WO2020138186A1 - Coating composition kit and use thereof - Google Patents

Coating composition kit and use thereof Download PDF

Info

Publication number
WO2020138186A1
WO2020138186A1 PCT/JP2019/050865 JP2019050865W WO2020138186A1 WO 2020138186 A1 WO2020138186 A1 WO 2020138186A1 JP 2019050865 W JP2019050865 W JP 2019050865W WO 2020138186 A1 WO2020138186 A1 WO 2020138186A1
Authority
WO
WIPO (PCT)
Prior art keywords
agent
coating composition
coating
mass
siloxane
Prior art date
Application number
PCT/JP2019/050865
Other languages
French (fr)
Japanese (ja)
Inventor
浩章 村田
耕一郎 福島
展央 三村
Original Assignee
中国塗料株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国塗料株式会社 filed Critical 中国塗料株式会社
Priority to JP2020563353A priority Critical patent/JP7209015B2/en
Priority to CN201980084936.8A priority patent/CN113227267B/en
Publication of WO2020138186A1 publication Critical patent/WO2020138186A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00

Definitions

  • the present invention relates to a coating composition kit and its use.
  • the inorganic zinc-rich paint is a coating composition containing an inorganic resin such as a hydrolyzed condensate of silicate as a binder component and containing a large amount of zinc powder.
  • an inorganic resin such as a hydrolyzed condensate of silicate as a binder component
  • a one-liquid one-powder type coating composition kit is known.
  • Inorganic zinc rich paint can prevent corrosion of steel materials by sacrificial anticorrosion effect of zinc and formation of oxide film with high barrier property in corrosive environment, and it is widely used for anticorrosion of large steel structures such as ships and bridges. It is used.
  • the inorganic zinc-rich paint contains a hydrolyzed condensate of silicate as a binder component, and curing proceeds with water.
  • the inorganic zinc-rich paint is sometimes applied to the bolted joint portion of the steel material in order to enhance the sliding frictional force of the joint surface.
  • the slip coefficient is generally 0.4 to 0.5
  • Patent Document 1 discloses a zinc-rich coating composition having a slip coefficient of more than 0.5.
  • a coating composition kit having a first agent containing a binder component and a second agent containing zinc powder
  • a problem that storage stability deteriorates I understood it.
  • the high hardness pigment described in Patent Document 1 is added to the first agent in order to increase the slip coefficient of the coating film, the storage stability deteriorates.
  • the inorganic zinc-rich paint it may be necessary to store it for a long period of 12 months, which causes a problem that the storage stability of the first agent is deteriorated.
  • An object of the present invention is to provide a coating composition kit which is excellent in long-term storage stability and can form a coating film having an excellent slip coefficient at a bolted joint of a steel material, for example.
  • the present inventors have diligently studied to solve the above problems. As a result, they have found that the above-mentioned problems can be solved by a coating composition kit having the following constitution, and completed the present invention.
  • the present invention relates to the following [1] to [10], for example.
  • a coating composition having a first agent containing a siloxane-based binder (A), kaolin (B) and a pigment (C) having a Mohs hardness of 5 or more, and a second agent containing zinc powder (X). Thing kit.
  • a method for producing a coating composition which comprises a step of mixing at least the first agent and the second agent in the coating composition kit according to any one of [1] to [4].
  • a steel material with a coating comprising a steel material and the coating film according to [7] formed on a joint surface of a bolted joint portion of the steel material.
  • a coating composition kit capable of forming a coating film which is excellent in long-term storage stability and is also excellent in, for example, a slip coefficient at a bolted joint of a steel material.
  • the coating composition kit according to one embodiment of the present invention is also referred to as “coating composition kit of the present embodiment”, and at least the first agent and the second agent in the coating composition kit of the present embodiment are included.
  • the coating composition obtained by mixing is also referred to as the "coating composition of the present embodiment”
  • the coating film formed from the coating composition of the present embodiment is also referred to as the “coating film of the present embodiment”.
  • slip coefficient is measured based on “Appendix 7 Slip coefficient evaluation test method” of "steel structure joint design guideline” (3rd edition, Japan Institute of Architecture, 2012). The slip coefficient.
  • the coating composition kit of this embodiment has a first agent and a second agent.
  • the first agent contains a siloxane-based binder (A), kaolin (B), and a pigment (C) having a Mohs hardness of 5 or more.
  • the second agent contains zinc powder (X).
  • the coating composition kit of the present embodiment is a package type kit, and in one embodiment, a one-liquid/one-powder type kit comprising a liquid first agent and a powdery second agent.
  • the first agent containing the siloxane-based binder (A) contains kaolin (B) and the pigment (C) having a Mohs hardness of 5 or more, the zinc powder ( There is no need for a step of mixing X) with kaolin (B) and a pigment (C) having a Mohs hardness of 5 or more for classification.
  • the first agent is preferably liquid.
  • the first agent contains a siloxane-based binder (A).
  • the siloxane-based binder (A) is usually a silicate condensate, specifically a compound obtained by hydrolyzing and condensing the silicate.
  • siloxane-based binder (A) examples include a condensate of at least one compound (A1) selected from tetraalkoxysilane and alkyltrialkoxysilane, and specifically, the compound (A1) and/or Alternatively, a partially hydrolyzed condensate of a low condensate thereof may be mentioned.
  • tetraalkoxysilane examples include tetramethyl orthosilicate, tetraethyl orthosilicate, tetra-n-propyl orthosilicate, tetra-i-propyl orthosilicate, tetra-n-butyl orthosilicate and tetra-sec-butyl orthosilicate.
  • alkyltrialkoxysilane examples include methyltrialkoxysilanes such as methyltrimethoxysilane and methyltriethoxysilane.
  • Examples of the low condensate of the compound (A1) include low condensates of the tetraalkoxysilanes such as methyl polysilicate and ethyl polysilicate.
  • the low condensate refers to a condensate having a condensation degree of 2 to 20 (silicon atom number of 2 to 20).
  • a low condensate of tetraethyl orthosilicate is preferable, and as the low condensate of tetraethyl orthosilicate, for example, "ethyl silicate 45", “ethyl silicate 40” and “ethyl silicate 48" (above, corcoat) Manufactured by Asahi Kasei Wacker Silicone Co., Ltd., and “Silicate 45” and “Silicate 40” (manufactured by Tama Chemical Industry Co., Ltd.) and “TES40WN” (manufactured by Asahi Kasei Wacker Silicone Co., Ltd.).
  • siloxane-based binder (A) a partially hydrolyzed condensate of ethyl silicate 40 (trade name; manufactured by Colcoat Co., Ltd.) is particularly preferable.
  • the weight average molecular weight (Mw) of the siloxane-based binder (A) contained in the first agent is usually 500 to 10,000, preferably 700 to 9,000, more preferably 800 to 5,000.
  • Mw of the siloxane-based binder (A) is 500 or more
  • the coating composition of the present embodiment tends to have high drying properties
  • the coating film of the present embodiment tends to have high corrosion resistance.
  • the Mw of the siloxane-based binder (A) is 10,000 or less, the storage stability of the first agent is good, and when the coating composition of this embodiment is applied to an overthick film, it is applied. Membrane cracking tends to occur less easily.
  • the weight average molecular weight (Mw) of the siloxane-based binder (A) can be measured by gel permeation chromatography (GPC) method.
  • the value obtained by the GPC method is a value (polystyrene conversion value) obtained by using a calibration curve prepared using polystyrene as a standard substance.
  • the first agent may contain one kind or two or more kinds of siloxane-based binders (A).
  • the siloxane-based binder (A) can be produced by using a conventionally known method.
  • the compound (A1) and/or its low condensate can be mixed with an appropriate amount of water and, if necessary, in an organic solvent. It can be produced by carrying out a partial hydrolysis condensation reaction in the presence of a catalyst so that the weight average molecular weight (Mw) becomes a desired value.
  • organic solvent examples include organic solvents described in the section ⁇ Organic solvent> described later.
  • the amount of water used is usually 5 to 11 parts by mass, preferably 5.5 to 9 parts by mass, relative to 100 parts by mass of the compound (A1) and/or its low condensate.
  • the catalyst examples include inorganic acids such as sulfuric acid, hydrochloric acid and nitric acid; formic acid; organic tin compounds such as dibutyltin dilaurate, dibutyltin dimaleate, dioctyltin dilaurate, dioctyltin dimaleate, dioctyltin maleate, tin octylate; Phosphoric acid or phosphoric acid ester such as phosphoric acid, monomethyl phosphate, monoethyl phosphate, monobutyl phosphate, monooctyl phosphate, monodecyl phosphate, dimethyl phosphate, diethyl phosphate, dibutyl phosphate, dioctyl phosphate, didecyl phosphate; diisopropoxybis Organic titanate compounds such as (acetylacetate)titanium and diisopropoxybis(ethylacetoacetate)titanium; organo
  • a catalyst When a catalyst is used, its amount is usually 0.01 to 2.0 parts by mass, preferably 0.02 to 1.30 parts by mass based on 100 parts by mass of the compound (A1) and/or its low condensate. It is 0 part by mass.
  • the boron compound described below can be used during the production of the siloxane-based binder (A). By introducing a structure derived from a boron compound into the siloxane-based binder (A), the dry curability of the coating composition of this embodiment can be improved.
  • the boron compound examples include boric acid and boron trioxide.
  • its amount is usually 0.3 to 11 parts by mass, preferably 1.5 to 7 parts by mass, relative to 100 parts by mass of the compound (A1) and/or its low condensate. Is.
  • the content ratio of the siloxane-based binder (A) is obtained by converting the mass of the siloxane-based binder (A) into the mass of SiO 2 (that is, the mass of the siloxane-based binder (A) is If the solid content of the coating composition of this embodiment is 100% by mass, it is usually 1 to 15% by mass (converted into the mass of SiO 2 in the same amount as the substance amount (mol) of Si atoms contained in A)). , Preferably 2 to 10% by mass, more preferably 3 to 8% by mass.
  • the content ratio of the siloxane-based binder (A) is obtained by converting the mass of the siloxane-based binder (A) into the mass of SiO 2 (that is, the mass of the siloxane-based binder (A) is converted into the siloxane-based bond (A)).
  • the solid amount of the first agent is 100% by mass (converted to the mass of SiO 2 in the same amount as the substance amount (mol) of Si atoms contained in the agent (A))
  • usually 10 to 70% by mass preferably Is 20 to 60% by mass, more preferably 30 to 50% by mass.
  • the coating film of this embodiment is excellent in corrosion resistance, crack resistance, and adhesion to a substrate.
  • the solid content of the coating composition or the first agent of the present embodiment means a residue (heating after heating the coating composition or the first agent containing a volatile component such as a solvent in a hot air dryer under the following conditions. The balance).
  • the heating residue of the coating composition and the first agent can be measured according to the standard of JIS K 5601 1-2 (heating temperature: 125° C., heating time: 60 minutes).
  • the hydrolysis rate of the siloxane-based binder (A) is preferably 35 to 75%, more preferably 38 to 55%.
  • the hydrolysis rate of the siloxane-based binder (A) is within the above range, the first agent having more excellent storage stability can be obtained, and the drying property and the case of using an overthick film can be obtained. It is possible to obtain a coating composition having more excellent crack resistance.
  • the hydrolysis rate (%) is tetraalkoxysilane, alkyltrialkoxysilane, or It means the reaction rate of the reactive group (alkoxy group) contained in the low condensate, and can be calculated by the following formula 1.
  • Hydrolysis rate (%) (W/18 ⁇ 2/(S/E)) ⁇ 100 (Formula 1)
  • W is the mass (g) of water used in preparing the siloxane-based binder (A)
  • S is the mass (g) of tetraalkoxysilane, alkyltrialkoxysilane, and the low condensate
  • E Is the reactive group equivalent of tetraalkoxysilane, alkyltrialkoxysilane and the low condensate.
  • the first agent contains kaolin (B). Although the reason is not clear, long-term storage stability is improved when a pigment (C) having a Mohs hardness of 5 or more is included in the first agent containing the siloxane-based binder (A) in order to improve the slip coefficient of the coating film.
  • kaolin (B) is further included in the first agent, the first agent exhibits excellent long-term storage stability, and the kneadability between the first agent and the second agent becomes good. As a result, it becomes possible to stably supply the coating composition.
  • examples of the storage stability index include pigment sedimentation and/or gelation.
  • Kaolin (B) is usually a layered inorganic pigment produced from naturally occurring clay (mineral name: kaolinite (chemical formula: Al 2 O 3 .2SiO 2 .2H 2 O)). Kaolin (B) usually has a scaly thin flat shape.
  • the kaolin (B) is not particularly limited, and examples thereof include wet kaolin, dry kaolin, and calcined kaolin.
  • the median diameter of kaolin (B) is preferably 0.1 to 10 ⁇ m, more preferably 0.2 to 5 ⁇ m. In the present specification, the median diameter is measured by a laser diffraction method.
  • the first agent may contain one kind or two or more kinds of kaolin (B).
  • the content ratio of kaolin (B) is usually 5 to 80% by mass, preferably 10 to 50% by mass in 100% by mass of the solid content of the first agent.
  • the content ratio of kaolin (B) is 5% by mass or more, the storage stability of the first agent tends to be better, while when it is 80% by mass or less, the coating film of the present embodiment is slippery. The coefficient tends to decrease.
  • the content ratio of kaolin (B) is preferably 0.5 to 15% by mass, more preferably 1 to 10% by mass based on 100% by mass of the solid content of the coating composition of the present embodiment.
  • the first agent contains a pigment (C) having a Mohs hardness of 5 or more (hereinafter also referred to as “pigment (C)”).
  • pigment (C) By including the pigment (C) in the first agent, the slip coefficient of the coating film of the present embodiment is increased.
  • the Mohs hardness of the pigment (C) is 5 or more, preferably 5 or more and 8 or less, more preferably 5.5 or more and less than 7.5.
  • the Mohs hardness can be measured according to a 10-step Mohs hardness meter.
  • Examples of the pigment (C) include iron oxides such as yellow iron oxide, red iron oxide, and black iron oxide; feldspars such as potassium feldspar, orthoclase, microcline feldspar, albite, and anorthite; silica and pumice. Among them, yellow iron oxide, potassium feldspar, and silica are preferable from the viewpoints of high slip coefficient and excellent storage stability.
  • the shape of the pigment (C) is not particularly limited, but various shapes such as spherical shape, needle shape, plate shape, scale shape, and fiber shape can be used.
  • the median diameter of pigment (C) is 0.1 to 50 ⁇ m.
  • Yellow iron oxide is usually acicular particles.
  • the median diameter of the yellow iron oxide is preferably 0.1 to 30 ⁇ m, more preferably 0.2 to 20 ⁇ m.
  • Potassium feldspar is usually a particle having a shell-shaped fracture obtained by crushing from orthoclase.
  • the median diameter of potassium feldspar is preferably 1 to 50 ⁇ m, more preferably 2 to 30 ⁇ m.
  • fine powder silica having an average primary particle diameter of 1 ⁇ m or less is preferable.
  • the average primary particle size of the fine powder silica is preferably 5 to 100 nm.
  • the specific surface area of the fine powder silica is preferably 50 m 2 /g or more.
  • the finely powdered silica may be surface-treated or untreated.
  • the nano-sized average primary particle diameter is the average value of the number of major axes of the primary particles observed with an electron microscope.
  • the pigment (C) preferably contains finely divided silica, more preferably yellow iron oxide and/or potassium feldspar and finely divided silica from the viewpoint of the slip coefficient of the coating film.
  • the first agent may contain one kind or two or more kinds of pigments (C).
  • the content ratio of the pigment (C) is usually 5 to 70% by mass, preferably 10 to 50% by mass based on 100% by mass of the solid content of the first agent. If the content ratio of the pigment (C) is 5% by mass or more, the slip coefficient of the coating film of the present embodiment tends to be high, while if it is 70% by mass or less, the storage stability of the first agent is It tends to be difficult to decrease.
  • the content ratio of the pigment (C) is preferably 1 to 10% by mass, more preferably 2 to 6% by mass based on 100% by mass of the solid content of the coating composition of the present embodiment.
  • the first agent can contain a curing accelerator (D).
  • the curing accelerator (D) include boric acid, boron compounds such as boron trioxide, oxalic acid, ferric chloride, and zinc chloride. Of these, boron compounds such as boric acid and boron trioxide are preferable from the viewpoint of storage stability and crack resistance.
  • the curing accelerator (D) acts, for example, as a curing catalyst when the coating composition applied on the substrate is cured to form a coating film.
  • the 1st agent can contain 1 type(s) or 2 or more types of hardening accelerator (D).
  • the curing accelerator (D) When the curing accelerator (D) is used, its content is preferably 0.1 to 10% by mass, more preferably 1 to 5% by mass based on 100% by mass of the solid content of the first agent. When the content ratio of the curing accelerator (D) is within the above range, the storage stability of the siloxane-based binder (A) is improved, and the drying property of the coating composition of the present embodiment and the crack resistance of the coating film are also improved. It tends to be excellent.
  • the first agent may contain an organic resin (E) other than the siloxane-based binder (A) within a range that does not impair the objects and effects of the present invention.
  • organic resin (E) include butyral resin such as polyvinyl butyral resin and acrylic resin.
  • polyvinyl butyral resin examples include S-REC BM-1, S-REC BM-2, and S-REC BL-1 (trade name; manufactured by Sekisui Chemical Co., Ltd.), and examples of the acrylic resin include DIALAL BR-106 ( Trade name: manufactured by Mitsubishi Chemical Corporation.
  • the 1st agent can contain 1 type(s) or 2 or more types of organic resin (E).
  • organic resin (E) When the organic resin (E) is used, its content is preferably 0.1% in 100 mass% of the solid content of the first agent from the viewpoint of the coating workability of the coating composition and the crack resistance of the coating film. It is 1 to 10% by mass, more preferably 0.5 to 8% by mass.
  • the first agent may contain a generally known thickener (F).
  • the thickener (F) can improve the kneadability between the first agent and the second agent described later.
  • thickener (F) conventionally known thickeners can be used without limitation.
  • examples of the thickener (F) include organic thickeners such as polyamide wax, polyethylene wax, and oxidized polyethylene wax; and inorganic substances such as bentonite (organic bentonite) whose surface is treated with quaternary ammonium salt. Examples include system thickeners.
  • the 1st agent can contain 1 type(s) or 2 or more types of thickener (F).
  • the thickening agent (F) When the thickening agent (F) is used, its content is preferably 0.05 to 5% by mass, more preferably 0.1 to 3% by mass based on 100% by mass of the solid content of the coating composition of the present embodiment. %.
  • the first agent usually contains an organic solvent for the purpose of dilution, improvement of storage stability, improvement of pot life, and the like.
  • the organic solvent includes, for example, at least one organic solvent (S1) selected from glycol ether solvents, ketone solvents and acetic acid ester solvents.
  • S1 organic solvent
  • the first agent containing an organic solvent (S1) has improved storage stability of the siloxane-based binder (A). It is speculated that this is because the silanol groups that the siloxane-based binder (A) may have are stabilized by hydrogen bonds with the oxygen atoms of the organic solvent (S1), and the condensation reaction thereof is suppressed.
  • glycol ether solvents include propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate, with propylene glycol monomethyl ether being preferred.
  • examples of the ketone solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, and methyl ethyl ketone is preferable.
  • examples of the acetic acid ester solvent include ethyl acetate and butyl acetate, and ethyl acetate is preferable.
  • glycol ether solvents are preferable, and propylene glycol monomethyl ether is more preferable.
  • the 1st agent can contain 1 type(s) or 2 or more types of organic solvent (S1).
  • the first agent may contain an organic solvent (S2) other than the organic solvent (S1) in order to adjust the drying property of the coated composition.
  • Examples of the organic solvent (S2) include organic solvents that are normally used in the paint field, such as alcohol solvents, aromatic solvents and cellosolve solvents.
  • Examples of alcohol solvents include methanol, ethanol, isopropanol, and butanol.
  • Examples of aromatic solvents include benzene, xylene, and toluene.
  • Examples of the cellosolve solvent include methyl cellosolve, ethyl cellosolve, and butyl cellosolve.
  • the first agent may contain one kind or two or more kinds of organic solvents (S2).
  • the content ratio of the organic solvent in the first agent is not particularly limited, but is usually 10 to 80% by mass, preferably 25 to 60% by mass.
  • the first agent is, for example, a siloxane-based binder (A), kaolin (B) and a pigment (C) having a Mohs hardness of 5 or more, and if necessary, the above-mentioned components (D) to (F), an organic solvent and the like. Obtained by mixing.
  • the second agent contains zinc powder (X).
  • the zinc powder (X) is not particularly limited in shape, size, etc., and those conventionally known in the paint field can be used.
  • Examples of the zinc powder (X) include powder of metallic zinc and powder of zinc alloy.
  • Examples of the zinc alloy include an alloy of zinc and at least one selected from aluminum, magnesium and tin.
  • Examples of the shape of the particles forming the zinc powder (X) include various shapes such as spherical shape and scale shape.
  • the median diameter of the zinc powder (X) is 1 to 30 ⁇ m.
  • the second agent can contain one kind or two or more kinds of zinc powder (X).
  • the content of the zinc powder (X) is usually 30 to 98% by mass, preferably 50 to 97% by mass, and more preferably 65 to 95% by mass in 100% by mass of the solid content of the coating composition of the present embodiment. is there.
  • the coating film of the present embodiment has excellent rust preventive properties over a long period of time. Therefore, the coating composition of the present embodiment is useful as a so-called inorganic zinc rich paint.
  • Other components such as pigments, rust preventive pigments and adhesion-imparting agents can be further contained. The other components may be used alone or in combination of two or more.
  • the paint composition kit of the present embodiment manufactures a first agent and a second agent by a paint manufacturer and provides them separately to a painter, and the painter prepares the first agent and the second agent. And are mixed before coating, and the resulting coating composition is coated.
  • the coating composition kit of the present embodiment may further include, for example, a third agent containing at least one component selected from the above components and the like.
  • kaolin (B) and pigment (C) are included in the first agent.
  • these pigments are included in the second agent containing the zinc powder (X)
  • a step of mixing and classifying the pigment powders may be necessary, and a step of classifying the powders after storage may be necessary.
  • this embodiment does not require a step of mixing zinc powder (X) with kaolin (B), a pigment (C), or the like in the second agent, and thus simplifies the manufacturing process. it can.
  • the coating composition of the present embodiment can be obtained by mixing at least the first agent and the second agent in the coating composition kit of the present embodiment.
  • the first agent and the second agent are sufficiently stirred and homogenized by using a stirrer.
  • the coating composition of this embodiment has excellent dryness. By using the coating composition, it is possible to form a coating film having excellent corrosion resistance and crack resistance in a thick film and having a high slip coefficient.
  • the coating film of the present embodiment is formed from the coating composition of the present embodiment and is useful as an anticorrosion/rustproof coating film.
  • the base material with a coating film of the present embodiment has a base material and the coating film of the present embodiment.
  • the coating composition and the coated substrate of the present embodiment can be obtained by applying the coating composition of the present embodiment on the surface of the substrate and curing the coating composition.
  • the base material examples include conventionally known base materials such as steel materials, and specific examples thereof include ship structures such as ships, civil engineering structures such as bridges and tanks, plant structures such as oil drilling plants, and pipes. Steel structures such as lines; building structures such as houses and buildings; outdoor equipment such as guard fences and industrial machines.
  • the coating composition of the present embodiment is applied to the surface of these base materials as the first anticorrosion coating film.
  • the base material to which the coating composition of the present embodiment is applied is subjected to the blast treatment under the conditions corresponding to the degree of rust removal Sa21/2 or more in ISO8501-1. Further, if necessary, an undercoat paint, an intermediate coat paint and a top coat paint are applied onto the coating film obtained from the coating composition of the present embodiment.
  • the base material includes a steel material that can be bolted, and the coating composition of the present embodiment is applied to a joint surface of a steel material at a bolted joint portion.
  • the coating composition of the present embodiment is applied to a joint surface of a steel material at a bolted joint portion.
  • other paint is not coated on the coating film coated with the coating composition of the present embodiment, and the joint surfaces coated with the coating film of the coating composition of the present embodiment are bonded to each other.
  • a frictional force with a slip coefficient of 0.5 or more is exhibited.
  • the curing method of the coating composition after coating is not particularly limited, and a conventionally known curing method can be applied.
  • a coating composition applied on a substrate is left to stand in the air (while being heated if necessary)
  • the solvent volatilizes, and the siloxane-based binder (A) becomes water or air in the coating composition. It is cured by a hydrolysis-condensation reaction due to the water content (moisture) therein.
  • the coating conditions are typically 5-40°C.
  • the average dry film thickness of the coating film of the present embodiment is preferably 40 ⁇ m or more, more preferably 40 to 120 ⁇ m.
  • the average dry film thickness of the coating film may be less than 40 ⁇ m, which is a thin film, depending on the state of the substrate to be coated and the application.
  • the coating film of the present embodiment is excellent in crack resistance even when the average dry film thickness is more than 120 ⁇ m, for example, more than 120 ⁇ m and 200 ⁇ m or less.
  • the slip coefficient of the coating film of this embodiment is preferably 0.5 or more, more preferably 0.55 or more, and the upper limit is not particularly limited, but may be 0.8. Due to the coating film having a high slip coefficient of 0.5 or more, it is not necessary to increase the size of the reinforcing material such as the splicing plate used for the joint portion of the steel material for the sake of safety at the time of bolting and joining work, and the bolt to be tightened. Since it is not necessary to increase the number, it is preferable in terms of work cost.
  • the same operation as in the preparation of the first agent (I-1) was performed except that the kind and the charging amount of each raw material were changed as shown in Tables 1-1 and 1-2, and the first agent (I- 2) to (I-16) and (cI-1) to (cI-4) were prepared.
  • the measurement conditions of GPC are as follows. A small amount of each of the first agents was taken and diluted with tetrahydrofuran, and the resulting solution was filtered through a membrane filter to obtain a GPC measurement sample.
  • Apparatus 2695 Separation Module (Aliance GPC Multi System) manufactured by Japan Waters Co., Ltd.
  • ⁇ Column TOSgel Super H4000 manufactured by Tosoh Corporation TSKgel Super H2000 TSKgel Super H2000 Measured by connecting the above three in series.
  • Examples 1 to 16 and Comparative Examples 1 to 4 The second agent and the first agent, which was stored at 23° C. for 1 month after preparation, were charged in a polyethylene container at a ratio (parts by mass) shown in Tables 1-1 and 1-2, and a high-speed disperser was used for 10 A dispersion treatment was carried out for a minute to prepare a coating composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Paints Or Removers (AREA)

Abstract

A coating composition kit that comprises: a first agent comprising a siloxane binder (A), kaolin (B) and a pigment (C) having a Mohs hardness of 5 or higher; and a second agent comprising a zinc powder (X).

