker Silicone Co., Ltd.), and "SILIKOPHEN P80 / X" (manufactured by Evonik).

前記シリコーンレジン(A1)の含有量は、防食性および耐熱性により優れる耐熱塗膜を得ることができる等の点から、本組成物の固形分100質量%に対し、好ましくは10~40質量%、より好ましくは12~35質量%、特に好ましくは12~33質量%である。 The content of the silicone resin (A1) is preferably 10 to 40% by mass with respect to 100% by mass of the solid content of the present composition from the viewpoint that a heat-resistant coating film having excellent corrosion resistance and heat resistance can be obtained. , More preferably 12 to 35% by mass, and particularly preferably 12 to 33% by mass.

<シリコーンオリゴマー(A2)>
前記シリコーンオリゴマー(A2)は、後述するエチルシリケート(A3)以外の化合物であれば特に制限されないが、前記シリコーンレジン(A1)の欄で挙げた構造と同様の構造を有する化合物であることが好ましい。
前記シリコーンオリゴマー(A2)のMwは、15,000未満であり、好ましくは400~12,000である。
本組成物中に含まれるシリコーンオリゴマー(A2)は、1種でもよく、2種以上でもよい。
<Silicone oligomer (A2)>
The silicone oligomer (A2) is not particularly limited as long as it is a compound other than the ethyl silicate (A3) described later, but it is preferably a compound having the same structure as that described in the column of the silicone resin (A1). ..
The Mw of the silicone oligomer (A2) is less than 15,000, preferably 400 to 12,000.
The silicone oligomer (A2) contained in the present composition may be one kind or two or more kinds.

前記シリコーンオリゴマー(A2)は、従来公知の合成方法で合成して得てもよく、市販品でもよい。該市販品としては、例えば、「SILRES MSE100」(旭化成ワッカーシリコーン(株)製)、「KR-401N」(信越化学工業(株)製)が挙げられる。 The silicone oligomer (A2) may be obtained by synthesizing it by a conventionally known synthetic method, or may be a commercially available product. Examples of the commercially available product include "SILRES MSE100" (manufactured by Asahi Kasei Wacker Silicone Co., Ltd.) and "KR-401N" (manufactured by Shin-Etsu Chemical Co., Ltd.).

前記シリコーンオリゴマー(A2)の含有量は、防食性および耐熱性により優れる耐熱塗膜を得ることができる等の点から、本組成物の固形分100質量%に対し、好ましくは0~40質量%、より好ましくは2~25質量%、特に好ましくは3~10質量%の量である。 The content of the silicone oligomer (A2) is preferably 0 to 40% by mass with respect to 100% by mass of the solid content of the present composition from the viewpoint that a heat-resistant coating film having excellent corrosion resistance and heat resistance can be obtained. , More preferably 2 to 25% by mass, and particularly preferably 3 to 10% by mass.

<エチルシリケート(A3)>
前記エチルシリケート(A3)は、エトキシ基を有するシロキサンで構成される化合物であって、下記式(II)で表される。
本組成物中に含まれるエチルシリケート(A3)は、1種でもよく、2種以上でもよい。
<Ethyl silicate (A3)>
The ethyl silicate (A3) is a compound composed of a siloxane having an ethoxy group and is represented by the following formula (II).
The ethyl silicate (A3) contained in the present composition may be one kind or two or more kinds.

Figure 0007089938000003
(式(II)中、nは1~10である。)
Figure 0007089938000003
(In formula (II), n is 1 to 10.)

前記エチルシリケート(A3)は、従来公知の合成方法で合成して得てもよく、市販品でもよい。該市販品としては、例えば、五量体を中心とする分子量分布を持つオリゴマーである「エチルシリケート 40」(コルコート(株)製)、「Wacker Silicate TES 40WN」(旭化成ワッカーシリコーン(株)製)が挙げられる。 The ethyl silicate (A3) may be obtained by synthesizing it by a conventionally known synthetic method, or may be a commercially available product. Examples of the commercially available products include "Ethyl Silicate 40" (manufactured by Corcote Co., Ltd.) and "Wacker Silicate TES 40WN" (manufactured by Asahi Kasei Wacker Silicone Co., Ltd.), which are oligomers having a molecular weight distribution centered on a pentamer. Can be mentioned.

前記エチルシリケート(A3)の含有量は、塗装作業性、低価格化および貯蔵中の脱水効果に優れる塗料組成物を得ることができる等の点から、本組成物の固形分100質量%に対し、好ましくは0~20質量%、より好ましくは0~10質量%である。 The content of the ethyl silicate (A3) is based on 100% by mass of the solid content of the present composition from the viewpoints of obtaining a coating composition excellent in coating workability, cost reduction and dehydration effect during storage. It is preferably 0 to 20% by mass, more preferably 0 to 10% by mass.

本組成物における、シリコーンレジン(A1)およびシリコーンオリゴマー(A2)の合計含有量と、エチルシリケート(A3)の含有量との割合(A1+A2:A3)は、耐熱性および防食性により優れる耐熱塗膜を得ることができる等の点から、好ましくは100:0~90:10である。 The ratio (A1 + A2: A3) of the total content of the silicone resin (A1) and the silicone oligomer (A2) to the content of the ethyl silicate (A3) in the present composition is a heat-resistant coating film having excellent heat resistance and corrosion resistance. It is preferably 100: 0 to 90:10 from the viewpoint that the above can be obtained.

また、本組成物における、シリコーンレジン(A1)の含有量と、シリコーンオリゴマー(A2)およびエチルシリケート(A3)の合計含有量との割合(A1:A2+A3)は、耐熱性および防食性により優れる耐熱塗膜を得ることができる等の点から、好ましくは90:10~30:70であり、より好ましくは90:10~40:60である。 Further, the ratio (A1: A2 + A3) of the content of the silicone resin (A1) to the total content of the silicone oligomer (A2) and the ethyl silicate (A3) in the present composition is heat resistance excellent in heat resistance and corrosion resistance. It is preferably 90:10 to 30:70, and more preferably 90:10 to 40:60 from the viewpoint that a coating film can be obtained.

<マイカ(B)>
前記マイカ(B)は、鱗片状(扁平状)のマイカであれば特に制限されない。
本組成物は、シロキサン系バインダー(A)を用いる系において、マイカ(B)と雲母状酸化鉄(C)とを併用することで、はじめて、塗膜を形成する際に加熱乾燥を行わなくても、形成された塗膜が100μm以上の厚膜であっても、600℃以上の高温下を含む様々な温度下に曝されても、「保温材下」などの厳しい腐食環境でも、長期にわたって耐熱性、防食性および基材への付着性に優れる耐熱塗膜を得ることができる。
本組成物中に含まれるマイカ(B)は、1種でもよく、2種以上でもよい。
<Mica (B)>
The mica (B) is not particularly limited as long as it is a scaly (flat) mica.
This composition does not require heat drying when forming a coating film for the first time by using mica (B) and mica-like iron oxide (C) in combination in a system using a siloxane-based binder (A). However, even if the formed coating film is a thick film of 100 μm or more, exposed to various temperatures including high temperature of 600 ° C or more, and even in a severe corrosive environment such as “under heat insulating material”, for a long period of time. A heat-resistant coating film having excellent heat resistance, corrosion resistance, and adhesion to a substrate can be obtained.
The mica (B) contained in the present composition may be one kind or two or more kinds.

前記マイカ(B)は、その組成によって白マイカ(Muscovite)、金マイカ(Phologopite)等に分類される。
前記マイカ(B)としては特に限定されないが、基材、特にステンレス鋼に対する付着性により優れる耐熱塗膜を得ることができる等の点から、白マイカが好ましい。
The mica (B) is classified into white mica (Muscovite), phlogopite, and the like according to its composition.
The mica (B) is not particularly limited, but white mica is preferable from the viewpoint that a heat-resistant coating film having better adhesion to a base material, particularly stainless steel can be obtained.

前記マイカ(B)の、レーザ回折式粒度分布測定装置((株)島津製作所製、SALD-2200)を用いて測定される平均粒子径(メディアン径)は、基材、特に鋼管に対する付着性により優れる耐熱塗膜を得ることができる等の点から、好ましくは25~80μm、より好ましくは35~60μmである。 The average particle size (median diameter) of the mica (B) measured using a laser diffraction type particle size distribution measuring device (SALD-2200, manufactured by Shimadzu Corporation) depends on the adhesion to the substrate, especially the steel pipe. It is preferably 25 to 80 μm, more preferably 35 to 60 μm, from the viewpoint that an excellent heat-resistant coating film can be obtained.

前記マイカ(B)のアスペクト比(平均粒子径/粒子の平均厚さ)は、基材への付着性により優れる耐熱塗膜を得ることができる等の点から、好ましくは10~150、より好ましくは20~100である。
なお、前記粒子の平均厚さは、走査型電子顕微鏡(SEM)、例えば「XL-30」(フィリップス社製)を用い、マイカ(B)の主面に対して水平方向から観察し、数十~数百個の顔料粒子の厚さの平均値として算出できる。
The aspect ratio (average particle size / average thickness of particles) of the mica (B) is preferably 10 to 150, more preferably, from the viewpoint that a heat-resistant coating film having better adhesion to the substrate can be obtained. Is 20 to 100.
The average thickness of the particles was observed from the horizontal direction with respect to the main surface of the mica (B) using a scanning electron microscope (SEM), for example, "XL-30" (manufactured by Phillips), and the average thickness was several tens. It can be calculated as an average value of the thicknesses of up to several hundred pigment particles.

