JP2008031237A - Inorganic paint rich in zinc and method of forming multiple layer coated film using the same - Google Patents

Inorganic paint rich in zinc and method of forming multiple layer coated film using the same Download PDF

Info

Publication number
JP2008031237A
JP2008031237A JP2006204250A JP2006204250A JP2008031237A JP 2008031237 A JP2008031237 A JP 2008031237A JP 2006204250 A JP2006204250 A JP 2006204250A JP 2006204250 A JP2006204250 A JP 2006204250A JP 2008031237 A JP2008031237 A JP 2008031237A
Authority
JP
Japan
Prior art keywords
component
zinc
weight
coating film
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006204250A
Other languages
Japanese (ja)
Inventor
Kenichi Tomita
賢一 冨田
Susumu Okamoto
岡本  将
Yoichi Tagi
洋一 多木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Paint Co Ltd
Original Assignee
Kansai Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co Ltd filed Critical Kansai Paint Co Ltd
Priority to JP2006204250A priority Critical patent/JP2008031237A/en
Publication of JP2008031237A publication Critical patent/JP2008031237A/en
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inorganic paint rich in zinc forming a coated film which can inhibit formation of bubbles without performing a mist coating step and a method of forming the coated film. <P>SOLUTION: The inorganic paint rich in zinc comprises a silicon-based inorganic binder (A), a polyvinyl butyral resin (B), an organic boron compound (C), and a zinc powder (D), and as the compounding ratio of (A) to (B), the SiO<SB>2</SB>component in the component (A):the component (B) is 85:15 to 15:85 (by weight ratio) and the content of the component (C) is 5-30 wt.% based on the total weight of the components (A) and (B), and the component (D) is composed of a zinc powder (d1) having an average particle diameter of 10-50 μm and a zinc powder (d2) having an average particle diameter of less than 10 μm and the compounding ratio of both of (d1) to (d2) is 5:95 to 70:30 (by weight ratio), and furthermore the inorganic paint rich in zinc comprises the component (D) in such a manner that the dried coated film solid content comes to 60-90 wt.%. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ミストコート工程を行うことなく、バブルの発生を抑制し得る塗膜を形成できる無機質ジンクリッチペイント及びそれを用いた複層塗膜形成方法に関する。   The present invention relates to an inorganic zinc rich paint capable of forming a coating film capable of suppressing the generation of bubbles without performing a mist coating step, and a multilayer coating film forming method using the same.

従来、船舶、橋梁、タンク、プラントなどの鉄鋼構造物の重防食塗装には、無機質ジンクリッチペイントが汎用されている。該無機質ジンクリッチペイントによる塗膜には、通常、空隙(ボイド)が多数存在するため、この上に下塗り塗膜や上塗り塗膜を形成すると、空隙中の空気による塗膜の発泡やピンホールなどの欠陥が発生する。従来、これを防止するため、該下塗り塗膜を形成する前に、該下塗塗料を多量の溶剤で希釈した低粘度液を塗装し、無機質ジンクリッチペイント塗膜の空隙中の空気を追い出す、いわゆる「ミストコート工程」を行っていた。しかしながら該ミストコートによっても上記欠陥が完全になくなったわけではなく、また工数削減の面からもミストコートなしでバブルの発生を抑制することが求められていた。   Conventionally, inorganic zinc rich paint has been widely used for heavy anticorrosion coating of steel structures such as ships, bridges, tanks and plants. Since a coating film made of the inorganic zinc rich paint usually has a large number of voids, forming an undercoating film or a topcoating film thereon causes foaming of the coating film or pinholes due to air in the voids. Defects occur. Conventionally, in order to prevent this, before forming the undercoat film, a low-viscosity liquid obtained by diluting the undercoat paint with a large amount of solvent is applied to expel air in the voids of the inorganic zinc rich paint film. The “mist coating process” was performed. However, the mist coat does not completely eliminate the defects, and it has been demanded to suppress generation of bubbles without mist coat from the viewpoint of man-hour reduction.

例えば特許文献1には、シリケート系展色剤及び亜鉛末に、フレーク顔料を配合してなる無機質亜鉛塗料組成物が開示されている。これによれば塗膜表層にフレーク顔料が偏在し、空隙中への溶剤の侵入を防ぎ空隙中の空気との置換が生じないために塗膜の発泡やピンホールなどの発生を防ぐというものである。   For example, Patent Document 1 discloses an inorganic zinc coating composition in which a flake pigment is blended with a silicate color developer and zinc powder. According to this, flake pigments are unevenly distributed on the surface of the coating film, preventing the penetration of the solvent into the gap and preventing the air from being substituted with the air in the gap. is there.

しかしながら該手法では、垂直面の塗装において塗膜表層にフレーク顔料が偏在し難く、この塗膜の上層に形成した塗膜にバブルが発生する、さらにはスプレー塗装においてエアレスチップ、フィルター、ストレーナー等の塗装機内でフレーク顔料がつまり塗装が中断してしまうという不具合があった。   However, in this method, flake pigments are hardly unevenly distributed on the surface of the coating film in the vertical surface coating, and bubbles are generated in the coating film formed on the upper layer of the coating film. Further, in spray coating, airless chips, filters, strainers, etc. There was a problem that the flake pigments were interrupted in the coating machine.

そこで本出願人は、特許文献2において、特定粒径の亜鉛末に特定の微粉末を併用した無機質ジンクリッチペイントを提案した。これによれば、特定の微粉末の使用により塗膜内を緻密にすることで塗膜内の空隙率を低くし、ミストコート工程を行うことなくバブルの発生が抑制でき、しかも接合部塗装時には一定水準以上のすべり係数も確保することが可能である。   Therefore, the present applicant has proposed an inorganic zinc rich paint in Patent Document 2 in which a specific fine powder is used in combination with zinc powder having a specific particle size. According to this, by using a specific fine powder, the inside of the coating film is made dense, so that the porosity in the coating film can be lowered, and the generation of bubbles can be suppressed without performing the mist coating process, and at the time of joint application It is possible to secure a slip coefficient above a certain level.