Description

塗料組成物キットおよびその用途Paint composition kit and use thereof
 本発明は、塗料組成物キットおよびその用途に関する。 The present invention relates to a coating composition kit and its use.
 無機ジンクリッチペイントは、バインダー成分としてシリケートの加水分解縮合物等の無機系樹脂を含み、亜鉛粉末を多量に含む塗料組成物であり、例えば1液1粉末型の塗料組成物キットが知られている。無機ジンクリッチペイントは、亜鉛による犠牲防食作用や腐食環境中でのバリヤー性の高い酸化被膜の形成によって、鋼材の腐食を防ぐことができ、船舶や橋梁等の大型鉄鋼構造物の防食用途に広く使用されている。 The inorganic zinc-rich paint is a coating composition containing an inorganic resin such as a hydrolyzed condensate of silicate as a binder component and containing a large amount of zinc powder. For example, a one-liquid one-powder type coating composition kit is known. There is. Inorganic zinc rich paint can prevent corrosion of steel materials by sacrificial anticorrosion effect of zinc and formation of oxide film with high barrier property in corrosive environment, and it is widely used for anticorrosion of large steel structures such as ships and bridges. It is used.
 無機ジンクリッチペイントの一例は、バインダー成分としてシリケートの加水分解縮合物を含み、水分によって硬化が進むことが知られている。
 ところで、無機ジンクリッチペイントは、鋼材のボルト締め結合部に、接合面のすべり摩擦力を高めるために塗布されることがある。このような場合、すべり係数としては0.4~0.5が一般的であるが、特許文献1には、すべり係数が0.5を超えるジンクリッチ塗料組成物が開示されている。
It is known that one example of the inorganic zinc-rich paint contains a hydrolyzed condensate of silicate as a binder component, and curing proceeds with water.
Incidentally, the inorganic zinc-rich paint is sometimes applied to the bolted joint portion of the steel material in order to enhance the sliding frictional force of the joint surface. In such a case, the slip coefficient is generally 0.4 to 0.5, but Patent Document 1 discloses a zinc-rich coating composition having a slip coefficient of more than 0.5.
特開2003-306638号公報JP-A-2003-306638
 本発明者らが検討したところ、無機ジンクリッチペイントの塗膜のすべり係数を高くするために、亜鉛粉末と体質顔料や特殊顔料とを混合した混合粉末を有する塗料組成物キットを製造しようとした場合、混合粉末製造時に分級しなければならず、顔料によっては粉末同士の混合不良が起きやすく、分級が困難となって時間が掛かり、コストも高くなって経済的ではないことがわかった。 As a result of studies by the present inventors, in order to increase the slip coefficient of a coating film of an inorganic zinc-rich paint, it was attempted to produce a coating composition kit having a mixed powder in which zinc powder and an extender pigment or a special pigment were mixed. In this case, it has been found that classification must be performed at the time of manufacturing the mixed powder, and mixing defects of the powders easily occur depending on the pigment, classification is difficult and time-consuming, and cost is high, which is not economical.
 一方、バインダー成分を含有する第1剤と亜鉛粉末を含有する第2剤とを有する塗料組成物キットにおいて、第1剤中に前記顔料を分散させると、貯蔵安定性が悪化するという問題があることがわかった。例えば、塗膜のすべり係数を高くするために特許文献1に記載の高硬度顔料を第1剤中に添加すると、貯蔵安定性が悪化する。無機ジンクリッチペイントとしては、12ヵ月という長期に亘って貯蔵することが必要となることがあり、第1剤の貯蔵安定性が悪化することは問題となる。 On the other hand, in a coating composition kit having a first agent containing a binder component and a second agent containing zinc powder, when the pigment is dispersed in the first agent, there is a problem that storage stability deteriorates. I understood it. For example, if the high hardness pigment described in Patent Document 1 is added to the first agent in order to increase the slip coefficient of the coating film, the storage stability deteriorates. As the inorganic zinc-rich paint, it may be necessary to store it for a long period of 12 months, which causes a problem that the storage stability of the first agent is deteriorated.
 本発明の課題は、長期貯蔵安定性に優れるとともに、例えば鋼材のボルト締め接合部におけるすべり係数に優れる塗膜を形成することのできる塗料組成物キットを提供することにある。 An object of the present invention is to provide a coating composition kit which is excellent in long-term storage stability and can form a coating film having an excellent slip coefficient at a bolted joint of a steel material, for example.
 本発明者らは前記課題を解決すべく鋭意検討した。その結果、以下の構成を有する塗料組成物キットにより前記課題を解決できることを見出し、本発明を完成するに至った。
 本発明は、例えば以下の[1]~[10]に関する。
The present inventors have diligently studied to solve the above problems. As a result, they have found that the above-mentioned problems can be solved by a coating composition kit having the following constitution, and completed the present invention.
The present invention relates to the following [1] to [10], for example.
 [1]シロキサン系結合剤(A)、カオリン(B)およびモース硬度が5以上の顔料(C)を含有する第1剤と、亜鉛粉末(X)を含有する第2剤とを有する塗料組成物キット。 [1] A coating composition having a first agent containing a siloxane-based binder (A), kaolin (B) and a pigment (C) having a Mohs hardness of 5 or more, and a second agent containing zinc powder (X). Thing kit.
 [2]前記シロキサン系結合剤(A)の重量平均分子量(Mw)が、500~10,000である前記[1]に記載の塗料組成物キット。
 [3]前記シロキサン系結合剤(A)が、テトラアルコキシシランおよびアルキルトリアルコキシシランから選択される少なくとも1種の化合物(A1)の縮合物である前記[1]または[2]に記載の塗料組成物キット。
[2] The coating composition kit according to the above [1], wherein the siloxane-based binder (A) has a weight average molecular weight (Mw) of 500 to 10,000.
[3] The coating material according to [1] or [2], wherein the siloxane-based binder (A) is a condensate of at least one compound (A1) selected from tetraalkoxysilane and alkyltrialkoxysilane. Composition kit.
 [4]前記顔料(C)が、黄色酸化鉄、カリ長石およびシリカから選択される少なくとも1種を含む前記[1]~[3]のいずれかに記載の塗料組成物キット。
 [5]前記[1]~[4]のいずれかに記載の塗料組成物キットにおける前記第1剤と前記第2剤とを少なくとも混合して得られた塗料組成物。
[4] The coating composition kit according to any one of [1] to [3], wherein the pigment (C) contains at least one selected from yellow iron oxide, potassium feldspar, and silica.
[5] A coating composition obtained by mixing at least the first agent and the second agent in the coating composition kit according to any one of [1] to [4].
 [6]前記[1]~[4]のいずれかに記載の塗料組成物キットにおける前記第1剤と前記第2剤とを少なくとも混合する工程を有する、塗料組成物の製造方法。
 [7]前記[5]に記載の塗料組成物から形成された塗膜。
[6] A method for producing a coating composition, which comprises a step of mixing at least the first agent and the second agent in the coating composition kit according to any one of [1] to [4].
[7] A coating film formed from the coating composition as described in [5] above.
 [8]基材と、前記[7]に記載の塗膜とを有する、塗膜付き基材。
 [9]前記基材が、鉄鋼構造物を構成する鋼材である前記[8]に記載の塗膜付き基材。
[8] A coated substrate having a substrate and the coating film according to [7] above.
[9] The coated substrate according to [8], wherein the substrate is a steel material constituting a steel structure.
 [10]鋼材と、前記鋼材のボルト締め接合部における接合面に形成された前記[7]に記載の塗膜とを有する、塗膜付き鋼材。 [10] A steel material with a coating, comprising a steel material and the coating film according to [7] formed on a joint surface of a bolted joint portion of the steel material.
 本発明によれば、長期貯蔵安定性に優れるとともに、例えば鋼材のボルト締め接合部におけるすべり係数に優れる塗膜を形成することのできる塗料組成物キットを提供することができる。 According to the present invention, it is possible to provide a coating composition kit capable of forming a coating film which is excellent in long-term storage stability and is also excellent in, for example, a slip coefficient at a bolted joint of a steel material.
 以下、本発明を実施するための形態について詳細に説明する。
 本明細書において、本発明の一実施形態に係る塗料組成物キットを「本実施形態の塗料組成物キット」ともいい、本実施形態の塗料組成物キットにおける第1剤と第2剤とを少なくとも混合して得られた塗料組成物を「本実施形態の塗料組成物」ともいい、本実施形態の塗料組成物から形成された塗膜を「本実施形態の塗膜」ともいう。
Hereinafter, modes for carrying out the present invention will be described in detail.
In the present specification, the coating composition kit according to one embodiment of the present invention is also referred to as “coating composition kit of the present embodiment”, and at least the first agent and the second agent in the coating composition kit of the present embodiment are included. The coating composition obtained by mixing is also referred to as the "coating composition of the present embodiment", and the coating film formed from the coating composition of the present embodiment is also referred to as the "coating film of the present embodiment".
 本明細書において、「すべり係数」とは、「鋼構造接合部設計指針」(第3版、社団法人日本建築学会、2012年)の「付7 すべり係数評価試験法」に基づいて測定されたすべり係数をいう。 In the present specification, the "slip coefficient" is measured based on "Appendix 7 Slip coefficient evaluation test method" of "steel structure joint design guideline" (3rd edition, Japan Institute of Architecture, 2012). The slip coefficient.
 [塗料組成物キットおよび塗料組成物]
 本実施形態の塗料組成物キットは、第1剤と第2剤とを有する。
 第1剤は、シロキサン系結合剤(A)、カオリン(B)およびモース硬度が5以上の顔料(C)を含有する。
[Paint Composition Kit and Paint Composition]
The coating composition kit of this embodiment has a first agent and a second agent.
The first agent contains a siloxane-based binder (A), kaolin (B), and a pigment (C) having a Mohs hardness of 5 or more.
 第2剤は、亜鉛粉末(X)を含有する。
 本実施形態の塗料組成物キットは、分包型キットであり、一実施態様において、液状の第1剤と粉末状の第2剤とからなる1液1粉末型のキットである。
The second agent contains zinc powder (X).
The coating composition kit of the present embodiment is a package type kit, and in one embodiment, a one-liquid/one-powder type kit comprising a liquid first agent and a powdery second agent.
 ≪第1剤≫
 本実施形態では、シロキサン系結合剤(A)を含む第1剤が、カオリン(B)およびモース硬度が5以上の顔料(C)を含有することから、第2剤の調製時に、亜鉛粉末(X)とカオリン(B)およびモース硬度が5以上の顔料(C)とを混合して分級する工程を必要としない。
 第1剤は、液状であることが好ましい。
≪First agent≫
In the present embodiment, since the first agent containing the siloxane-based binder (A) contains kaolin (B) and the pigment (C) having a Mohs hardness of 5 or more, the zinc powder ( There is no need for a step of mixing X) with kaolin (B) and a pigment (C) having a Mohs hardness of 5 or more for classification.
The first agent is preferably liquid.
 <シロキサン系結合剤(A)>
 第1剤は、シロキサン系結合剤(A)を含有する。シロキサン系結合剤(A)は、通常、シリケートの縮合物であり、具体的にはシリケートを加水分解縮合して得られる化合物である。
<Siloxane type binder (A)>
The first agent contains a siloxane-based binder (A). The siloxane-based binder (A) is usually a silicate condensate, specifically a compound obtained by hydrolyzing and condensing the silicate.
 シロキサン系結合剤(A)としては、例えば、テトラアルコキシシランおよびアルキルトリアルコキシシランから選択される少なくとも1種の化合物(A1)の縮合物が挙げられ、具体的には前記化合物(A1)および/またはその低縮合物の、部分加水分解縮合物が挙げられる。 Examples of the siloxane-based binder (A) include a condensate of at least one compound (A1) selected from tetraalkoxysilane and alkyltrialkoxysilane, and specifically, the compound (A1) and/or Alternatively, a partially hydrolyzed condensate of a low condensate thereof may be mentioned.
 前記テトラアルコキシシランとしては、例えば、テトラメチルオルトシリケート、テトラエチルオルトシリケート、テトラ-n-プロピルオルトシリケート、テトラ-i-プロピルオルトシリケート、テトラ-n-ブチルオルトシリケート、テトラ-sec-ブチルオルトシリケートが挙げられ;前記アルキルトリアルコキシシランとしては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン等のメチルトリアルコキシシランが挙げられる。 Examples of the tetraalkoxysilane include tetramethyl orthosilicate, tetraethyl orthosilicate, tetra-n-propyl orthosilicate, tetra-i-propyl orthosilicate, tetra-n-butyl orthosilicate and tetra-sec-butyl orthosilicate. Examples of the alkyltrialkoxysilane include methyltrialkoxysilanes such as methyltrimethoxysilane and methyltriethoxysilane.
 前記化合物(A1)の低縮合物としては、例えば、メチルポリシリケート、エチルポリシリケート等の、前記テトラアルコキシシランの低縮合物が挙げられる。低縮合物とは、縮合度2~20(ケイ素原子数2~20)の縮合物をいう。 Examples of the low condensate of the compound (A1) include low condensates of the tetraalkoxysilanes such as methyl polysilicate and ethyl polysilicate. The low condensate refers to a condensate having a condensation degree of 2 to 20 (silicon atom number of 2 to 20).