前記マイカ(B)は、市販品でもよく、該市販品としては、例えば、「マイカパウダー100メッシュ」((株)福岡タルク工業所製、平均粒子径:41μm)が挙げられる。 The mica (B) may be a commercially available product, and examples of the commercially available product include "mica powder 100 mesh" (manufactured by Fukuoka Talc Industry Co., Ltd., average particle size: 41 μm).

前記マイカ(B)の含有量は、付着性および耐熱性により優れる耐熱塗膜を得ることができる等の点から、本組成物の固形分100質量%に対し、好ましくは15~60質量%、より好ましくは20~40質量%である。 The content of the mica (B) is preferably 15 to 60% by mass with respect to 100% by mass of the solid content of the present composition from the viewpoint that a heat-resistant coating film having better adhesiveness and heat resistance can be obtained. More preferably, it is 20 to 40% by mass.

<雲母状酸化鉄(C)>
前記雲母状酸化鉄(Micacious Iron Oxide(MIO))は、鱗片状(扁平状)・六角板状の酸化鉄からなる顔料であって、天然鉱物を破砕・分級処理した顔料であってもよく、水熱処理等の従来公知の方法で合成した顔料であってもよい。
本組成物中に含まれる雲母状酸化鉄(C)は、1種でもよく、2種以上でもよい。
<Mica-like iron oxide (C)>
The micaus iron oxide (MIO) is a pigment composed of scaly (flat) and hexagonal plate-shaped iron oxide, and may be a pigment obtained by crushing and classifying natural minerals. It may be a pigment synthesized by a conventionally known method such as hydrothermal treatment.
The mica-like iron oxide (C) contained in the present composition may be one kind or two or more kinds.

前記雲母状酸化鉄(C)は、前記マイカ(B)の欄で挙げた方法と同様の方法で平均粒子径(メディアン径)および粒子の平均厚さを測定することができ、その平均粒子径は、防食性により優れる耐熱塗膜を得ることができる等の点から、好ましくは15~45μm、より好ましくは20~35μmである。
また、雲母状酸化鉄(C)のアスペクト比(平均粒子径/粒子の平均厚さ)は、基材に対する付着性により優れる耐熱塗膜を得ることができる等の点から、好ましくは5~100、より好ましくは10~50である。
The mica-like iron oxide (C) can measure the average particle diameter (median diameter) and the average thickness of the particles by the same method as the method mentioned in the column of the mica (B), and the average particle diameter thereof. Is preferably 15 to 45 μm, more preferably 20 to 35 μm, from the viewpoint that a heat-resistant coating film having better corrosion resistance can be obtained.
Further, the aspect ratio (average particle size / average thickness of particles) of the mica-like iron oxide (C) is preferably 5 to 100 from the viewpoint that a heat-resistant coating film having better adhesion to a substrate can be obtained. , More preferably 10 to 50.

前記雲母状酸化鉄(C)は、市販品でもよく、該市販品としては、例えば、「MIOX 325mesh」(Anhui Tongling Micaceous Iron Oxide Factory社製、平均粒子径:26μm)が挙げられる。 The mica-like iron oxide (C) may be a commercially available product, and examples of the commercially available product include "MIOX 325 mesh" (manufactured by Anhui Tongling Microceous Iron Oxide Factory, average particle diameter: 26 μm).

前記雲母状酸化鉄(C)の含有量は、防食性により優れる耐熱塗膜を得ることができる等の点から、本組成物の固形分100質量%に対し、好ましくは10~40質量%、より好ましくは20~38質量%、特に好ましくは27~35質量%である。 The content of the mica-like iron oxide (C) is preferably 10 to 40% by mass with respect to 100% by mass of the solid content of the present composition from the viewpoint that a heat-resistant coating film having excellent corrosion resistance can be obtained. It is more preferably 20 to 38% by mass, and particularly preferably 27 to 35% by mass.

本組成物において、高温耐熱試験後の塗膜物性および常温硬化時の防食性により優れる耐熱塗膜を得ることができる等の点から、前記マイカ(B)と前記雲母状酸化鉄(C)との質量比が、好ましくは90:10~30:70、より好ましくは60:40~40:60である。 In this composition, the mica (B) and the mica-like iron oxide (C) are used from the viewpoint that a heat-resistant coating film having excellent physical properties after a high-temperature heat resistance test and corrosion resistance at room temperature curing can be obtained. The mass ratio of is preferably 90:10 to 30:70, more preferably 60:40 to 40:60.

<アマイド系揺変剤(D)>
本組成物は、アマイド系揺変剤(D)を含有することで、揺変性に優れ、該組成物によれば、1回の塗装で乾燥膜厚100μm以上の厚膜を形成できるとともに、塗装対象の基材がSUS304、SUS316L等のようなステンレス鋼であっても、基材に対する付着性に優れ、かつ、400℃以上の高温環境に曝された後であっても、優れた付着性を維持する耐熱塗膜を得ることができる。
本組成物中に含まれるアマイド系揺変剤(D)は、1種でもよく、2種以上でもよい。
<Amid-based rocking agent (D)>
This composition is excellent in rocking denaturation by containing an amide-based rocking agent (D), and according to the composition, a thick film having a dry film thickness of 100 μm or more can be formed by one coating, and coating is performed. Even if the target base material is stainless steel such as SUS304, SUS316L, etc., it has excellent adhesion to the base material and has excellent adhesion even after being exposed to a high temperature environment of 400 ° C. or higher. A heat-resistant coating film to be maintained can be obtained.
The amide-based rocking agent (D) contained in the present composition may be one kind or two or more kinds.

前記アマイド系揺変剤(D)としては特に制限されないが、例えば、植物油脂肪酸およびアミンから合成される揺変剤が挙げられる。 The amide-based shaker (D) is not particularly limited, and examples thereof include shakers synthesized from vegetable oil fatty acids and amines.

前記アマイド系揺変剤(D)としては、従来公知の方法で合成して得てもよく、市販品でもよい。該市販品としては、例えば、「ディスパロンA630-20X」、「ディスパロン6650」(いずれも楠本化成(株)製)、「A-S-A T-250F」(伊藤製油(株)製)、「フローノン RCM-300TL」(共栄社化学(株)製)が挙げられる。 The amide-based rocking agent (D) may be obtained by synthesizing it by a conventionally known method, or may be a commercially available product. Examples of the commercially available products include "Disparon A630-20X", "Disparon 6650" (all manufactured by Kusumoto Kasei Co., Ltd.), "AS-AT-250F" (manufactured by Itoh Oil Chemicals Co., Ltd.), and " "Fronon RCM-300TL" (manufactured by Kyoeisha Chemical Co., Ltd.) can be mentioned.

前記アマイド系揺変剤(D)の含有量は、前述のアマイド系揺変剤(D)による効果がより発揮される等の点から、本組成物の固形分100質量%に対して、好ましくは0.3~5質量%、より好ましくは1~2.5質量%である。 The content of the amide-based rocking agent (D) is preferable with respect to 100% by mass of the solid content of the present composition from the viewpoint that the effect of the amide-based rocking agent (D) is more exerted. Is 0.3 to 5% by mass, more preferably 1 to 2.5% by mass.

<防錆顔料(E)>
本組成物は、防錆顔料(E)を含有することで、常温で硬化乾燥した場合であっても、防食性に優れる耐熱塗膜を得ることができる。
本組成物中に含まれる防錆顔料(E)は、1種でもよく、2種以上でもよい。
<Rust preventive pigment (E)>
By containing the rust preventive pigment (E) in this composition, it is possible to obtain a heat-resistant coating film having excellent corrosion resistance even when cured and dried at room temperature.
The rust preventive pigment (E) contained in the present composition may be one kind or two or more kinds.

前記防錆顔料(E)としては特に制限されず、従来公知の防錆顔料が挙げられる。好ましくは鉛・クロムフリーの防錆顔料であり、より好ましくはリン酸塩系防錆顔料であり、特に好ましくはリン酸亜鉛系防錆顔料、リン酸アルミニウム系防錆顔料である。 The rust preventive pigment (E) is not particularly limited, and examples thereof include conventionally known rust preventive pigments. It is preferably a lead / chromium-free rust preventive pigment, more preferably a phosphate-based rust preventive pigment, and particularly preferably a zinc phosphate-based rust preventive pigment or an aluminum phosphate-based rust preventive pigment.

前記防錆顔料(E)は、市販品でもよく、該市販品としては、例えば、「LFボウセイ ZP-N」、「LFボウセイ PM-303W」(いずれもキクチカラー(株)製)が挙げられる。 The rust preventive pigment (E) may be a commercially available product, and examples of the commercially available product include "LF Bowsei ZP-N" and "LF Bowsei PM-303W" (both manufactured by Kikuchi Color Co., Ltd.). ..

