JP7085081B1 - Composite member and its manufacturing method - Google Patents

Composite member and its manufacturing method Download PDF

Info

Publication number
JP7085081B1
JP7085081B1 JP2022508566A JP2022508566A JP7085081B1 JP 7085081 B1 JP7085081 B1 JP 7085081B1 JP 2022508566 A JP2022508566 A JP 2022508566A JP 2022508566 A JP2022508566 A JP 2022508566A JP 7085081 B1 JP7085081 B1 JP 7085081B1
Authority
JP
Japan
Prior art keywords
inorganic particles
layer
composite member
inorganic
layer made
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022508566A
Other languages
Japanese (ja)
Other versions
JPWO2022208981A1 (en
JPWO2022208981A5 (en
Inventor
章弘 望月
康之 竹田
高士 見置
友美 香村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Priority claimed from PCT/JP2021/042383 external-priority patent/WO2022208981A1/en
Application granted granted Critical
Publication of JP7085081B1 publication Critical patent/JP7085081B1/en
Publication of JPWO2022208981A1 publication Critical patent/JPWO2022208981A1/ja
Publication of JPWO2022208981A5 publication Critical patent/JPWO2022208981A5/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明の目的は、樹脂同士、または樹脂と異種材料とを高い接合強度、生産性で複合化した複合部材およびその新たな製造方法提供することにある。本発明の目的は、基材上に無機粒子からなる層を有する第1部材と、エラストマからなる第2部材、とを無機粒子からなる層を介して接合してなる複合部材であって、該無機粒子からなる層が、平均粒径1nm以上20nm未満の無機粒子を配置した面を有する層であり、該面の少なくとも一部が構造色を有する複合部材、によって達成された。An object of the present invention is to provide a composite member in which resins or resins and different materials are composited with high bonding strength and productivity, and a new manufacturing method thereof. An object of the present invention is a composite member formed by joining a first member having a layer made of inorganic particles on a substrate and a second member made of elastoma via a layer made of inorganic particles. The layer made of inorganic particles is a layer having a surface on which inorganic particles having an average particle size of 1 nm or more and less than 20 nm are arranged, and is achieved by a composite member in which at least a part of the surface has a structural color.

Description

本発明は、樹脂同士、または樹脂と異種材料とが接合された複合部材およびその製造方法に関する。 The present invention relates to a composite member in which resins or resins and different materials are bonded to each other, and a method for producing the same.

樹脂同士、または樹脂と金属やガラス、無機材料といった異種材料とが接合された複合部材は、従来から、インストルメントパネル周りのコンソールボックス等の自動車の内装部材やエンジン周り部品、インテリア部品、デジタルカメラや携帯電話等の電子機器の筐体部、インターフェース接続部、電源端子部等の外界と接触する部品に用いられている。 Composite members made by joining resins or resin with different materials such as metal, glass, and inorganic materials have traditionally been used for automobile interior components such as console boxes around instrument panels, engine components, interior components, and digital cameras. It is used for parts that come into contact with the outside world, such as housings, interface connections, and power supply terminals of electronic devices such as mobile phones.

樹脂と樹脂、または樹脂と異種材料とを複合化する方法としては、樹脂と接合される相手側部材の接合面に微小な凹凸を形成しておきアンカー効果で接合する方法、接着剤や両面テープを用いて接着する方法、異種材料及び/又は樹脂成形品に折り返し片や爪等の固定部材を設け、この固定部材を用いて両者を固着させる方法、ねじ等を用いて接合する方法等がある。これらの中でも、樹脂板、金属板に微小な凹凸を形成する方法や接着剤を用いる方法は、複合成形品を設計する形状自由度の点で有効である(特許文献1、2)。
これらに記載の方法は、レーザーで対象部材の表面に溝を形成するため、局所的な発熱があり、接合部材の熱膨張に起因する変形を生じることがあった。また樹脂にレーザー加工した場合、樹脂の炭化物が接合面に残り経時での接合性を劣化させる場合があるという課題があった。
それに対し特許文献3では、無機材料からなる層を有する技術が提案されている。
As a method of combining a resin and a resin, or a resin and a different material, a method of forming minute irregularities on the joint surface of the mating member to be joined with the resin and joining by an anchor effect, an adhesive or a double-sided tape. There are a method of adhering using a different material and / or a method of providing a fixing member such as a folded piece or a claw on a resin molded product and fixing the two using this fixing member, a method of joining using a screw or the like. .. Among these, a method of forming minute irregularities on a resin plate or a metal plate or a method of using an adhesive is effective in terms of the degree of freedom in shape for designing a composite molded product (Patent Documents 1 and 2).
In the methods described in these, since a groove is formed on the surface of the target member by a laser, there is local heat generation, and deformation due to thermal expansion of the joined member may occur. Further, when the resin is laser-processed, there is a problem that carbides of the resin may remain on the joint surface and deteriorate the bondability over time.
On the other hand, Patent Document 3 proposes a technique having a layer made of an inorganic material.

国際公開第WO2014/125999号パンフレットInternational Publication No. WO2014 / 125999 Pamphlet 特開2014-117724号公報Japanese Unexamined Patent Publication No. 2014-117724 特開2019-89297号公報Japanese Unexamined Patent Publication No. 2019-89297

特許文献3に記載の方法では、特許文献1、2が有する課題を解決できたが、接合強度としてはまだ十分でなかった。また接着強度のバラつきが発生しやすく生産性の点で課題があった。
本発明の目的は、樹脂同士、または樹脂と金属やガラス、無機材料といった異種材料とを生産性高く複合化した複合部材の新たな製造方法を提供することにある。
The method described in Patent Document 3 could solve the problems of Patent Documents 1 and 2, but the bonding strength was still insufficient. In addition, there is a problem in terms of productivity because the adhesive strength tends to vary.
An object of the present invention is to provide a new method for manufacturing a composite member in which resins or different materials such as metal, glass, and an inorganic material are composited with high productivity.