 前記低縮合物としては、テトラエチルオルトシリケートの低縮合物が好ましく、テトラエチルオルトシリケートの低縮合物としては、例えば、「エチルシリケート45」、「エチルシリケート40」および「エチルシリケート48」(以上、コルコート(株)製)、「シリケート45」および「シリケート40」(以上、多摩化学工業(株)製)、「TES40WN」(以上、旭化成ワッカーシリコーン(株)製)が挙げられる。シロキサン系結合剤(A)としては、エチルシリケート40(商品名;コルコート(株)製)の部分加水分解縮合物が特に好ましい。 As the low condensate, a low condensate of tetraethyl orthosilicate is preferable, and as the low condensate of tetraethyl orthosilicate, for example, "ethyl silicate 45", "ethyl silicate 40" and "ethyl silicate 48" (above, corcoat) Manufactured by Asahi Kasei Wacker Silicone Co., Ltd., and “Silicate 45” and “Silicate 40” (manufactured by Tama Chemical Industry Co., Ltd.) and “TES40WN” (manufactured by Asahi Kasei Wacker Silicone Co., Ltd.). As the siloxane-based binder (A), a partially hydrolyzed condensate of ethyl silicate 40 (trade name; manufactured by Colcoat Co., Ltd.) is particularly preferable.
 第1剤中に含まれるシロキサン系結合剤(A)の重量平均分子量(Mw)は、通常は500~10,000、好ましくは700~9,000、より好ましくは800~5,000である。シロキサン系結合剤(A)のMwが500以上であれば、本実施形態の塗料組成物の乾燥性が高くなると共に、本実施形態の塗膜の防食性が高くなる傾向にある。一方、シロキサン系結合剤(A)のMwが10,000以下であれば、第1剤の貯蔵安定性が良好となり、また本実施形態の塗料組成物が過厚膜に塗装された場合に塗膜割れが発生しにくい傾向にある。 The weight average molecular weight (Mw) of the siloxane-based binder (A) contained in the first agent is usually 500 to 10,000, preferably 700 to 9,000, more preferably 800 to 5,000. When the Mw of the siloxane-based binder (A) is 500 or more, the coating composition of the present embodiment tends to have high drying properties, and the coating film of the present embodiment tends to have high corrosion resistance. On the other hand, when the Mw of the siloxane-based binder (A) is 10,000 or less, the storage stability of the first agent is good, and when the coating composition of this embodiment is applied to an overthick film, it is applied. Membrane cracking tends to occur less easily.
 シロキサン系結合剤(A)の重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)法によって測定することができる。GPC法によって得られる値は、ポリスチレンを標準物質として作成された検量線を使用して求めた値(ポリスチレン換算値)である。 The weight average molecular weight (Mw) of the siloxane-based binder (A) can be measured by gel permeation chromatography (GPC) method. The value obtained by the GPC method is a value (polystyrene conversion value) obtained by using a calibration curve prepared using polystyrene as a standard substance.
 第1剤は、1種または2種以上のシロキサン系結合剤(A)を含有することができる。
 シロキサン系結合剤(A)は、従来公知の方法を利用して製造することができ、例えば、前記化合物(A1)および/またはその低縮合物を有機溶剤中で適量の水および必要に応じて触媒の存在下で重量平均分子量(Mw)が所望の値になるように部分加水分解縮合反応させることにより製造することができる。
The first agent may contain one kind or two or more kinds of siloxane-based binders (A).
The siloxane-based binder (A) can be produced by using a conventionally known method. For example, the compound (A1) and/or its low condensate can be mixed with an appropriate amount of water and, if necessary, in an organic solvent. It can be produced by carrying out a partial hydrolysis condensation reaction in the presence of a catalyst so that the weight average molecular weight (Mw) becomes a desired value.
 有機溶剤としては、例えば、後述する<有機溶剤>欄に記載の有機溶剤が挙げられる。
 水の使用量は、前記化合物(A1)および/またはその低縮合物100質量部に対して、通常は5~11質量部、好ましくは5.5~9質量部である。
Examples of the organic solvent include organic solvents described in the section <Organic solvent> described later.
The amount of water used is usually 5 to 11 parts by mass, preferably 5.5 to 9 parts by mass, relative to 100 parts by mass of the compound (A1) and/or its low condensate.
 触媒としては、例えば、硫酸、塩酸、硝酸等の無機酸;蟻酸;ジブチルスズジラウレート、ジブチルスズジマレエート、ジオクチルスズジラウレート、ジオクチルスズジマレエート、ジオクチルスズマレエート、オクチル酸スズ等の有機スズ化合物;リン酸、モノメチルホスフェート、モノエチルホスフェート、モノブチルホスフェート、モノオクチルホスフェート、モノデシルホスフェート、ジメチルホスフェート、ジエチルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジデシルホスフェート等のリン酸又はリン酸エステル;ジイソプロポキシビス(アセチルアセテート)チタニウム、ジイソプロポキシビス(エチルアセトアセテート)チタニウム等の有機チタネート化合物;トリス(エチルアセトアセテート)アルミニウム、トリス(アセチルアセトナート)アルミニウム等の有機アルミニウム化合物;テトラブチルジルコネート、テトラキス(アセチルアセトナート)ジルコニウム、テトライソブチルジルコネート、ブトキシトリス(アセチルアセトナート)ジルコニウム等の有機ジルコニウム化合物が挙げられる。これらの中でも、第1剤の貯蔵安定性が良いという点から、無機酸が好ましく、塩酸がより好ましい。 Examples of the catalyst include inorganic acids such as sulfuric acid, hydrochloric acid and nitric acid; formic acid; organic tin compounds such as dibutyltin dilaurate, dibutyltin dimaleate, dioctyltin dilaurate, dioctyltin dimaleate, dioctyltin maleate, tin octylate; Phosphoric acid or phosphoric acid ester such as phosphoric acid, monomethyl phosphate, monoethyl phosphate, monobutyl phosphate, monooctyl phosphate, monodecyl phosphate, dimethyl phosphate, diethyl phosphate, dibutyl phosphate, dioctyl phosphate, didecyl phosphate; diisopropoxybis Organic titanate compounds such as (acetylacetate)titanium and diisopropoxybis(ethylacetoacetate)titanium; organoaluminum compounds such as tris(ethylacetoacetate)aluminum and tris(acetylacetonato)aluminum; tetrabutylzirconate, tetrakis( Examples thereof include organic zirconium compounds such as (acetylacetonato)zirconium, tetraisobutylzirconate, and butoxytris(acetylacetonato)zirconium. Among these, inorganic acids are preferable, and hydrochloric acid is more preferable, because the storage stability of the first agent is good.
 触媒を使用する場合のその使用量は、前記化合物(A1)および/またはその低縮合物100質量部に対して、通常は0.01~2.0質量部、好ましくは0.02~1.0質量部である。 When a catalyst is used, its amount is usually 0.01 to 2.0 parts by mass, preferably 0.02 to 1.30 parts by mass based on 100 parts by mass of the compound (A1) and/or its low condensate. It is 0 part by mass.
 シロキサン系結合剤(A)の製造時に、後述するホウ素化合物を用いることができる。シロキサン系結合剤(A)にホウ素化合物由来の構造を導入することにより、本実施形態の塗料組成物の乾燥硬化性を向上させることができる。 The boron compound described below can be used during the production of the siloxane-based binder (A). By introducing a structure derived from a boron compound into the siloxane-based binder (A), the dry curability of the coating composition of this embodiment can be improved.
 ホウ素化合物としては、例えば、ホウ酸、三酸化ホウ素が挙げられる。
 ホウ素化合物を使用する場合のその使用量は、前記化合物(A1)および/またはその低縮合物100質量部に対して、通常は0.3~11質量部、好ましくは1.5~7質量部である。
Examples of the boron compound include boric acid and boron trioxide.
When the boron compound is used, its amount is usually 0.3 to 11 parts by mass, preferably 1.5 to 7 parts by mass, relative to 100 parts by mass of the compound (A1) and/or its low condensate. Is.
 シロキサン系結合剤(A)の含有割合は、前記シロキサン系結合剤(A)の質量をSiO2の質量に換算し(すなわち、前記シロキサン系結合剤(A)の質量を前記シロキサン系結合剤(A)に含まれるSi原子の物質量(mol)と同量のSiO2の質量に換算し)、本実施形態の塗料組成物の固形分量を100質量%とすると、通常は1~15質量%、好ましくは2~10質量%、より好ましくは3~8質量%である。 The content ratio of the siloxane-based binder (A) is obtained by converting the mass of the siloxane-based binder (A) into the mass of SiO 2 (that is, the mass of the siloxane-based binder (A) is If the solid content of the coating composition of this embodiment is 100% by mass, it is usually 1 to 15% by mass (converted into the mass of SiO 2 in the same amount as the substance amount (mol) of Si atoms contained in A)). , Preferably 2 to 10% by mass, more preferably 3 to 8% by mass.
 また、シロキサン系結合剤(A)の含有割合は、前記シロキサン系結合剤(A)の質量をSiO2の質量に換算し(すなわち、前記シロキサン系結合剤(A)の質量を前記シロキサン系結合剤(A)に含まれるSi原子の物質量(mol)と同量のSiO2の質量に換算し)、第1剤の固形分量を100質量%とすると、通常は10~70質量%、好ましくは20~60質量%、より好ましくは30~50質量%である。 Further, the content ratio of the siloxane-based binder (A) is obtained by converting the mass of the siloxane-based binder (A) into the mass of SiO 2 (that is, the mass of the siloxane-based binder (A) is converted into the siloxane-based bond (A)). If the solid amount of the first agent is 100% by mass (converted to the mass of SiO 2 in the same amount as the substance amount (mol) of Si atoms contained in the agent (A)), usually 10 to 70% by mass, preferably Is 20 to 60% by mass, more preferably 30 to 50% by mass.
 シロキサン系結合剤(A)の含有割合が前記範囲にあると、本実施形態の塗膜は、防食性、耐割れ性、および基材との付着性に優れる。
 なお、本実施形態の塗料組成物または第1剤の固形分とは、溶剤等の揮発成分を含有する塗料組成物または第1剤を熱風乾燥機中で下記条件下で加熱した残分(加熱残分)を意味する。塗料組成物および第1剤の加熱残分は、JIS K 5601 1-2の規格(加熱温度:125℃、加熱時間:60分)に従い測定することができる。
When the content ratio of the siloxane-based binder (A) is within the above range, the coating film of this embodiment is excellent in corrosion resistance, crack resistance, and adhesion to a substrate.
In addition, the solid content of the coating composition or the first agent of the present embodiment means a residue (heating after heating the coating composition or the first agent containing a volatile component such as a solvent in a hot air dryer under the following conditions. The balance). The heating residue of the coating composition and the first agent can be measured according to the standard of JIS K 5601 1-2 (heating temperature: 125° C., heating time: 60 minutes).
 シロキサン系結合剤(A)の加水分解率は、好ましくは35~75%、より好ましくは38~55%である。シロキサン系結合剤(A)の加水分解率が前記範囲内にあることによって、より優れた貯蔵安定性を有する第1剤を得ることができ、また、乾燥性や、過厚膜とした場合の耐割れ性にもより優れた塗料組成物を得ることができる。 The hydrolysis rate of the siloxane-based binder (A) is preferably 35 to 75%, more preferably 38 to 55%. When the hydrolysis rate of the siloxane-based binder (A) is within the above range, the first agent having more excellent storage stability can be obtained, and the drying property and the case of using an overthick film can be obtained. It is possible to obtain a coating composition having more excellent crack resistance.
 加水分解率(%)は、シロキサン系結合剤(A)が前記化合物(A1)および/またはその低縮合物の、部分加水分解縮合物である場合に、テトラアルコキシシラン、アルキルトリアルコキシシランおよび前記低縮合物に含まれる反応基(アルコキシ基)の反応率を意味し、以下の式1によって算出することができる。 When the siloxane-based binder (A) is a partially hydrolyzed condensate of the compound (A1) and/or a low condensate of the compound (A1), the hydrolysis rate (%) is tetraalkoxysilane, alkyltrialkoxysilane, or It means the reaction rate of the reactive group (alkoxy group) contained in the low condensate, and can be calculated by the following formula 1.
 加水分解率(%)=(W/18×2/(S/E))×100 (式1)
 式1において、Wはシロキサン系結合剤(A)調製時に用いた水の質量(g)であり、Sはテトラアルコキシシラン、アルキルトリアルコキシシランおよび前記低縮合物の質量(g)であり、Eはテトラアルコキシシラン、アルキルトリアルコキシシランおよび前記低縮合物の反応基当量である。
Hydrolysis rate (%)=(W/18×2/(S/E))×100 (Formula 1)
In Formula 1, W is the mass (g) of water used in preparing the siloxane-based binder (A), S is the mass (g) of tetraalkoxysilane, alkyltrialkoxysilane, and the low condensate, and E Is the reactive group equivalent of tetraalkoxysilane, alkyltrialkoxysilane and the low condensate.
 <カオリン(B)>
 第1剤は、カオリン(B)を含有する。理由は定かではないが、塗膜のすべり係数を向上させるためにモース硬度が5以上の顔料(C)をシロキサン系結合剤(A)を含有する第1剤に含めると、その長期貯蔵安定性が低下するところ、第1剤にカオリン(B)をさらに含めることで、第1剤が優れた長期貯蔵安定性を示し、また第1剤と第2剤との混練性が良好となる。この結果、塗料組成物の安定的な供給が可能となる。ここで貯蔵安定性の指標として、例えば、顔料沈降性および/またはゲル化が挙げられる。
<Kaolin (B)>
The first agent contains kaolin (B). Although the reason is not clear, long-term storage stability is improved when a pigment (C) having a Mohs hardness of 5 or more is included in the first agent containing the siloxane-based binder (A) in order to improve the slip coefficient of the coating film. When kaolin (B) is further included in the first agent, the first agent exhibits excellent long-term storage stability, and the kneadability between the first agent and the second agent becomes good. As a result, it becomes possible to stably supply the coating composition. Here, examples of the storage stability index include pigment sedimentation and/or gelation.
