JP3996409B2 - Penetration type inorganic rust preventive coating composition and method for repairing metal structure using the same - Google Patents

Penetration type inorganic rust preventive coating composition and method for repairing metal structure using the same Download PDF

Info

Publication number
JP3996409B2
JP3996409B2 JP2002055480A JP2002055480A JP3996409B2 JP 3996409 B2 JP3996409 B2 JP 3996409B2 JP 2002055480 A JP2002055480 A JP 2002055480A JP 2002055480 A JP2002055480 A JP 2002055480A JP 3996409 B2 JP3996409 B2 JP 3996409B2
Authority
JP
Japan
Prior art keywords
component
rust
coating composition
rust preventive
metal structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002055480A
Other languages
Japanese (ja)
Other versions
JP2003253208A (en
Inventor
哲也 清水
英之 森田
伸明 海野
敏也 世古
正人 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Rika Kogyo Corp
D&D Corp
Original Assignee
Chuo Rika Kogyo Corp
D&D Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Rika Kogyo Corp, D&D Corp filed Critical Chuo Rika Kogyo Corp
Priority to JP2002055480A priority Critical patent/JP3996409B2/en
Publication of JP2003253208A publication Critical patent/JP2003253208A/en
Application granted granted Critical
Publication of JP3996409B2 publication Critical patent/JP3996409B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
この発明は、錆面に塗装可能な浸透型無機防錆塗料組成物及びそれを用いた金属構造物の補修塗装方法に関する。
【0002】
【従来の技術】
鉄鋼製品は、海洋構造物、港湾施設、船舶、送電線鉄塔、建築・土木構造物、自動車、機械設備、鉄道車両、発電機、大型変圧器等の各種鋼構造物に広く用いられている。ただ、自然環境に放置されると、より安定な酸化鉄の状態に戻ろうとし、いわゆる「錆」が発生するという問題がある。
【0003】
錆の発生による上記各種鋼構造物の劣化を防止する目的で、防錆・防食塗装が盛んに行われている。この防錆・防食塗装による塗装膜の経時後の防食性、耐久性、密着性及び接着性は、錆落とし(いわゆるケレン処理)の程度が大きく影響する。すなわち、錆落としが十分でない場合には塗膜が密着不良となり、塗膜の剥離や錆が非常に早く生じる。このため、防錆・防食塗装の施工では、できるかぎり高度の錆落としが基準化されている。例えば、特開2000−140746号公報には、錆の出た鉄鋼材料の表面をケレン処理して清浄にし、リン酸及びケイ素化合物を含有する下地処理剤を施した後、補修塗装をする工法が開示されている。
【0004】
【発明が解決しようとする課題】
しかしながら、現実には、上記各種鋼構造物の環境や設置場所、あるいは部位等の条件によっては、高度の錆落とし作業そのものが困難であり、前処理の不備に起因する塗装のトラブルが非常に多い。また、近年、錆落とし作業に従事する作業者の不足、錆落とし作業を行うことによる作業期間の長期化による塗装費用の向上等により、錆落としの作業の簡略化が強く求められるようになってきた。これに対し、特開平7−145349号公報には、錆の残存する鋼板に塗布可能な錆面用塗料ジスルフィド系化合物が開示され、また、特開2001−131468号公報には、低ケレン面へ塗布可能なエポキシ樹脂を含む鉄構造物等の補修塗装用塗料が開示されている。しかし、これらは、有機系の塗料であり、耐候性の長期の安定性、耐熱性については不十分である。
【0005】
ところで、一般に、大気中で生成する鋼の錆はFeOOH(いわゆる赤錆)及びFe34から構成されていて、錆の発生には大気中の水分と酸素の存在が必須条件である。このため、鉄鋼の防錆方法としては、以下の2つの方法が考えられる。
▲1▼素地から錆の原因となる水と酸素を抑制・遮断する方法。
▲2▼赤錆(FeOOH)を化学反応により安定な形に転化させる方法。
【0006】
上記▲1▼の方法としては、浸透性に優れる低粘度の塗料を浸透剤として用いて塗料を錆層深くまで充分しみこませ、錆の粒子を包み込んで安定化させる方法(浸透包皮型)があげられ、また、▲2▼の方法としては、1価又は2価のフェノール誘導体を用いて鉄イオンとキレート化させ、化学反応によって安定化させる方法(鉄キレート転化型)や、強磁性のフェライト顔料を用いて赤錆を安定なマグネタイトに転化させる方法(マグネタイト転化型)等があげられる。このうち、上記浸透包皮型の塗料として、浸透性に優れる低粘度の加工魚油、アルキッド樹脂、低分子の石油樹脂等や、上記のスルフィド系化合物やエポキシ系樹脂等の有機系の塗料が広く用いられてきた。これらは、有機系の塗料であり、上記の通り、耐候性の長期の安定性、耐熱性については不十分である。
【0007】
そこでこの発明は、錆を有する鋼板等の金属材料に対する浸透性、密着力に優れた錆面塗装可能な浸透包皮型である、耐候性の長期の安定性、耐熱性等に優れた防錆塗料組成物、及びこの防錆塗料組成物を用いて、錆を有する鋼板等の金属材料からなる金属構造物の補修塗装方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
この発明は、(A)成分として下記化学式(1)で示されるアルコキシシラン化合物又はその部分加水分解縮合物、及び(B)成分として硬化触媒を少なくとも含有し、上記(A)成分の25℃における粘度が10〜1000mPa・sである浸透型無機防錆塗料組成物を用いることにより上記の課題を解決したのである。
1 nSi(OR24-n (1)
(ただし、式中R1は置換若しくは非置換の炭素数1〜9の芳香族基を含む炭化水素基、R2は炭素原子数1〜4のアルキル基、nは0〜3の整数を示す。また、R1は同一であっても、それぞれ異なっていてもよい。)
【0009】
無機系の防錆塗料組成物を用いるので、耐候性の長期の安定性、耐熱性等に優れている。
また、(A)成分及び(B)成分を用いるので、常温で速やかに硬化が可能であり、低ケレン処理の錆面への浸透性に優れ、錆の残存している鋼板に対する密着力に優れる。
【0010】
【発明の実施の形態】
以下において、この発明について詳細に説明する。
この発明にかかる浸透型無機防錆塗料組成物は、下記化学式(1)で示されるアルコキシシラン化合物又はその部分加水分解縮合物(以下、「(A)成分」と称する。)及び硬化触媒(以下、「(B)成分」と称する。)を少なくとも含有する組成物である。
1 nSi(OR24-n (1)
ただし、式中R1は置換若しくは非置換の炭素数1〜9の芳香族基を含む炭化水素基、R2は炭素原子数1〜4のアルキル基、nは0〜3の整数を示す。また、R1は同一であっても、それぞれ異なっていてもよい。
【0011】
この(A)成分を構成するアルコキシシラン化合物の例としては、メチルトリメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポキシシラン、エチルトリメトキシシラン、ブチルトリメトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、フェニルメチルジメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等があげられる。
【0012】
また、アルコキシシラン化合物の部分加水分解物とは、上記アルキルアルコキシシラン化合物の単一物又は混合物に水を加え、塩酸、酢酸、蟻酸等の触媒の存在下で撹拌しながら昇温することにより、部分的に加水分解を生じさせて縮合させることにより得られた化合物をいう。2種類以上のアルキルアルコキシシランの加水分解縮合は、別々に行ってから混合してもよく、混合してから加水分解縮合してもよい。
【0013】
上記加水分解を行う際に必要に応じて溶媒を用いることができる。溶媒としては、上記混合物を溶解して均一な溶液を与えるものであれば特に制限はないが、例えば、エタノール、プロパノール、ブタノール等のアルコール類、ベンゼン、トルエン等の芳香族炭化水素化合物、メチルセロソルブ、ブチルセロソルブ、セロソルブアセテート等のセロソルブ類等が用いられる。
【0014】
上記アルコキシシラン加水分解縮合物の粘度が高く、錆を有する金属構造物面等の金属面素地への浸透性が低下する様な場合には、溶媒を含んだまま塗料として用いてもよいが、これらの揮発成分は加水分解反応の終了後、蒸留等の操作により取り除いた方が、環境衛生上望ましい。
【0015】
上記(A)成分のうち、下記化学式(2)で示されるアルコキシシラン化合物(以下「アルキルシラン系化合物」と称する。)又はその部分加水分解縮合物、及び化学式(3)で示されるアルコキシシラン化合物(以下「フェニルシラン系化合物」と称する。)又はその部分加水分解縮合物の混合物や、このアルキルシラン系化合物及びフェニルシラン系化合物の混合物の部分加水分解縮合物を用いると、錆を有する金属構造物面等の金属面素地への浸透性がより向上し、密着力がより向上するので好ましい。