本発明は、下記によって達成された。
1. 基材上に無機粒子からなる層を有する第1部材と、エラストマからなる第2部材、とを無機粒子からなる層を介して接合してなる複合部材であって、該無機粒子からなる層が、平均粒径1nm以上20nm未満の無機粒子を配置した面を有する層であり、該面の少なくとも一部が構造色を有する複合部材。
2. 基材上に無機粒子からなる層を有する第1部材と、エラストマからなる第2部材、とを無機粒子からなる層を介して接合してなる複合部材の製造方法であって、該無機粒子からなる層が、平均粒径1nm以上20nm未満の無機粒子を0.1質量%以上15質量%未満の濃度で溶媒中に分散した分散液を使用して形成したものである、複合部材の製造方法。
3. 前記基材が、樹脂またはエラストマからなる前記2に記載の複合部材の製造方法。
4. 前記無機粒子を分散する分散液の溶媒が、沸点100℃以下の有機溶媒である前記2または3記載の複合部材の製造方法。
5. 前記基材上の無機粒子からなる層が、移流集積法により形成されたものである前記1~4いずれかに記載の複合部材の製造方法。
6. 前記第1部材と第2部材との接合方法が、溶着または射出成形である前記2~5いずれかに記載の製造方法。
7. 前記第1部材と第2部材の接合が、溶着または射出成形である前記1記載の複合部材。
The present invention has been achieved by:
1. 1. A composite member formed by joining a first member having a layer made of inorganic particles on a base material and a second member made of elastoma via a layer made of inorganic particles, and the layer made of the inorganic particles is formed. A composite member having a surface on which inorganic particles having an average particle size of 1 nm or more and less than 20 nm are arranged, and at least a part of the surface has a structural color.
2. 2. A method for manufacturing a composite member in which a first member having a layer made of inorganic particles on a substrate and a second member made of elastoma are joined via a layer made of inorganic particles, from the inorganic particles. A method for producing a composite member, wherein the layer is formed by using a dispersion liquid in which inorganic particles having an average particle size of 1 nm or more and less than 20 nm are dispersed in a solvent at a concentration of 0.1% by mass or more and less than 15% by mass. ..
3. 3. The method for producing a composite member according to the above 2, wherein the substrate is made of a resin or an elastomer.
4. The method for producing a composite member according to 2 or 3 above, wherein the solvent of the dispersion liquid in which the inorganic particles are dispersed is an organic solvent having a boiling point of 100 ° C. or lower.
5. The method for producing a composite member according to any one of 1 to 4, wherein the layer made of inorganic particles on the substrate is formed by an advection accumulation method.
6. The manufacturing method according to any one of 2 to 5, wherein the method of joining the first member and the second member is welding or injection molding.
7. The composite member according to 1 above, wherein the joining of the first member and the second member is welding or injection molding.

本発明では、接合強度、生産性の高い複合部材およびその製造方法を提供することができる。 INDUSTRIAL APPLICABILITY The present invention can provide a composite member having high joint strength and productivity and a method for manufacturing the same.

本発明の第1部材の斜視図である。It is a perspective view of the 1st member of this invention. 複合部材実施態様1の斜視図である。It is a perspective view of the composite member embodiment 1. 複合部材実施態様1の接合強度を評価のための引張方向、速度を示す模式図である。It is a schematic diagram which shows the tensile direction, and the velocity for evaluating the joint strength of the composite member embodiment 1. 実施例3の第1部材の移流集積後の写真とSEM写真である。SEM撮影のため無機粒子を配置した面を切り出しているが、無機粒子を配置した面は、構造色を有している。It is a photograph and SEM photograph after advection accumulation of the 1st member of Example 3. The surface on which the inorganic particles are arranged is cut out for SEM photography, and the surface on which the inorganic particles are arranged has a structural color. 比較例1の第1部材の移流集積後の写真とSEM写真である。It is a photograph and SEM photograph after advection accumulation of the 1st member of Comparative Example 1.

以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。 Hereinafter, embodiments of the present invention will be described. The present invention is not limited to the following embodiments.

<複合部材>
本発明の複合部材の製造方法一態様は、基材上に無機粒子からなる層を有する第1部材と、エラストマからなる第2部材、とを無機粒子からなる層を介して接合してなる複合部材の製造方法であって、該無機粒子からなる層が、平均粒径1nm以上20nm未満の無機粒子を0.1質量%以上15質量%未満の濃度で分散した分散液を使用し、移流集積法により形成したものであることを特徴とする。
<Composite member>
One aspect of the method for manufacturing a composite member of the present invention is a composite in which a first member having a layer made of inorganic particles on a substrate and a second member made of elastoma are joined via a layer made of inorganic particles. A method for manufacturing a member, in which a layer composed of the inorganic particles is advected and accumulated by using a dispersion liquid in which inorganic particles having an average particle size of 1 nm or more and less than 20 nm are dispersed at a concentration of 0.1% by mass or more and less than 15% by mass. It is characterized by being formed by the method.

≪基材上に無機粒子からなる層を有する第1部材≫
本発明の第1部材上の無機粒子からなる層(以下、単に粒子層ともいう)は、平均粒径1nm以上20nm未満の無機粒子からなるものである。また、層の厚さは1~500nmであることが好ましい。この層は、最密充填した無機粒子からなる層であることが好ましい。そしてこの無機粒子からなる層は、0.1質量%以上15質量%未満の濃度で分散した分散液を使用し、移流集積法等によって形成されたものである。
<< First member having a layer made of inorganic particles on the base material >>
The layer made of inorganic particles on the first member of the present invention (hereinafter, also simply referred to as a particle layer) is made of inorganic particles having an average particle size of 1 nm or more and less than 20 nm. The thickness of the layer is preferably 1 to 500 nm. This layer is preferably a layer composed of the most densely packed inorganic particles. The layer made of the inorganic particles is formed by an advection accumulation method or the like using a dispersion liquid dispersed at a concentration of 0.1% by mass or more and less than 15% by mass.

この方法による粒子層は、粒子が横毛管力によって集積し、最密構造を形成することが知られているが、本発明の平均粒径1nm以上20nm未満の無機粒子を0.1質量%以上15質量%未満の濃度で分散した分散液を使用した場合、この最密充填構造がより顕著に形成されるものと推測している。 In the particle layer by this method, it is known that particles are accumulated by lateral capillary force to form the densest structure, but the inorganic particles having an average particle size of 1 nm or more and less than 20 nm of the present invention are contained in an average particle size of 1 nm or more and less than 20 nm by 0.1% by mass or more. It is presumed that this densely packed structure is more prominently formed when a dispersion dispersed at a concentration of less than 15% by mass is used.

本発明の無機粒子を配置した面を目視で観察すると、構造色を有することがわかる。この構造色が観察できる範囲は、無機粒子を配置した全面であることが最も好ましいが、配置した面の5%以上が好ましく、さらに好ましくは20%以上、特に好ましくは50%以上である。 By visually observing the surface on which the inorganic particles of the present invention are arranged, it can be seen that they have a structural color. The range in which this structural color can be observed is most preferably the entire surface on which the inorganic particles are arranged, but is preferably 5% or more, more preferably 20% or more, and particularly preferably 50% or more of the arranged surface.

特許文献3では、平均粒径25nmの15質量%濃度の分散液を使用しているが、この場合に比べ、本発明の範囲とすることによって、いきなり接合強度の顕著な上昇を観察することができる。 In Patent Document 3, a dispersion having an average particle size of 25 nm and a concentration of 15% by mass is used. Compared to this case, by setting the range of the present invention, a remarkable increase in bonding strength can be observed suddenly. can.

残念ながら、電子顕微鏡等では直接的に層の微細構造の違いを観察することはできていないが、無機粒子を配置した面では構造色を有する。本発明の範囲では、そして、接合強度について、特許文献3からの連続的な変化では説明のできない効果が発現している。 Unfortunately, it is not possible to directly observe the difference in the fine structure of the layer with an electron microscope or the like, but the surface on which the inorganic particles are arranged has a structural color. Within the scope of the present invention, and with respect to the bonding strength, effects that cannot be explained by continuous changes from Patent Document 3 are exhibited.