 カオリン(B)は、通常、天然に産出される粘土(鉱物名:カオリナイト(化学式:Al23・2SiO2・2H2O))から製造される層状型の無機顔料である。カオリン(B)は、通常、鱗片状の薄く平らな形状を有している。カオリン(B)としては、特に限定されないが、例えば、湿式カオリン、乾式カオリン、焼成カオリンが挙げられる。 Kaolin (B) is usually a layered inorganic pigment produced from naturally occurring clay (mineral name: kaolinite (chemical formula: Al 2 O 3 .2SiO 2 .2H 2 O)). Kaolin (B) usually has a scaly thin flat shape. The kaolin (B) is not particularly limited, and examples thereof include wet kaolin, dry kaolin, and calcined kaolin.
 カオリン(B)のメディアン径は、好ましくは0.1~10μm、より好ましくは0.2~5μmである。本明細書において、メディアン径は、レーザー回折法により測定される。 The median diameter of kaolin (B) is preferably 0.1 to 10 μm, more preferably 0.2 to 5 μm. In the present specification, the median diameter is measured by a laser diffraction method.
 第1剤は、1種または2種以上のカオリン(B)を含有することができる。
 カオリン(B)の含有割合は、第1剤の固形分100質量%中、通常は5~80質量%、好ましくは10~50質量%である。カオリン(B)の含有割合が5質量%以上であれば、第1剤の貯蔵安定性がより良好となる傾向にあり、一方、80質量%以下であれば、本実施形態の塗膜のすべり係数が低下しにくい傾向にある。
The first agent may contain one kind or two or more kinds of kaolin (B).
The content ratio of kaolin (B) is usually 5 to 80% by mass, preferably 10 to 50% by mass in 100% by mass of the solid content of the first agent. When the content ratio of kaolin (B) is 5% by mass or more, the storage stability of the first agent tends to be better, while when it is 80% by mass or less, the coating film of the present embodiment is slippery. The coefficient tends to decrease.
 また、カオリン(B)の含有割合は、本実施形態の塗料組成物の固形分100質量%中、好ましくは0.5~15質量%、より好ましくは1~10質量%である。 Further, the content ratio of kaolin (B) is preferably 0.5 to 15% by mass, more preferably 1 to 10% by mass based on 100% by mass of the solid content of the coating composition of the present embodiment.
 <モース硬度が5以上の顔料(C)>
 第1剤は、モース硬度が5以上の顔料(C)(以下「顔料(C)」ともいう)を含有する。第1剤が顔料(C)を含有することによって、本実施形態の塗膜のすべり係数が高くなる。
<Pigment (C) having a Mohs hardness of 5 or more>
The first agent contains a pigment (C) having a Mohs hardness of 5 or more (hereinafter also referred to as “pigment (C)”). By including the pigment (C) in the first agent, the slip coefficient of the coating film of the present embodiment is increased.
 顔料(C)のモース硬度は、5以上であり、好ましくは5以上8以下、より好ましくは5.5以上7.5未満である。モース硬度は、10段階モース硬度計に従って測定することができる。 The Mohs hardness of the pigment (C) is 5 or more, preferably 5 or more and 8 or less, more preferably 5.5 or more and less than 7.5. The Mohs hardness can be measured according to a 10-step Mohs hardness meter.
 顔料(C)としては、例えば、黄色酸化鉄、赤色酸化鉄、黒色酸化鉄などの酸化鉄類;カリ長石、正長石、微斜長石、曹長石、灰長石などの長石類;シリカ、軽石が挙げられ、すべり係数が高く、さらに貯蔵安定性が優れるという点から、黄色酸化鉄、カリ長石、シリカが好ましい。 Examples of the pigment (C) include iron oxides such as yellow iron oxide, red iron oxide, and black iron oxide; feldspars such as potassium feldspar, orthoclase, microcline feldspar, albite, and anorthite; silica and pumice. Among them, yellow iron oxide, potassium feldspar, and silica are preferable from the viewpoints of high slip coefficient and excellent storage stability.
 顔料(C)の形状は、特に限定されないが、球状、針状、板状、鱗片状、繊維状等の様々な形状のものが使用できる。一実施態様において、顔料(C)のメディアン径は、0.1~50μmである。 The shape of the pigment (C) is not particularly limited, but various shapes such as spherical shape, needle shape, plate shape, scale shape, and fiber shape can be used. In one embodiment, the median diameter of pigment (C) is 0.1 to 50 μm.
 黄色酸化鉄は、通常、針状の粒子である。黄色酸化鉄のメディアン径は、好ましくは0.1~30μm、より好ましくは0.2~20μmである。
 カリ長石は、通常、正長石から粉砕して得られる貝殻状断口を有する粒子である。カリ長石のメディアン径は、好ましくは1~50μm、より好ましくは2~30μmである。
Yellow iron oxide is usually acicular particles. The median diameter of the yellow iron oxide is preferably 0.1 to 30 μm, more preferably 0.2 to 20 μm.
Potassium feldspar is usually a particle having a shell-shaped fracture obtained by crushing from orthoclase. The median diameter of potassium feldspar is preferably 1 to 50 μm, more preferably 2 to 30 μm.
 シリカとしては、平均1次粒子径が1μm以下の微粉末シリカが好ましい。微粉末シリカの平均1次粒子径は、好ましくは5~100nmである。微粉末シリカの比表面積は、好ましくは50m2/g以上である。微粉末シリカは表面を処理したものでも、処理してないものでもよい。本明細書において、ナノサイズの平均1次粒子径は、電子顕微鏡にて観察される1次粒子の長径の個数の平均値である。 As the silica, fine powder silica having an average primary particle diameter of 1 μm or less is preferable. The average primary particle size of the fine powder silica is preferably 5 to 100 nm. The specific surface area of the fine powder silica is preferably 50 m 2 /g or more. The finely powdered silica may be surface-treated or untreated. In the present specification, the nano-sized average primary particle diameter is the average value of the number of major axes of the primary particles observed with an electron microscope.
 一実施態様において、塗膜のすべり係数の観点から、顔料(C)は、微粉末シリカを含むことが好ましく、黄色酸化鉄および/またはカリ長石と、微粉末シリカとを含むことがより好ましい。 In one embodiment, the pigment (C) preferably contains finely divided silica, more preferably yellow iron oxide and/or potassium feldspar and finely divided silica from the viewpoint of the slip coefficient of the coating film.
 第1剤は、1種または2種以上の顔料(C)を含有することができる。
 顔料(C)の含有割合は、第1剤の固形分100質量%中、通常は5~70質量%、好ましくは10~50質量%である。顔料(C)の含有割合が5質量%以上であれば、本実施形態の塗膜のすべり係数が高くなる傾向にあり、一方、70質量%以下であれば、第1剤の貯蔵安定性が低下しづらい傾向にある。
The first agent may contain one kind or two or more kinds of pigments (C).
The content ratio of the pigment (C) is usually 5 to 70% by mass, preferably 10 to 50% by mass based on 100% by mass of the solid content of the first agent. If the content ratio of the pigment (C) is 5% by mass or more, the slip coefficient of the coating film of the present embodiment tends to be high, while if it is 70% by mass or less, the storage stability of the first agent is It tends to be difficult to decrease.
 また、顔料(C)の含有割合は、本実施形態の塗料組成物の固形分100質量%中、好ましくは1~10質量%、より好ましくは2~6質量%である。 The content ratio of the pigment (C) is preferably 1 to 10% by mass, more preferably 2 to 6% by mass based on 100% by mass of the solid content of the coating composition of the present embodiment.
 <硬化促進剤(D)>
 第1剤は、硬化促進剤(D)を含有することができる。
 硬化促進剤(D)としては、例えば、ホウ酸、三酸化ホウ素等のホウ素化合物、シュウ酸、塩化第二鉄、塩化亜鉛が挙げられる。これらの中でも、ホウ酸、三酸化ホウ素等のホウ素化合物が、貯蔵安定性および耐割れ性の観点から好ましい。
<Curing accelerator (D)>
The first agent can contain a curing accelerator (D).
Examples of the curing accelerator (D) include boric acid, boron compounds such as boron trioxide, oxalic acid, ferric chloride, and zinc chloride. Of these, boron compounds such as boric acid and boron trioxide are preferable from the viewpoint of storage stability and crack resistance.
 硬化促進剤(D)は、例えば、基材上に塗布された塗料組成物を硬化させて塗膜を形成する際の硬化触媒として作用する。
 第1剤は、1種または2種以上の硬化促進剤(D)を含有することができる。
The curing accelerator (D) acts, for example, as a curing catalyst when the coating composition applied on the substrate is cured to form a coating film.
The 1st agent can contain 1 type(s) or 2 or more types of hardening accelerator (D).
 硬化促進剤(D)を使用する場合のその含有割合は、第1剤の固形分100質量%中、好ましくは0.1~10質量%、より好ましくは1~5質量%である。硬化促進剤(D)の含有割合が前記範囲にあると、シロキサン系結合剤(A)の貯蔵安定性が向上し、また本実施形態の塗料組成物の乾燥性および塗膜の耐割れ性も優れる傾向にある。 When the curing accelerator (D) is used, its content is preferably 0.1 to 10% by mass, more preferably 1 to 5% by mass based on 100% by mass of the solid content of the first agent. When the content ratio of the curing accelerator (D) is within the above range, the storage stability of the siloxane-based binder (A) is improved, and the drying property of the coating composition of the present embodiment and the crack resistance of the coating film are also improved. It tends to be excellent.
 <有機樹脂(E)>
 第1剤は、本発明の目的および効果を損わない範囲で、シロキサン系結合剤(A)以外の有機樹脂(E)を含有してもよい。有機樹脂(E)としては、例えば、ポリビニルブチラール樹脂等のブチラール樹脂、アクリル樹脂が挙げられる。
<Organic resin (E)>
The first agent may contain an organic resin (E) other than the siloxane-based binder (A) within a range that does not impair the objects and effects of the present invention. Examples of the organic resin (E) include butyral resin such as polyvinyl butyral resin and acrylic resin.
 ポリビニルブチラール樹脂としては、例えば、エスレックBM-1、エスレックBM-2、エスレックBL-1(商品名;積水化学(株)製)が挙げられ、アクリル樹脂としては、例えば、ダイヤナールBR-106(商品名;三菱ケミカル(株)製)が挙げられる。 Examples of the polyvinyl butyral resin include S-REC BM-1, S-REC BM-2, and S-REC BL-1 (trade name; manufactured by Sekisui Chemical Co., Ltd.), and examples of the acrylic resin include DIALAL BR-106 ( Trade name: manufactured by Mitsubishi Chemical Corporation.
 第1剤は、1種または2種以上の有機樹脂(E)を含有することができる。
 有機樹脂(E)を使用する場合のその含有割合は、塗料組成物の塗装作業性や塗膜の耐割れ性の抑制の点から、第1剤の固形分100質量%中、好ましくは0.1~10質量%、より好ましくは0.5~8質量%である。
The 1st agent can contain 1 type(s) or 2 or more types of organic resin (E).
When the organic resin (E) is used, its content is preferably 0.1% in 100 mass% of the solid content of the first agent from the viewpoint of the coating workability of the coating composition and the crack resistance of the coating film. It is 1 to 10% by mass, more preferably 0.5 to 8% by mass.
 <増粘剤(F)>
 第1剤は、一般的に知られている増粘剤(F)を含有することができる。増粘剤(F)は、第1剤と後述する第2剤との混練性を良好なものとすることができる。
<Thickener (F)>
The first agent may contain a generally known thickener (F). The thickener (F) can improve the kneadability between the first agent and the second agent described later.
 増粘剤(F)としては、従来公知の増粘剤を制限なく使用することができる。増粘剤(F)としては、例えば、ポリアマイドワックス、ポリエチレンワックス、酸化ポリエチレンワックス等の有機系増粘剤;ベントナイト、第4級アンモニウム塩等で表面を処理したベントナイト(有機ベントナイト)等の無機系増粘剤が挙げられる。 As the thickener (F), conventionally known thickeners can be used without limitation. Examples of the thickener (F) include organic thickeners such as polyamide wax, polyethylene wax, and oxidized polyethylene wax; and inorganic substances such as bentonite (organic bentonite) whose surface is treated with quaternary ammonium salt. Examples include system thickeners.
 第1剤は、1種または2種以上の増粘剤(F)を含有することができる。
 増粘剤(F)を使用する場合のその含有割合は、本実施形態の塗料組成物の固形分100質量%中、好ましくは0.05~5質量%、より好ましくは0.1~3質量%である。
The 1st agent can contain 1 type(s) or 2 or more types of thickener (F).
When the thickening agent (F) is used, its content is preferably 0.05 to 5% by mass, more preferably 0.1 to 3% by mass based on 100% by mass of the solid content of the coating composition of the present embodiment. %.
 <有機溶剤>
 第1剤は、希釈用、貯蔵安定性向上、およびポットライフ向上等のために、通常、有機溶剤を含有する。
<Organic solvent>
The first agent usually contains an organic solvent for the purpose of dilution, improvement of storage stability, improvement of pot life, and the like.
 有機溶剤としては、例えば、グリコールエーテル系溶剤、ケトン系溶剤および酢酸エステル系溶剤から選択される少なくとも1種の有機溶剤(S1)が挙げられる。有機溶剤(S1)を含まない第1剤と比べて、有機溶剤(S1)を含む第1剤は、シロキサン系結合剤(A)の貯蔵安定性が向上する。これは、シロキサン系結合剤(A)が有することのあるシラノール基が有機溶剤(S1)の酸素原子との水素結合によって安定化され、その縮合反応が抑制されるためであると推測される。 The organic solvent includes, for example, at least one organic solvent (S1) selected from glycol ether solvents, ketone solvents and acetic acid ester solvents. Compared with the first agent containing no organic solvent (S1), the first agent containing an organic solvent (S1) has improved storage stability of the siloxane-based binder (A). It is speculated that this is because the silanol groups that the siloxane-based binder (A) may have are stabilized by hydrogen bonds with the oxygen atoms of the organic solvent (S1), and the condensation reaction thereof is suppressed.