3 mSi(OR44-m (2)
PhR5 pSi(OR63-p (3)
【0016】
ただし、化学式(2)において、R3は分岐していてもよい炭素数1〜8の炭化水素基、R4は炭素原子数1〜4のアルキル基、mは1〜2の整数を示す。また、R3は同一であっても、それぞれ異なっていてもよい。
また、化学式(3)において、Phはフェニル基、R5は分岐していてもよい炭素数1〜8の炭化水素基若しくはフェニル基、R6は炭素原子数1〜4のアルキル基、pは0又は1の整数を示す。)
【0017】
上記アルキルシラン系化合物の例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン等のアルキルトリアルコキシシランやジアルキルジアルコキシシラン等があげられる。また、上記フェニルシラン系化合物としては、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、フェニルメチルジメトキシシラン等のフェニル基含有アルコキシシラン等があげられる。これらの中でも、アルキルシラン系化合物又はその部分加水分解縮合物として、メチルトリメトキシシラン等のアルキルトリアルコキシシラン又はその部分加水分解縮合物を用い、フェニルシラン系化合物又はその部分加水分解縮合物として、フェニルトリメトキシシラン又はジフェニルジメトキシシラン又はその部分加水分解縮合物を用いる組み合わせが最も好ましい。
【0018】
上記アルキルシラン系化合物又はその部分加水分解縮合物及び上記フェニルシラン系化合物又はその部分加水分解縮合物の混合比率は、モル比で、アルキルシラン系化合物又はその部分加水分解縮合物/フェニルシラン系化合物又はその部分加水分解縮合物=99/1〜60/40が好ましく、98/2〜75/25がより好ましい。フェニルシラン系化合物又はその部分加水分解縮合物の量があまり多くなりすぎると、塗料の硬化に時間がかかるという問題点があり、少なすぎると、硬化皮膜の可撓性に欠けるという問題点がある。
【0019】
上記(A)成分の加水分解の程度は、後述する(A)成分の粘度に範囲に入る程度の程度がよい。上記(A)成分の粘度は、25℃において10〜1000mPa・sがよく、20〜500mPa・sが好ましく、25〜300mPa・sがより好ましい。粘度が小さすぎると塗布時に塗料が拡散して十分な防錆効果が得られないことがあるだけでなく、硬化時に上記(A)成分の加水分解による硬化収縮のため、被膜にクラックが発生したりして、充分な強度を有する硬化被膜が得られない場合がある。一方、粘度が1000mPa・sより大きいと、塗料が錆の残存する素地へ浸透しにくくなるために十分な防錆効果が得られなくなる。なお、上記粘度は、25℃においてブルックフィールド型回転粘度計(BM型)を用いて、NO.2ローター、60rpmで測定した値をいう。
【0020】
上記(B)成分は、上記の(A)成分を常温で十分に縮合させて硬化させるために必要な成分である。この(B)成分の例としては、ジブチルスズジラウレート、ジブチルスズジアセテート等の有機スズ化合物、テトライソプロポキシチタン、テトラ−n−ブトキシチタン等の有機チタン化合物、アルトリイソプロポキシアルミニウム、トリ−n−ブトキシアルミニウム等の有機アルミニウム化合物等の有機金属化合物、塩酸、クロム酸等の無機酸、酢酸、蟻酸、グリコール酸等の有機カルボン酸等から選ばれる1種又は2種以上の化合物があげられる。上記(B)成分の中でも、常温で硬化可能となり、塗布基材への腐蝕の影響がなく、使用条件に応じた硬化時間の調整が可能である点で、ジブチルスズジラウレート、ジブチルスズジアセテート等の有機スズ化合物、テトライソプロポキシチタン、テトラ−n−ブトキシチタン等の有機チタン化合物、アルトリイソプロポキシアルミニウム、トリ−n−ブトキシアルミニウム等の有機アルミニウム化合物が好ましい。
【0021】
上記(B)成分の使用量は、(A)成分100重量部に対して、0.1〜10重量部が好ましく、0.5〜5重量部がより好ましい。添加量が少なすぎると常温での硬化速度が遅くなったり、硬化塗膜の強度が不足したりする場合がある。一方、添加量が多すぎると硬化が速く起こりすぎて作業性、保存安定性が低下する。
【0022】
この発明にかかる塗料組成物には、上記の(A)成分及び(B)成分に加え、得られる塗膜の着色、防食性、耐熱性等の諸性能を付与するために無機顔料(以下、「(C)成分」と称する。)を含有させることができる。この(C)成分を構成する無機顔料としては、特に制限はないが、金属及び合金並びにこれらの酸化物、水酸化物、炭化物、硫化物、窒化物等があげられる。具体例としては、酸化チタン、酸化クロム、酸化鉄、酸化アルミニウム、酸化亜鉛、酸化ジルコニウム、酸化コバルト、ケイ酸鉛、クロム酸鉛、モリブデン酸鉛、硫酸鉛、硫酸バリウム、炭酸バリウム、炭化珪素、窒化珪素、炭酸カルシウム、炭酸マグネシウム、硫化銅、水酸化アルミニウム、水酸化鉄、雲母、カーボンブラック等があげられる。これらは、目的とする色彩を得るために、1種又は2種以上を併用して使用される。
【0023】
上記(C)成分の平均粒子径は、体積換算のメジアン径で0.1〜5μmが好ましく、0.2〜2μmがより好ましい。平均粒子径が0.1μm以下では得られる塗膜の隠蔽性が低く、5μm以上では顔料の沈降が起こりやすくなり良好な塗料が得られない。
【0024】
また、上記(C)成分の配合量は、(A)成分100重量部に対して、10〜200重量部が好ましく、20〜100重量部がより好ましい。添加量が10重量部以下では、得られる塗膜の隠蔽性が低く、200重量部以上では顔料の沈降が起こりやすくなったり、塗膜の可撓性が低下して、良好な塗膜が得られない。
【0025】
上記(C)成分の分散方法は、特に指定はないが、ビーズミル、ボールミル、ペイントシェーカー、サンドミル等既知の湿式又は乾式の分散機によって微粒子化され、分散させることが好ましい。また、上記(C)成分は、顔料の分散の際に特に分散剤を必要としないが、必要に応じて既存の顔料分散剤を使用してもよい。
【0026】
上記(A)成分には、上記の(B)成分や(C)成分以外に、防錆作用をより向上させる目的で、鉄イオンとのキレート作用を有するタンニン酸や、ピロガロール等の1価又は2価のフェノール誘導体や、フェライト等の防錆効果を有する化合物を含有することができる。また、本来の性能を低下させない範囲において、粘度調整剤、酸化防止剤、紫外線吸収剤、分散剤等を添加してもよい。
【0027】
この発明にかかる浸透型無機防錆塗料組成物は、金属構造物、特に錆を有する金属構造物の面に塗布して、この金属構造物の補修塗装及び防錆を行うことにより、この金属構造物を補修塗装することができる。
【0028】
具体的には、上記浸透型無機防錆塗料組成物を、金属構造物、特に錆を有する金属構造物の面に、スプレー、ディッピング、ハケ塗り、ローラー塗り等の方法で塗布し、この錆を有する面に塗料を充分に含浸させる。次いで、常温下で放置し塗料を硬化させる。この過程で上記(A)成分の縮合が更に進行しポリシロキサンのネットワークが形成される。
【0029】
この塗布作業を行うとき、前もって、金属構造物に高度なケレン処理(下地処理)を行う必要はなく、適度のケレン処理を行えば十分であり、また、ケレン処理を全く行わなくてもよい。
【0030】
上記ケレン処理としては、ブラスト処理、カップブラシ処理、ディスクサンダー処理等があげられる。
【0031】
この発明の浸透型無機防錆塗料組成物は、常温で十分硬化可能であるが、必要に応じて加熱処理を行うとより、速く硬化を行うことができる。また、この発明の浸透型無機防錆塗料組成物は、錆が残存する低ケレン処理面への浸透性、密着性に優れるが、一般の防錆塗料と同様に塗装前の充分な下地処理を行うと、より高度な防錆作用が得られる。さらに、この発明の浸透型無機防錆塗料組成物の塗布及び乾燥の工程を2回以上繰り返し行ってもよい。対象となる代表的な金属構造物を構成する鋼材としては、一般的な鉄鋼の他、亜鉛メッキ鋼、亜鉛−アルミニウム合金メッキ鋼、亜鉛−ニッケルメッキ鋼等があげられる。
【0032】
上記浸透型無機防錆塗料組成物の塗布量は、特に限定されないが10〜500g/m2が好ましく、30〜300g/m2がより好ましい。塗布量が10g/m2以下では、防錆が十分に行われない。塗布量が500g/m2より多いと、乾燥に時間がかかり、作業効率が悪くなるだけでなく、コスト的にも不利である。
【0033】
この発明にかかる浸透型無機防錆塗料組成物を金属構造物に塗装することによって、高度の下地処理を行うことなく、補修塗装及び防錆が可能となる。また、この発明にかかる浸透型無機防錆塗料組成物は、顔料により自由に着色が可能なため、別途上塗り塗料を必要とせず美観に優れた塗膜が得られる。
【0034】
この発明の浸透型無機防錆塗料組成物は、海洋構造物用塗料、港湾施設用塗料、船舶用塗料、プラント用塗料、橋梁用塗料、自動車用塗料、鉄道車両用塗料、機械設備用塗料、工業用塗料及び建築・土木用塗料等の既に錆の発生している金属構造物に用いることができる。また、まだ錆の発生している上記金属構造物や新品の鉄板等に用いた場合でも、同様の良好な性能を発揮することができる。
【0035】
【実施例】
以下に実施例及び比較例をあげてこの発明をさらに具体的に説明する。なお、下記実施例及び比較例において、使用した原料、及び行った試験並びに評価方法について説明する。
【0036】
<使用原料>
▲1▼(A)成分等
・メチルトリメトキシシラン:信越化学工業(株)製
・ジフェニルジメトキシシラン:同上
・珪酸系封孔剤:テトラエトキシシラン縮合物、多摩化学工業(株)製;商品名エチルシリケート40、粘度3mPa・s(以下、「エチルシリケート40」と称する。)
▲2▼(B)成分
・テトラ−n−ブトキシチタン:キシダ化学(株)製;試薬特級(以下、「TBT」と称する。)
▲3▼(C)成分
・酸化チタン(白色):タイオキサイド(株)製;R−FC5
【0037】
<評価試験>
[試験片の作成]
基材として全面に錆が見られる溶融亜鉛メッキ鋼板を用い、下記のいずれかの表面処理法による表面処理を行って試験片を得た。なお、表面処理法▲1▼を用いて得られた試験片を試験片▲1▼と、表面処理法▲2▼を用いて得られた試験片を試験片▲2▼と称する。