特開昭59−51951号公報JP 59-51951 A 特開2002−194284号公報JP 2002-194284 A

しかしながら該手法では、次工程までの塗装インターバルが長い場合に結合剤の硬化収縮に伴う塗膜のワレが発生したり、次工程の塗料を厚膜で塗装した場合にバブルが発生するおそれがあった。   However, in this method, there is a risk that the coating cracks due to the curing shrinkage of the binder when the coating interval until the next process is long, or bubbles are generated when the paint of the next process is coated with a thick film. It was.

本発明の目的は、次工程の塗料を厚膜で塗装した場合でも、ミストコート工程を行うことなくバブルの発生を抑制し得る塗膜を形成できる無機質ジンクリッチペイントを提供することである。   The objective of this invention is providing the inorganic zinc rich paint which can form the coating film which can suppress generation | occurrence | production of a bubble, without performing a mist coating process, even when the coating material of the next process is applied with a thick film.

本発明者らは、上記目的を達成するため鋭意研究の結果、粒子径の異なる亜鉛末を併用し、さらにポリビニルブチラール樹脂を無機結合剤に対し特定割合で併用し、加えて有機ホウ素化合物を特定量配合することによって、緻密かつ硬化収縮の少ない塗膜を作成し得る無機質ジンクリッチペイントを見出し、本発明を完成するに至った。   As a result of intensive research to achieve the above object, the present inventors have used zinc powder having different particle diameters, and also used polyvinyl butyral resin in a specific ratio with respect to the inorganic binder, and additionally specified the organoboron compound. By compounding in an amount, an inorganic zinc-rich paint capable of producing a dense coating film with little curing shrinkage was found, and the present invention was completed.

すなわち本発明は、(A)ケイ素系無機結合剤、(B)ポリビニルブチラール樹脂、(C)有機ホウ素化合物及び(D)亜鉛末を含有する無機質ジンクリッチペイントであって、(A)と(B)の配合比が(A)成分中のSiO成分:(B)成分=85:15〜15:85(重量比)であり、且つ(C)成分の含有量が(A)及び(B)成分の合計重量に対して5〜30重量%であり、(D)成分が(d1)平均粒子径10〜50μmの亜鉛末及び(d2)平均粒子径10μm未満の亜鉛末からなり、両者の配合比が(d1):(d2)=5:95〜70:30(重量比)であり、さらに(D)成分の含有量が乾燥塗膜固形分中に60〜90重量%であることを特徴とする無機質ジンクリッチペイント、及び該無機質ジンクリッチペイントを基材表面に塗装した後、その上にミストコート工程を行わずに次工程の塗料を塗装することを特徴とする複層塗膜形成方法に関する。 That is, the present invention is an inorganic zinc-rich paint containing (A) a silicon-based inorganic binder, (B) a polyvinyl butyral resin, (C) an organic boron compound, and (D) zinc dust, wherein (A) and (B ) Is a SiO 2 component in the component (A): (B) component = 85: 15 to 15:85 (weight ratio), and the content of the component (C) is (A) and (B) 5 to 30% by weight based on the total weight of the components, and (D) component consists of (d1) zinc powder having an average particle size of 10 to 50 μm and (d2) zinc powder having an average particle size of less than 10 μm. The ratio is (d1) :( d2) = 5: 95 to 70:30 (weight ratio), and the content of the component (D) is 60 to 90% by weight in the dry coating film solid content. Inorganic zinc rich paint, and based on the inorganic zinc rich paint The present invention relates to a method for forming a multilayer coating film, which comprises coating a material surface, and then applying a coating material for the next step without performing a mist coating step on the material surface.

本発明の無機質ジンクリッチペイントによれば、次工程の塗料を厚膜で塗装した場合でも、ミストコート工程を行なうことなくバブルの発生を抑制する塗膜を形成することができる。   According to the inorganic zinc rich paint of the present invention, it is possible to form a coating film that suppresses the generation of bubbles without performing a mist coating process even when the paint of the next process is coated with a thick film.

本発明においてケイ素系無機結合剤(A)には、テトラアルコキシシラン、アルキルトリアルコキシシラン、ジアルキルジアルコキシシラン、これらの部分縮合体及び/又はそれらを水及び酸触媒の存在下で縮合反応させた加水分解初期縮合物が使用でき、テトラアルコキシシランとしては、例えばテトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトライソプロポキシシラン、テトラブトキシシラン、テトライソブトキシシラン等が挙げられ、これらの部分縮合体としては、シリケート40、Mシリケート51(いずれも多摩化学工業株式会社製)、メチルシリケート51、エチルシリケート40、エチルシリケート48(いずれもコルコート株式会社製)、アルキルトリアルコキシシランとしては、例えばメチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン等が挙げられ、ジアルキルジアルコキシシランとしては、例えばジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン等が挙げられる。これらは単独でまたは2種以上混合して使用できる。また上記アルコキシシラン類に水分散型コロイダルシリカ、溶剤分散型コロイダルシリカを併用してもよい。   In the present invention, the silicon-based inorganic binder (A) is subjected to a condensation reaction in the presence of water and an acid catalyst, such as tetraalkoxysilane, alkyltrialkoxysilane, dialkyldialkoxysilane, partial condensates thereof and / or them. Hydrolyzed initial condensate can be used, and examples of tetraalkoxysilane include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetraisopropoxysilane, tetrabutoxysilane, tetraisobutoxysilane, and the like. Examples of the body include silicate 40, M silicate 51 (all manufactured by Tama Chemical Co., Ltd.), methyl silicate 51, ethyl silicate 40, ethyl silicate 48 (all manufactured by Colcoat Co., Ltd.), and alkyltrialkoxysilane. Examples include trimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, ethyltrimethoxysilane, and ethyltriethoxysilane. Examples of the dialkyl dialkoxysilane include dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, and diethyl. Examples include diethoxysilane. These can be used alone or in admixture of two or more. Further, water-dispersed colloidal silica and solvent-dispersed colloidal silica may be used in combination with the alkoxysilanes.