前記防錆顔料(E)の含有量は、前述の防錆顔料(E)による効果がより発揮される等の点から、本組成物の固形分100質量%に対して、好ましくは1~10質量%、より好ましくは3~8質量%である。 The content of the rust preventive pigment (E) is preferably 1 to 10 with respect to 100% by mass of the solid content of the present composition from the viewpoint that the effect of the rust preventive pigment (E) is more exhibited. It is by mass, more preferably 3 to 8% by mass.

<その他の成分>
本組成物は、必要により、本発明の効果を損なわない限り、マイカ(B)、雲母状酸化鉄(C)および防錆顔料(E)以外の顔料(着色顔料および体質顔料)、顔料分散剤、消泡剤、アマイド系揺変剤(D)以外のタレ止め・沈降防止剤、脱水剤等の添加剤、有機溶剤、硬化触媒等を含んでいてもよい。
これらその他の成分は、それぞれ、1種でもよく、または2種以上でもよい。
<Other ingredients>
If necessary, the present composition contains pigments (coloring pigments and extender pigments) other than mica (B), mica-like iron oxide (C) and rust-preventive pigment (E), and pigment dispersants, as long as the effects of the present invention are not impaired. , Anti-sagging / anti-settling agent other than defoaming agent, amide-based rocking agent (D), additives such as dehydrating agent, organic solvent, curing catalyst and the like may be contained.
These other components may be one kind or two or more kinds, respectively.

(着色顔料)
前記着色顔料としては特に制限されないが、耐熱性を有する着色顔料であることが好ましく、例えば、Pigment Black 28(Copper chromite black spinel)、アルミニウムフレーク、ステンレスフレーク、チタン白、カーボンブラック、弁柄が挙げられる。
前記着色顔料の市販品としては、例えば、クロムフリーの黒色無機顔料である「CFP-4010BK」(MnO2-Fe23-CuO-Co34、奥野製薬工業(株)製)、アルミニウムペーストである「Al-Paste 0100M-C70」(東洋アルミニウム(株)製)が挙げられる。
(Coloring pigment)
The coloring pigment is not particularly limited, but is preferably a coloring pigment having heat resistance, and examples thereof include Pigment Black 28 (Copper chromate black spinel), aluminum flakes, stainless flakes, titanium white, carbon black, and a valve handle. Be done.
Examples of commercially available colored pigments include "CFP-4010BK" (MnO 2 -Fe 2 O 3 -CuO-Co 3 O 4 , manufactured by Okuno Pharmaceutical Co., Ltd.), which is a chromium-free black inorganic pigment, and aluminum. Examples thereof include "Al-Paste 0100M-C70" (manufactured by Toyo Aluminum Co., Ltd.) which is a paste.

〈体質顔料〉
前記体質顔料としては特に制限されないが、耐熱性を有する体質顔料であることが好ましく、例えば、タルク、シリカ、カリ長石、硫酸バリウム、酸化亜鉛、炭酸カルシウム、カオリン、酸化アルミニウムが挙げられる。
<Constitution pigment>
The extender pigment is not particularly limited, but is preferably an extender pigment having heat resistance, and examples thereof include talc, silica, potassium feldspar, barium sulfate, zinc oxide, calcium carbonate, kaolin, and aluminum oxide.

〈顔料分散剤〉
前記顔料分散剤としては特に制限されないが、本組成物中の顔料を均一に分散させ、安定な分散体を調製することができる分散剤であることが好ましい。
前記顔料分散剤は、市販品でもよく、該市販品としては、例えば、「Disperbyk-180」、「Disperbyk-2022」(いずれもビックケミー・ジャパン(株)製)が挙げられる。
<Pigment dispersant>
The pigment dispersant is not particularly limited, but is preferably a dispersant capable of uniformly dispersing the pigment in the composition to prepare a stable dispersion.
The pigment dispersant may be a commercially available product, and examples of the commercially available product include "Disperbyk-180" and "Disperbyk-2022" (both manufactured by Big Chemie Japan Co., Ltd.).

〈消泡剤〉
前記消泡剤としては特に制限されないが、本組成物の製造時や塗装時に泡の発生を抑えることができる材料、または、本組成物中に発生した泡を破泡することができる材料であることが好ましい。
前記消泡剤は、市販品でもよく、該市販品としては、例えば、「BYK-320」、「BYK-066N」、「BYK-1790」(いずれもビックケミー・ジャパン(株)製)が挙げられる。
<Defoamer>
The defoaming agent is not particularly limited, but is a material capable of suppressing the generation of bubbles during production or painting of the present composition, or a material capable of breaking bubbles generated in the present composition. Is preferable.
The defoaming agent may be a commercially available product, and examples of the commercially available product include "BYK-320", "BYK-066N", and "BYK-1790" (all manufactured by Big Chemie Japan Co., Ltd.). ..

〈タレ止め・沈降防止剤〉
前記タレ止め・沈降防止剤は特に制限されないが、本組成物の顔料沈降を抑制し、その貯蔵安定性を向上させることができる材料、または、塗装時や塗装後の塗料組成物のタレ止め性を向上させることができる材料であることが好ましい。
<Sauce prevention / sedimentation prevention agent>
The sagging prevention / sedimentation inhibitor is not particularly limited, but is a material capable of suppressing pigment sedimentation of the present composition and improving its storage stability, or a sagging prevention property of a coating composition during or after painting. It is preferable that the material can improve the above.

タレ止め・沈降防止剤としては、例えば、水添ヒマシ油系揺変剤、酸化ポリエチレン系揺変剤等の有機系揺変剤、ベントナイト等の粘土鉱物、合成微粉シリカ等の無機系揺変剤が挙げられ、これらの中でも、酸化ポリエチレン系揺変剤、合成微粉シリカおよびベントナイト等の粘土鉱物が好ましい。 Examples of the anti-sagging / sedimentation inhibitor include organic rocking agents such as hydrogenated castor oil-based rocking agents and polyethylene oxide-based rocking agents, clay minerals such as bentonite, and inorganic rocking agents such as synthetic fine powder silica. Among these, clay minerals such as polyethylene oxide-based rocking agents, synthetic fine powder silica and bentonite are preferable.

前記タレ止め・沈降防止剤は、市販品でもよく、該市販品としては、例えば、有機変性ベントナイト系粘性調整剤(ヘクトライト/第4級アミン)である「Bentone38」(Elementis Specialties Inc.社製)、二酸化ケイ素系揺変剤である「Aerosil R972」(日本アエロジル(株)製)、酸化ポリエチレン系揺変剤である「A-S-A D-120」(伊藤製油(株)製)が挙げられる。 The anti-sagging / sedimentation inhibitor may be a commercially available product, and the commercially available product may be, for example, "Bentone 38" (manufactured by Elementis Specialties Inc.), which is an organically modified bentonite-based viscosity modifier (hectorite / quaternary amine). ), Silicon dioxide-based shaker "Aerosil R972" (manufactured by Nippon Aerosil Co., Ltd.), polyethylene oxide-based shaker "AS-AD-120" (manufactured by Ito Oil Co., Ltd.) Can be mentioned.

前記タレ止め・沈降防止剤の含有量は、本組成物の固形分100質量%に対して、好ましくは0.1~10質量%である。 The content of the anti-sagging / sedimentation inhibitor is preferably 0.1 to 10% by mass with respect to 100% by mass of the solid content of the present composition.

〈脱水剤〉
前記脱水剤は、脱水効果を有すれば特に制限されないが、過剰な水分による本組成物の貯蔵安定性の低下を抑制できる材料であることが好ましい。
このような脱水剤としては、例えば、無水石膏、ビニルトリメトキシシランが挙げられる。
<Dehydrating agent>
The dehydrating agent is not particularly limited as long as it has a dehydrating effect, but it is preferably a material that can suppress a decrease in storage stability of the present composition due to excessive water content.
Examples of such a dehydrating agent include anhydrous gypsum and vinyltrimethoxysilane.

〈有機溶剤〉
本組成物をプラント運転中の高温状態にあるプラント構造物、特に配管外面等の基材などに施工する場合、基材表面の熱で有機溶剤分が揮発しやすく、良好な塗膜の形成が困難となりやすい。このため、前記有機溶剤としては、比較的高沸点の有機溶剤を含むことが好ましい。このような高沸点有機溶剤としては、例えば、ミネラルスピリット、イソプロピルアルコールが挙げられる。その他に通常塗料に使用される溶剤類も適用できる。このような有機溶剤としては、例えば、キシレン、トルエン、n-ブチルアルコールが挙げられる。
<Organic solvent>
When this composition is applied to a plant structure that is in a high temperature state during plant operation, especially a base material such as the outer surface of a pipe, the organic solvent component easily volatilizes due to the heat of the base material surface, and a good coating film is formed. It tends to be difficult. Therefore, it is preferable that the organic solvent contains an organic solvent having a relatively high boiling point. Examples of such a high boiling point organic solvent include mineral spirit and isopropyl alcohol. In addition, solvents usually used for paints can also be applied. Examples of such an organic solvent include xylene, toluene, and n-butyl alcohol.