 グリコールエーテル系溶剤としては、例えば、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテートが挙げられ、プロピレングリコールモノメチルエーテルが好ましい。ケトン系溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンが挙げられ、メチルエチルケトンが好ましい。酢酸エステル系溶剤としては、例えば、酢酸エチル、酢酸ブチルが挙げられ、酢酸エチルが好ましい。これらの中でも、グリコールエーテル系溶剤が好ましく、プロピレングリコールモノメチルエーテルがより好ましい。 Examples of glycol ether solvents include propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate, with propylene glycol monomethyl ether being preferred. Examples of the ketone solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, and methyl ethyl ketone is preferable. Examples of the acetic acid ester solvent include ethyl acetate and butyl acetate, and ethyl acetate is preferable. Among these, glycol ether solvents are preferable, and propylene glycol monomethyl ether is more preferable.
 第1剤は、1種または2種以上の有機溶剤(S1)を含有することができる。
 第1剤は、塗装された前記組成物の乾燥性の調整等のために、有機溶剤(S1)以外の有機溶剤(S2)を含んでいてもよい。
The 1st agent can contain 1 type(s) or 2 or more types of organic solvent (S1).
The first agent may contain an organic solvent (S2) other than the organic solvent (S1) in order to adjust the drying property of the coated composition.
 有機溶剤(S2)としては、例えば、アルコール系溶剤、芳香族系溶剤、セロソルブ系溶剤等の、塗料分野で通常使用されている有機溶剤が挙げられる。アルコール系溶剤としては、例えば、メタノール、エタノール、イソプロパノール、ブタノールが挙げられる。芳香族系溶剤としては、例えば、ベンゼン、キシレン、トルエンが挙げられる。セロソルブ系溶剤としては、例えば、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブが挙げられる。 Examples of the organic solvent (S2) include organic solvents that are normally used in the paint field, such as alcohol solvents, aromatic solvents and cellosolve solvents. Examples of alcohol solvents include methanol, ethanol, isopropanol, and butanol. Examples of aromatic solvents include benzene, xylene, and toluene. Examples of the cellosolve solvent include methyl cellosolve, ethyl cellosolve, and butyl cellosolve.
 第1剤は、1種または2種以上の有機溶剤(S2)を含有することができる。
 第1剤中の有機溶剤の含有割合は、特に限定されないが、通常は10~80質量%、好ましくは25~60質量%である。
The first agent may contain one kind or two or more kinds of organic solvents (S2).
The content ratio of the organic solvent in the first agent is not particularly limited, but is usually 10 to 80% by mass, preferably 25 to 60% by mass.
 <第1剤の調製>
 第1剤は、例えば、シロキサン系結合剤(A)、カオリン(B)およびモース硬度が5以上の顔料(C)、必要に応じて前述した成分(D)~(F)、有機溶剤等を混合して得られる。
<Preparation of the first agent>
The first agent is, for example, a siloxane-based binder (A), kaolin (B) and a pigment (C) having a Mohs hardness of 5 or more, and if necessary, the above-mentioned components (D) to (F), an organic solvent and the like. Obtained by mixing.
 ≪第2剤≫
 <亜鉛粉末(X)>
 第2剤は、亜鉛粉末(X)を含有する。亜鉛粉末(X)としては、形状、大きさ等は特に限定されるものではなく、塗料分野で従来公知のものを使用することができる。
<<Second agent>>
<Zinc powder (X)>
The second agent contains zinc powder (X). The zinc powder (X) is not particularly limited in shape, size, etc., and those conventionally known in the paint field can be used.
 亜鉛粉末(X)としては、例えば、金属亜鉛の粉末、および亜鉛合金の粉末が挙げられる。亜鉛合金としては、例えば、亜鉛と、アルミニウム、マグネシウムおよび錫から選択される少なくとも1種との合金が挙げられる。亜鉛粉末(X)を構成する粒子の形状としては、球状や鱗片状などの様々な形状が挙げられる。 Examples of the zinc powder (X) include powder of metallic zinc and powder of zinc alloy. Examples of the zinc alloy include an alloy of zinc and at least one selected from aluminum, magnesium and tin. Examples of the shape of the particles forming the zinc powder (X) include various shapes such as spherical shape and scale shape.
 亜鉛粉末(X)のメディアン径は、1~30μmである。
 第2剤は、1種または2種以上の亜鉛粉末(X)を含有することができる。
 亜鉛粉末(X)の含有割合は、本実施形態の塗料組成物の固形分100質量%中、通常は30~98質量%、好ましくは50~97質量%、より好ましくは65~95質量%である。亜鉛粉末(X)の含有割合が前記範囲にあると、本実施形態の塗膜は長期に渡って防錆性に優れる。したがって、本実施形態の塗料組成物は、いわゆる無機ジンクリッチペイントとして有用である。
The median diameter of the zinc powder (X) is 1 to 30 μm.
The second agent can contain one kind or two or more kinds of zinc powder (X).
The content of the zinc powder (X) is usually 30 to 98% by mass, preferably 50 to 97% by mass, and more preferably 65 to 95% by mass in 100% by mass of the solid content of the coating composition of the present embodiment. is there. When the content ratio of the zinc powder (X) is within the above range, the coating film of the present embodiment has excellent rust preventive properties over a long period of time. Therefore, the coating composition of the present embodiment is useful as a so-called inorganic zinc rich paint.
 ≪その他の成分≫
 第1剤および/または第2剤、あるいは本実施形態の塗料組成物は、様々な塗膜特性を確保する目的で、顔料分散剤、カオリン(B)および顔料(C)以外の体質顔料、着色顔料、防錆顔料、付着付与剤等のその他の成分をさらに含有することができる。その他の成分は1種単独で用いてもよく、2種以上を併用してもよい。
≪Other ingredients≫
The first agent and/or the second agent, or the coating composition of the present embodiment, the pigment dispersant, an extender other than kaolin (B) and the pigment (C), and a coloring agent for the purpose of ensuring various coating properties. Other components such as pigments, rust preventive pigments and adhesion-imparting agents can be further contained. The other components may be used alone or in combination of two or more.
 [塗料組成物キットの使用形態、塗料組成物の製造方法]
 本実施形態の塗料組成物キットは、一実施態様において、塗料製造業者が第1剤および第2剤をそれぞれ製造して、別個に塗装業者に提供し、塗装業者が第1剤と第2剤とを塗装前に両者を混合して、得られた塗料組成物を塗装する。なお、本実施形態の塗料組成物キットは、例えば、上述した各成分等から選ばれる少なくとも1種の成分を含有する第3剤等をさらに有することもできる。
[Usage form of coating composition kit, manufacturing method of coating composition]
In one embodiment, the paint composition kit of the present embodiment manufactures a first agent and a second agent by a paint manufacturer and provides them separately to a painter, and the painter prepares the first agent and the second agent. And are mixed before coating, and the resulting coating composition is coated. The coating composition kit of the present embodiment may further include, for example, a third agent containing at least one component selected from the above components and the like.
 本実施形態では、カオリン(B)および顔料(C)は第1剤に含まれる。これらの顔料を亜鉛粉末(X)を含有する第2剤に含める場合、顔料粉末の混合・分級工程が必要となり、また、貯蔵後に粉末同士の分級工程が必要となることがある。本実施形態は、一実施態様において、第2剤において亜鉛粉末(X)とカオリン(B)および顔料(C)等とを混合する工程や分級する工程を必要としないため、製造工程を簡略化できる。 In the present embodiment, kaolin (B) and pigment (C) are included in the first agent. When these pigments are included in the second agent containing the zinc powder (X), a step of mixing and classifying the pigment powders may be necessary, and a step of classifying the powders after storage may be necessary. In one embodiment, this embodiment does not require a step of mixing zinc powder (X) with kaolin (B), a pigment (C), or the like in the second agent, and thus simplifies the manufacturing process. it can.
 本実施形態の塗料組成物は、本実施形態の塗料組成物キットにおける前記第1剤と前記第2剤とを少なくとも混合することにより、得ることができる。例えば、第1剤および第2剤を撹拌機を用いて充分に撹拌および均一化する。 The coating composition of the present embodiment can be obtained by mixing at least the first agent and the second agent in the coating composition kit of the present embodiment. For example, the first agent and the second agent are sufficiently stirred and homogenized by using a stirrer.
 本実施形態の塗料組成物は、乾燥性に優れる。前記塗料組成物を用いることにより、防食性および厚膜での耐割れ性に優れるとともに、すべり係数が高い塗膜を形成することができる。 The coating composition of this embodiment has excellent dryness. By using the coating composition, it is possible to form a coating film having excellent corrosion resistance and crack resistance in a thick film and having a high slip coefficient.
 本実施形態の塗膜は、本実施形態の塗料組成物から形成され、防食・防錆塗膜として有用である。本実施形態の塗膜付き基材は、基材と、本実施形態の塗膜とを有する。例えば、本実施形態の塗料組成物を基材面に塗装し、硬化させることにより、本実施形態の塗膜および塗膜付き基材を得ることができる。 The coating film of the present embodiment is formed from the coating composition of the present embodiment and is useful as an anticorrosion/rustproof coating film. The base material with a coating film of the present embodiment has a base material and the coating film of the present embodiment. For example, the coating composition and the coated substrate of the present embodiment can be obtained by applying the coating composition of the present embodiment on the surface of the substrate and curing the coating composition.
 基材としては、例えば、鋼材等の従来公知の基材が挙げられ、具体例としては、船舶等の船舶構造物、橋梁、タンク等の土木構造物、石油掘削プラント等のプラント構造物、パイプラインなどの鉄鋼構造物;家屋、ビル等の建築構造物;ガードフェンス、産業機械等の屋外器具が挙げられる。これらの基材表面に、最初の防食塗膜として本実施形態の塗料組成物が塗装される。通常、本実施形態の塗料組成物が塗装される基材は、ISO  8501-1における除錆度Sa2  1/2以上に相当する条件で、ブラスト処理が行われる。また、必要に応じて、本実施形態の塗料組成物から得られる塗膜上へ、下塗り塗料、中塗り塗料および上塗り塗料が塗布される。 Examples of the base material include conventionally known base materials such as steel materials, and specific examples thereof include ship structures such as ships, civil engineering structures such as bridges and tanks, plant structures such as oil drilling plants, and pipes. Steel structures such as lines; building structures such as houses and buildings; outdoor equipment such as guard fences and industrial machines. The coating composition of the present embodiment is applied to the surface of these base materials as the first anticorrosion coating film. Generally, the base material to which the coating composition of the present embodiment is applied is subjected to the blast treatment under the conditions corresponding to the degree of rust removal Sa21/2 or more in ISO8501-1. Further, if necessary, an undercoat paint, an intermediate coat paint and a top coat paint are applied onto the coating film obtained from the coating composition of the present embodiment.
 一実施態様において、前記基材としては、具体的にはボルト締め施工可能な鋼材が挙げられ、本実施形態の塗料組成物は、鋼材のボルト締め接合部における接合面に塗布される。この接合面では、本実施形態の塗料組成物が塗装された塗膜上へは、他の塗料は塗装されず、本実施形態の塗料組成物からなる塗膜が塗装された接合面同士が接合して、すべり係数0.5以上の摩擦力が発揮される。 In one embodiment, specifically, the base material includes a steel material that can be bolted, and the coating composition of the present embodiment is applied to a joint surface of a steel material at a bolted joint portion. At this joint surface, other paint is not coated on the coating film coated with the coating composition of the present embodiment, and the joint surfaces coated with the coating film of the coating composition of the present embodiment are bonded to each other. As a result, a frictional force with a slip coefficient of 0.5 or more is exhibited.
 本実施形態の塗料組成物の塗装方法としては、通常、エアースプレー、エアレススプレーが挙げられる。塗装後の塗料組成物の硬化方法としては、特に制限はなく、従来公知の硬化方法を適用することができる。例えば、基材上に塗布された塗料組成物は、空気中に(必要に応じて加熱しながら)放置すると、溶剤が揮発し、シロキサン系結合剤(A)が塗料組成物中の水または空気中の水分(湿気)によって加水分解縮合反応することにより、硬化する。一実施態様において、塗装条件は、通常は5~40℃である。 As a coating method of the coating composition of the present embodiment, air spray and airless spray are usually mentioned. The curing method of the coating composition after coating is not particularly limited, and a conventionally known curing method can be applied. For example, when a coating composition applied on a substrate is left to stand in the air (while being heated if necessary), the solvent volatilizes, and the siloxane-based binder (A) becomes water or air in the coating composition. It is cured by a hydrolysis-condensation reaction due to the water content (moisture) therein. In one embodiment, the coating conditions are typically 5-40°C.