無機粒子としては、シリカ粒子、チタン粒子、アルミナ粒子等の通常の無機物粒子、金属粒子、金属酸化物粒子を適用することができる。平均粒径は好ましくは1nm以上20nm未満であり、より好ましくは3~15nmである。無機粒子からなる層の厚さは、好ましくは1~1500nmであって、10~300nmがより好ましく、20~100nmがさらに好ましい。 As the inorganic particles, ordinary inorganic particles such as silica particles, titanium particles, and alumina particles, metal particles, and metal oxide particles can be applied. The average particle size is preferably 1 nm or more and less than 20 nm, and more preferably 3 to 15 nm. The thickness of the layer made of inorganic particles is preferably 1 to 1500 nm, more preferably 10 to 300 nm, still more preferably 20 to 100 nm.

本発明の無機粒子からなる層は、最密充填であることが好ましい。無機粒子が全て同寸法の真球状である場合、最密充填時の体積充填率は理論上約74%であるが、実際には無機粒子の形状はある程度バラつくことが通常である。 The layer made of the inorganic particles of the present invention is preferably close-packed. When all the inorganic particles are spherical with the same size, the volume filling factor at the time of close packing is theoretically about 74%, but in reality, the shape of the inorganic particles usually varies to some extent.

また、無機粒子が厚さ方向に積層されている場合であっても、第2部材との接合を考慮する場合、最表層の無機粒子の充填状態の影響が大きいと考えられるため、ここでいう最密充填とは、無機粒子からなる層の最表層における無機粒子の面積充填率が、80%以上であることをいい、85%以上がさらに好ましい。 Further, even when the inorganic particles are laminated in the thickness direction, the influence of the filling state of the inorganic particles on the outermost layer is considered to be large when considering the bonding with the second member. The close-packing means that the area filling rate of the inorganic particles in the outermost layer of the layer composed of the inorganic particles is 80% or more, more preferably 85% or more.

無機粒子の平均粒径は、BET法によって、下記の通り求めた。
〔平均粒径(比表面積径)〕
b有機溶媒に分散した無機粒子の乾燥後、BET法による比表面積S(m/g)を測定し、以下の換算式(1)にて、平均粒径d(nm)を求めた。
[数1]
d(nm)=6000/[ρ(g/cm)×S(m/g)](1)
(式中、dは平均粒径、ρは密度、Sは比表面積をあらわす。シリカでは、密度は2.2(g/cm)を採用した。)。
The average particle size of the inorganic particles was determined by the BET method as follows.
[Average particle size (specific surface area diameter)]
b After drying the inorganic particles dispersed in the organic solvent, the specific surface area S (m 2 / g) was measured by the BET method, and the average particle size d (nm) was determined by the following conversion formula (1).
[Number 1]
d (nm) = 6000 / [ρ (g / cm 3 ) × S (m 2 / g)] (1)
(In the formula, d represents the average particle size, ρ represents the density, and S represents the specific surface area. For silica, the density is 2.2 (g / cm 3 ).)

無機粒子からなる層の厚さは、透過型電子顕微鏡(TEM)によって測定した。具体的には、基材上に形成した無機粒子層の表面をTEMにより撮影した画像上で、無作為に抽出した10個の無機粒子の直径を測定して平均粒径を求め、同様に無機粒子層の断面をTEMにより撮影した画像上で、層の厚さを無作為の5箇所において測定した平均値を無機粒子からなる層の厚さとした。 The thickness of the layer consisting of inorganic particles was measured by a transmission electron microscope (TEM). Specifically, the diameters of 10 randomly selected inorganic particles were measured on an image of the surface of the inorganic particle layer formed on the substrate by TEM, and the average particle size was obtained. Similarly, the inorganic particles were obtained. The average value of the thickness of the layer measured at five random points on the image of the cross section of the particle layer taken by TEM was taken as the thickness of the layer composed of inorganic particles.

また最密充填であるか否かは、一般的には基材の無機粒子層形成面における任意の領域(1μm×1μm)をTEMにより撮影し、最表層における無機粒子の充填状態の観察によって決定することができる。 Further, whether or not the packing is the closest packing is generally determined by photographing an arbitrary region (1 μm × 1 μm) on the surface of the base material on which the inorganic particle layer is formed by TEM and observing the packed state of the inorganic particles on the outermost layer. can do.

≪基材≫
本発明の粒子層を形成するための基材は、移流集積法を適用することができる素材からなる基材であれば制限はない。例えば、金属、ガラス、セラミック、樹脂等が挙げられるが、より接合力の強い最密構造を均一に形成させるためには、基材の熱伝導率が500W/m・K以下の素材であることが好ましく、400W/m・K以下の素材であることがより好ましい。基材の熱伝導率は、射出成型時、溶着時の樹脂の固化速度の観点から、この範囲とすることが好ましい。
≪Base material≫
The base material for forming the particle layer of the present invention is not limited as long as it is a base material made of a material to which the advection accumulation method can be applied. For example, metal, glass, ceramic, resin, etc. may be mentioned, but in order to uniformly form a close-packed structure with stronger bonding force, the material must have a thermal conductivity of 500 W / m · K or less. Is preferable, and it is more preferable that the material is 400 W / m · K or less. The thermal conductivity of the base material is preferably in this range from the viewpoint of the solidification rate of the resin during injection molding and welding.

樹脂としては通常の環状ポリオレフィン(COC)、ポリアセタール(POM)、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、液晶性樹脂(LCP)等は、好ましい熱可塑性樹脂であり、特に、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリフェニレンサルファイド(PPS)、液晶性樹脂(LCP)が好ましく用いられる。これら樹脂の熱伝導率は1.0W/m・K以下である。 Examples of the resin include ordinary cyclic polyolefin (COC), polyacetal (POM), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyphenylene sulfide (PPS), polyether ether ketone (PEEK), and liquid crystal resin (LCP). Is a preferred thermoplastic resin, and in particular, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyphenylene sulfide (PPS), and liquid crystal resin (LCP) are preferably used. The thermal conductivity of these resins is 1.0 W / m · K or less.

セラミックとしてはアルミナ、ムライト、フェライト、チタン酸バリウム、チタン酸ジルコン酸鉛、フォルステライト、ステアタイト、コーディエライト、ジルコン、ジルコニア、窒化アルミニウム、窒化ケイ素、炭化ケイ素が挙げられる。これらの熱伝導率は、0.5~200W/m・Kである。金属としてはアルミニウム、ステンレス、マグネシウム、銅、チタン等が挙げられる。これらの熱伝導率は10~400W/m・Kである。 Examples of the ceramic include alumina, mullite, ferrite, barium titanate, lead zirconate titanate, forsterite, steatite, cordierite, zircon, zirconia, aluminum nitride, silicon nitride, and silicon carbide. These thermal conductivitys are 0.5 to 200 W / m · K. Examples of the metal include aluminum, stainless steel, magnesium, copper, titanium and the like. These thermal conductivitys are 10 to 400 W / m · K.