Figure 0003996409
.[常温硬化性]
上記試験片▲1▼に実施例又は比較例で得られた無機塗料を塗布し、25℃にて10時間乾燥した後、塗布面を指で触り硬化性を評価した。
○:タック無し。
△:わずかにタックが感じられる。
×:タック大、又は成膜しない。
【0038】
[塗膜密着力]
上記試験片▲1▼又は試験片▲2▼に無機塗料を塗布した鋼板について、JIS K5600に従い、塗膜のプルオフ試験を行った。付着強さ(N/mm2)を表に記載した。
[錆の発生の有無](耐塩水噴霧性)
上記試験片▲1▼に無機塗料を塗布した鋼板について、JIS K5400及び、JIS K8661に従い耐塩水噴霧性試験を行い、164時間経過後、塗膜表面の錆の発生具合を観測し、下記の基準で評価した。
○:異常なし(目視で錆が認められない)
×:基材全面に白錆が発生した
【0039】
[可撓性]
JIS K5400に準じて、実施例又は比較例で調製した無機塗料を厚み100μmのポリエステルフィルムに塗布量が75g/m2となるように塗布し、常温にて48時間乾燥した後にフィルムを180°折り曲げて割れの発生を確認した。
○:割れなし
×:割れ発生
【0040】
(合成例1)
攪拌機、加熱ジャケット、コンデンサー、滴下漏斗を取り付けたフラスコに、メチルトリメトキシシラン272g(2.00mol)、ジフェニルジメトキシシラン48.9g(0.20mol)、メタノール50g、テトラ−n−ブトキシチタン0.3gの混合物を撹拌しながら室温で、水36gを30分間にわたって滴下した後、温度を90℃に昇温し加水分解縮合をさせた。初期に溶媒として添加したメタノール、及び加水分解によって発生したメタノールを反応系内から抜き出した後、室温まで冷却し、アルコキシシランの加水分解縮合物を得た。得られた縮合液の粘度は70mPa・s(25℃)であった。なお、粘度は25℃においてブルックフィールド型回転粘度計(BM型)を用いて、NO.2ローター、60rpmで測定した。この分散液の固形物100gあたり、硬化触媒((C)成分)としてテトラ−n−ブトキシチタン2gを加えて無機塗料(以下、「塗料1」と称する。)を調製した。
【0041】
(実施例1)
合成例1で得られた塗料1を、塗布量が約100g/m2となるように刷毛塗り(2回塗り)して25℃にて24時間乾燥(環境湿度:65%)し、上記の各評価試験を実施した。その結果を表1に示す。
【0042】
(実施例2)
合成例1で得られたアルコキシシランの加水分解縮合物100重量部に、酸化チタン(白色)30重量部を添加し、ビーズミルにて顔料を粉砕、分散した。顔料の平均粒子径は0.89μmであった。この分散液に、硬化触媒としてテトラ−n−ブトキシチタン2重量部を加えて無機塗料を調製した。なお、平均粒子径は光散乱方式装置を用いて、メタノールを分散媒体として測定した体積換算でのメジアン径である。得られた塗料を用いて、実施例1と同様にして各評価試験を実施した。その結果を表1に示す。
【0043】
(比較例1)
アルコキシシラン化合物として、エチルシリケート40を用いた以外は実施例1と同様にして、無機塗料を調製した。得られた塗料を用いて、実施例1と同様にして各評価試験を実施した。その結果を表1に示す。
【0044】
(比較例2)
合成例1で得られたアルコキシシランの加水分解縮合物に、硬化触媒((B)成分)を添加しなかった以外は、実施例1と同様にして無機塗料を調製した。得られた塗料を用いて、実施例1と同様にして各評価試験を実施した。その結果を表1に示す。
【0045】
【表1】
Figure 0003996409
【0046】
【発明の効果】
この発明によると、無機系の防錆塗料組成物を用いるので、耐候性の長期の安定性、耐熱性等に優れている。
【0047】
さらに、(A)成分及び(B)成分を用いるので、常温で速やかに硬化が可能であり、低ケレン処理の錆面への浸透性に優れ、錆の残存している鋼板に対する密着力に優れる。このため、鋼構造物に塗布することにより、防錆効果が得られ、また、高度の錆落とし作業が困難な用途や、錆落とし作業の簡略化が要求される場合に用いても、防錆効果を十分保持することができる。
【0048】
さらにまた、この発明にかかる浸透型無機防錆塗料組成物は、十分な可撓性を有するため、折り曲げ、衝撃等に対する耐久性にも優れ、長期にわたって効果を持続することができる。
【0049】
また、この発明にかかる浸透型無機防錆塗料組成物は、(C)成分により自由に着色ができるため、上塗り塗料を必要とせずに、外観に優れた塗装を行うことができる。
【0050】
さらに、この発明にかかる浸透型無機防錆塗料組成物は、揮発性の有機溶剤で希釈することなくそのまま使用できるため、環境衛生上好ましいという特徴を有する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a penetrating inorganic rust preventive coating composition that can be painted on a rust surface and a repair coating method for a metal structure using the same.
[0002]
[Prior art]
Steel products are widely used in various steel structures such as marine structures, harbor facilities, ships, power transmission line towers, construction / civil engineering structures, automobiles, mechanical equipment, railway vehicles, generators, large transformers, and the like. However, when left in the natural environment, there is a problem that so-called “rust” occurs in order to return to a more stable state of iron oxide.
[0003]
For the purpose of preventing the deterioration of the various steel structures due to the generation of rust, rust and anticorrosion coatings are actively performed. The degree of rust removal (so-called keren treatment) greatly affects the anticorrosion property, durability, adhesion and adhesiveness of the coating film by the rust prevention / corrosion prevention coating over time. That is, when rust removal is not sufficient, the coating film becomes poorly adhered, and the coating film is peeled off and rusted very quickly. For this reason, the highest possible rust removal is standardized in the construction of rust and anticorrosion coatings. For example, Japanese Patent Laid-Open No. 2000-140746 discloses a method in which the surface of a rusted steel material is cleaned by cleansing, and after applying a base treatment agent containing phosphoric acid and a silicon compound, repair coating is performed. It is disclosed.
[0004]
[Problems to be solved by the invention]
However, in reality, depending on the conditions of the various steel structures, such as the environment, the installation location, or the site, it is difficult to perform advanced rust removal work itself, and there are a lot of painting troubles due to inadequate pretreatment. . In recent years, there has been a strong demand for simplification of rust removal work due to the lack of workers engaged in rust removal work and the improvement of painting costs due to the prolonged work period due to rust removal work. It was. On the other hand, Japanese Patent Laid-Open No. 7-145349 discloses a rust-surface coating disulfide compound that can be applied to a steel sheet in which rust remains, and Japanese Patent Laid-Open No. 2001-131468 discloses a low keren surface. A paint for repair coating such as an iron structure containing an applicable epoxy resin is disclosed. However, these are organic paints and are insufficient in terms of long-term weather resistance and heat resistance.
[0005]
By the way, generally, the rust of steel generated in the atmosphere is composed of FeOOH (so-called red rust) and Fe 3 O 4, and the presence of moisture and oxygen in the atmosphere is an essential condition for the generation of rust. For this reason, the following two methods are considered as a rust prevention method of steel.
(1) A method to suppress and block water and oxygen that cause rust from the substrate.
(2) A method of converting red rust (FeOOH) into a stable form by a chemical reaction.
[0006]
As the above method (1), there is a method (osmotic foreskin type) in which a low-viscosity paint excellent in penetrability is used as a penetrant and the paint is sufficiently soaked deeply to wrap and stabilize rust particles. In addition, as the method (2), a method of chelating with iron ions using a monovalent or divalent phenol derivative and stabilizing by a chemical reaction (iron chelate conversion type), or a ferromagnetic ferrite pigment And a method of converting red rust into stable magnetite by using (magnetite conversion type). Of these, organic paints such as low-viscosity processed fish oil, alkyd resins, low-molecular petroleum resins, and the like, and the above sulfide-based compounds and epoxy-based resins are widely used as the penetrating foreskin-type paints. Has been. These are organic paints, and as described above, the long-term stability and heat resistance of the weather resistance are insufficient.
[0007]
Therefore, the present invention is a permeation envelope type capable of coating a rust surface with excellent permeability and adhesion to a metal material such as a steel plate having rust, and has a weatherproof long-term stability, heat resistance, etc. It aims at providing the repair coating method of the metal structure which consists of metal materials, such as a steel plate which has rust, using a composition and this antirust coating composition.
[0008]
[Means for Solving the Problems]
This invention contains at least a curing catalyst as the component (A) at 25 ° C., which contains at least a curing catalyst as the component (A) and an alkoxysilane compound represented by the following chemical formula (1) or a partially hydrolyzed condensate thereof. The above problems have been solved by using a penetrating inorganic rust preventive coating composition having a viscosity of 10 to 1000 mPa · s.
R 1 n Si (OR 2 ) 4-n (1)