ポリビニルブチラール樹脂(B)としては、特に制限なく従来公知のものが使用可能であり、特に耐溶剤性及び貯蔵性の点から、ブチラール化度が58〜77mol%、好ましくは58〜71mol%の範囲で、重量平均分子量は3万〜30万、好ましくは3万〜20万の範囲であることが好ましい。具体的には、例えばエスレックBL−1、同BL−2、同BL−3、同BL−S、同BX−L、同BM−1、同BM−2、同BM−5、同BM−S、同BH−3、同BX−1、同BX−7(いずれも積水化学工業株式会社製)、デンカブチラール #3000、同#4000、同#5000(いずれも電気化学工業株式会社製)等が挙げられるが、これらに限定されるものではない。これらのポリビニルブチラール樹脂は単独でまたは2種類以上混合して使用できる。   As the polyvinyl butyral resin (B), conventionally known resins can be used without particular limitation, and in particular, the degree of butyralization is 58 to 77 mol%, preferably 58 to 71 mol%, from the viewpoint of solvent resistance and storage properties. The weight average molecular weight is preferably 30,000 to 300,000, preferably 30,000 to 200,000. Specifically, for example, ESREC BL-1, BL-2, BL-3, BL-S, BX-L, BM-1, BM-2, BM-5, BM-S , BH-3, BX-1, and BX-7 (all manufactured by Sekisui Chemical Co., Ltd.), Denkabutyral # 3000, # 4000, and # 5000 (all manufactured by Denki Kagaku Kogyo Co., Ltd.) Although it is mentioned, it is not limited to these. These polyvinyl butyral resins can be used alone or in admixture of two or more.

ここで重量平均分子量は、ゲルパーミエーションクロマトグラフ(東ソー株式会社製、「HLC8120GPC」)で測定した重量平均分子量をポリスチレンの重量平均分子量を基準にして換算した値である。カラムは、「TSKgel G−4000H×L」、「TSKgel G−3000H×L」、「TSKgel G−2500H×L」、「TSKgel G−2000H×L」(いずれも東ソー株式会社社製、商品名)の4本を用い、移動相;テトラヒドロフラン、測定温度;40℃、流速;1cc/分、検出器;RIの条件で行ったものである。   Here, the weight average molecular weight is a value obtained by converting the weight average molecular weight measured with a gel permeation chromatograph (“HLC8120GPC” manufactured by Tosoh Corporation) based on the weight average molecular weight of polystyrene. The columns are “TSKgel G-4000H × L”, “TSKgel G-3000H × L”, “TSKgel G-2500H × L”, “TSKgel G-2000H × L” (both manufactured by Tosoh Corporation, trade name). These were carried out under the conditions of mobile phase: tetrahydrofuran, measurement temperature: 40 ° C., flow rate: 1 cc / min, detector: RI.

ケイ素系無機結合剤(A)とポリビニルブチラール樹脂(B)の配合比は、(A)成分中のSiO成分:(B)成分=85:15〜15:85(重量比)の範囲であり、好ましくは70:30〜30:70、より好ましくは60:40〜40:60の範囲である。上記配合比において、SiO成分の比率が15:85より小さいと得られる塗膜の耐溶剤性が劣り、SiO成分の比率が85:15より大きいと塗膜中の空隙が多くなるため好ましくない。 The compounding ratio of the silicon-based inorganic binder (A) and the polyvinyl butyral resin (B) is in the range of SiO 2 component in the component (A): component (B) = 85: 15 to 15:85 (weight ratio). The range is preferably 70:30 to 30:70, more preferably 60:40 to 40:60. In the above blending ratio, if the ratio of the SiO 2 component is smaller than 15:85, the solvent resistance of the resulting coating film is inferior, and if the ratio of the SiO 2 component is larger than 85:15, the voids in the coating film increase, which is preferable. Absent.

また結合剤成分として、上記ケイ素系無機結合剤(A)及びポリビニルブチラール樹脂(B)に加えて、必要に応じてケイ素系及びホウ素系以外の金属アルコキシド、金属コロイド、ポリビニルアルコール樹脂、ポリビニルアセトアセタール樹脂などを混合して用いてもよい。   In addition to the silicon-based inorganic binder (A) and the polyvinyl butyral resin (B), as a binder component, a metal alkoxide other than silicon-based and boron-based, metal colloid, polyvinyl alcohol resin, polyvinyl acetoacetal as necessary You may mix and use resin etc.

有機ホウ素化合物(C)としては、アルキルボレートが適用でき、例えばトリメチルボレート、トリエチルボレート、トリプロピルボレート、トリブチルボレート、トリアミルボレート、トリヘキシルボレート、トリデシルボレートなどが挙げられる。これらのうち、特にトリメチルボレート、トリエチルボレート、トリブチルボレートが好ましい。有機ホウ素化合物(C)の配合量は(A)及び(B)の合計重量に対して5〜30重量%、好ましくは5〜20重量%、より好ましくは10〜15重量%の範囲である。5重量%未満では得られる塗膜の耐溶剤性が劣るため好ましくなく、30重量%を越えても耐溶剤性はそれ以上変わらない。   As the organoboron compound (C), alkyl borate can be applied, and examples thereof include trimethyl borate, triethyl borate, tripropyl borate, tributyl borate, triamyl borate, trihexyl borate, tridecyl borate and the like. Of these, trimethyl borate, triethyl borate, and tributyl borate are particularly preferable. The compounding amount of the organoboron compound (C) is in the range of 5 to 30% by weight, preferably 5 to 20% by weight, more preferably 10 to 15% by weight with respect to the total weight of (A) and (B). If it is less than 5% by weight, the solvent resistance of the resulting coating film is inferior, which is not preferable. If it exceeds 30% by weight, the solvent resistance does not change any more.

亜鉛末(D)は、(d1)平均粒子径10〜50μm、好ましくは10〜30μmの亜鉛末及び(d2)平均粒子径10μm未満、好ましくは1〜5μmの亜鉛末からなる。前記粒子径の亜鉛末であれば特に制限なく使用することができるが、特に球形状の粒子が好適である。(d1)と(d2)の配合比は(d1):(d2)=5:95〜70:30(重量比)、好ましくは20:80〜60:40の範囲内であることが好適である。前記配合比において(d1)の重量比が5:95より小さいと、接合部塗装時の耐摩擦力が十分に得られず、また(d1)の重量比が70:30より大きいと、塗膜中の空隙が多くなるため好ましくない。該亜鉛末(D)は乾燥塗膜中に、60〜90重量%、好ましくは75〜85重量%の範囲で含有されることが好適である。該亜鉛末(D)の含有量が60重量%未満では、得られる塗膜の防錆性が劣り、90重量%を越えると塗膜が脆くなるので好ましくない。   The zinc powder (D) comprises (d1) zinc powder having an average particle diameter of 10 to 50 μm, preferably 10 to 30 μm and (d2) zinc powder having an average particle diameter of less than 10 μm, preferably 1 to 5 μm. Any zinc powder having the above particle diameter can be used without particular limitation, but spherical particles are particularly preferred. The blending ratio of (d1) to (d2) is (d1) :( d2) = 5: 95 to 70:30 (weight ratio), preferably 20:80 to 60:40. . If the weight ratio of (d1) is less than 5:95 in the blending ratio, sufficient friction resistance at the time of coating the joint cannot be obtained, and if the weight ratio of (d1) is greater than 70:30, the coating film Since there are many voids inside, it is not preferable. The zinc powder (D) is preferably contained in the dry coating film in the range of 60 to 90% by weight, preferably 75 to 85% by weight. If the content of the zinc powder (D) is less than 60% by weight, the resulting coating film is inferior in rust resistance, and if it exceeds 90% by weight, the coating film becomes brittle.