≪表面粗さが、Rmax≧Rz≧Rmax10%、かつRmax=1~10μmである基材≫
本発明の粒子層を形成する基材の表面は、表面粗さが、Rmax≧Rz≧Rmax10%、かつRmax=1~10μmであることが好ましい。より好ましいRzはRz≧Rmax5%である。また、Rmaxは1.5~8μmであることがより好ましく、2~5μmであることがさらに好ましい。このような面粗さとすることで、無機粒子の充填性を向上させることができる。
<< Substrate with surface roughness Rmax ≥ Rz ≥ Rmax -10% and Rmax = 1-10 μm >>
The surface roughness of the surface of the base material forming the particle layer of the present invention is preferably Rmax ≧ Rz ≧ Rmax -10% and Rmax = 1 to 10 μm. A more preferable Rz is Rz ≧ Rmax 5%. Further, Rmax is more preferably 1.5 to 8 μm, further preferably 2 to 5 μm. With such surface roughness, the filling property of the inorganic particles can be improved.

このような表面粗さとするためには、基材を作製する際に、要求される表面粗さに適した成形型を用いること、製造後の基材表面を研磨すること、基材表面をプラズマ、紫外線、コロナ放電等の活性種で処理すること、または基材表面に物理的及び/又は化学的に凹凸を形成及び/又は除去すること、基材に凹凸を生じるような粒子を含有させること等によって調整することができる。 In order to obtain such a surface roughness, when producing the base material, a molding die suitable for the required surface roughness should be used, the surface of the base material after production should be polished, and the surface of the base material should be plasma. , Treatment with active species such as ultraviolet rays, corona discharge, or physically and / or chemically forming and / or removing irregularities on the surface of the substrate, and containing particles that cause irregularities on the substrate. It can be adjusted by such as.

≪エラストマからなる第2部材≫
本発明の第2部材は、エラストマからなる。エラストマとしては、収縮率sh(%)と弾性率E(MPa)が、E≦100000×exp(-2.64×sh)の関係を満足するエラストマ、エラストマを含む樹脂組成物であることが好ましい。エラストマを含む樹脂組成物の母材樹脂としては、第1部材の基材として挙げた樹脂を使用することができる。
≪Second member consisting of elastomer≫
The second member of the present invention is made of an elastomer. The elastomer is preferably a resin composition containing an elastomer and an elastomer in which the shrinkage rate sh (%) and the elastic modulus E (MPa) satisfy the relationship of E ≦ 100,000 × exp (-2.64 × sh). .. As the base material resin of the resin composition containing the elastomer, the resin mentioned as the base material of the first member can be used.

第1部材の基材として挙げた好ましい樹脂に、無機充填剤、エラストマ等を含有させた樹脂組成物として、オレフィン樹脂組成物、アクリル樹脂組成物、ポリエステル樹脂組成物、ポリアセタール樹脂組成物、PPS樹脂組成物等も第2部材として好ましい。 As a resin composition containing an inorganic filler, an elastoma, etc. in the preferable resin mentioned as the base material of the first member, an olefin resin composition, an acrylic resin composition, a polyester resin composition, a polyacetal resin composition, a PPS resin, etc. A composition or the like is also preferable as the second member.

無機充填剤としてはガラス繊維、ガラスビーズ、ガラスフレーク、タルク、マイカ、シリカ等の繊維状、板状、粒状、粉状の無機充填剤が挙げられ、特に第1部材上に形成する無機粒子層に用いられる無機物と同質の無機充填材を含有する場合、第1部材の無機粒子層と第2部材との親和性が優れる点で好ましい。 Examples of the inorganic filler include fibrous, plate-like, granular, and powder-like inorganic fillers such as glass fibers, glass beads, glass flakes, talc, mica, and silica, and in particular, an inorganic particle layer formed on the first member. When an inorganic filler having the same quality as the inorganic substance used in the above is contained, it is preferable in that the affinity between the inorganic particle layer of the first member and the second member is excellent.

また、粒径としては0.1~50μmの無機充填材を含んでも良い。無機充填剤のアスペクト比は1~3であるものを含むことが好ましい。無機充填剤の含有量は、第2部材を構成する樹脂組成物が、上述の無機充填剤を5~50質量%含有することが好ましい。 Further, an inorganic filler having a particle size of 0.1 to 50 μm may be contained. It is preferable to include an inorganic filler having an aspect ratio of 1 to 3. As for the content of the inorganic filler, it is preferable that the resin composition constituting the second member contains 5 to 50% by mass of the above-mentioned inorganic filler.

好ましいエラストマとしては、エチレン-エチルアクリレート共重合体(例えば、(株)ENEOS NUC製NUC-6570等)等のオレフィン系重合体や、ポリエステル系エラストマ、ウレタン系エラストマ、ポリメタクリル酸エステルのアクリル系重合体(例えば、アイカ工業(株)製ゼフィアック、スタフィロイド等)等が挙げられる。 Preferred elastomers include olefin-based polymers such as ethylene-ethyl acrylate copolymers (for example, NUC-6570 manufactured by ENEOS NUC Co., Ltd.), polyester-based elastomers, urethane-based elastomers, and acrylic weights of polymethacrylic acid esters. Examples thereof include coalescence (for example, Zephyac manufactured by Aika Kogyo Co., Ltd., Staphyroid, etc.).

これらのエラストマは、コアシェル粒子の形状であっても、本発明の組成物に混合することができるのであれば、有効に使用することができる。コアシェル粒子のエラストマとしては、例えばダウ・ケミカル社のパラロイドEXL2311やEXL2314などが挙げられる。 These elastomers can be effectively used even in the form of core-shell particles as long as they can be mixed with the composition of the present invention. Examples of the elastomer of the core-shell particles include Paraloid EXL2311 and EXL2314 manufactured by Dow Chemical Co., Ltd.

エラストマとしてはグリシジル基を含有することも好ましく、グリシジル基を含有するエラストマとしてはエチレン-グリシジルメタクリレート共重合体やエチレン-グリシジルメタクリレート-アクリル酸メチル共重合体のようなグリシジル基含有オレフィン系共重合体(例えば、住友化学(株)製ボンドファースト)が挙げられる。 The elastoma preferably contains a glycidyl group, and the glycidyl group-containing elastoma is a glycidyl group-containing olefin-based copolymer such as an ethylene-glycidyl methacrylate copolymer or an ethylene-glycidyl methacrylate-methyl acrylate copolymer. (For example, Bond First manufactured by Sumitomo Chemical Co., Ltd.) can be mentioned.

第2部材で樹脂組成物としてエラストマを使用する場合、エラストマの含有量としては、第2部材を構成する樹脂組成物中の1~99質量%含有しても良く、1~30質量%含有しても良い。エラストマがグリシジル基を含有するエラストマである場合は、グリシジル基の含有量が第2部材を構成する樹脂組成物中の0.01~20質量%であることが好ましい。 When an elastomer is used as the resin composition in the second member, the content of the elastomer may be 1 to 99% by mass in the resin composition constituting the second member, or 1 to 30% by mass. May be. When the elastomer is an elastomer containing a glycidyl group, the content of the glycidyl group is preferably 0.01 to 20% by mass in the resin composition constituting the second member.