(In the formula, R 1 is a hydrocarbon group containing a substituted or unsubstituted aromatic group having 1 to 9 carbon atoms, R 2 is an alkyl group having 1 to 4 carbon atoms, and n is an integer of 0 to 3) R 1 may be the same or different.)
[0009]
Since an inorganic rust-proof coating composition is used, the weather resistance is excellent in long-term stability, heat resistance, and the like.
Moreover, since the component (A) and the component (B) are used, they can be cured quickly at room temperature, have excellent permeability to the rust surface of the low kelen treatment, and have excellent adhesion to the steel sheet where rust remains. .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below.
An osmotic inorganic rust preventive paint composition according to the present invention includes an alkoxysilane compound represented by the following chemical formula (1) or a partially hydrolyzed condensate thereof (hereinafter referred to as “component (A)”) and a curing catalyst (hereinafter referred to as “component (A)”). , Referred to as “component (B)”).
R 1 n Si (OR 2 ) 4-n (1)
However, in the formula, R 1 represents a substituted or unsubstituted hydrocarbon group containing an aromatic group having 1 to 9 carbon atoms, R 2 represents an alkyl group having 1 to 4 carbon atoms, and n represents an integer of 0 to 3. R 1 may be the same or different.
[0011]
Examples of alkoxysilane compounds constituting the component (A) include methyltrimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxysilane, ethyltrimethoxysilane, butyltrimethoxysilane, dimethyldimethoxysilane. Dimethyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, phenylmethyldimethoxysilane, tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane and the like.
[0012]
In addition, the partially hydrolyzed product of the alkoxysilane compound is that water is added to the single or mixture of the above alkylalkoxysilane compounds, and the temperature is increased while stirring in the presence of a catalyst such as hydrochloric acid, acetic acid, formic acid, This refers to a compound obtained by partial hydrolysis and condensation. Two or more kinds of alkylalkoxysilanes may be hydrolyzed and condensed separately, or may be mixed and hydrolyzed and condensed.
[0013]
A solvent can be used as necessary when performing the hydrolysis. The solvent is not particularly limited as long as it dissolves the above mixture to give a uniform solution. Examples thereof include alcohols such as ethanol, propanol and butanol, aromatic hydrocarbon compounds such as benzene and toluene, and methyl cellosolve. Cellosolves such as butyl cellosolve and cellosolve acetate are used.
[0014]
In the case where the viscosity of the alkoxysilane hydrolyzed condensate is high and the permeability to the metal surface substrate such as a metal structure surface having rust is lowered, it may be used as a paint containing a solvent, It is desirable in terms of environmental hygiene to remove these volatile components by an operation such as distillation after the hydrolysis reaction.
[0015]
Among the components (A), an alkoxysilane compound represented by the following chemical formula (2) (hereinafter referred to as “alkylsilane compound”) or a partial hydrolysis condensate thereof, and an alkoxysilane compound represented by the chemical formula (3) (Hereinafter referred to as “phenylsilane compound”) or a mixture of partially hydrolyzed condensates thereof, or a partially hydrolyzed condensate of a mixture of these alkylsilane compounds and phenylsilane compounds, a metal structure having rust. This is preferable because the permeability to a metal surface substrate such as an object surface is further improved and the adhesion is further improved.
R 3 m Si (OR 4 ) 4-m (2)
PhR 5 p Si (OR 6 ) 3-p (3)
[0016]
However, in the chemical formula (2), R 3 is a hydrocarbon group having 1 to 8 carbon atoms which may be branched, R 4 is an alkyl group having 1 to 4 carbon atoms, m is an integer of 1-2. R 3 may be the same or different.
In the chemical formula (3), Ph is a phenyl group, R 5 is an optionally branched hydrocarbon group or phenyl group having 1 to 8 carbon atoms, R 6 is an alkyl group having 1 to 4 carbon atoms, p is An integer of 0 or 1 is shown. )
[0017]
Examples of the alkylsilane compounds include alkyltrialkoxysilanes such as methyltrimethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, and dialkyldialkoxysilanes. Examples of the phenylsilane compound include phenyl group-containing alkoxysilanes such as phenyltrimethoxysilane, diphenyldimethoxysilane, and phenylmethyldimethoxysilane. Among these, as alkylsilane compounds or partial hydrolysis condensates thereof, alkyltrialkoxysilanes such as methyltrimethoxysilane or partial hydrolysis condensates thereof are used, as phenylsilane compounds or partial hydrolysis condensates thereof, A combination using phenyltrimethoxysilane or diphenyldimethoxysilane or a partial hydrolysis condensate thereof is most preferable.
[0018]
The mixing ratio of the alkylsilane compound or its partially hydrolyzed condensate and the phenylsilane compound or its partially hydrolyzed condensate is a molar ratio, the alkylsilane compound or its partially hydrolyzed condensate / phenylsilane compound. Or its partial hydrolysis-condensation product = 99 / 1-60 / 40 is preferable, and 98 / 2-75 / 25 is more preferable. If the amount of the phenylsilane compound or its partially hydrolyzed condensate is too large, there is a problem that it takes time to cure the paint, and if it is too small, there is a problem that the cured film lacks flexibility. .
[0019]
The degree of hydrolysis of the component (A) is good enough to fall within the range of the viscosity of the component (A) described later. The viscosity of the component (A) is preferably 10 to 1000 mPa · s at 25 ° C., preferably 20 to 500 mPa · s, and more preferably 25 to 300 mPa · s. If the viscosity is too small, the coating may diffuse during application and a sufficient rust prevention effect may not be obtained, and cracks may occur in the coating due to curing shrinkage due to hydrolysis of the component (A) during curing. As a result, a cured film having sufficient strength may not be obtained. On the other hand, if the viscosity is greater than 1000 mPa · s, the paint is less likely to penetrate into the rust-remaining substrate, so that a sufficient rust prevention effect cannot be obtained. The above viscosity was measured using a Brookfield type rotational viscometer (BM type) at 25 ° C. The value measured at 2 rotors and 60 rpm.
[0020]