本発明の無機質ジンクリッチペイントは(A)、(B)、(C)及び(D)成分を含有するものであり、さらに必要に応じて顔料分散剤(E)を含有することができる。顔料分散剤(E)は、常温で固体であっても良く又液体であっても良い。顔料分散剤(E)としては、アニオン性顔料分散剤(例えば、脂肪族アルコール硫酸塩;スルホン化物;アルキルスルホン酸塩;リグニンスルホン酸化合物;ポリカルボン酸系化合物;アクリル酸基、スルホン酸基又はリン酸基を含有する高分子量化合物)、ノニオン性顔料分散剤(例えば、オレイルアミノオレエート;ポリエチレングリコール鎖又はポリプロピレングリコール鎖を含有する高分子量化合物)、両性顔料分散剤(例えば、アミノ酸類;ベタイン)などが使用できる。市販品としては例えば、アニオン性化合物としては、Disperbyk−102、Disperbyk−110、Disperbyk−111、BYK−P104、BYK−P104S(いずれもBYK社製)、ディスパロン2150、同1210、同DA−1200、同DA−375(いずれも楠本化成株式会社製)がある。ノニオン性化合物としては、Disperbyk−103、Disperbyk−170、Disperbyk−171(いずれもBYK社製)、ディスパロンDN−900、同DA−550(いずれも楠本化成株式会社製)等を挙げることができる。顔料分散剤(E)は、(A)、(B)、(C)及び(D)成分の合計重量に対して0.01〜10重量%、好ましくは0.05〜8重量%、より好ましくは0.1〜5重量%の範囲で含有することが塗料粘度を低減する効果の点から好ましい。   The inorganic zinc rich paint of the present invention contains the components (A), (B), (C) and (D), and may further contain a pigment dispersant (E) as necessary. The pigment dispersant (E) may be solid or liquid at room temperature. As the pigment dispersant (E), an anionic pigment dispersant (for example, aliphatic alcohol sulfate; sulfonated product; alkyl sulfonate; lignin sulfonic acid compound; polycarboxylic acid compound; acrylic acid group, sulfonic acid group or High molecular weight compounds containing phosphate groups), nonionic pigment dispersants (eg oleylaminooleate; high molecular weight compounds containing polyethylene glycol chains or polypropylene glycol chains), amphoteric pigment dispersants (eg amino acids; betaines) ) Etc. can be used. Examples of commercially available products include Disperbyk-102, Disperbyk-110, Disperbyk-111, BYK-P104, BYK-P104S (all manufactured by BYK), Disparon 2150, 1210, DA-1200, DA-375 (both manufactured by Enomoto Kasei Co., Ltd.). Examples of nonionic compounds include Disperbyk-103, Disperbyk-170, Disperbyk-171 (all manufactured by BYK), Disparon DN-900, and DA-550 (all manufactured by Enomoto Kasei Co., Ltd.). The pigment dispersant (E) is 0.01 to 10% by weight, preferably 0.05 to 8% by weight, more preferably based on the total weight of the components (A), (B), (C) and (D). Is preferably contained in the range of 0.1 to 5% by weight from the viewpoint of reducing the viscosity of the paint.

本発明では、さらに必要に応じて顔料成分として、体質顔料、防錆顔料及び着色顔料を塗膜の緻密性を損なわない程度に使用できる。体質顔料、防錆顔料及び着色顔料としては、例えばシリカ粉、硫酸バリウム、炭酸カルシウム、タルク、カオリン、クレー、酸化チタン、リン化鉄、MIO、シアナミド鉛、ジンククロメ−ト、リン酸亜鉛、リン酸カルシウム、メタホウ酸バリウム、モリブデン酸亜鉛、モリブデン酸アルミニウム、ベンガラ、シアニン系着色顔料、カ−ボンブラック、ルチル粉末、ジルコン粉末などが挙げられる。   In the present invention, if necessary, extender pigments, rust preventive pigments and colored pigments can be used as pigment components to the extent that the denseness of the coating film is not impaired. Examples of extender pigments, rust preventive pigments and colored pigments include silica powder, barium sulfate, calcium carbonate, talc, kaolin, clay, titanium oxide, iron phosphide, MIO, lead cyanamide, zinc chromate, zinc phosphate, calcium phosphate, Examples thereof include barium metaborate, zinc molybdate, aluminum molybdate, bengara, cyanine color pigments, carbon black, rutile powder, and zircon powder.

本発明の無機質ジンクリッチペイントには、さらに必要に応じて有機溶剤、沈降防止剤、タレ止め剤、付着性付与剤などの通常の塗料用添加剤を適宜配合してもよい。   The inorganic zinc-rich paint of the present invention may be appropriately blended with usual paint additives such as organic solvents, anti-settling agents, anti-sagging agents, and adhesion-imparting agents, if necessary.

本発明の無機質ジンクリッチペイントは、常法に従って調整でき、例えば結合剤成分を含む液状成分と亜鉛末を含む粉末成分とを別容器に保存し、使用直前に両者を混合する1液1粉末形で使用することができる。また、顔料分散剤(E)は、液状成分中に添加されていても良く、また液状成分と粉末成分を混合した後に添加しても良い。   The inorganic zinc rich paint of the present invention can be prepared according to a conventional method. For example, a liquid component containing a binder component and a powder component containing zinc dust are stored in separate containers and mixed together immediately before use. Can be used in The pigment dispersant (E) may be added to the liquid component, or may be added after mixing the liquid component and the powder component.