これらのエラストマは、上述の樹脂中に添加材として含有させた状態で、第2部材を構成する樹脂組成物として用いても良いし、エラストマ自体又はエラストマに無機充填材等の添加材を含有させたものを、第2部材を構成する樹脂組成物として用いても良い。 These elastomers may be used as a resin composition constituting the second member in a state of being contained as an additive in the above-mentioned resin, or the elastomer itself or the elastomer may be contained with an additive such as an inorganic filler. May be used as the resin composition constituting the second member.

本発明においては、上記の特性を有する樹脂組成物からなる第2部材が強い接合力を発揮する理由を下記のように推定している。第1部材上の粒子層は、まず基材との接着力が、移流集積法により最密構造を有するように形成されることにより、発揮される。そして収縮率と弾性率が上記式を満たす樹脂組成物は、最密構造の粒子層表面形状に対する追随性に優れかつ最密構造の表面積の大きさから、結果として接合力が強いと観察される。 In the present invention, the reason why the second member made of the resin composition having the above-mentioned characteristics exerts a strong bonding force is estimated as follows. The particle layer on the first member is first exhibited by forming the adhesive force with the substrate so as to have the closest structure by the advection accumulation method. A resin composition having a shrinkage coefficient and an elastic modulus satisfying the above formula is observed to have excellent bonding force with respect to the surface shape of the particle layer of the close-packed structure and as a result of the large surface area of the close-packed structure. ..

なお、本発明において、「収縮率sh(%)」とは、80mm×80mm×2mmの平板状試験片を、一辺の中央部に設けた幅4mm×厚さ2mmのサイドゲートを有する金型を用いて、第2部材を構成する樹脂組成物を、実際に複合部材を製造する際の第2部材の成形条件と同様の成形条件にて射出成形した場合の、流動直角方向の成形収縮率(成形後、23℃50%RHにて24時間以上静置した平板状試験片を用いて、反ゲート側の端部(流動末端側の辺)から20mmの位置における成形品の流動直角方向の寸法(平板状試験片の幅)を測定し、当該位置に相当する金型寸法との差(収縮量)を、金型寸法で除した値)を指し、「弾性率E(MPa)」とは、ISO178に準拠して測定される曲げ弾性率を指すものとする。 In the present invention, the "shrinkage rate sh (%)" refers to a mold having a side gate having a width of 4 mm and a thickness of 2 mm, in which a flat plate-shaped test piece of 80 mm × 80 mm × 2 mm is provided in the center of one side. When the resin composition constituting the second member is injection-molded under the same molding conditions as the molding conditions of the second member when actually manufacturing the composite member, the molding shrinkage in the direction perpendicular to the flow (molding shrinkage) ( Using a flat plate-shaped test piece that has been allowed to stand at 23 ° C. and 50% RH for 24 hours or more after molding, the dimensions of the molded product in the direction perpendicular to the flow of the molded product at a position 20 mm from the end on the opposite gate side (the side on the flow end side). (Width of flat plate-shaped test piece) is measured, and the difference (shrinkage amount) from the mold size corresponding to the position is divided by the mold size), and "elasticity E (MPa)" is , ISO 178 shall refer to the bending elasticity measured in accordance with ISO 178.

<複合部材の製造方法>
≪第1部材の製造方法≫
本発明では、基材が樹脂である場合、基材表面の層を構成する無機粒子を、イソプロピルアルコール、メタノール、酢酸エチル、ベンゼン、メチルエチルケトン、シクロヘキサン等の溶媒中に分散させた分散液に、基材を浸漬して引き上げることで、いわゆる移流集積法により基材表面に無機粒子層が形成された第1部材を製造することができる。
<Manufacturing method of composite member>
≪Manufacturing method of the first member≫
In the present invention, when the base material is a resin, the base material is a dispersion liquid in which the inorganic particles constituting the surface layer of the base material are dispersed in a solvent such as isopropyl alcohol, methanol, ethyl acetate, benzene, methyl ethyl ketone and cyclohexane. By immersing the material and pulling it up, it is possible to manufacture the first member in which the inorganic particle layer is formed on the surface of the base material by the so-called transfer accumulation method.

無機粒子層を配した面は、構造色を発する。構造色は、図4のように目視で観察することができる。濃く見える部分と薄く見える部分は、構造色が異なっており、全体として虹色の様に見える。これらの構造色は、太陽光のような白色光(可視光線)が、無機粒子層によってブラッグ条件に則って散乱、回折、干渉等によって発現した色であると推測しており、本発明の無機粒子層は、常には同じ構造を有するわけではなく、観察する角度によっても異なる多様な色彩である。 The surface on which the inorganic particle layer is arranged emits a structural color. The structural color can be visually observed as shown in FIG. The dark and light parts have different structural colors and look like a rainbow as a whole. These structural colors are presumed to be colors in which white light (visible light) such as sunlight is scattered, diffracted, interfered, etc. by the inorganic particle layer according to Bragg conditions, and is the inorganic color of the present invention. The particle layer does not always have the same structure, and has various colors that differ depending on the observation angle.

本発明の溶媒は、無機粒子を均一な厚みの層にするため沸点は40℃以上、100℃以下が好ましく、50℃以上、90℃以下である有機溶媒であることが好ましい。
移流集積時の溶媒揮発による無機粒子ハンドリングの観点で、沸点は室温以上であることが好ましく、溶媒が揮発するまでの時間での無機粒子が凝集し結晶化の観点から、沸点は100℃以下であることが好ましい。
The solvent of the present invention preferably has a boiling point of 40 ° C. or higher and 100 ° C. or lower, and preferably an organic solvent having a boiling point of 50 ° C. or higher and 90 ° C. or lower in order to form a layer having a uniform thickness.
From the viewpoint of handling inorganic particles due to solvent volatilization during translocation and accumulation, the boiling point is preferably room temperature or higher, and from the viewpoint of aggregation and crystallization of inorganic particles in the time until the solvent volatilizes, the boiling point is 100 ° C. or lower. It is preferable to have.

第1部材に金属やセラミックを使用する場合は水などの溶媒が適し、第1部材に樹脂などの有機物を使用する場合には、有機溶媒であることが好ましい。基材とのぬれ性の観点から、使用する溶媒の表面張力値が基材と同程度が好ましく、例えば10から30mN/m、更に好ましくは15から25mN/m程度である。 When a metal or ceramic is used for the first member, a solvent such as water is suitable, and when an organic substance such as a resin is used for the first member, an organic solvent is preferable. From the viewpoint of wettability with the base material, the surface tension value of the solvent used is preferably about the same as that of the base material, for example, about 10 to 30 mN / m, more preferably about 15 to 25 mN / m.