〈硬化触媒〉
前記硬化触媒は特に制限されないが、前記シロキサンバインダー(A)の架橋反応を促進する効果を有する材料であることが好ましく、例えば、アミノシラン、チタンアルコキシド、チタンキレート、アルミニウム・亜鉛等の金属石鹸、リン酸、リン酸エステルが挙げられる。これらの中でも、本組成物を1液型の形態とし易い傾向にある等の点から、アルミニウム・亜鉛等の金属石鹸が好ましい。
<Curing catalyst>
The curing catalyst is not particularly limited, but is preferably a material having an effect of promoting the cross-linking reaction of the siloxane binder (A), for example, aminosilane, titanium alkoxide, titanium chelate, metal soap such as aluminum / zinc, and phosphorus. Examples include acids and phosphoric acid esters. Among these, metal soaps such as aluminum and zinc are preferable because the composition tends to be in a one-component form.

前記硬化触媒は、市販品でもよく、該市販品としては、例えば、リン酸系硬化触媒である「D-220」、「X-40-2309A」、チタン系硬化触媒である「D-25」、「D-20」、「DX-175」、アルミニウム系硬化触媒である「DX-9740」、「CAT-AC」、アミン系硬化触媒である「KP-390」(アミノ基含有アルコキシシランのn-ブタノール溶液)、亜鉛系硬化触媒である「D-15」、「D-31」(いずれも信越化学工業(株)製)が挙げられる。 The curing catalyst may be a commercially available product, and examples of the commercially available product include phosphoric acid-based curing catalysts "D-220" and "X-40-2309A", and titanium-based curing catalysts "D-25". , "D-20", "DX-175", aluminum-based curing catalyst "DX-9740", "CAT-AC", amine-based curing catalyst "KP-390" (n of amino group-containing alkoxysilane) -Butanol solution), zinc-based curing catalysts "D-15" and "D-31" (all manufactured by Shin-Etsu Chemical Industry Co., Ltd.) can be mentioned.

<耐熱塗料組成物>
本組成物の顔料容量濃度(PVC:Pigment Volume Concentration)は、防食性により優れ、加熱乾燥後の塗膜の基材に対する付着性により優れる耐熱塗膜を得ることができる等の点から、好ましくは30~50%、より好ましくは35~45%である。
PVCが前記範囲を下回ると、形成される耐熱塗膜の防食性が低下する傾向にあり、加熱乾燥後の塗膜の基材に対する付着性も低下する傾向にある。また、PVCが前記範囲を上回ると、形成される耐熱塗膜の防食性が低下する傾向にある。
<Heat-resistant paint composition>
The pigment volume concentration (PVC: Pigment Volume Concentration) of the present composition is preferable from the viewpoints of being able to obtain a heat-resistant coating film having excellent corrosion resistance and excellent adhesion of the coating film to a substrate after heating and drying. It is 30 to 50%, more preferably 35 to 45%.
When PVC is below the above range, the corrosion resistance of the heat-resistant coating film to be formed tends to decrease, and the adhesion of the coating film after heat-drying to the substrate also tends to decrease. Further, when PVC exceeds the above range, the corrosion resistance of the heat-resistant coating film formed tends to decrease.

前記PVCとは、本組成物中の固形分(不揮発分)の容積に対する、顔料の合計の容積濃度のことをいう。PVCは、具体的には下記式より求めることができる。
PVC[%]=本組成物中の全ての顔料の容積合計×100/本組成物中の固形分の容積
The PVC refers to the total volume concentration of the pigment with respect to the volume of the solid content (nonvolatile content) in the present composition. Specifically, PVC can be obtained from the following formula.
PVC [%] = total volume of all pigments in the composition x 100 / volume of solids in the composition

なお、本明細書において、本組成物の固形分は、JIS K 5601-1-2(加熱温度:125℃、加熱時間:60分)に従って得られる加熱残分を意味する。また、本組成物の固形分は、用いる原料における溶媒および前記有機溶剤を除いた量として算出することもできる。 In addition, in this specification, the solid content of this composition means the heating residue obtained according to JIS K 5601-1-2 (heating temperature: 125 degreeC, heating time: 60 minutes). Further, the solid content of the present composition can also be calculated as an amount excluding the solvent in the raw material used and the organic solvent.

前記本組成物中の固形分の容積は、本組成物の固形分の質量および真密度から算出することができる。前記固形分の質量および真密度は、測定値でも、用いる原料から算出した値でも構わない。
前記顔料の容積は、用いた顔料の質量および真密度から算出することができる。前記顔料の質量および真密度は、測定値でも、用いる原料から算出した値でも構わない。例えば、本組成物の固形分より顔料と他の成分とを分離し、分離された顔料の質量および真密度を測定することで算出することができる。
The volume of the solid content in the present composition can be calculated from the mass and the true density of the solid content of the present composition. The mass and true density of the solid content may be measured values or values calculated from the raw materials used.
The volume of the pigment can be calculated from the mass and true density of the pigment used. The mass and true density of the pigment may be measured values or values calculated from the raw materials used. For example, it can be calculated by separating the pigment and other components from the solid content of the present composition and measuring the mass and true density of the separated pigment.

本組成物は、塗装作業性に優れる組成物となる等の点から、1成分型の塗料組成物であることが好ましいが、前記硬化触媒を塗装作業開始の直前に混合撹拌する、2成分型の塗料組成物とすることもできる。 The present composition is preferably a one-component type coating composition from the viewpoint of being a composition having excellent coating workability, but is a two-component type in which the curing catalyst is mixed and stirred immediately before the start of the coating operation. It can also be used as a coating composition of.

≪耐熱塗膜および耐熱塗膜付き基材≫
本発明の一実施形態に係る耐熱塗膜(以下「本耐熱塗膜」ともいう。)は、前述した本組成物より形成され、本発明の一実施形態に係る耐熱塗膜付き基材は、本耐熱塗膜と基材とを含む積層体である。
≪Heat-resistant coating film and base material with heat-resistant coating film≫
The heat-resistant coating film according to the embodiment of the present invention (hereinafter, also referred to as “the present heat-resistant coating film”) is formed from the above-mentioned composition, and the base material with the heat-resistant coating film according to the embodiment of the present invention is: It is a laminate containing the present heat-resistant coating film and a base material.

前記基材としては特に制限されず、例えば、鉄鋼(鉄、鋼、合金鉄、炭素鋼、合金鋼等)、非鉄金属(ステンレス、アルミニウム等)からなる金属基材、および表面がショッププライマー等で被覆された金属基材が挙げられる。また、前記基材としては、プラント構造物、陸上構造物、海洋構造物、船舶等が挙げられるが、本発明の効果がより発揮される等の点から、好ましくはプラント構造物であり、プラント構造物の中でもプラント配管がより好ましい。前記基材としては、特に、プラント配管や船舶、海洋構造物に使用される炭素鋼、または、耐冷・耐熱性を要する部位に好適に用いられるSUS304、SUS316L等のステンレス鋼がより好ましい。 The base material is not particularly limited, and for example, a metal base material made of steel (iron, steel, alloy iron, carbon steel, alloy steel, etc.), non-ferrous metal (stainless steel, aluminum, etc.), and a shop primer or the like on the surface. Examples include coated metal substrates. Examples of the base material include a plant structure, a land structure, an offshore structure, a ship, and the like, but the plant structure is preferable from the viewpoint of further exerting the effect of the present invention. Among the structures, plant piping is more preferable. As the base material, carbon steel used for plant piping, ships, and marine structures, or stainless steel such as SUS304 and SUS316L, which is preferably used for parts requiring cold resistance and heat resistance, is more preferable.

本耐熱塗膜の膜厚は、基材を防食できる程度の厚みがあれば、特に制限されないが、好ましくは100~400μm、より好ましくは150~280μmである。
本組成物を用いるため、このような膜厚の塗膜を基材上に形成しても、該塗膜に膨れやクラックが発生し難く、特に、400℃以上の高温や急激な温度変化に曝された場合でも、膨れやクラックが発生し難いため、長期にわたって基材を防食することができる。
なお、防食性を考慮すれば、より厚膜の状態が望ましいが、過剰な厚膜の場合、加熱により該塗膜に含まれる残留溶剤等が揮発することで塗膜に膨れが発生したり、シロキサン系バインダー(A)や該バインダー由来の成分の反応や分解による構造変化で生じる塗膜内部応力の増大と、それに伴うクラックや剥離が発生しやすくなる傾向にある。
The film thickness of the heat-resistant coating film is not particularly limited as long as it is thick enough to prevent corrosion of the substrate, but is preferably 100 to 400 μm, and more preferably 150 to 280 μm.
Since this composition is used, even if a coating film having such a film thickness is formed on a substrate, swelling and cracks are unlikely to occur in the coating film, and in particular, the temperature is high at 400 ° C. or higher or a sudden temperature change. Even when exposed, swelling and cracking are unlikely to occur, so that the substrate can be protected from corrosion for a long period of time.
In consideration of corrosion resistance, a thicker film is desirable, but in the case of an excessive thick film, the residual solvent and the like contained in the coating film volatilize due to heating, which may cause swelling of the coating film. The increase in the internal stress of the coating film caused by the structural change due to the reaction or decomposition of the siloxane-based binder (A) and the components derived from the binder, and the accompanying cracks and peeling tend to occur easily.