本発明の無機質ジンクリッチペイントは、通常基材表面に乾燥膜厚で50μm以上となるよう塗装することができる。その塗装は、例えばエアスプレー、エアレススプレー、刷毛など従来公知の手段で行うことができる。   The inorganic zinc rich paint of the present invention can be usually applied to the surface of a substrate so that the dry film thickness is 50 μm or more. The coating can be performed by conventionally known means such as air spray, airless spray, and brush.

本発明では、上記の通り得られる塗膜の空隙率が、10%以下、好ましくは5%以下であることが、塗膜の緻密性を維持しバブルの発生を抑制する点から好ましい。ここで、空隙率とは塗膜体積に対する空隙部分の体積の比率であり、以下の測定方法によって得られる値である。   In the present invention, the porosity of the coating film obtained as described above is preferably 10% or less, preferably 5% or less from the viewpoint of maintaining the denseness of the coating film and suppressing the generation of bubbles. Here, the porosity is the ratio of the volume of the void portion to the coating film volume, and is a value obtained by the following measurement method.

鋼板上に無機質ジンクリッチペイントを、スプレーにて75μmの乾燥膜厚となるよう塗装し、室温(20℃)にて7日間乾燥させ、得られた塗装鋼板の重量(W0)を測定し、これを流動パラフィンに1分間浸し引き上げ後、速やかに表面の流動パラフィンを拭き取り、塗装鋼板の重量(W)を測定し、下記式(1)によって算出する。尚、塗膜体積は塗装面積と乾燥膜厚の積である。
空隙率(%)={(W−W0)/流動パラフィンの比重}/塗膜体積×100 (1)
An inorganic zinc rich paint was applied on the steel plate by spraying to a dry film thickness of 75 μm, dried at room temperature (20 ° C.) for 7 days, and the weight (W 0) of the obtained coated steel plate was measured. Is immersed in liquid paraffin for 1 minute and then pulled up, the liquid paraffin on the surface is immediately wiped off, the weight (W) of the coated steel plate is measured, and the following formula (1) is calculated. The coating volume is the product of the coating area and the dry film thickness.
Porosity (%) = {(W−W0) / specific gravity of liquid paraffin} / coating film volume × 100 (1)

また、本発明の複層塗膜形成方法は、基材表面に対し前記無機質ジンクリッチペイントを塗装する工程の後、ミストコート工程を行わずに次工程の塗料を塗装する方法である。ここで使用される基材は特に限定されるものではなく、例えば鉄および鉄を含む合金等を含むことができる。無機質ジンクリッチペイントの塗装は前記方法により行うことができる。次工程の塗料としては、特に限定されるものではなく、例えばエポキシ樹脂系塗料などの既知の下塗り塗料が使用できる。   Moreover, the multilayer coating film formation method of this invention is a method of coating the coating material of the following process, without performing the mist coating process after the process of coating the said inorganic zinc rich paint with respect to the base-material surface. The base material used here is not particularly limited, and can include, for example, iron and an alloy containing iron. The inorganic zinc rich paint can be applied by the above method. The paint for the next step is not particularly limited, and for example, a known undercoat such as an epoxy resin paint can be used.

このようにして得られた複層塗膜の上に、さらに上塗り塗料を塗装しても良い。この上塗り塗料としては、特に限定されるものではなく、それ自体既知の塗料を使用でき、例えば、アルキド樹脂系、アクリル樹脂系、塩化ゴム系、エポキシ樹脂系、シリコンアルキド樹脂系、ウレタン樹脂系、シリコンアクリル樹脂系、フッ素樹脂系などの塗料を使用することができる。   A top coat may be further applied on the multilayer coating film thus obtained. The top coating is not particularly limited, and a coating known per se can be used. For example, alkyd resin, acrylic resin, chlorinated rubber, epoxy resin, silicon alkyd resin, urethane resin, Silicon acrylic resin-based or fluororesin-based paints can be used.

以下、実施例を挙げて本発明を更に詳細に説明する。「部」及び「%」は、それぞれ「重量部」及び「重量%」を意味する。 Hereinafter, the present invention will be described in more detail with reference to examples. “Parts” and “%” mean “parts by weight” and “% by weight”, respectively.

製造例1:結合剤液の製造
反応容器にエチルシリケ−ト40(コルコ−ト社製)100部、エタノール72.5部、水10部及び2%塩酸5部を入れ、40℃に2時間保ちながら攪拌を継続し結合剤液(固形分40%)を得た。
Production example 1: Production of binder solution 100 parts of ethyl silicate 40 ( manufactured by Colcoat Co.), 72.5 parts of ethanol, 10 parts of water and 5 parts of 2% hydrochloric acid are placed in a reaction vessel at 40C. And stirring was continued for 2 hours to obtain a binder solution (solid content 40%).

製造例2:液状成分B−1の製造
結合剤液187.5部に、エスレックBM−1(注1)10部をイソプロパノール15部で希釈したものを加え、さらにトリメチルボレートを13.2部添加して混合し、液状成分B−1(固形分43.5%)を得た。
Production Example 2: Production of liquid component B-1 To 187.5 parts of the binder liquid, 10 parts of Esrec BM-1 (Note 1) diluted with 15 parts of isopropanol were added, and trimethylborate was further added to 13 parts. .2 parts were added and mixed to obtain liquid component B-1 (solid content 43.5%).