分散液における無機粒子の含有量は0.1質量%以上15質量%未満の濃度であり、0.5~10質量%であることが好ましく、特に1~5質量%が好ましい。濃度を薄くすることによって、構造色を有する面積を増やすことができ、臨界的に接合強度の上昇を観察することができる。 The content of the inorganic particles in the dispersion liquid is a concentration of 0.1% by mass or more and less than 15% by mass, preferably 0.5 to 10% by mass, and particularly preferably 1 to 5% by mass. By reducing the concentration, the area having the structural color can be increased, and an increase in the bonding strength can be observed critically.

ただし、基材表面上に無機粒子が緻密に配列した層を形成することができるのであれば、移流集積法に限定されず、ブラシやスプレーによる塗布、スピンコートなどの各種薄膜形成法を用いることもできる。ここで、無機粒子層を形成する際に、第2部材との接合に用いる箇所以外については、意匠性等の要求により必要に応じ、塗布した液体を拭き取る、あるいはあらかじめ基材にマスキングを施しておくことで、無機粒子層を設けないようにしてもよい。塗布回数は、複数回でもよい。 However, if it is possible to form a layer in which inorganic particles are densely arranged on the surface of the base material, the method is not limited to the advection accumulation method, and various thin film forming methods such as application by brush or spray and spin coating should be used. You can also. Here, when forming the inorganic particle layer, the applied liquid is wiped off or the base material is masked in advance, if necessary, except for the parts used for joining with the second member. By setting it, the inorganic particle layer may not be provided. The number of times of application may be a plurality of times.

なお、基材に樹脂を用いる場合は射出成形や押出成形等の通常用いられる方法により基材となる樹脂成形品を作製すればよく、同様にガラスであればフロート法やダウンドロー法等、セラミックであれば常圧焼結法や反応焼結法等、通常用いられる方法により作製されたものを用いることができる。これらの基材は、意匠性、機能性、他部材との固定などの要求に応じ、適宜切削や溶着といった加工がなされたものを用いても良い。 When a resin is used as the base material, a resin molded product as the base material may be produced by a commonly used method such as injection molding or extrusion molding. Similarly, if it is glass, a ceramic such as a float method or a down draw method may be used. If this is the case, those produced by a commonly used method such as a normal pressure sintering method or a reaction sintering method can be used. As these base materials, those which have been appropriately processed such as cutting or welding may be used according to the requirements such as designability, functionality, and fixing with other members.

≪第2部材の接合方法≫
本発明では、第1部材の無機粒子層の上に、第2部材を構成する樹脂組成物を溶融状態で接触させた上で、当該樹脂組成物を冷却固化させることで、第2部材の接合を行う。接合方法は特に限定されず、例えば、無機粒子層を有する第1部材を、第2部材成形用の金型中に配置し、第2部材を構成する樹脂組成物を、第1部材の無機粒子層上に射出成形(いわゆるインサート成形)することで、第2部材の接合を行うこともできるし、あらかじめ成形しておいた第2部材の表面のうち、接合に用いる領域を加熱溶融させた状態で、第1部材の無機粒子層と接触させて加圧(いわゆる溶着)することで接合を行うこともできる。
≪How to join the second member≫
In the present invention, the resin composition constituting the second member is brought into contact with the inorganic particle layer of the first member in a molten state, and then the resin composition is cooled and solidified to join the second member. I do. The joining method is not particularly limited, and for example, the first member having an inorganic particle layer is placed in a mold for molding the second member, and the resin composition constituting the second member is used as the inorganic particles of the first member. The second member can be joined by injection molding (so-called insert molding) on the layer, or the region of the surface of the second member that has been molded in advance is heated and melted. Then, the bonding can be performed by contacting with the inorganic particle layer of the first member and pressurizing (so-called welding).

第2部材のインサート成形や溶着の条件は特に限定されず、第2部材を構成する樹脂組成物に含有される樹脂の種類に応じて適宜設定することができる。 The conditions for insert molding and welding of the second member are not particularly limited, and can be appropriately set according to the type of resin contained in the resin composition constituting the second member.

例えば、第2部材がエラストマであるエチレン-エチルアクリレート共重合体の場合、インサート成形の際のシリンダ温度としては、130~200℃、好ましくは180℃以上、射出速度は、5~80mm/s、好ましくは20~50mm/s、保圧力は、5MPa~100MPa、好ましくは10~50MPaである。 For example, when the second member is an ethylene-ethyl acrylate copolymer having an elastomer, the cylinder temperature during insert molding is 130 to 200 ° C, preferably 180 ° C or higher, and the injection speed is 5 to 80 mm / s. The holding pressure is preferably 20 to 50 mm / s, and the holding pressure is 5 MPa to 100 MPa, preferably 10 to 50 MPa.

なお、インサート成形であれば、第2部材の形成と第1部材との接合を同時に行うことができるため、工程簡略化の面で有利である。また、第1部材の剛性や靱性が低く、インサート成形では樹脂圧により第1部材が変形又は破損してしまうような場合には、溶着で接合を行えば、加圧条件の設定自由度が高く、第1部材の変形や破損を抑制しやすいため有利である。 In addition, in the case of insert molding, the formation of the second member and the joining with the first member can be performed at the same time, which is advantageous in terms of process simplification. Further, when the rigidity and toughness of the first member are low and the first member is deformed or damaged by the resin pressure in insert molding, if the first member is joined by welding, the degree of freedom in setting the pressurizing condition is high. , It is advantageous because it is easy to suppress deformation and breakage of the first member.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお特に記載の無い場合、評価は23℃50%RHの測定室において行った。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. Unless otherwise specified, the evaluation was performed in a measurement room at 23 ° C. and 50% RH.

[接合強度の評価]
<基材の調製>
POM樹脂組成物1:ポリプラスチックス株式会社製ポリアセタール樹脂組成物:ジュラコン(登録商標)M90-40、(収縮率2.0%、弾性率2500MPa)、シリンダ温度200℃、金型温度80℃、射出速度50mm/sec、保圧力60MPaにて基材を射出成形した。
[Evaluation of joint strength]
<Preparation of base material>
POM resin composition 1: Polyacetal resin composition manufactured by Polyplastics Co., Ltd .: Duracon (registered trademark) M90-40, (shrinkage rate 2.0%, elastic modulus 2500 MPa), cylinder temperature 200 ° C., mold temperature 80 ° C., The substrate was injection molded at an injection speed of 50 mm / sec and a holding pressure of 60 MPa.