 本実施形態の塗膜の平均乾燥膜厚は、好ましくは40μm以上、より好ましくは40~120μmである。被塗物である基材の状態および用途に応じて、前記塗膜の平均乾燥膜厚は薄膜である40μm未満であってもよい。なお、本実施形態の塗膜は、平均乾燥膜厚が120μmを超える厚膜である場合、例えば120μm超200μm以下でも、耐割れ性に優れている。 The average dry film thickness of the coating film of the present embodiment is preferably 40 μm or more, more preferably 40 to 120 μm. The average dry film thickness of the coating film may be less than 40 μm, which is a thin film, depending on the state of the substrate to be coated and the application. The coating film of the present embodiment is excellent in crack resistance even when the average dry film thickness is more than 120 μm, for example, more than 120 μm and 200 μm or less.
 本実施形態の塗膜のすべり係数は、好ましくは0.5以上、より好ましくは0.55以上であり、上限は特に限定されないが、0.8であってもよい。すべり係数が0.5以上と高い塗膜により、例えば、ボルト締め接合作業時に、安全上、鋼材の継ぎ手部に用いられる添接板等の補強材のサイズを大きくする必要がなくなり、また締め付けるボルト数を増やす必要もなくなるため、作業コストの点で好ましい。 The slip coefficient of the coating film of this embodiment is preferably 0.5 or more, more preferably 0.55 or more, and the upper limit is not particularly limited, but may be 0.8. Due to the coating film having a high slip coefficient of 0.5 or more, it is not necessary to increase the size of the reinforcing material such as the splicing plate used for the joint portion of the steel material for the sake of safety at the time of bolting and joining work, and the bolt to be tightened. Since it is not necessary to increase the number, it is preferable in terms of work cost.
 以下に実施例を挙げて、本発明を更に詳しく説明するが、本発明はこれらの実施例のみに限定されるものではない。以下の説明において、特に言及しない限り、「質量部」は「部」と記載する。 The present invention will be described in more detail with reference to examples below, but the present invention is not limited to these examples. In the following description, "parts by mass" will be referred to as "parts" unless otherwise specified.
 表中に記載した各成分の詳細は以下のとおりである。
・アルキルシリケート「エチルシリケート40」:コルコート(株)製
・亜鉛粉末「F-500」:本荘ケミカル(株)製
・カオリン「ASP 200」:BASFジャパン(株)製
・タルク「FC-1タルク」:(株)福岡タルク工業所製
・マイカ「マイカパウダー325メッシュ」:(株)福岡タルク工業所製
・炭酸カルシウム「カルファイン200M-C」:丸尾カルシウム(株)製
・黄色酸化鉄「TSY-1」:戸田工業(株)製
・カリ長石「UNISPAR PG-K10」:
   Sibelco Malaysia Sdn Bhd製
・微粉末シリカ「AEROSIL R972」:日本アエロジル(株)製
・アクリル樹脂「ダイヤナールBR-106」:三菱ケミカル(株)製
・ポリビニルブチラール樹脂「エスレックBM-2」:積水化学(株)製
・ポリアマイドワックス「ディスパロン A630-20X」:楠本化成(株)製
・有機ベントナイト「BENTONE SD-2」:Elementis Specialties,Inc.製
Details of each component described in the table are as follows.
・Alkyl silicate "Ethyl silicate 40": made by Colcoat Co., Ltd. ・Zinc powder "F-500": made by Honjo Chemical Co., Ltd. ・Kaolin "ASP 200": made by BASF Japan Ltd. ・Talc "FC-1 talc" : Mica "Mica powder 325 mesh" manufactured by Fukuoka Talc Industry Co., Ltd.: Calcium carbonate "Calfine 200M-C" manufactured by Fukuoka Talc Industry Co., Ltd.: Yellow iron oxide "TSY-" manufactured by Maruo Calcium Co., Ltd. 1": Potash feldspar "UNISPAR PG-K10" manufactured by Toda Kogyo Co., Ltd.:
Sibelco Malaya Sdn Bhd-Fine powder silica "AEROSIL R972": Nippon Aerosil Co., Ltd.-Acrylic resin "Dianal BR-106": Mitsubishi Chemical Co., Ltd.-Polyvinyl butyral resin "ESREC BM-2": Sekisui Chemical Polyamide wax "Disparon A630-20X" manufactured by Kusumoto Kasei Co., Ltd. Organic bentonite "BENTONE SD-2" manufactured by Kusumoto Kasei Co., Ltd.: Elementis Specialties, Inc. Made
 [調製例]
 28.00部のエチルシリケート40と、39.42部のプロピレングリコールモノメチルエーテル(PGM)と、6.92部のエタノール(工業用エタノール)と、1.56部の脱イオン水と、触媒として0.10部の35%塩酸とを容器(1)に仕込み、さらに1.00部の三酸化ホウ素を容器(1)に仕込んで、25℃で1時間30分攪拌した後、16時間放冷した。
[Preparation example]
28.00 parts of ethyl silicate 40, 39.42 parts of propylene glycol monomethyl ether (PGM), 6.92 parts of ethanol (technical ethanol), 1.56 parts of deionized water and 0 as a catalyst. 10 parts of 35% hydrochloric acid was charged in the container (1), 1.00 parts of boron trioxide was charged in the container (1), and the mixture was stirred at 25° C. for 1 hour and 30 minutes, and then left to cool for 16 hours. ..
 さらに、別の容器(2)にて、1.00部のアクリル樹脂と、5.00部のキシレンとを仕込み、25℃で30分撹拌して、アクリル樹脂ワニスを準備した。
 次に、16時間放冷した容器(1)に10.00部のカオリンと、6.00部の黄色酸化鉄と、1.00部の微粉末シリカとを25℃にて撹拌しながら仕込み、最後に予め容器(2)にて準備した6.00部のアクリル樹脂ワニスを仕込んで、均一になるまで25℃にてディスパー撹拌し、第1剤(I-1)を調製した。
Further, in another container (2), 1.00 parts of acrylic resin and 5.00 parts of xylene were charged and stirred at 25° C. for 30 minutes to prepare an acrylic resin varnish.
Next, 10.00 parts of kaolin, 6.00 parts of yellow iron oxide, and 1.00 parts of finely powdered silica were charged into a container (1) that had been allowed to cool for 16 hours while stirring at 25° C., Finally, 6.00 parts of the acrylic resin varnish prepared in advance in the container (2) was charged, and the mixture was stirred at 25° C. until it became uniform to prepare the first agent (I-1).
 さらに各原料の種類および仕込量を、表1-1および1-2に記載のように変更した以外は第1剤(I-1)の調製と同様の操作を行い、第1剤(I-2)~(I-16)、(cI-1)~(cI-4)を調製した。 Further, the same operation as in the preparation of the first agent (I-1) was performed except that the kind and the charging amount of each raw material were changed as shown in Tables 1-1 and 1-2, and the first agent (I- 2) to (I-16) and (cI-1) to (cI-4) were prepared.
 <シロキサン系結合剤(A)の重量平均分子量(Mw)>
 初期(調製後1日程度経過後)の第1剤(I-1)~(I-16)、(cI-1)~(cI-4)中のシロキサン系結合剤(A)の重量平均分子量(Mw)を、ゲルパーミエーションクロマトグラフィー(GPC)法で測定した。
<Weight average molecular weight (Mw) of siloxane-based binder (A)>
Weight average molecular weight of the siloxane-based binder (A) in the first agents (I-1) to (I-16) and (cI-1) to (cI-4) in the initial stage (about 1 day after preparation) (Mw) was measured by gel permeation chromatography (GPC) method.
 GPCの測定条件は、以下のとおりである。前記第1剤をそれぞれ少量取りテトラヒドロフランを加えて希釈し、得られた溶液をメンブレムフィルターで濾過して、GPC測定サンプルを得た。
・装置  :日本ウォーターズ社製 2695セパレ-ションモジュール
      (Aliance GPC マルチシステム)
・カラム :東ソー社製 TSKgel Super H4000
            TSKgel Super H2000
            TSKgel Super H2000
            上記3本を直列につないで測定。
・溶離液 :テトラヒドロフラン(THF)
・流速  :0.6ml/分
・検出器 :Shodex RI-104
・カラム恒温槽温度:40℃
・標準物質:ポリスチレン
The measurement conditions of GPC are as follows. A small amount of each of the first agents was taken and diluted with tetrahydrofuran, and the resulting solution was filtered through a membrane filter to obtain a GPC measurement sample.
・Apparatus: 2695 Separation Module (Aliance GPC Multi System) manufactured by Japan Waters Co., Ltd.
・Column: TOSgel Super H4000 manufactured by Tosoh Corporation
TSKgel Super H2000
TSKgel Super H2000
Measured by connecting the above three in series.
・Eluent: Tetrahydrofuran (THF)
・Flow rate: 0.6 ml/min ・Detector: Shodex RI-104
・Column constant temperature bath temperature: 40℃
・Standard substance: polystyrene
 <シロキサン系結合剤(A)の加水分解率>
 シロキサン系結合剤(A)の加水分解率は、前述した式1に基づき算出した。
<Hydrolysis rate of siloxane-based binder (A)>
The hydrolysis rate of the siloxane-based binder (A) was calculated based on the above-mentioned formula 1.
 [実施例1~16、比較例1~4]
 第2剤と、調製後、23℃で1ヵ月貯蔵した第1剤とを、表1-1および1-2に記載された割合(質量部)でポリエチレン製容器に仕込み、ハイスピードディスパーで10分間分散処理を行い、塗料組成物を調製した。
[Examples 1 to 16 and Comparative Examples 1 to 4]
The second agent and the first agent, which was stored at 23° C. for 1 month after preparation, were charged in a polyethylene container at a ratio (parts by mass) shown in Tables 1-1 and 1-2, and a high-speed disperser was used for 10 A dispersion treatment was carried out for a minute to prepare a coating composition.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 [評価試験]
 <貯蔵安定性>
 調製例で得られた第1剤(I-1)~(I-16)、(cI-1)~(cI-4)について、23℃で12ヵ月間貯蔵後の状態から、表2に記載の基準で貯蔵安定性を評価した。
[Evaluation test]
<Storage stability>
The first agents (I-1) to (I-16) and (cI-1) to (cI-4) obtained in Preparation Example are shown in Table 2 from the state after storage at 23° C. for 12 months. The storage stability was evaluated according to the standard.
 また、23℃で1ヵ月、6ヵ月および12ヵ月経過した第1剤(I-1)~(I-16)、(cI-1)~(cI-4)中のシロキサン系結合剤(A)の重量平均分子量(Mw)を、前記GPC法で測定した。 In addition, the siloxane-based binder (A) in the first agents (I-1) to (I-16) and (cI-1) to (cI-4) that have been stored for 1 month, 6 months, and 12 months at 23°C. The weight average molecular weight (Mw) of was measured by the GPC method.
 <乾燥性>
 サンドブラスト鋼板(150mm×70mm×2.3mm、Sa2  1/2以上)に、実施例および比較例で得られた各塗料組成物を乾燥膜厚が75μmになるようにエアースプレーで塗布し、25℃、70%相対湿度の条件で乾燥しながら、1時間毎にメチルエチルケトン(MEK)にて塗膜を50回ラビングして塗膜が溶けなくなるまでの時間を測定し、表2に記載の基準で乾燥性を評価した。
<Drying property>
Each coating composition obtained in Examples and Comparative Examples was applied to a sandblasted steel plate (150 mm×70 mm×2.3 mm, Sa2 1/2 or more) by air spraying so that the dry film thickness was 75 μm, and the temperature was 25° C. While drying under the condition of 70% relative humidity, the coating film is rubbed with methyl ethyl ketone (MEK) 50 times every hour to measure the time until the coating film does not dissolve, and dried according to the criteria shown in Table 2. The sex was evaluated.
 <防食性>
 サンドブラスト鋼板(150mm×70mm×2.3mm、Sa2  1/2以上)に、実施例および比較例で得られた各塗料組成物を乾燥膜厚が75μmになるようにエアースプレーで塗布し、25℃、70%相対湿度の条件で7日間乾燥して試験塗板を作成し、屋外暴露(広島県大竹市)を2年行った後の試験塗板(一般部、カット部)に生じたサビ、フクレの発生程度を、表2に記載の基準で評価した。
<Corrosion resistance>
Each coating composition obtained in Examples and Comparative Examples was applied to a sandblasted steel plate (150 mm×70 mm×2.3 mm, Sa2 1/2 or more) by air spraying so that the dry film thickness was 75 μm, and the temperature was 25° C. After drying for 7 days under the condition of 70% relative humidity, a test coated plate was prepared, and exposed to the outdoors (Otake City, Hiroshima Prefecture) for 2 years. The degree of occurrence was evaluated according to the criteria shown in Table 2.
 <耐割れ性>
 サンドブラスト鋼板(150mm×70mm×2.3mm、Sa2  1/2以上)に、実施例および比較例で得られた各塗料組成物を乾燥膜厚が200μmになるようにエアースプレーで塗布し、25℃、70%相対湿度の条件で7日間乾燥させ、耐割れ性試験用塗板を作成し、表面状態を観察し、表2に記載の基準にて耐割れ性を評価した。
<Crack resistance>
Each coating composition obtained in Examples and Comparative Examples was applied to a sandblasted steel plate (150 mm×70 mm×2.3 mm, Sa2 1/2 or more) by air spraying so that the dry film thickness was 200 μm, and the temperature was 25° C. , 70% relative humidity, and dried for 7 days to prepare a coated plate for a crack resistance test. The surface condition was observed, and the crack resistance was evaluated according to the criteria shown in Table 2.
 <すべり係数>
 グリッドブラスト処理を行ったSM490板の両面に、実施例および比較例で得られた各塗料組成物を乾燥膜厚が75μmになるようにエアースプレーで塗布し、1ヶ月間乾燥させて、塗装試験体を得た。作製した塗装試験体をトルシア形高力TCボルト(M22)にて締め付け、引張試験機を用いて、すべり係数を測定し、表2に記載の基準にて評価した。
<Slip coefficient>
Each of the coating compositions obtained in Examples and Comparative Examples was applied by air spray to both sides of the grid-blasted SM490 plate by air spraying to a dry film thickness of 75 μm, followed by drying for one month, and a coating test. Got the body The prepared coated test piece was tightened with a torcia-type high-strength TC bolt (M22), the slip coefficient was measured using a tensile tester, and evaluation was performed according to the criteria shown in Table 2.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