製造例3〜12:液状成分B−2〜B−11の製造
表1の配合に従い、製造例2と同様に液状成分B−2〜B−11を製造した。表1の(注1)〜(注5)はそれぞれ下記の通りである。液状成分B−1〜B−11について下記性能試験に供した。性能試験結果を表1に併せて示す。
(注1)エスレックBM−1:積水化学工業株式会社製、ポリビニルブチラール樹脂、ブチラール化度65±3%、固形分100%、重量平均分子量約16万
(注2)エスレックBL−1:積水化学工業株式会社製、ポリビニルブチラール樹脂、ブチラール化度63±3%、固形分100%、重量平均分子量約15万
(注3)エスレックBL−10:積水化学工業株式会社製、ポリビニルブチラール樹脂、ブチラール化度71±3%、固形分100%、重量平均分子量約17万
(注4)Disperbyk−110:BYK社製、アニオン性顔料分散剤、固形分52%
(注5)Disperbyk−170:BYK社製、ノニオン性顔料分散剤、固形分30%
Production Examples 3 to 12: Production of liquid components B- 2 to B-11 According to the formulations shown in Table 1, liquid components B-2 to B-11 were produced in the same manner as in Production Example 2. (Note 1) to (Note 5) in Table 1 are as follows. The liquid components B-1 to B-11 were subjected to the following performance test. The performance test results are also shown in Table 1.
(Note 1) ESREC BM-1: manufactured by Sekisui Chemical Co., Ltd., polyvinyl butyral resin, degree of butyral 65 ± 3%, solid content 100%, weight average molecular weight of about 160,000 (Note 2) ESREC BL-1: Sekisui Chemical Manufactured by Kogyo Co., Ltd., polyvinyl butyral resin, degree of butyral 63 ± 3%, solid content 100%, weight average molecular weight of about 150,000 (Note 3) ESREC BL-10: manufactured by Sekisui Chemical Co., Ltd., polyvinyl butyral resin, butyralized 71 ± 3%, solid content 100%, weight average molecular weight of about 170,000 (Note 4) Disperbyk-110: manufactured by BYK, anionic pigment dispersant, solid content 52%
(Note 5) Disperbyk-170: manufactured by BYK, nonionic pigment dispersant, solid content 30%

液状成分の試験方法
クラック評価
1.0×70×150mmのガラス板に、イソプロパノールを加え固形分25%に調製した各液状成分をアプリケーターにより塗装し、塗装後23℃、相対湿度50%の雰囲気下で1日乾燥させ膜厚15μmの塗膜を得た。得られた塗膜の表面状態を目視により評価した(○:正常、△:塗膜の一部にクラックあり、×:塗膜全面にクラックあり)。
耐溶剤性試験
1.0×70×150mmのガラス板に、イソプロパノールを加え固形分25%に調製した各液状成分をアプリケーターにより塗装し、塗装後23℃、相対湿度50%の雰囲気下で1日乾燥させ膜厚15μmの塗膜を得た。塗膜上にブチルセロソルブ1mlを滴下し、その上をガーゼで10往復した後の塗膜の状態を評価した(○:正常、△:表面が溶解する、×:完全に塗膜が溶解する)。
Test method for liquid component Crack evaluation 1.0 × 70 × 150mm glass plate, each liquid component prepared to 25% solid content by adding isopropanol was coated with an applicator, and after coating 23 ° C, relative humidity 50 % Of the film was dried for one day to obtain a coating film having a thickness of 15 μm. The surface state of the obtained coating film was evaluated by visual observation (◯: normal, Δ: crack in part of the coating film, x: crack in the entire coating film).
Solvent resistance test Each liquid component prepared to a solid content of 25% by adding isopropanol to a glass plate of 1.0 x 70 x 150 mm was coated with an applicator, and after coating, in an atmosphere of 23 ° C and 50% relative humidity for 1 day. It dried and the coating film with a film thickness of 15 micrometers was obtained. 1 ml of butyl cellosolve was dropped on the coating film, and the state of the coating film after reciprocating 10 times with gauze was evaluated (◯: normal, Δ: surface dissolved, ×: coating film completely dissolved).

Figure 2008031237
Figure 2008031237

無機質ジンクリッチペイントの作成
実施例1〜9及び比較例1〜5
上記で得た液状成分B−1〜B−11に、表2で示す各成分を配合して攪拌・混合し、各無機質ジンクリッチペイントを得た。表2中の(注6)〜(注9)については下記の通りである。得られた各無機質ジンクリッチペイントについて下記性能試験に供した。性能試験結果を表2に併せて示す。
(注6)亜鉛末 特2:堺化学工業株式会社製、亜鉛末、平均粒子径15.5μm
(注7)亜鉛末 MCS:日本ペイント防食コーティング株式会社製、亜鉛末、平均粒子径8.1μm
(注8)亜鉛末 LS−2:日本ペイント防食コーティング株式会社製、亜鉛末、平均粒子径3.5μm
(注9)ベントン27 :ウィルバーエルス社製、タレ止め剤、固形分100%
Creation of inorganic zinc rich paint
Examples 1-9 and Comparative Examples 1-5
Each component shown in Table 2 was added to the liquid components B-1 to B-11 obtained above and stirred and mixed to obtain each inorganic zinc rich paint. (Note 6) to (Note 9) in Table 2 are as follows. Each inorganic zinc rich paint obtained was subjected to the following performance test. The performance test results are also shown in Table 2.
(Note 6) Zinc powder Special 2: Made by Sakai Chemical Industry Co., Ltd., zinc powder, average particle size 15.5 μm
(Note 7) Zinc powder MCS: Nippon Paint Anticorrosion Coating Co., Ltd., zinc powder, average particle size 8.1 μm
(Note 8) Zinc powder LS-2: Nippon Paint Anticorrosion Coating Co., Ltd., zinc powder, average particle size 3.5 μm
(Note 9) Benton 27: manufactured by Wilber Ells, sagging inhibitor, solid content 100%