<第1部材の製造(無機粒子層の形成)>
イソプロピルアルコール(IPA、表面張力値20.8mN/m)またはメタノール(MTA、表面張力値22.6mN/m)中に平均粒径12nmのシリカ粒子を表に示した濃度に調整した液体中に、上述の基材を浸してから段差の接合面が液面に対し垂直になるように引き上げる操作(ディップ)を1回行うことで、基材の接合面に対しシリカ粒子を移流集積法により塗布し、23℃で乾燥させてイソプロピルアルコールを揮発させ、基材表面に無機粒子層を形成して第1部材を製造した。
比較用として、無機粒子の平均粒径25nm、平均粒径45nmを使用した。
<Manufacturing of the first member (formation of inorganic particle layer)>
Silica particles having an average particle size of 12 nm in isopropyl alcohol (IPA, surface tension value 20.8 mN / m) or methanol (MTA, surface tension value 22.6 mN / m) were prepared in a liquid adjusted to the concentrations shown in the table. By immersing the above-mentioned base material and then pulling it up so that the joint surface of the step is perpendicular to the liquid surface (dip), silica particles are applied to the joint surface of the base material by the transfer accumulation method. , The first member was manufactured by drying at 23 ° C. to volatilize isopropyl alcohol and forming an inorganic particle layer on the surface of the base material.
For comparison, an average particle size of 25 nm and an average particle size of 45 nm of the inorganic particles were used.

<複合部材の製造(第2部材との接合)>
第1部材の無機粒子層形成面の一部と、第2部材を形成するための上記試験片のキャビティの一部がオーバーラップするように設計された、複合部材成形用の金型内部に、第1部材を設置し、第2部材を構成する樹脂組成物を射出成形することで図2に示すような複合部材をインサート成形により製造した。
<Manufacturing of composite member (joining with second member)>
Inside a mold for forming a composite member, which is designed so that a part of the inorganic particle layer forming surface of the first member and a part of the cavity of the test piece for forming the second member overlap. A composite member as shown in FIG. 2 was manufactured by insert molding by installing the first member and injection molding the resin composition constituting the second member.

第2部材として、エチレン-エチルアクリレート共重合体:株式会社ENEOS NUC製「NUC-6570」(収縮率3%、弾性率20MPa)をシリンダ温度200℃、金型温度40℃、射出速度10mm/sec、保圧力10MPaにて第2部材を射出成形した。また射出成形条件である、シリンダ温度、射出速度、保圧力を変えた試料も作製した(実施例2)。この結果は表3に示す。 As a second member, an ethylene-ethyl acrylate copolymer: "NUC-6570" (shrinkage rate 3%, elastic modulus 20 MPa) manufactured by ENEOS NUC Co., Ltd. is used at a cylinder temperature of 200 ° C., a mold temperature of 40 ° C., and an injection speed of 10 mm / sec. The second member was injection-molded at a holding pressure of 10 MPa. In addition, a sample in which the cylinder temperature, injection speed, and holding pressure, which are injection molding conditions, were changed was also prepared (Example 2). The results are shown in Table 3.

<接合強度評価>
前記第1部材と第2部材の組み合わせにて、上述の方法で調整した複合部材について、まず第1部材と第2部材との接触面の周囲のバリを除去した後、試験片固定用治具に第1部材を固定した。次いで、島津製作所製 オートグラブAG-20kNXDplusを用い、引張速度500mm/minで、第1部材と第2部材とを剥離させた時の接合強度(MPa)を測定した。第2部材の射出条件も変化させた結果も含め、表1~3に示す。
<Evaluation of joint strength>
With respect to the composite member adjusted by the above method with the combination of the first member and the second member, first, burrs around the contact surface between the first member and the second member are removed, and then a jig for fixing the test piece is used. The first member was fixed to the. Next, using an auto grab AG-20kNXDplus manufactured by Shimadzu Corporation, the bonding strength (MPa) when the first member and the second member were peeled off was measured at a tensile speed of 500 mm / min. Tables 1 to 3 show the results of changing the injection conditions of the second member.

[生産性評価]
<良品率>
上記複合部材を、10ショットインサート成形し、離型時に第1部材と第2部材が剥がれず、サンプルが取れたものを良品数としてカウントし、良品率を算出した(例えば、10個中3個剥がれず採取できれば、3/10×100=30%とする。)。結果を表1~3に示す。
[Productivity evaluation]
<Good product rate>
The composite member was insert-molded with 10 shots, and the first member and the second member did not peel off at the time of mold release, and the sample was counted as the number of non-defective products, and the non-defective product ratio was calculated (for example, 3 out of 10). If it can be collected without peeling, 3/10 x 100 = 30%.). The results are shown in Tables 1 to 3.

Figure 0007085081000001
Figure 0007085081000001

Figure 0007085081000002
Figure 0007085081000002

Figure 0007085081000003
Figure 0007085081000003

表1~3に示されているように、本発明の範囲では特異的に接合強度が向上することが判る。 As shown in Tables 1 to 3, it can be seen that the bonding strength is specifically improved within the scope of the present invention.

図4、5に、平均粒径12μmのシリカ粒子を移流集積法により処理した試験片の写真を示した。図4はイソプロピルアルコール5%濃度溶液、図5はイソプロピルアルコール30%濃度溶液でのシリカ粒子の堆積配置状況を示したSEM画像である。 FIGS. 4 and 5 show photographs of test pieces obtained by treating silica particles having an average particle size of 12 μm by an advection accumulation method. FIG. 4 is an SEM image showing the deposition arrangement of silica particles in the isopropyl alcohol 5% concentration solution and FIG. 5 is the isopropyl alcohol 30% concentration solution.

これによると5%濃度溶液では、試験片表面の無機粒子を配置した60%程度の面積に、構造色が観察されており、均一な無機粒子層が形成されていることが判る。30%濃度溶液では、構造色は観察されず、さらに10から50μmの結晶の析出が観察される。平均粒径が25nm及び45nmの試料では、構造色は観察されない。

According to this, in the 5% concentration solution, the structural color is observed in the area of about 60% where the inorganic particles on the surface of the test piece are arranged, and it can be seen that a uniform inorganic particle layer is formed. In the 30% concentration solution, no structural color is observed, and further precipitation of crystals of 10 to 50 μm is observed. No structural color is observed in the samples with average particle sizes of 25 nm and 45 nm.

Claims (7)