本耐熱塗膜は、前述した本組成物より形成され、具体的には、下記工程[1]および[2]を含む工程を経ることで、製造することができる。
[1]基材に、本組成物を塗装する工程
[2]基材上に塗装された耐熱塗料組成物を乾燥させて耐熱塗膜を形成する工程
The heat-resistant coating film is formed from the above-mentioned composition, and can be specifically produced by going through a step including the following steps [1] and [2].
[1] Step of applying the present composition to the base material [2] Step of drying the heat-resistant coating composition coated on the base material to form a heat-resistant coating film

さらに、本方法は、下記工程[3]を含むことで、防食性および耐熱性により優れる耐熱塗膜を形成することができる。
[3]前記工程[2]で得られた塗膜を150~250℃で加熱する工程
Further, this method can form a heat-resistant coating film having better corrosion resistance and heat resistance by including the following step [3].
[3] A step of heating the coating film obtained in the above step [2] at 150 to 250 ° C.

<工程[1]>
本組成物を基材上に塗装する方法としては特に制限されず、従来公知の方法を制限なく使用可能であり、通常用いられるエアレススプレー塗装、エアースプレー塗装、刷毛塗り、ローラー塗装等が好ましい。作業性や生産性等に優れ、大面積の基材に対して容易に塗装でき、本発明の効果をより発揮できる等の点から、スプレー塗装が好ましい。
なお、本組成物が2成分型の組成物である場合、塗装直前に主剤成分と硬化促進成分(前記硬化触媒を含む成分)を混合し、スプレー塗装などを行ってもよい。
<Step [1]>
The method for coating the present composition on the substrate is not particularly limited, and conventionally known methods can be used without limitation, and commonly used airless spray coating, air spray coating, brush coating, roller coating and the like are preferable. Spray coating is preferable because it is excellent in workability and productivity, can be easily coated on a large-area substrate, and can further exert the effects of the present invention.
When the present composition is a two-component type composition, the main agent component and the curing promoting component (component containing the curing catalyst) may be mixed immediately before painting and spray painting or the like may be performed.

前記スプレー塗装の条件は、形成したい耐熱塗膜の厚さに応じて適宜調整すればよいが、例えばエアレススプレーの場合、1次(空気)圧:0.4~0.8MPa程度、2次(塗料)圧:10~26MPa程度、ガン移動速度:50~120cm/秒程度に塗装条件を設定すればよい。
その際使用される本組成物の粘度はシンナーで調整されるが、当該粘度はB型粘度計(「TVB-10M、東機産業(株)製)で測定した場合、23℃で1.8~2.5Pa・s程度が好ましい。前記シンナーとしては、本組成物中の成分を溶解または分散可能な有機溶剤であることが好ましく、例えば、トルエン、キシレン等の芳香族炭化水素系溶剤、ミネラルスピリット、シクロヘキサン等の脂肪族炭化水素系溶剤、n-ブタノール、イソプロパノール等のアルコール系溶剤が挙げられる。用いられるシンナーは、1種でもよく、2種以上でもよい。
The conditions for spray coating may be appropriately adjusted according to the thickness of the heat-resistant coating film to be formed. For example, in the case of airless spray, the primary (air) pressure: about 0.4 to 0.8 MPa is secondary ( The coating conditions may be set to a pressure (paint) of about 10 to 26 MPa and a gun moving speed of about 50 to 120 cm / sec.
The viscosity of this composition used at that time is adjusted with thinner, and the viscosity is 1.8 at 23 ° C. when measured with a B-type viscometer (“TVB-10M, manufactured by Toki Sangyo Co., Ltd.). The thinner is preferably about 2.5 Pa · s. The thinner is preferably an organic solvent capable of dissolving or dispersing the components in the composition, for example, aromatic hydrocarbon solvents such as toluene and xylene, and minerals. Examples thereof include an aliphatic hydrocarbon-based solvent such as spirit and cyclohexane, and an alcohol-based solvent such as n-butanol and isopropanol. The thinner used may be one type or two or more types.

本組成物をプラント配管等に塗装する場合、プラントの運転を停止しない状態で、比較的高温の配管等に塗装することも可能であるが、この場合、スプレー塗装した塗料が基材表面で均一で平滑な塗膜になる前に固化し、ダスト状に塗装されやすくなる。これを抑制すること等を目的として、前記シンナーとして、高沸点溶剤を使用することができる。 When this composition is applied to plant piping, etc., it is possible to apply it to relatively high temperature piping, etc. without stopping the operation of the plant. In this case, the spray-painted paint is uniform on the surface of the substrate. It solidifies before it becomes a smooth coating film, and it becomes easy to apply it in the form of dust. A high boiling point solvent can be used as the thinner for the purpose of suppressing this.

本組成物を基材上に塗装するに際し、基材上の錆、油脂、水分、塵埃、塩分等を除去するため、また、得られる耐熱塗膜の基材との付着性を向上させるために、必要により前記基材表面を処理(例えば、ブラスト処理(ISO8501-1 Sa2 1/2)、脱脂による油分、粉塵を除去する処理)等を行うことが好ましい。また、前記基材には、1次防錆を目的として、ショッププライマー等を塗装してもよい。 When the present composition is applied onto a substrate, in order to remove rust, oil, moisture, dust, salt, etc. on the substrate, and to improve the adhesion of the obtained heat-resistant coating film to the substrate. If necessary, the surface of the substrate is preferably treated (for example, blast treatment (ISO8501-1 Sa2 1/2), degreasing to remove oil and dust) and the like. Further, the base material may be coated with a shop primer or the like for the purpose of primary rust prevention.

<工程[2]>
本組成物は、常温で乾燥・硬化可能であり、このように、常温で乾燥・硬化させても、耐熱性および防食性に優れる耐熱塗膜を得ることができる。また、所望により、乾燥時間の短縮のため、加熱下で乾燥させてもよい。
前記乾燥条件としては特に制限されず、本組成物、基材、塗装場所等に応じて、適宜設定すればよいが、乾燥温度が、好ましくは5~40℃、より好ましくは10~30℃であり、乾燥時間が、好ましくは18時間~14日、より好ましくは24時間~7日である。
<Step [2]>
The present composition can be dried and cured at room temperature, and thus a heat-resistant coating film having excellent heat resistance and corrosion resistance can be obtained even when dried and cured at room temperature. Further, if desired, it may be dried under heating in order to shorten the drying time.
The drying conditions are not particularly limited and may be appropriately set according to the composition, the base material, the coating place, etc., but the drying temperature is preferably 5 to 40 ° C, more preferably 10 to 30 ° C. The drying time is preferably 18 hours to 14 days, more preferably 24 hours to 7 days.

<工程[3]>
前記工程[3]を行うことで、物理的、化学的により耐性のある耐熱塗膜を形成することができる。即ち、より塗膜硬度の高い、または、より防食性に優れる耐熱塗膜の形成が可能となる。
前記工程[3]おける加熱条件としては特に制限されないが、加熱温度が、好ましくは150~250℃であり、加熱時間が、好ましくは10分~3時間、より好ましくは30分~1時間である。
<Step [3]>
By performing the above step [3], a heat-resistant coating film that is physically and chemically more resistant can be formed. That is, it is possible to form a heat-resistant coating film having higher coating film hardness or more excellent corrosion resistance.
The heating conditions in the step [3] are not particularly limited, but the heating temperature is preferably 150 to 250 ° C., and the heating time is preferably 10 minutes to 3 hours, more preferably 30 minutes to 1 hour. ..

前記膜厚の耐熱塗膜を形成する方法としては、1回の塗装で所望膜厚の塗膜を形成してもよいし、2回以上の塗装(2回以上塗り)で所望の膜厚の塗膜を形成してもよい。膜厚管理の観点、および、塗膜中の残留溶剤を考慮すると、2回以上の塗装で所望膜厚の塗膜を形成することが好ましい。
なお、2回の塗装(2回塗り)とは、工程[1]および[2]、必要により工程[3]を行った後、得られた塗膜上に、工程[1]および[2]、必要により工程[3]を行う方法のことをいい、3回以上の塗装は、さらに、一連の工程を繰り返す方法のことをいう。
As a method for forming a heat-resistant coating film having the above-mentioned film thickness, a coating film having a desired film thickness may be formed by one coating, or a desired film thickness may be formed by two or more coatings (two or more coatings). A coating film may be formed. From the viewpoint of film thickness control and the residual solvent in the coating film, it is preferable to form a coating film having a desired film thickness by two or more coatings.
The two coatings (two coatings) are the steps [1] and [2], and if necessary, the steps [1] and [2] on the obtained coating film after performing the steps [3]. , Refers to a method of performing step [3] as necessary, and painting three or more times further refers to a method of repeating a series of steps.

2回以上の塗装による塗膜形成を行う場合、例えば1回目に塗装を行う塗料・塗膜の色相と、次に塗装を行う塗料・塗膜の色相は異なることが好ましい。これは、塗装作業において、塗り忘れや膜厚不足などの判断を容易にするための措置である。また最終的な外面の色相を指定の色相に仕上げるために上塗り塗装を行ってもよい。 When the coating film is formed by coating two or more times, for example, it is preferable that the hue of the paint / coating film to be coated first and the hue of the paint / coating film to be coated next are different. This is a measure for facilitating the judgment such as forgetting to apply or insufficient film thickness in the painting work. Further, a top coat may be applied in order to finish the final hue of the outer surface to a specified hue.