無機質ジンクリッチペイントの試験方法
耐溶剤性試験
3.2×70×150mmのサンドブラスト鋼板に乾燥膜厚75μmになるように塗装し、塗装後23℃、相対湿度50%の雰囲気下で1日乾燥させた塗膜上にブチルセロソルブ1mlを滴下し、その上をガーゼで10往復した後の塗膜の状態を評価した(○:正常、△:表面が溶解する、×:完全に塗膜が溶解する)。
空隙率の測定
1.0×70×150mmのサンドブラスト鋼板にスプレー塗装にて乾燥膜厚で75μmとなるように塗装し、塗装後23℃、相対湿度50%の雰囲気下で7日乾燥させた後、前記の空隙率測定方法に従って空隙率を測定した。
バブル抑止性試験
3.2×500×500mmのサンドブラスト鋼板に、各無機質ジンクリッチペイントをイソプロパノールで5%希釈したものをスプレーにて乾燥膜厚で75μmとなるよう塗装し、室温にて7日間乾燥させた後、得られた塗膜上に、粘度10ポイズで不揮発分60%のエポキシ樹脂塗料をスプレーにて乾燥膜厚で60μm又は120μmとなるよう塗装し、室温にて1日乾燥させて試験板を得た。このエポキシ塗膜上に発生する泡(バブル)とピンホールの数(50cm当たり)を目視にて調べ下記基準で評価した(○:0個、△:1〜3個、×:4個以上)。
Test method for inorganic zinc rich paint Solvent resistance test 3.2 × 70 × 150mm sandblasted steel sheet was coated to a dry film thickness of 75μm, and after coating in an atmosphere of 23 ° C and relative humidity of 50% 1 ml of butyl cellosolve was dropped on the coating film dried for one day, and the state of the coating film after 10 reciprocations with gauze was evaluated (◯: normal, Δ: surface dissolved, x: completely coated film) Dissolves).
Measurement of porosity After spray coating on a sandblasted steel plate of 1.0 x 70 x 150 mm to a dry film thickness of 75 µm, after drying for 7 days in an atmosphere of 23 ° C and 50% relative humidity The porosity was measured according to the above-described porosity measurement method.
Bubble deterrence test 3.2 x 500 x 500 mm sandblasted steel plate Each inorganic zinc rich paint diluted 5% with isopropanol was sprayed to a dry film thickness of 75 μm and dried at room temperature for 7 days. After that, an epoxy resin paint having a viscosity of 10 poise and a non-volatile content of 60% was applied on the obtained coating film by spraying to a dry film thickness of 60 μm or 120 μm and dried at room temperature for 1 day for testing. I got a plate. The number of bubbles (bubbles) and pinholes (per 50 cm 2 ) generated on this epoxy coating was visually examined and evaluated according to the following criteria (◯: 0, Δ: 1-3, x: 4 or more) ).

Figure 2008031237
Figure 2008031237

Claims (4)

(A)ケイ素系無機結合剤、(B)ポリビニルブチラール樹脂、(C)有機ホウ素化合物及び(D)亜鉛末を含有する無機質ジンクリッチペイントであって、(A)と(B)の配合比が(A)成分中のSiO成分:(B)成分=85:15〜15:85(重量比)であり、且つ(C)成分の含有量が(A)及び(B)成分の合計重量に対して5〜30重量%であり、(D)成分が(d1)平均粒子径10〜50μmの亜鉛末及び(d2)平均粒子径10μm未満の亜鉛末からなり、両者の配合比が(d1):(d2)=5:95〜70:30(重量比)であり、さらに(D)成分の含有量が乾燥塗膜固形分中に60〜90重量%であることを特徴とする無機質ジンクリッチペイント。 (A) An inorganic zinc rich paint containing a silicon-based inorganic binder, (B) polyvinyl butyral resin, (C) an organoboron compound and (D) zinc dust, wherein the blending ratio of (A) and (B) is (A) SiO 2 component in component: (B) component = 85: 15-15: 85 (weight ratio), and the content of (C) component is the total weight of (A) and (B) components The component (D) is composed of (d1) zinc powder having an average particle diameter of 10 to 50 μm and (d2) zinc powder having an average particle diameter of less than 10 μm, and the blending ratio of both is (d1) : (D2) = 5: 95 to 70:30 (weight ratio), and the content of the component (D) is 60 to 90% by weight in the solid content of the dried coating film. paint. 顔料分散剤(E)を(A)、(B)、(C)及び(D)成分の合計重量に対して0.01〜10重量%含有する請求項1記載の無機質ジンクリッチペイント。 The inorganic zinc-rich paint according to claim 1, wherein the pigment dispersant (E) is contained in an amount of 0.01 to 10% by weight based on the total weight of the components (A), (B), (C) and (D). 得られる塗膜の空隙率が10%以下である請求項1又は2記載の無機質ジンクリッチペイント。 The inorganic zinc rich paint according to claim 1 or 2, wherein the porosity of the obtained coating film is 10% or less. 基材表面に、請求項1乃至3のいずれか1項記載の無機質ジンクリッチペイントを塗装した後、その上にミストコート工程を行わずに次工程の塗料を塗装することを特徴とする複層塗膜形成方法。
After applying the inorganic zinc rich paint according to any one of claims 1 to 3 on the substrate surface, the paint of the next process is applied on the substrate without performing the mist coating process. Coating film forming method.
JP2006204250A 2006-07-27 2006-07-27 Inorganic paint rich in zinc and method of forming multiple layer coated film using the same Pending JP2008031237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006204250A JP2008031237A (en) 2006-07-27 2006-07-27 Inorganic paint rich in zinc and method of forming multiple layer coated film using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006204250A JP2008031237A (en) 2006-07-27 2006-07-27 Inorganic paint rich in zinc and method of forming multiple layer coated film using the same

Publications (1)

Publication Number Publication Date
JP2008031237A true JP2008031237A (en) 2008-02-14

Family

ID=39121020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006204250A Pending JP2008031237A (en) 2006-07-27 2006-07-27 Inorganic paint rich in zinc and method of forming multiple layer coated film using the same

Country Status (1)

Country Link
JP (1) JP2008031237A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021248A (en) * 2009-07-16 2011-02-03 Jfe Steel Corp Steel for ship having excellent coating corrosion resistance
JP2012077132A (en) * 2010-09-30 2012-04-19 Dainippon Toryo Co Ltd Zinc dust-containing high durability inorganic coating composition
JP2013119582A (en) * 2011-12-07 2013-06-17 Shinto Paint Co Ltd Metal zinc-containing powder coating material composition
KR101708151B1 (en) * 2016-06-23 2017-02-27 강남제비스코 주식회사 High heat-resistant and corrosion-resistant thin film inorganic zinc coating composition and a manufacturing method thereof
CN106752944A (en) * 2016-12-15 2017-05-31 江门市蓬江区文森装饰材料有限公司 A kind of wood paint wood wax oil
JP2019108439A (en) * 2017-12-15 2019-07-04 日本ペイント株式会社 Thick film shape inorganic zinc-rich coating composition
WO2020138186A1 (en) * 2018-12-27 2020-07-02 中国塗料株式会社 Coating composition kit and use thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734164A (en) * 1980-08-06 1982-02-24 Kansai Paint Co Ltd Film-forming composition
JPS61242669A (en) * 1985-04-19 1986-10-28 Kansai Paint Co Ltd Pretreatment of steel sheet
JPS6213470A (en) * 1985-07-11 1987-01-22 Kansai Paint Co Ltd Rust-inhibiting coating composition
JPS6245385A (en) * 1985-08-22 1987-02-27 Kansai Paint Co Ltd Pretreatment of steel plate
JPS62141075A (en) * 1985-12-14 1987-06-24 Mitsui Eng & Shipbuild Co Ltd Primary rust-preventive coating composition
JPS6317976A (en) * 1986-07-09 1988-01-25 Nippon Paint Co Ltd Zinc-rich paint composition
JPH02258875A (en) * 1989-03-31 1990-10-19 Kansai Paint Co Ltd Inorganic zinc dust coating composition
JP2000063760A (en) * 1998-08-21 2000-02-29 Osaka Gas Co Ltd Heat-resistant coating composition for engine and turbine
JP2002194284A (en) * 2000-12-26 2002-07-10 Kansai Paint Co Ltd Inorganic paint rich in zinc
JP2003306638A (en) * 2002-04-16 2003-10-31 Yokogawa Bridge Corp Zinc-rich coating composition
JP2004026972A (en) * 2002-06-25 2004-01-29 Nippon Paint Co Ltd High friction coating material and high friction painted article