基材上に無機粒子からなる層を有する第1部材と、エラストマからなる第2部材、とを無機粒子からなる層を介して接合してなる複合部材であって、該無機粒子からなる層が、平均粒径1nm以上20nm未満の無機粒子を配置した面を有する層であり、該面の少なくとも一部が該無機粒子の配置により発現した構造色を有する複合部材。 A composite member formed by joining a first member having a layer made of inorganic particles on a base material and a second member made of elastoma via a layer made of inorganic particles, and the layer made of the inorganic particles is formed. , A layer having a surface on which inorganic particles having an average particle size of 1 nm or more and less than 20 nm are arranged, and at least a part of the surface has a structural color developed by the arrangement of the inorganic particles . 基材上に無機粒子からなる層を有する第1部材と、エラストマからなる第2部材、とを無機粒子からなる層を介して接合してなり、該無機粒子からなる層が、平均粒径1nm以上20nm未満の無機粒子を配置した面を有する層であり、該面の少なくとも一部が該無機粒子の配置により発現した構造色を有する複合部材の製造方法であって、該無機粒子からなる層が、平均粒径1nm以上20nm未満の無機粒子を0.1質量%以上15質量%未満の濃度で溶媒中に分散した分散液を使用して形成したものである、複合部材の製造方法。 A first member having a layer made of inorganic particles on a base material and a second member made of elastoma are joined via a layer made of inorganic particles, and the layer made of the inorganic particles has an average particle size. It is a layer having a surface on which inorganic particles of 1 nm or more and less than 20 nm are arranged, and at least a part of the surface is a method for producing a composite member having a structural color expressed by the arrangement of the inorganic particles, and is composed of the inorganic particles. A method for producing a composite member, wherein the layer is formed by using a dispersion liquid in which inorganic particles having an average particle size of 1 nm or more and less than 20 nm are dispersed in a solvent at a concentration of 0.1% by mass or more and less than 15% by mass. .. 前記基材が、樹脂またはエラストマからなる請求項2に記載の複合部材の製造方法。 The method for manufacturing a composite member according to claim 2, wherein the substrate is made of resin or elastomer. 前記無機粒子を分散する分散液の溶媒が、沸点100℃以下の有機溶媒である請求項2または3記載の複合部材の製造方法。 The method for producing a composite member according to claim 2 or 3, wherein the solvent of the dispersion liquid in which the inorganic particles are dispersed is an organic solvent having a boiling point of 100 ° C. or lower. 前記基材上の無機粒子からなる層が、移流集積法により形成されたものである請求項2~4いずれかに記載の複合部材の製造方法。 The method for manufacturing a composite member according to any one of claims 2 to 4, wherein the layer made of inorganic particles on the substrate is formed by an advection accumulation method. 前記第1部材と第2部材との接合方法が、溶着または射出成形である請求項2~5いずれかに記載の製造方法。 The manufacturing method according to any one of claims 2 to 5, wherein the method of joining the first member and the second member is welding or injection molding. 前記第1部材と第2部材の接合が、溶着または射出成形である請求項1記載の複合部材。 The composite member according to claim 1, wherein the joining of the first member and the second member is welding or injection molding.
JP2022508566A 2021-04-02 2021-11-18 Composite member and its manufacturing method Active JP7085081B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2021063371 2021-04-02
JP2021063371 2021-04-02
PCT/JP2021/042383 WO2022208981A1 (en) 2021-04-02 2021-11-18 Composite member and method for producing same

Publications (3)

Publication Number Publication Date
JP7085081B1 true JP7085081B1 (en) 2022-06-15
JPWO2022208981A1 JPWO2022208981A1 (en) 2022-10-06
JPWO2022208981A5 JPWO2022208981A5 (en) 2023-02-28

Family

ID=82019126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022508566A Active JP7085081B1 (en) 2021-04-02 2021-11-18 Composite member and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7085081B1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012509214A (en) * 2008-11-19 2012-04-19 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Undercoating layer that improves topcoat functionality
US20190106611A1 (en) * 2016-05-09 2019-04-11 The Trustees Of The University Of Pennsylvania Omni-transparent and superhydrophobic coatings assembled from chain-like nanoparticles
JP2019089297A (en) * 2017-11-17 2019-06-13 ポリプラスチックス株式会社 Composite member and method for producing the same
WO2020059128A1 (en) * 2018-09-21 2020-03-26 三井化学株式会社 Metal/resin composite structure, method for manufacturing metal/resin composite structure, and cooling device
JP2020157489A (en) * 2019-03-25 2020-10-01 三井化学株式会社 Method for manufacturing metal-resin composite structure and metal-resin composite structure
WO2020250610A1 (en) * 2019-06-11 2020-12-17 ポリプラスチックス株式会社 Composite member and method for producing same
JP2021513914A (en) * 2018-02-27 2021-06-03 ウェイモ エルエルシー Light-transmitting superhydrophobic thin film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012509214A (en) * 2008-11-19 2012-04-19 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Undercoating layer that improves topcoat functionality
US20190106611A1 (en) * 2016-05-09 2019-04-11 The Trustees Of The University Of Pennsylvania Omni-transparent and superhydrophobic coatings assembled from chain-like nanoparticles
JP2019089297A (en) * 2017-11-17 2019-06-13 ポリプラスチックス株式会社 Composite member and method for producing the same
JP2021513914A (en) * 2018-02-27 2021-06-03 ウェイモ エルエルシー Light-transmitting superhydrophobic thin film
WO2020059128A1 (en) * 2018-09-21 2020-03-26 三井化学株式会社 Metal/resin composite structure, method for manufacturing metal/resin composite structure, and cooling device
JP2020157489A (en) * 2019-03-25 2020-10-01 三井化学株式会社 Method for manufacturing metal-resin composite structure and metal-resin composite structure
WO2020250610A1 (en) * 2019-06-11 2020-12-17 ポリプラスチックス株式会社 Composite member and method for producing same

Also Published As

Publication number Publication date
JPWO2022208981A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
EP1225248B1 (en) Resin moldings for application in electronical components
JP7020874B2 (en) Composite member and its manufacturing method
JP6017675B2 (en) Metal-resin bonded body and manufacturing method thereof
JP7128115B2 (en) METAL-CONTAINING PARTICLES, CONNECTING MATERIAL, CONNECTED STRUCTURE, CONNECTED STRUCTURE MANUFACTURING METHOD, CONDUCTIVITY TESTING MEMBER, AND CONTINUITY TESTING DEVICE
KR101077822B1 (en) Anti-static polyester film improved coating defect and manufacturing method thereof
JP5225392B2 (en) Encapsulation coating to reduce particle shedding
TWI671189B (en) Manufacturing method of laminated body
JP2007320215A (en) Precoated aluminum alloy plate
JP2014240134A (en) Metal-resin composite molding and production method thereof
TWI841520B (en) Metal-containing particles, connecting material, connecting structure, and method for manufacturing the connecting structure
JP2009274352A (en) Die assembly, injection molding method, and molded product
JPWO2016103470A1 (en) Polyarylene sulfide resin composition and insert molded product
WO2018198850A1 (en) Poly(arylene sulfide) resin composition and insert-molded article
WO2019208709A1 (en) Polyarylene sulfide-based resin composition and insert-molded product
JP2019181710A (en) Metal-resin bonded product
JP2013239539A (en) Substrate for optical semiconductor device, manufacturing method of substrate for optical semiconductor device, optical semiconductor device, and manufacturing method of optical semiconductor device
US20210108091A1 (en) Coated articles that demonstrate moisture resistance, suitable for use in electronic packages
JP7085081B1 (en) Composite member and its manufacturing method
JP2011119410A (en) Connection structure of printed circuit board, method of manufacturing the same, and anisotropic conductive adhesive
KR102134322B1 (en) Resin composition for insert molding, metal-resin composite molded body using the same, and method for producing the same
CN109890589A (en) The manufacturing method of composite component
WO2022208981A1 (en) Composite member and method for producing same
JPWO2019208708A1 (en) Polyarylene sulfide resin composition and insert molded article
WO2020250610A1 (en) Composite member and method for producing same
JP2007154071A (en) Resin-molded article for metal plating and injection-molded circuit component using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220209

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220603

R150 Certificate of patent or registration of utility model

Ref document number: 7085081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150