以下、実施例により本発明をさらに説明するが、本発明はこれらによって制限されない。 Hereinafter, the present invention will be further described with reference to Examples, but the present invention is not limited thereto.

<シロキサン系バインダー(A)の重量平均分子量>
シロキサン系バインダー(A)の重量平均分子量(Mw)を下記条件でGPC法により測定した。
・GPC条件
・装置:「Alliance 2695」(Waters社製)
・カラム:「TSKgel SuperH4000」1本と「TSKgel SuperH2000」2本を連結(いずれも東ソー(株)製、内径6mm×長さ15cm)
・溶離液:テトラヒドロフラン99%(Stabilized whith BHT)
・流速:0.6ml/min
・検出器:「RI-104」(Shodex社製)
・カラム恒温槽温度:40℃
・標準物質:標準ポリスチレン
・サンプル調製法:試料をサンプル管に量り取り、テトラヒドロフランを加えて約100倍に希釈
<Weight average molecular weight of siloxane-based binder (A)>
The weight average molecular weight (Mw) of the siloxane-based binder (A) was measured by the GPC method under the following conditions.
-GPC conditions-Device: "Alliance 2695" (manufactured by Waters)
-Column: One "TSKgel SuperH4000" and two "TSKgel SuperH2000" are connected (both manufactured by Tosoh Corporation, inner diameter 6 mm x length 15 cm).
-Eluent: Tetrahydrofuran 99% (Stabilized with BHT)
・ Flow velocity: 0.6 ml / min
-Detector: "RI-104" (manufactured by Shodex)
・ Column constant temperature bath temperature: 40 ° C
・ Standard substance: Standard polystyrene ・ Sample preparation method: Weigh the sample into a sample tube and add tetrahydrofuran to dilute it about 100 times.

[実施例1]
容器にニューソルベントA 9.7質量部、n-ブタノール 2質量部、キシレン 6.05質量部、Disperbyk-180 0.2質量部およびBYK-320 0.05質量部を入れ、さらにSILRES REN80 30.3質量部、ディスパロン 6650 1質量部およびLFボウセイ ZP-N 4質量部を加えてハイスピードディスパーにて撹拌し、均一に分散した。
得られた混合物に、マイカパウダー100メッシュ 36.9質量部を加えて撹拌し、その撹拌により生じる熱で混合物の温度を58℃まで上げた。
さらに、MIOX 325mesh 8.3質量部を加え、撹拌、均一に分散した後、30℃以下まで冷却し、D-15 1.5質量部を加えて撹拌、均一に分散し、60メッシュのナイロン網で濾過し、塗料組成物を調製した。
[Example 1]
In a container, 9.7 parts by mass of New Solvent A, 2 parts by mass of n-butanol, 6.05 parts by mass of xylene, 0.2 parts by mass of Disperbyk-180 and 0.05 parts by mass of BYK-320 are placed, and SILRES REN80 30. 3 parts by mass, 1 part by mass of Disparon 6650 and 4 parts by mass of LF Bowsei ZP-N were added and stirred with a high speed disper to uniformly disperse.
To the obtained mixture, 36.9 parts by mass of 100 mesh of mica powder was added and stirred, and the temperature of the mixture was raised to 58 ° C. by the heat generated by the stirring.
Further, 325 parts by mass of MIOX 325 mesh was added, stirred and uniformly dispersed, then cooled to 30 ° C. or lower, 1.5 parts by mass of D-15 was added, stirred and uniformly dispersed, and a 60 mesh nylon net was used. The coating composition was prepared by filtering with.

[実施例2~14および比較例1~3]
表2~5に記載の原料を、該表に記載の量で用いた以外は実施例1と同様にして、塗料
組成物を調製した。なお、表2~5の原料の欄に記載の数値は、質量部を示す。
また、表2~5に記載の各原料の詳細は、表1に示すとおりである。
なお、表1中の各成分の固形分(質量%)は、メーカーカタログ値である。
[Examples 2 to 14 and Comparative Examples 1 to 3]
A coating composition was prepared in the same manner as in Example 1 except that the raw materials shown in Tables 2 to 5 were used in the amounts shown in the table. The numerical values shown in the raw material column of Tables 2 to 5 indicate parts by mass.
The details of each raw material shown in Tables 2 to 5 are as shown in Table 1.
The solid content (mass%) of each component in Table 1 is a value in the manufacturer's catalog.

<塗膜物性評価>
(1)未加熱試験
実施例および比較例で得られた塗料組成物の粘度を、前記B型粘度計を用いて測定した23℃下での粘度が2.0Pa・sとなるように、キシレンを用いて調整した。
粘度調整後の塗料組成物を、SS400 サンドブラスト(ISO8501-1 Sa2 1/2相当)鋼板上に、隙間700μmのフィルムアプリケーターを用いて乾燥膜厚が250μmとなるように塗装した。
その後、鋼板上に塗装した塗料組成物を23℃で7日間乾燥させることで、試験片(塗膜付き基材)を作成した。
<Evaluation of physical properties of coating film>
(1) Unheated test Xylene was measured by measuring the viscosities of the coating compositions obtained in Examples and Comparative Examples at 23 ° C. using the B-type viscometer so that the viscosities were 2.0 Pa · s. Was adjusted using.
The viscosity-adjusted coating composition was coated on an SS400 sandblasted (corresponding to ISO8501-1 Sa2 1/2) steel sheet using a film applicator with a gap of 700 μm so that the dry film thickness was 250 μm.
Then, the coating composition coated on the steel sheet was dried at 23 ° C. for 7 days to prepare a test piece (base material with a coating film).

得られた試験片を下記評価基準に従って評価した。
5:割れ、剥離等がなく塗膜外観良好。硬化・乾燥性良好。
4:割れ、剥離等がなく塗膜外観良好であるが、塗膜表面に粘着が残る。
3:拡大鏡を使用すると、割れ等が塗膜表面に認められる。
2:拡大鏡を使用しなくても、塗膜の一部に割れ等の発生が認められる。
1:塗膜の全体にわたって割れや剥離の発生が認められる。
The obtained test pieces were evaluated according to the following evaluation criteria.
5: The appearance of the coating film is good without cracking or peeling. Good curing and drying properties.
4: There is no cracking, peeling, etc., and the appearance of the coating film is good, but adhesion remains on the surface of the coating film.
3: When a magnifying glass is used, cracks and the like are observed on the surface of the coating film.
2: Even if a magnifying glass is not used, cracks and the like are observed in a part of the coating film.
1: Occurrence of cracking and peeling is observed over the entire coating film.

(2)HRT(Heat Resistant Test)
前記(1)未加熱試験と同様にして得られた試験片をマッフル炉に入れ、650℃で4時間加熱した後、放冷することで得られた試験片を、前記(1)未加熱試験と同じ評価基準に従って評価した。
(2) HRT (Heat Restant Test)
The test piece obtained in the same manner as in the above (1) unheated test was placed in a muffle furnace, heated at 650 ° C. for 4 hours, and then allowed to cool. It was evaluated according to the same evaluation criteria as.

(3)ヒートショック試験
前記(1)未加熱試験と同様にして得られた試験片をオーブンに入れ、400℃で8時間加熱した後、オーブンから取り出し、直ちに氷水に10秒間浸漬し、急冷した。その後、試験片を氷水から取り出し、紙ウエスで試験片に付着した水滴を除去した後、室温で1晩放置した。この加熱および急冷をさらに2回(加熱および急冷を合計3回)行った後、得られた試験片を前記(1)未加熱試験と同じ評価基準に従って評価した。
(3) Heat shock test The test piece obtained in the same manner as in the above (1) unheated test was placed in an oven, heated at 400 ° C. for 8 hours, removed from the oven, immediately immersed in ice water for 10 seconds, and rapidly cooled. .. Then, the test piece was taken out from ice water, water droplets adhering to the test piece were removed with a paper waste cloth, and then the test piece was left at room temperature overnight. After performing this heating and quenching two more times (heating and quenching a total of three times), the obtained test pieces were evaluated according to the same evaluation criteria as in the above (1) unheated test.

(4)HRT(SUS基材)
鋼板の代わりに、SUS304 サンドスイープ(ISO8501-1 Sa1相当)板を用いた以外は、前記(1)未加熱試験と同様に試験片を作成した。
得られた試験片を用いた以外は、前記(2)HRTと同様に加熱、放冷することで得られた試験片を、下記評価基準に従って評価した。
5:割れ、剥離等がなく塗膜外観良好。
4:塗膜のごく一部(面積で5%未満)に剥離が認められる。
3:塗膜の一部(面積で5%以上20%未満)に剥離が認められる。
2:塗膜全面のうち、20%以上50%以下の面積に相当する塗膜に剥離が認められる。
1:塗膜の全面が剥離した、または、塗膜の全面に割れが認められる。
(4) HRT (SUS base material)
A test piece was prepared in the same manner as in the above (1) unheated test, except that a SUS304 sand sweep (equivalent to ISO8501-1 Sa1) plate was used instead of the steel plate.
Except for using the obtained test piece, the test piece obtained by heating and allowing to cool in the same manner as in (2) HRT described above was evaluated according to the following evaluation criteria.
5: The appearance of the coating film is good without cracking or peeling.
4: Peeling is observed on a small part of the coating film (less than 5% in area).
3: Peeling is observed on a part of the coating film (5% or more and less than 20% in area).
2: Peeling is observed on the coating film corresponding to the area of 20% or more and 50% or less of the entire surface of the coating film.
1: The entire surface of the coating film is peeled off, or the entire surface of the coating film is cracked.