Claims (10)

  1.  シロキサン系結合剤(A)、カオリン(B)およびモース硬度が5以上の顔料(C)を含有する第1剤と、
     亜鉛粉末(X)を含有する第2剤と
    を有する塗料組成物キット。
    A first agent containing a siloxane-based binder (A), kaolin (B) and a pigment (C) having a Mohs hardness of 5 or more;
    A coating composition kit having a second agent containing zinc powder (X).
  2.  前記シロキサン系結合剤(A)の重量平均分子量(Mw)が、500~10,000である請求項1に記載の塗料組成物キット。 The coating composition kit according to claim 1, wherein the siloxane-based binder (A) has a weight average molecular weight (Mw) of 500 to 10,000.
  3.  前記シロキサン系結合剤(A)が、テトラアルコキシシランおよびアルキルトリアルコキシシランから選択される少なくとも1種の化合物(A1)の縮合物である請求項1または2に記載の塗料組成物キット。 The coating composition kit according to claim 1 or 2, wherein the siloxane-based binder (A) is a condensate of at least one compound (A1) selected from tetraalkoxysilane and alkyltrialkoxysilane.
  4.  前記顔料(C)が、黄色酸化鉄、カリ長石およびシリカから選択される少なくとも1種を含む請求項1~3のいずれか1項に記載の塗料組成物キット。 The coating composition kit according to any one of claims 1 to 3, wherein the pigment (C) contains at least one selected from yellow iron oxide, potassium feldspar, and silica.
  5.  請求項1~4のいずれか1項に記載の塗料組成物キットにおける前記第1剤と前記第2剤とを少なくとも混合して得られた塗料組成物。 A coating composition obtained by mixing at least the first agent and the second agent in the coating composition kit according to any one of claims 1 to 4.
  6.  請求項1~4のいずれか1項に記載の塗料組成物キットにおける前記第1剤と前記第2剤とを少なくとも混合する工程を有する、塗料組成物の製造方法。 A method for producing a coating composition, comprising a step of mixing at least the first agent and the second agent in the coating composition kit according to any one of claims 1 to 4.
  7.  請求項5に記載の塗料組成物から形成された塗膜。 A coating film formed from the coating composition according to claim 5.
  8.  基材と、請求項7に記載の塗膜とを有する、塗膜付き基材。 A substrate with a coating, which comprises the substrate and the coating according to claim 7.
  9.  前記基材が、鉄鋼構造物を構成する鋼材である請求項8に記載の塗膜付き基材。 The base material with a coating according to claim 8, wherein the base material is a steel material constituting a steel structure.
  10.  鋼材と、前記鋼材のボルト締め接合部における接合面に形成された請求項7に記載の塗膜とを有する、塗膜付き鋼材。 A steel material with a coating, comprising a steel material and the coating film according to claim 7 formed on a joint surface of a bolted joint portion of the steel material.
PCT/JP2019/050865 2018-12-27 2019-12-25 Coating composition kit and use thereof WO2020138186A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020563353A JP7209015B2 (en) 2018-12-27 2019-12-25 Paint composition kit and its use
CN201980084936.8A CN113227267B (en) 2018-12-27 2019-12-25 Coating composition set and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018245236 2018-12-27
JP2018-245236 2018-12-27