The component (B) is a component necessary for sufficiently condensing and curing the component (A) at room temperature. Examples of the component (B) include organotin compounds such as dibutyltin dilaurate and dibutyltin diacetate, organotitanium compounds such as tetraisopropoxytitanium and tetra-n-butoxytitanium, altriisopropoxyaluminum, and tri-n-butoxyaluminum. And one or more compounds selected from organic metal compounds such as organoaluminum compounds, inorganic acids such as hydrochloric acid and chromic acid, organic carboxylic acids such as acetic acid, formic acid and glycolic acid. Among the above components (B), organic compounds such as dibutyltin dilaurate and dibutyltin diacetate can be cured at room temperature, have no influence on the coating substrate, and can be adjusted in curing time according to use conditions. Organic titanium compounds such as tin compounds, tetraisopropoxytitanium and tetra-n-butoxytitanium, and organoaluminum compounds such as altriisopropoxyaluminum and tri-n-butoxyaluminum are preferred.
[0021]
0.1-10 weight part is preferable with respect to 100 weight part of (A) component, and, as for the usage-amount of the said (B) component, 0.5-5 weight part is more preferable. If the amount added is too small, the curing rate at room temperature may be slow, or the strength of the cured coating film may be insufficient. On the other hand, when the addition amount is too large, curing occurs too quickly, and workability and storage stability deteriorate.
[0022]
In addition to the above components (A) and (B), the coating composition according to the present invention is provided with inorganic pigments (hereinafter referred to as “coloring”, “corrosion resistance”, “heat resistance”, etc.). (Referred to as “component (C)”). The inorganic pigment constituting the component (C) is not particularly limited, and examples thereof include metals and alloys, and oxides, hydroxides, carbides, sulfides and nitrides thereof. Specific examples include titanium oxide, chromium oxide, iron oxide, aluminum oxide, zinc oxide, zirconium oxide, cobalt oxide, lead silicate, lead chromate, lead molybdate, lead sulfate, barium sulfate, barium carbonate, silicon carbide, Examples thereof include silicon nitride, calcium carbonate, magnesium carbonate, copper sulfide, aluminum hydroxide, iron hydroxide, mica, and carbon black. These are used alone or in combination of two or more in order to obtain the desired color.
[0023]
The average particle diameter of the component (C) is preferably 0.1 to 5 μm, more preferably 0.2 to 2 μm in terms of volume-based median diameter. When the average particle size is 0.1 μm or less, the concealability of the obtained coating film is low, and when it is 5 μm or more, precipitation of the pigment tends to occur and a good paint cannot be obtained.
[0024]
Moreover, 10-200 weight part is preferable with respect to 100 weight part of (A) component, and, as for the compounding quantity of the said (C) component, 20-100 weight part is more preferable. When the addition amount is 10 parts by weight or less, the concealability of the obtained coating film is low, and when it is 200 parts by weight or more, the precipitation of the pigment is likely to occur or the flexibility of the coating film is reduced, and a good coating film is obtained. I can't.
[0025]
The method for dispersing the component (C) is not particularly specified, but it is preferably finely dispersed by a known wet or dry disperser such as a bead mill, a ball mill, a paint shaker, or a sand mill. Further, the component (C) does not particularly require a dispersant when dispersing the pigment, but an existing pigment dispersant may be used as necessary.
[0026]
In addition to the components (B) and (C), the component (A) is monovalent, such as tannic acid having chelating action with iron ions, pyrogallol, or the like, for the purpose of further improving the antirust effect. A divalent phenol derivative or a compound having an antirust effect such as ferrite can be contained. In addition, a viscosity modifier, an antioxidant, an ultraviolet absorber, a dispersant, and the like may be added as long as the original performance is not deteriorated.
[0027]
The permeation type inorganic rust preventive paint composition according to the present invention is applied to the surface of a metal structure, in particular, a metal structure having rust, and the metal structure is repaired and rust-prevented. Objects can be repaired.
[0028]
Specifically, the penetration type inorganic rust preventive paint composition is applied to a metal structure, particularly a metal structure having rust, by a method such as spraying, dipping, brushing, or roller coating. Thoroughly impregnate the surface with the paint. Next, the paint is cured by leaving it at room temperature. In this process, the condensation of the component (A) further proceeds to form a polysiloxane network.
[0029]
When this coating operation is performed, it is not necessary to perform advanced keren treatment (base treatment) on the metal structure in advance, it is sufficient to perform moderate kelen treatment, and no kelen treatment may be performed at all.
[0030]
Examples of the keren process include a blast process, a cup brush process, and a disk sander process.
[0031]
The penetrating inorganic rust preventive coating composition of the present invention can be sufficiently cured at room temperature, but can be cured more quickly by heat treatment as necessary. In addition, the penetrating inorganic rust preventive paint composition of the present invention is excellent in penetrability and adhesion to the low-keren treated surface where rust remains, but as with general rust preventive paints, sufficient base treatment before coating is performed. When this is done, a higher degree of rust prevention action can be obtained. Furthermore, you may repeat the application | coating and drying process of the penetration type inorganic rust preventive coating composition of this invention twice or more. Examples of the steel material constituting a typical metal structure to be targeted include galvanized steel, zinc-aluminum alloy plated steel, zinc-nickel plated steel, etc., in addition to general steel.
[0032]
The coating amount of the penetration-type inorganic anticorrosive coating composition is not particularly limited preferably 10~500g / m 2, 30~300g / m 2 is more preferable. When the coating amount is 10 g / m 2 or less, rust prevention is not sufficiently performed. When the coating amount is more than 500 g / m 2 , drying takes time, work efficiency is deteriorated, and it is disadvantageous in terms of cost.
[0033]
By coating the metal structure with the penetrating inorganic rust preventive paint composition according to the present invention, repair coating and rust prevention can be performed without performing advanced ground treatment. Moreover, since the penetration type inorganic rust preventive paint composition concerning this invention can be freely colored with a pigment, a coating film excellent in aesthetics can be obtained without requiring a separate top coat.
[0034]
The penetrating inorganic rust preventive paint composition of the present invention includes a marine structure paint, a port facility paint, a ship paint, a plant paint, a bridge paint, an automobile paint, a railway vehicle paint, a machine equipment paint, It can be used for metal structures that are already rusted, such as industrial paints and paints for construction and civil engineering. Moreover, even when it is used for the metal structure or new iron plate where rust is still generated, the same good performance can be exhibited.