<防食性評価>
防食性の評価は、前記塗膜物性評価(1)~(3)を行った後のそれぞれの試験片の、図1に示す箇所に、一部鋼板が露出する程度の深さの傷(スクライブ)を入れ、さらに、塗料組成物を塗装していない部分の影響をなくすため、試験片の裏面およびエッジ部をエポキシ系防食塗料で塗装した試験片を用い、JIS Z 2371に従って、各試験片に対し、ソルトスプレー試験(35℃)を3週間行い、下記評価基準に従って評価した。
5:評価対象部に発錆が認められない。
4:評価対象部に僅か(面積で1%未満)に発錆が認められる。
3:評価対象部の一部(面積で1%以上5%未満)に発錆が認められる。
2:評価対象部の一部(面積で5%以上)に発錆が認められる。
1:塗膜の剥離や塗膜の浮きに伴う発錆が認められる。
<Evaluation of anticorrosion>
In the evaluation of the corrosion resistance, the scratches (scribing) having a depth to the extent that a part of the steel sheet is exposed at the portion shown in FIG. ), And in order to eliminate the influence of the unpainted part of the paint composition, use the test piece whose back surface and edge part of the test piece are coated with epoxy-based anticorrosion paint, and in accordance with JIS Z 2371, on each test piece. On the other hand, a salt spray test (35 ° C.) was carried out for 3 weeks and evaluated according to the following evaluation criteria.
5: No rust is found on the evaluation target part.
4: Slight rust is observed on the evaluation target part (less than 1% in area).
3: Rust is observed in a part of the evaluation target part (1% or more and less than 5% in area).
2: Rust is observed in a part of the evaluation target part (5% or more in area).
1: Rust is observed due to peeling of the coating film and floating of the coating film.

ここで「評価対象部」とは、エポキシ系防食塗料の影響を考慮して、試験片の端部から1cmの範囲を除いた部分を示す。
なお、下記表3、4および5における、「未加熱試験(一般部)」とは、前記塗膜物性評価の(1)未加熱試験を行った後の試験片を用いて前記防食試験を行った試験であり、評価対象部のうち、図1に示す一般部(試験片の端部から1cmの範囲を除いた部分であって、かつ、スクライブから1cmの範囲を除いた部分)を評価した試験である。
下記表2、3、4および5における、「未加熱試験(スクライブ部)」とは、前記塗膜物性評価の(1)未加熱試験を行った後の試験片を用いて前記防食試験を行った試験であり、評価対象部のうち、図1に示すスクライブ部(試験片の端部から1cmの範囲を除いた部分であって、かつ、スクライブから1cmの範囲の部分)を評価した試験である。
下記表5における、「HRT(一般部)」および「HRT(スクライブ部)」とは、前記塗膜物性評価の(2)HRT(Heat Resistant Test)を行った後の試験片を用いて前記防食試験を行った試験である。「HRT(一般部)」は、評価対象部のうち、図1に示す一般部を評価した試験であり、HRT(スクライブ部)」は、評価対象部のうち、図1に示すスクライブ部を評価した試験である。
なお、表3~5の防食性の欄において、「(一般部)」や「(スクライブ部)」を記載していない評価は、図1に示す一般部およびスクライブ部の両方を評価対象部として評価した結果である。
Here, the “evaluation target portion” refers to a portion excluding the range of 1 cm from the end portion of the test piece in consideration of the influence of the epoxy-based anticorrosion paint.
The "unheated test (general part)" in Tables 3, 4 and 5 below refers to the anticorrosion test using the test piece after the (1) unheated test of the coating film physical property evaluation. Of the parts to be evaluated, the general part shown in FIG. 1 (the part excluding the range of 1 cm from the end of the test piece and the part excluding the range of 1 cm from the scribe) was evaluated. It is a test.
In the following Tables 2, 3, 4 and 5, the "unheated test (scribe portion)" means that the anticorrosion test is performed using the test piece after the (1) unheated test of the coating film physical property evaluation. This is a test in which the scribe portion shown in FIG. 1 (the portion excluding the range of 1 cm from the end of the test piece and the portion within the range of 1 cm from the scrib) among the evaluation target parts was evaluated. be.
In Table 5 below, "HRT (general part)" and "HRT (scribe part)" are the anticorrosion using the test piece after performing (2) HRT (Heat Resistant Test) of the coating film physical property evaluation. This is the test for which the test was performed. The "HRT (general part)" is a test in which the general part shown in FIG. 1 is evaluated among the evaluation target parts, and the "HRT (scribe part)" evaluates the scribe part shown in FIG. 1 among the evaluation target parts. It is a test that was done.
In the evaluation column in which "(general part)" and "(scribe part)" are not described in the anticorrosion column of Tables 3 to 5, both the general part and the scribe part shown in FIG. 1 are used as the evaluation target parts. This is the result of the evaluation.

Figure 0007089938000004
Figure 0007089938000004

Figure 0007089938000005
Figure 0007089938000005

Figure 0007089938000006
Figure 0007089938000006

Figure 0007089938000007
Figure 0007089938000007

Figure 0007089938000008
Figure 0007089938000008

Claims (10)

シロキサン系バインダー(A)、マイカ(B)雲母状酸化鉄(C)およびアマイド系揺変剤(D)を含む耐熱塗料組成物。 A heat-resistant coating composition containing a siloxane-based binder (A), mica (B) , mica-like iron oxide (C), and an amide-based rocking agent (D) . 前記マイカ(B)と前記雲母状酸化鉄(C)との質量比が90:10~30:70の範囲にある、請求項1に記載の耐熱塗料組成物。 The heat-resistant coating composition according to claim 1, wherein the mass ratio of the mica (B) to the mica-like iron oxide (C) is in the range of 90:10 to 30:70. 前記耐熱塗料組成物の顔料容積濃度(PVC)が30~50%である、請求項1または2に記載の耐熱塗料組成物。 The heat-resistant coating composition according to claim 1 or 2, wherein the heat-resistant coating composition has a pigment volume concentration (PVC) of 30 to 50%. 前記シロキサン系バインダー(A)が、重量平均分子量(Mw)が15,000以上300,000以下のシリコーンレジン(A1)および重量平均分子量が15,000未満のシリコーンオリゴマー(A2)からなる群より選択される少なくとも1つを含む、請求項1~3の何れか1項に記載の耐熱塗料組成物。 The siloxane-based binder (A) is selected from the group consisting of a silicone resin (A1) having a weight average molecular weight (Mw) of 15,000 or more and 300,000 or less and a silicone oligomer (A2) having a weight average molecular weight of less than 15,000. The heat-resistant coating composition according to any one of claims 1 to 3, which comprises at least one of the above-mentioned heat-resistant coating compositions. 前記シロキサンバインダー(A)がエチルシリケート(A3)を含む、請求項4に記載の耐熱塗料組成物。 The heat-resistant coating composition according to claim 4, wherein the siloxane binder (A) contains ethyl silicate (A3). さらに、防錆顔料(E)を含む、請求項1~の何れか1項に記載の耐熱塗料組成物。 The heat-resistant coating composition according to any one of claims 1 to 5 , further comprising a rust preventive pigment (E). 請求項1~の何れか1項に記載の耐熱塗料組成物から形成された耐熱塗膜。 A heat-resistant coating film formed from the heat-resistant coating composition according to any one of claims 1 to 6 . 基材と請求項に記載の耐熱塗膜とを含む耐熱塗膜付き基材。 A base material with a heat-resistant coating film, which comprises the base material and the heat-resistant coating film according to claim 7 . 前記基材がプラント構造物である、請求項に記載の耐熱塗膜付き基材。 The base material with a heat-resistant coating film according to claim 8 , wherein the base material is a plant structure. 下記工程[1]および[2]を含む、耐熱塗膜付き基材の製造方法。
[1]基材に、請求項1~の何れか1項に記載の耐熱塗料組成物を塗装する工程
[2]基材上に塗装された耐熱塗料組成物を乾燥させて耐熱塗膜を形成する工程
A method for producing a base material with a heat-resistant coating film, which comprises the following steps [1] and [2].
[1] Step of applying the heat-resistant coating composition according to any one of claims 1 to 6 to a base material [2] The heat-resistant coating composition coated on the base material is dried to form a heat-resistant coating film. Forming process
JP2018097040A 2017-06-23 2018-05-21 Heat-resistant paint composition, heat-resistant coating film, base material with heat-resistant coating film and its manufacturing method Active JP7089938B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017123534 2017-06-23
JP2017123534 2017-06-23