Publications (1)

Publication Number Publication Date
WO2020138186A1 true WO2020138186A1 (en) 2020-07-02

Family

ID=71127219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050865 WO2020138186A1 (en) 2018-12-27 2019-12-25 Coating composition kit and use thereof

Country Status (3)

Country Link
JP (1) JP7209015B2 (en)
CN (1) CN113227267B (en)
WO (1) WO2020138186A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10298451A (en) * 1997-05-01 1998-11-10 Nitsupan Kenkyusho:Kk Cleaning coating composition
JP2006521419A (en) * 2003-02-04 2006-09-21 ダウ・コーニング・コーポレイション Coating composition and knitted fabric coated therewith
JP2008031237A (en) * 2006-07-27 2008-02-14 Kansai Paint Co Ltd Inorganic paint rich in zinc and method of forming multiple layer coated film using the same
JP2012077132A (en) * 2010-09-30 2012-04-19 Dainippon Toryo Co Ltd Zinc dust-containing high durability inorganic coating composition
WO2014119784A1 (en) * 2013-02-04 2014-08-07 関西ペイント株式会社 Primary anti-corrosive coating composition, and coated steel structure which has been coated with same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107556909A (en) * 2017-08-29 2018-01-09 上海宜瓷龙新材料股份有限公司 High temperature resistant zinc-rich anti-corrosion primer composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10298451A (en) * 1997-05-01 1998-11-10 Nitsupan Kenkyusho:Kk Cleaning coating composition
JP2006521419A (en) * 2003-02-04 2006-09-21 ダウ・コーニング・コーポレイション Coating composition and knitted fabric coated therewith
JP2008031237A (en) * 2006-07-27 2008-02-14 Kansai Paint Co Ltd Inorganic paint rich in zinc and method of forming multiple layer coated film using the same
JP2012077132A (en) * 2010-09-30 2012-04-19 Dainippon Toryo Co Ltd Zinc dust-containing high durability inorganic coating composition
WO2014119784A1 (en) * 2013-02-04 2014-08-07 関西ペイント株式会社 Primary anti-corrosive coating composition, and coated steel structure which has been coated with same

Also Published As

Publication number Publication date
JP7209015B2 (en) 2023-01-19
CN113227267B (en) 2022-09-13
CN113227267A (en) 2021-08-06
JPWO2020138186A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
Wang et al. Sol–gel coatings on metals for corrosion protection
KR100982451B1 (en) Anti-corrosion ceramic coating material containing nano-sized flakes
KR102611925B1 (en) Heat-resistant coating composition, heat-resistant coating film, substrate with heat-resistant coating film and producing method thereof
CN101935498A (en) Heat-resisting organic silicon antiseptic inner tank coating
CN101633808A (en) High chlorinated polyethylene coating containing stainless steel flakes and preparation method thereof
JP5278931B2 (en) Energy-saving anticorrosion metal coating composition and method for producing the same
JP2020520396A (en) Aqueous sol-gel composition as a storage stable precursor for zinc dust coatings
CN102268221A (en) Double-component aqueous inorganic non-expandable fireproof coating and preparation method thereof
JPH11510536A (en) Coating mixture, process for its preparation and its use in coating applications
EP3802699B1 (en) Particulate coating composition
JP2792231B2 (en) Composition for metal surface treatment
JP2008031237A (en) Inorganic paint rich in zinc and method of forming multiple layer coated film using the same
JP6093912B1 (en) Surface treatment agent for metal material and metal material with surface treatment film
JP7209015B2 (en) Paint composition kit and its use
WO2018008728A1 (en) Inorganic zinc-rich paint
JP6645712B2 (en) Heat resistant coating method
KR101054600B1 (en) Heavy-duty ceramic coating composition with environmental friendliness
JPH061952A (en) Heat-resistant coating
KR20220019109A (en) Heat-resistant coating composition, heat-resistant coating film, substrate with heat-resistant coating film, and manufacturing method thereof
CA2986952C (en) Water-based zinc-rich pre-construction primer
KR102390336B1 (en) Oil surface tolerant high functional ceramic composite coating material
JPS58109568A (en) Corrosion-resistant paint composition
KR20190093557A (en) Primer coating composition
KR101194019B1 (en) Surface protective coatings based on inorganic-organic 3-dimensional network structure
JPS63182383A (en) Inorganic zinc dust paint

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903879

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020563353

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19903879

Country of ref document: EP

Kind code of ref document: A1