[0035]
【Example】
The present invention will be described more specifically with reference to the following examples and comparative examples. In the following examples and comparative examples, the raw materials used, the tests performed, and the evaluation methods will be described.
[0036]
<Raw materials>
(1) Component (A), etc. ・ Methyltrimethoxysilane: manufactured by Shin-Etsu Chemical Co., Ltd. ・ Diphenyldimethoxysilane: Same as above ・ Silica-based pore sealant: tetraethoxysilane condensate, manufactured by Tama Chemical Industry Co., Ltd .; Ethyl silicate 40, viscosity 3 mPa · s (hereinafter referred to as “ethyl silicate 40”)
(2) Component (B) Tetra-n-butoxytitanium: manufactured by Kishida Chemical Co., Ltd .; reagent special grade (hereinafter referred to as “TBT”)
(3) Component (C) Titanium oxide (white): manufactured by Taioxide Co., Ltd .; R-FC5
[0037]
<Evaluation test>
[Create specimen]
Using a hot-dip galvanized steel sheet with rust on the entire surface as a base material, surface treatment was performed by any of the following surface treatment methods to obtain test pieces. The test piece obtained using the surface treatment method (1) is referred to as a test piece (1), and the test piece obtained using the surface treatment method (2) is referred to as a test piece (2).
Figure 0003996409
. [Normal temperature curing]
The inorganic paint obtained in the example or the comparative example was applied to the test piece (1), dried at 25 ° C. for 10 hours, and then the coated surface was touched with a finger to evaluate curability.
○: No tack.
Δ: Slight tack is felt.
X: Large tack or no film formation.
[0038]
[Film adhesion]
The steel sheet obtained by applying the inorganic paint to the test piece (1) or the test piece (2) was subjected to a coating pull-off test according to JIS K5600. The adhesion strength (N / mm 2 ) is shown in the table.
[Presence / absence of rust] (Salt spray resistance)
About the steel plate which apply | coated the inorganic coating material to the said test piece (1), the salt spray resistance test was performed according to JISK5400 and JISK8661, and after 164 hours passed, the generation | occurrence | production state of the rust of a coating-film surface was observed, and the following reference | standard It was evaluated with.
○: No abnormality (no rust is observed visually)
×: White rust was generated on the entire surface of the substrate.
[Flexibility]
In accordance with JIS K5400, the inorganic paint prepared in the example or comparative example was applied to a polyester film having a thickness of 100 μm so that the coating amount was 75 g / m 2 , dried at room temperature for 48 hours, and then the film was bent 180 ° The occurrence of cracks was confirmed.
○: No cracking ×: Cracking occurred
(Synthesis Example 1)
In a flask equipped with a stirrer, heating jacket, condenser, and dropping funnel, 272 g (2.00 mol) of methyltrimethoxysilane, 48.9 g (0.20 mol) of diphenyldimethoxysilane, 50 g of methanol, 0.3 g of tetra-n-butoxy titanium 36 g of water was added dropwise over 30 minutes at room temperature while stirring the mixture, and then the temperature was raised to 90 ° C. to cause hydrolysis and condensation. Methanol initially added as a solvent and methanol generated by hydrolysis were extracted from the reaction system and then cooled to room temperature to obtain a hydrolysis-condensation product of alkoxysilane. The viscosity of the obtained condensate was 70 mPa · s (25 ° C.). The viscosity is NO. Using a Brookfield type rotational viscometer (BM type) at 25 ° C. Measurements were taken at 2 rotors and 60 rpm. An inorganic paint (hereinafter referred to as “paint 1”) was prepared by adding 2 g of tetra-n-butoxytitanium as a curing catalyst (component (C)) per 100 g of the solid matter of the dispersion.
[0041]
Example 1
The coating material 1 obtained in Synthesis Example 1 was brush-coated (applied twice) so that the coating amount was about 100 g / m 2 and dried at 25 ° C. for 24 hours (environmental humidity: 65%). Each evaluation test was conducted. The results are shown in Table 1.
[0042]
(Example 2)
30 parts by weight of titanium oxide (white) was added to 100 parts by weight of the hydrolyzed condensate of alkoxysilane obtained in Synthesis Example 1, and the pigment was pulverized and dispersed with a bead mill. The average particle size of the pigment was 0.89 μm. To this dispersion, 2 parts by weight of tetra-n-butoxytitanium as a curing catalyst was added to prepare an inorganic paint. In addition, an average particle diameter is a median diameter in volume conversion which measured methanol using the light-scattering system apparatus as a dispersion medium. Each evaluation test was carried out in the same manner as in Example 1 using the obtained paint. The results are shown in Table 1.
[0043]
(Comparative Example 1)
An inorganic paint was prepared in the same manner as in Example 1 except that ethyl silicate 40 was used as the alkoxysilane compound. Each evaluation test was carried out in the same manner as in Example 1 using the obtained paint. The results are shown in Table 1.
[0044]
(Comparative Example 2)
An inorganic paint was prepared in the same manner as in Example 1 except that the curing catalyst (component (B)) was not added to the hydrolysis-condensation product of alkoxysilane obtained in Synthesis Example 1. Each evaluation test was carried out in the same manner as in Example 1 using the obtained paint. The results are shown in Table 1.
[0045]
[Table 1]
Figure 0003996409
[0046]
【The invention's effect】
According to this invention, since an inorganic rust preventive coating composition is used, the weather resistance is excellent in long-term stability, heat resistance, and the like.
[0047]
Furthermore, since the component (A) and the component (B) are used, they can be cured quickly at room temperature, have excellent permeability to the rust surface of low keren treatment, and have excellent adhesion to the steel sheet where rust remains. . For this reason, by applying it to a steel structure, a rust-preventing effect can be obtained, and even if it is used where high-level rust removal work is difficult or when rust removal work is required to be simplified, The effect can be retained sufficiently.
[0048]
Furthermore, since the osmotic inorganic rust preventive coating composition according to the present invention has sufficient flexibility, it is excellent in durability against bending, impact, etc., and can maintain the effect for a long time.
[0049]
Moreover, since the penetration type inorganic rust preventive coating composition concerning this invention can be colored freely with (C) component, it can perform the coating excellent in the external appearance, without requiring a top coat.
[0050]
Furthermore, since the penetration type inorganic rust preventive coating composition concerning this invention can be used as it is, without diluting with a volatile organic solvent, it has the characteristics that it is preferable on environmental health.