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734164A (en) * 1980-08-06 1982-02-24 Kansai Paint Co Ltd Film-forming composition
JPS61242669A (en) * 1985-04-19 1986-10-28 Kansai Paint Co Ltd Pretreatment of steel sheet
JPS6213470A (en) * 1985-07-11 1987-01-22 Kansai Paint Co Ltd Rust-inhibiting coating composition
JPS6245385A (en) * 1985-08-22 1987-02-27 Kansai Paint Co Ltd Pretreatment of steel plate
JPS62141075A (en) * 1985-12-14 1987-06-24 Mitsui Eng & Shipbuild Co Ltd Primary rust-preventive coating composition
JPS6317976A (en) * 1986-07-09 1988-01-25 Nippon Paint Co Ltd Zinc-rich paint composition
JPH02258875A (en) * 1989-03-31 1990-10-19 Kansai Paint Co Ltd Inorganic zinc dust coating composition
JP2000063760A (en) * 1998-08-21 2000-02-29 Osaka Gas Co Ltd Heat-resistant coating composition for engine and turbine
JP2002194284A (en) * 2000-12-26 2002-07-10 Kansai Paint Co Ltd Inorganic paint rich in zinc
JP2003306638A (en) * 2002-04-16 2003-10-31 Yokogawa Bridge Corp Zinc-rich coating composition
JP2004026972A (en) * 2002-06-25 2004-01-29 Nippon Paint Co Ltd High friction coating material and high friction painted article

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021248A (en) * 2009-07-16 2011-02-03 Jfe Steel Corp Steel for ship having excellent coating corrosion resistance
JP2012077132A (en) * 2010-09-30 2012-04-19 Dainippon Toryo Co Ltd Zinc dust-containing high durability inorganic coating composition
JP2013119582A (en) * 2011-12-07 2013-06-17 Shinto Paint Co Ltd Metal zinc-containing powder coating material composition
KR101708151B1 (en) * 2016-06-23 2017-02-27 강남제비스코 주식회사 High heat-resistant and corrosion-resistant thin film inorganic zinc coating composition and a manufacturing method thereof
CN106752944A (en) * 2016-12-15 2017-05-31 江门市蓬江区文森装饰材料有限公司 A kind of wood paint wood wax oil
JP2019108439A (en) * 2017-12-15 2019-07-04 日本ペイント株式会社 Thick film shape inorganic zinc-rich coating composition
WO2020138186A1 (en) * 2018-12-27 2020-07-02 中国塗料株式会社 Coating composition kit and use thereof
JPWO2020138186A1 (en) * 2018-12-27 2021-10-28 中国塗料株式会社 Paint composition kits and their uses
JP7209015B2 (en) 2018-12-27 2023-01-19 中国塗料株式会社 Paint composition kit and its use

Similar Documents

Publication Publication Date Title
KR101079778B1 (en) Aqueous rust-resisting paint composition
KR101014740B1 (en) Chromium-free metal surface treatment agent
JP2008031237A (en) Inorganic paint rich in zinc and method of forming multiple layer coated film using the same
JP7089938B2 (en) Heat-resistant paint composition, heat-resistant coating film, base material with heat-resistant coating film and its manufacturing method
KR101792081B1 (en) Primary Anti-corrosive Coating Composition, and Coated Steel Structure which has Been Coated with Same
CN103987799A (en) Corrosion, chip and fuel resistant coating composition
CN102268221A (en) Double-component aqueous inorganic non-expandable fireproof coating and preparation method thereof
JP2016065118A (en) WEAK SOLVENT SHAPE HIGH CORROSION RESISTANT COATING COMPOSITION USING Sn ION
JP4444490B2 (en) Inorganic zinc rich paint
JP2012077132A (en) Zinc dust-containing high durability inorganic coating composition
JP7210218B2 (en) paint composition
JP2007284600A (en) Coating composition containing high corrosion-proof zinc powder
JP2013043986A (en) Primary rust-proof coating material composition, primary rust-proof coating film, and steel sheet with the primary rust-proof coating film
JP4573506B2 (en) Rust preventive paint composition
JP5891666B2 (en) Water-based emulsion paint and coating method
RU2613985C1 (en) Priming enamel for protective anti-corrosion epoxy coating protective layer up to 500 microns, method for protective anti-corrosion epoxy coating formation, and product with protective anti-corrosion epoxy coating
JPS6317976A (en) Zinc-rich paint composition
JPH0346194B2 (en)
WO2021002139A1 (en) Heat-resistant coating composition, heat-resistant coating film, heat-resistant coating film-attached substrate, and method for preparing same
WO2018008728A1 (en) Inorganic zinc-rich paint
KR101054600B1 (en) Heavy-duty ceramic coating composition with environmental friendliness
JPS59221361A (en) Heat-resistant corrosion-proofing paint
JP2011213810A (en) Antifouling coating composition and method for forming antifouling coating film
RU2378305C1 (en) Anticorrosion coating composition
KR101672310B1 (en) Environment-friendly ceramic coating agents composition for soundproof and anticorrosive and construction method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120417