Publications (2)

Publication Number Publication Date
JP2019006982A JP2019006982A (en) 2019-01-17
JP7089938B2 true JP7089938B2 (en) 2022-06-23

Family

ID=64822836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018097040A Active JP7089938B2 (en) 2017-06-23 2018-05-21 Heat-resistant paint composition, heat-resistant coating film, base material with heat-resistant coating film and its manufacturing method

Country Status (3)

Country Link
JP (1) JP7089938B2 (en)
KR (1) KR102611925B1 (en)
CN (1) CN109111845B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020128805A1 (en) * 2018-12-19 2020-06-25 Ppg Industries Ohio, Inc. Ambient cure high temperature protective coating
KR20220019109A (en) * 2019-07-03 2022-02-15 주고꾸 도료 가부시키가이샤 Heat-resistant coating composition, heat-resistant coating film, substrate with heat-resistant coating film, and manufacturing method thereof
JP7272894B2 (en) * 2019-07-31 2023-05-12 中国塗料株式会社 Anti-corrosion laminate
KR102425486B1 (en) * 2020-03-03 2022-07-25 엘지전자 주식회사 Air conditioner
EP4205867A1 (en) 2020-08-28 2023-07-05 Chugoku Marine Paints, Ltd. Paint composition, coating film, base material with coating film, and method for manufacturing same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008168913A (en) 2007-01-09 2008-07-24 Chugoku Marine Paints Ltd Maritime transport container, its manufacturing method, and coating material used therefor
CN101935498A (en) 2010-09-25 2011-01-05 江门市制漆厂有限公司 Heat-resisting organic silicon antiseptic inner tank coating
WO2011074620A1 (en) 2009-12-18 2011-06-23 中国塗料株式会社 Metal-crosslinked organopolysiloxane-thio block vinyl copolymer, and antifouling coating composition containing the copolymer
JP2012136588A (en) 2010-12-24 2012-07-19 Dow Corning Toray Co Ltd Polysiloxane-n, n-dihydrocarbylene sugar-modified multiblock copolymer and method for producing the same
WO2014014063A1 (en) 2012-07-20 2014-01-23 中国塗料株式会社 Primary rust preventive coating composition and use thereof
WO2014024963A1 (en) 2012-08-10 2014-02-13 株式会社カネカ Moisture curable composition
CN103627318A (en) 2013-11-22 2014-03-12 上海海隆石油化工研究所 Temperature-resistant, high-pressure-resistant and water-resistant epoxy organic silicon coating
WO2016147758A1 (en) 2015-03-19 2016-09-22 株式会社神戸製鋼所 Plastic-coated galvanized metal sheet
JP2017031399A (en) 2015-07-31 2017-02-09 オート化学工業株式会社 Curable composition
CN106700844A (en) 2015-07-20 2017-05-24 海洋化工研究院有限公司 Preparation of weather-proof temperature-resistant anticorrosive coating

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH061952A (en) * 1992-06-17 1994-01-11 Kubota Corp Heat-resistant coating
JPH07228801A (en) * 1994-02-15 1995-08-29 Mitsui Kinzoku Toryo Kagaku Kk Undercoating composition for foaming-type refractory coating material
MY115462A (en) * 1995-06-01 2003-06-30 Chugoku Marine Paints Antifouling coating composition, coating film formed from said antifouling coating composition, antifouling method using said antifouling coating composition and hull or underwater structure coated with said coating film
JPH11279488A (en) 1998-03-30 1999-10-12 Sankyu Inc Heat-resistant coating composition
JP2003213210A (en) 2002-01-24 2003-07-30 Nisshin Steel Co Ltd Coating material composition and heat-resistant precoat steel plate
DE102005010964A1 (en) * 2005-03-10 2006-09-14 Degussa Ag Aqueous coating compositions for effect coatings
CA2636078C (en) 2006-01-02 2014-07-08 Akzo Nobel Coatings International B.V. Heat resistant coating
KR101008068B1 (en) * 2006-03-09 2011-01-13 주고꾸 도료 가부시키가이샤 High-solid anticorrosive coating composition
CN101550315A (en) * 2009-05-15 2009-10-07 泰州市四联化工有限公司 Black organic-silicon heat-resisting paint and preparation method thereof
JP6103964B2 (en) * 2013-02-04 2017-03-29 中国塗料株式会社 Two-component primer, primer coating, laminated antifouling coating and substrate antifouling method
JP6033400B2 (en) * 2013-03-08 2016-11-30 中国塗料株式会社 Anticorrosion paint composition, anticorrosion coating film, and method for anticorrosion of substrate
DE102013216781A1 (en) * 2013-08-23 2015-02-26 Evonik Industries Ag coating materials
US10273366B2 (en) * 2013-08-23 2019-04-30 Chugoku Marine Paints, Ltd. Anticorrosive coating composition, anticorrosive coating film, and method for preventing corrosion of substrate
CN103614072B (en) * 2013-11-22 2016-04-27 上海海隆石油化工研究所 A kind of epoxy organosilicon coating of heatproof high voltage resistant corrosion

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008168913A (en) 2007-01-09 2008-07-24 Chugoku Marine Paints Ltd Maritime transport container, its manufacturing method, and coating material used therefor
WO2011074620A1 (en) 2009-12-18 2011-06-23 中国塗料株式会社 Metal-crosslinked organopolysiloxane-thio block vinyl copolymer, and antifouling coating composition containing the copolymer
CN101935498A (en) 2010-09-25 2011-01-05 江门市制漆厂有限公司 Heat-resisting organic silicon antiseptic inner tank coating
JP2012136588A (en) 2010-12-24 2012-07-19 Dow Corning Toray Co Ltd Polysiloxane-n, n-dihydrocarbylene sugar-modified multiblock copolymer and method for producing the same
WO2014014063A1 (en) 2012-07-20 2014-01-23 中国塗料株式会社 Primary rust preventive coating composition and use thereof
WO2014024963A1 (en) 2012-08-10 2014-02-13 株式会社カネカ Moisture curable composition
CN103627318A (en) 2013-11-22 2014-03-12 上海海隆石油化工研究所 Temperature-resistant, high-pressure-resistant and water-resistant epoxy organic silicon coating
WO2016147758A1 (en) 2015-03-19 2016-09-22 株式会社神戸製鋼所 Plastic-coated galvanized metal sheet
CN106700844A (en) 2015-07-20 2017-05-24 海洋化工研究院有限公司 Preparation of weather-proof temperature-resistant anticorrosive coating
JP2017031399A (en) 2015-07-31 2017-02-09 オート化学工業株式会社 Curable composition

Also Published As

Publication number Publication date
CN109111845B (en) 2022-07-26
JP2019006982A (en) 2019-01-17
KR20190000802A (en) 2019-01-03
CN109111845A (en) 2019-01-01
KR102611925B1 (en) 2023-12-08

Similar Documents

Publication Publication Date Title
JP7089938B2 (en) Heat-resistant paint composition, heat-resistant coating film, base material with heat-resistant coating film and its manufacturing method
KR101079778B1 (en) Aqueous rust-resisting paint composition
CN110229601B (en) Fluorocarbon coating and preparation method and coating method thereof
JP6502905B2 (en) Corrosion prevention coating
KR101792081B1 (en) Primary Anti-corrosive Coating Composition, and Coated Steel Structure which has Been Coated with Same
CA2939966C (en) Anticorrosive coating composition
KR101046264B1 (en) Ceramic powder coating composion, steel pipe pile coated the same and process for preparing the same
JP4812902B1 (en) Antifouling paint composition and method for forming antifouling coating film
KR101865092B1 (en) Anti-corrosion water-soluble paint and varnish composition
JPWO2020045487A1 (en) Anti-corrosive paint composition and its uses
CN102268221A (en) Double-component aqueous inorganic non-expandable fireproof coating and preparation method thereof
JPWO2019088155A1 (en) Anti-corrosive paint composition and its uses
CN109517515A (en) A kind of aqueous polyurethane non-corrosive metal (NCM) priming paint and preparation method thereof
US20120289642A1 (en) Powder coating composition
JP2008031237A (en) Inorganic paint rich in zinc and method of forming multiple layer coated film using the same
KR101896011B1 (en) Anti-corrision varnish composition and forming method for anti-corrision coating layer using the same
JP3996409B2 (en) Penetration type inorganic rust preventive coating composition and method for repairing metal structure using the same
JP2012214676A (en) Coated metal plate and method of manufacturing the same
JP6645712B2 (en) Heat resistant coating method
JP4641563B1 (en) Antifouling paint composition and method for forming antifouling coating film
JP4573506B2 (en) Rust preventive paint composition
WO2021002139A1 (en) Heat-resistant coating composition, heat-resistant coating film, heat-resistant coating film-attached substrate, and method for preparing same
JP7208777B2 (en) paint composition
KR101532201B1 (en) Anti-corrosive coating composition for metal and articles coated therewith
CN113308192A (en) Heat-resistant organic silicon high-temperature-resistant primer and preparation process thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220104

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220613

R150 Certificate of patent or registration of utility model

Ref document number: 7089938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150