Claims (7)

(A)成分としてメチルトリメトキシシラン及びジフェニルジメトキシシラン、並びに溶媒及び触媒を混合し、この混合物に水を加えて加水分解縮合を行い、上記溶媒及び上記加水分解縮合で発生したメタノールを反応系内から抜き出して、25℃における粘度が10〜1000mPa・sであるアルコキシシラン加水分解縮合物を得、次いで、(B)成分として硬化触媒を加える浸透型無機防錆塗料組成物の製造方法。  (A) Methyltrimethoxysilane and diphenyldimethoxysilane as a component, a solvent and a catalyst are mixed, water is added to the mixture to perform hydrolysis condensation, and the solvent and methanol generated by the hydrolysis condensation are mixed in the reaction system. A method for producing a penetrating inorganic rust-preventive coating composition in which an alkoxysilane hydrolysis condensate having a viscosity of 10 to 1000 mPa · s at 25 ° C. is obtained, and then a curing catalyst is added as the component (B). 上記溶媒がメタノールである請求項1に記載の浸透型無機防錆塗料組成物の製造方法。  The method for producing an osmotic inorganic rust preventive coating composition according to claim 1, wherein the solvent is methanol. 上記の(A)成分及び(B)成分に加え、(C)成分として無機顔料を含有する請求項1又は2に記載の浸透型無機防錆塗料組成物の製造方法The manufacturing method of the osmosis | permeation type inorganic rust preventive coating composition of Claim 1 or 2 which contains an inorganic pigment as (C) component in addition to said (A) component and (B) component. 上記(B)成分が有機チタン化合物である請求項1乃至3のいずれかに記載の浸透型無機防錆塗料組成物の製造方法The method for producing a penetrating inorganic rust preventive coating composition according to any one of claims 1 to 3, wherein the component (B) is an organic titanium compound . (A)成分を構成するメチルトリメトキシシランとジフェニルジメトキシシランとの混合比率が、モル比で、メチルトリメトキシシラン/ジフェニルジメトキシシラン=99/1〜60/40である請求項1乃至4のいずれかに記載の浸透型無機防錆塗料組成物の製造方法 The mixing ratio of methyltrimethoxysilane and diphenyldimethoxysilane constituting the component (A) is methyltrimethoxysilane / diphenyldimethoxysilane = 99/1 to 60/40 in terms of molar ratio. A method for producing a penetrating inorganic rust preventive paint composition according to claim 1 . 請求項1乃至5のいずれかに記載の製造方法で製造される浸透型無機防錆塗料組成物を金属構造物に塗布して、金属構造物の補修塗装及び防錆を行う、金属構造物の補修塗装方法。 An infiltration type inorganic rust preventive coating composition produced by the production method according to claim 1 is applied to a metal structure to repair and rust prevent the metal structure. Repair painting method. 上記浸透型無機防錆塗料組成物を塗布する上記金属構造物の塗布面は錆を有する面である請求項6に記載の金属構造物の補修塗装方法。  The method for repair coating a metal structure according to claim 6, wherein an application surface of the metal structure to which the penetrating inorganic rust preventive coating composition is applied is a surface having rust.
JP2002055480A 2002-03-01 2002-03-01 Penetration type inorganic rust preventive coating composition and method for repairing metal structure using the same Expired - Lifetime JP3996409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002055480A JP3996409B2 (en) 2002-03-01 2002-03-01 Penetration type inorganic rust preventive coating composition and method for repairing metal structure using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002055480A JP3996409B2 (en) 2002-03-01 2002-03-01 Penetration type inorganic rust preventive coating composition and method for repairing metal structure using the same

Publications (2)

Publication Number Publication Date
JP2003253208A JP2003253208A (en) 2003-09-10
JP3996409B2 true JP3996409B2 (en) 2007-10-24

Family

ID=28666303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002055480A Expired - Lifetime JP3996409B2 (en) 2002-03-01 2002-03-01 Penetration type inorganic rust preventive coating composition and method for repairing metal structure using the same

Country Status (1)

Country Link
JP (1) JP3996409B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4573506B2 (en) * 2003-08-05 2010-11-04 株式会社ディ・アンド・ディ Rust preventive paint composition
JP2005255847A (en) * 2004-03-11 2005-09-22 Chuo Rika Kogyo Corp Inorganic coating composition
JP2007056200A (en) * 2005-08-26 2007-03-08 Norimasa Yamane Luminous coating material and coating method using the same
JP6376912B2 (en) * 2014-09-10 2018-08-22 東京電力ホールディングス株式会社 Rust treatment agent for galvanized steel and repair method using the same
KR101938135B1 (en) * 2015-02-16 2019-01-15 배남수 Transparent ceramics having a rust-preventive paint, and a method of manufacturing quick-drying, coating method and the coating material is coated with a coating material of steel raw material
KR101742066B1 (en) 2017-04-18 2017-06-01 주식회사 삼성씨앤엠 Steel coating composition with good non-flammability and durability and protection coating method for steel structures therewith
KR101816590B1 (en) 2017-11-07 2018-01-09 주식회사 삼성씨앤엠 Echo-friendly coating composition for steel and protection coating method using precious ball blast for surface of steel structures therewith
KR102311809B1 (en) * 2017-11-24 2021-10-08 주식회사 엘지에너지솔루션 Separator and electrochemical device comprising the same
JP7468399B2 (en) 2020-03-17 2024-04-16 信越化学工業株式会社 Silicone coating composition and article

Also Published As

Publication number Publication date
JP2003253208A (en) 2003-09-10

Similar Documents

Publication Publication Date Title
EP1397443B1 (en) Protective coating composition
AU2012328817B2 (en) Corrosion, chip and fuel resistant coating composition
JP6502905B2 (en) Corrosion prevention coating
US10308819B2 (en) Anticorrosive coating composition
KR101046264B1 (en) Ceramic powder coating composion, steel pipe pile coated the same and process for preparing the same
JP7089938B2 (en) Heat-resistant paint composition, heat-resistant coating film, base material with heat-resistant coating film and its manufacturing method
JP3996409B2 (en) Penetration type inorganic rust preventive coating composition and method for repairing metal structure using the same
JP5680350B2 (en) Anti-corrosion paint, article, nut and connector
JP2006192717A (en) Surface-treated metal, its manufacturing method and surface treatment liquid
JP4573506B2 (en) Rust preventive paint composition
JP3816354B2 (en) Sealant
JP2004256696A (en) Silicon-containing zinc rich hybrid japanese lacquer composition
JP2005255847A (en) Inorganic coating composition
JP4215207B2 (en) Corrosion protection method for weathering steel
JP2005002275A (en) Inorganic coating composition
CN113993638A (en) Heat-resistant coating composition, heat-resistant coating film, substrate with heat-resistant coating film, and method for producing same
Kumar et al. Corrosion protection and self-healing by sol-gel process: a review of recent patent literature
KR102136287B1 (en) Eco-friendly anti-rust composition and method for manufacturing the same
KR101659444B1 (en) Steel plate having primer layer
JP2003105560A (en) Colored inorganic sealing agent
JP2007038688A (en) Anticorrosion method of weather-resistant steel
JP2003206443A (en) Corrosion protection method for weather resistant steel
JP2004197151A (en) Corrosion-resistant iron manufacturing method
JP2023070783A (en) Iron rust inhibitor and rustproofing method for iron structure
JP2023006722A (en) Anticorrosive coating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050225

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3996409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term